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ABSTRACT

The eigenfunctions of the one dimensional Schrédinger equation ¥+ [E - V(x]j¥=0, where V{x)

is a polynomial, are represented by expansions of the form k): 0 ¢l ¢ (@, x). The functions

¢} (@, x) are chosen in such a way that recurrence relations hold for the coefficients ¢y, examples

treated are Dy (w x) (Weber-Hermite functions), exp (- wxz) k
recurrence relations, one considers an infinite bandmatrix whose finite square sections permit to
solve approximately the original eigenproblem. It is then shown how a good choice of the par-
ameter w may reduce dramatically the complexity of the computations, by a theoretical study
of the relation holding between the error on an eigenvalue, the order of the matrix, and the value
of w. The paper contains tables with 10 significant figures of the 30 first eigenvalues correspond-

ing to V(x) = x2M - 2(1)7, and the 6 first eigenvalues corresponding to V(x) = %2 + =20 and
%2 4 ax12) A =.01(.01).1(.1)1(1)10(10)100.

1. INTRODUCTION

We first recall the form of the one-dimensional Schrs-
dinger equation (SE) : ¥”+ E-V(x}] ¥ =0 with
the limiting condition for the eigenstates :

ek 4 |2 dx <. The aim of this paper is the calcula-

tion of the eigenvalues (ev) Eg (N=0,1,...) of the
energy paraméter when the potential function V{x} is
of the type :

V(x) = <20 4 AxD 4 ux2P 4 .
{1<m<n<p<... integers)

Our method will be based on the use of the Hill deter-
minant as presented in a previous paper [1]. However
our principal goal here will be the optimalization of
the method. We shall try to solve the problem in a
simple and neat way. It is known that when A is small

the potential 2™ 4 Ax2™ can be treated as a x2m

potential sligthly perturbed by the 2™ term, When A
is large the same potential can be assimilated to a x40
potential sligthly perturbed by the x2™ term. That is
the reason why we shall first study the potential

Vix)= x2M We shall see later that more complex

potentials of the type x2M 4 2x?™ o canbe treated

in a similar way.

2. THE HILL DETERMINANT METHOD AND THE
" (k, w, 5) RELATION

The starting equation can be written as :

T4 (E-x2") ¥ =0

We look for a solution of the type

1

\II:OE C P (w, x)

where the parameter w is a priori arbitrary. Its essential

role will be precised later. Since V(x) = x2m
function of the variable x it is eventually possible to
deal separately with the odd and even eigenstates by
setting :

is an even

= ;Zg: ) ¥l (e, x)  for the even states {2}

= ;