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Tentative asymptotics with

Freud's equations .

Problem : get the a,'s of exp(-£f(x)) (£ supposed even for simplicity)
Suggested method : +try a sequence { ... ap-1-8n,a8n4qs,-.. 3 and look if

Fa(a) is c¢lose ton ...
Here , Fpla) = anjqnqn_qi'dc » where the g,'s and do come From the

solution of the moment problem for the proposed a,'s . It is assumed that

Fn(a) depends mostly on the an's with m near n .

Simplest example : all the ap's for m near n are equal to a, . Then ,
do(x)=1/[p(x) (Ya,2-r2)172] , én(x) ~ (2p(rI/M) 1 2¢cos(no+9(8)) (Bernstein—
Szego) x=2a,cosé
1 2a,
Fal@) = —an [ " (4an2-%2)7172 [cosé + cos((2n-1)0+2¢) 1" (x)dx
T —2an
The first part is nothing else than the Mhaskar and Saff function ! So we
see how this function appears as a first approwimation .
I hoped that the second part should give the oscillatory behaviour of An
for £(x)=[x|¥ when « is not an even integer . Well , working the integrals
(replacing ¥ by ¥(ns/2)=0 : the Van Hove singularity at x=0 creates the

damped oscillation) .

o n/2 /2
Fpla) ~ —(Zan)“[ JO (cos6)¥ds + IO cos((2n—1)9(cosa)“‘1d6] ~n o,
T
v Gladla,j% [ 1+ (—1)“'1F(n—a/2)r(1+«/2)/(F(n+«/2)r(1—«/2))]

Y C(«)(an)“[1 + (*1)“'1A(u)/n“] “ m

Cla)(an)® —n ~ (-1"A(cdn1-% , with A(«)=TM(«/2)FN(1+x/2)sin(Mas/2) /T
For o>1 , the oscillatory part of Clx)(a,)¥ -n behaves indeed like
const.n’-% , hut the constant is not the same , it is about two times Al«)
for large « , and the behaviour when « approaches 1 is quite interesting :
I find the numerical formula

Cle) (ag)¥%-n = (a-2)/(24n) —13(«—%j(;géfikg;¢5§bn3)

a—1/a
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+ (—nnB(u)n“—n"’“n
« B(a) (a—1/c)B ()
7 -3.5 ? -24 ?
5 0.39 1:9
3 -0.085 -0.23
1.5 0.030
1 0.035
0.75 0.029
0.66666 0.026
0.5 0.016
0.33333 0.0003 ?

the non oscillatory part comes from Nevai et al.
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REFINED ASYMPTOTICS FOR FREUD’S RECURRENCE COEFFICIENTS
A. P. MaaNUS

1.Freud’s weights and coefficients.

Let {pn(z) = pal®; du())}3>, be the orthonormal polynomials with respect to an
even measure (i.e., f_°°oo ¥~ 1du(z) = 0,m = 1,2,...) on R. These polynomials then
satisfy the recurrence relations

a‘n+1pn-l—1(m) = :ﬂpn('E) == anﬁr?—l("c); n=0,1,... (GO = 0) (1)

One wishes to relate the behaviour of du(z) for large z to the behaviour of the recur-
rence coeficients a,, for large n (Freud’s programme [2], see also § 4.18 of [11]). Quite
a number of dramatic achievements have been made recently, using advanced orthogo-
nal polynomials theory (Christoffel functions), functional spaces theory and potential
theory, see [3,4,5(Appendix),6,7,11,13,14(Chap.4)] as landmarks and surveys.

Freud remarked in [2] how one can use the identity

lo.a)

"~ / P (@)pn-1(2)e™ %) dp = / Pu(2)pn-1(2)@ (2)e™ ¥ dz, n=1,2,...
2)

when the polynomials p, are orthonormal with respect to exp(—Q(z))dz (Freud’s
weight). Indeed, if @ is a polynomial, repeated applications of (1) in the right-hand
side of (2) yields a polynomial in a,, an+1,..., so that (2) turns as a set of equations
for the recurrence coefficients {a,}. For instance, Q(z) = «* gives

4aﬁ(a§_1+ai+ag+1):n, n=12..., (3)

a well worked example ([1,2,8,9,10,11,12(pp.470-471)]). Moreover, such equations al-
lowed Freud and followers to establish the asymptotic behaviour of a, for various
exponential weights ( exponentials of polynomials [1,2,8,9,10]), and to arrive naturally
to a conjecture for non polynomial exponentials:

1/
if du(z) = exp(—|z|*)dz, then a, ~ (%) , (4)

when n — oo, with C(a) = %%2—2))!

special case of very powerful investigations which led to

for e« > 0. The proof of (4) appears as a

if du(z) = exp(—Q(z))dz, then a, ~ @,, with &n/ Q'(2d,, cos ) cos 8 df = nrw

° @)
where @) is even, continuous and convex on R, @'(z) > 0 for ¢ > 0, among other con-
ditions. The (positive) root d, of the equation of (47) is called the Lubinsky-Mhaskar-
Rahmanov-Saff 's number. The method of proof of (4’) can even give asymptotic esti-
mates of aya3 ...a,([3,4,5,6,7,13]). Now, let us try to explore the subject further with
Freud’s equations.
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2.Freud’s functionals and equations.
Let us consider only positive sequences a = {a, }3° with 5 ;° 1/a, = co so as to be
sure that the related moment problem, amounting to finding du such that

1

. = [ G-ode),  vegm (5)

Y — —

has a unique solution. Then the Freud’s functional related to () and a is defined as

oo

Fo(Q;a) =an/ Pr(T)pn-1(2)Q'(x) du(z), (6)

where the p,(2) = p,(z; du(z))’s are the orthonormal polynomials related to the mea-
sure du solving the moment problem (5). Thus, Freud’s remark becomes: a is truly
the sequence of recurrence coefficients related to the measure exp(—Q(z))dz on R, if

Fr(@;a) = n, n=1,2,... (7)

making the Freud’s equations for a (when @ is an even function, or else one also must
consider the functionals G,, = [7_ p2(2)Q'(z)du(z) [9]). The functionals F, are linear
in @, but nonlinear in a, so with Q(z) = z* one recovers the example (3).
3.Asymptotic expansions.

When @ is a polynomial, (6) is explicit in a finite number of neighbours of a,, and
asymptotic expansions can be studied: so (4) has been completed as

o~ (e ) Uy & ®)

k=0

with Ag = 1, when « is an even integer ([10], see also [1]).

The problem now is to extend (8) when o« is not an even integer, still using
(6). Making the assumption that F,(Q;a) still depends essentially on the close neigh-
bours of a,, (technically, that 0F,(Q;a)/da; — 0 when |n — k| — oo, see further for
more on 9F,/fay), we approximate F,,(Q;a) for m near n by F,(Q;a™)), where
&™) is the constant sequence ... = &), = am, = &M = &,(f_gl = ... = By (25
we already know that a, .3/a, — 1 when n — o0). The measure A" is then
dil™ () = (1/(rdn))/1 — (z/(2G,))?dz on [-2a,,2a,]. This does not mean that
df™) is close to dy, but that F,,(Q;a) (probably) is close to F,,(Q;a) for m close
to n..., and a lot of other trial measures would be as good. Proceeding with the
computations (p,(z) is the Chebyshev polynomial U,,(z/(2d,))), one finds

2, 2
)y _ & x ; ® ; 1 (= -
e a”f_za,,U’” (2&71.){”” (2%)@(”%&” ! (zan “ (9)

== f [cos 8 — cos(2m + 1)0]Q'(2d, cos 6) dO
T Jo
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If @ is reasonably smooth, the (2m + 1)™ Fourier coefficient of Q'(2d, cos #) may
be neglected for large m and we recover the LM RS approximation &, for a, from (9).
For instance, with Q(z) = |z|™:

Sa, [
Fm([mlasém)) = —?TH/ [cos § — cos(2m + 1)0]a(24,, cos 6)*~1 db
0

_ 2% [F((a—l— D/2T(1/2)  T(a/2)0((a + 1)/2)0(1/2) ]
2I'(1 4+ a/2) 2I(1 + m+ a/2)T (/2 —m)
L(14+m—a/2)I(a/2)(1+ oz/2)]
al'(1+m+ a/2)
I'(a/2)I(1 —I—a/Z)}

Tme

s

= 42C(a) [1 — (=1)"sin(ra/2)

~ G20 [1 — (=1)™ sin(mer/2)

This suggests an (—1)"/n® term in the expansion:

CoNJECTURE. The recurrence coefficients of exp(—|z|*) satisfy the asymptotic

expansion
1/ co oo
n A.k B;c
iy~ : -1" — 10
! (C(a)) ) (g ntx +( 1) gnu’k) ( )
withO=idp<i1<.., do=La=jo<ji<... (a>1)

For more accurate predictions, one relates errors on a to errors on F(a) (F(a) is the
sequence {F,(Q;a)}) by F(a) - F(&(")) ~ J(a— &™), where J is the Jacobian matrix
of the partial derivatives 07, (Q;a)/0a;. The elements of this matrix (computed at
3(n))

a'")) are

Tk = OFm(Q;8) /08"
:253771] / pm(fv)pm—l(y)pk(m)pk-—l(y)
R./R

By [T [T
_ aﬂ/f sin(m + 1)8 sin my sin(k + 1) sin ke
0 JO

T2

9—%{3—(” di™ () dp ™) [9]
Q’(Z&‘n COS 9) - Q’(Z&n CcOS ’gb)
20y (cos § — cos 1)) aep

Here again, keeping only the lowest order Fourier coefficient:

2an [T [T . Q' (2ay, cos 8) — Q'(2é, cos )
Ik — ,/o /0 cos(m — k)fcos(m — k) 2 (00T — 05 0] .dﬂdw

leaving a Toeplitz matrix of symbol $(¢) = 3 Jp0exp(ipyp) such that

L 7 . 24, [T [T Q'(2dy, cos 0) — Q'(2d, cos )
- s ped(p)dp = — c0S pl cos ded
p /O cos pp®(p)dyp = —; /D fo 605 pif o8 P =—~5= (6050 — cos ) ¥

24, cos ) — Q'(2dy, cos(d + )

, . 2, [T Q'
& & _ 2ln do
iy () T ./o 2, (cos § — cos(@ + )
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J=1 is approximately the Toeplitz matrix of symbol 1/<i>, so that for |z|®:

An — &51”) 7 Z (J_l)n,n—!—p(Fn-!-p(Q; a) == Fn+p(Qi a(n)))

p=—co

~ Z(J_l)p,D (n +p—n+n(=1)"*"sin(ra/2)

r(a/Z)I:(l + a’/z)nl—a
()

suggesting By = (o — 1) sin(ra/2)(L(«/2))?/(27) in (10), using $(x) =

TN 0/
7(n+ p)®

~ (—1)"sin(ra/2)

7 1(28,)% 1 [7/%(cos 6)°2df = a(2dn)* =1 T((a—1)/2)/(L(1/2)T(a/2)).

Now, some horribly wrong mistake must have occurred somewhere, because very

high accuracy (up to 200 digits, on the IBM 3090 of the University) calculations of

instances of a,, for various values of o, followed by severe extrapolation devices designed
to exhibit By, lead to the

ProBLEM. Show that one has jo = o and By = (a—1)sin(ra/2)(1-1/a)*(T(a/2))?/(27)
in (10) when o > 1.
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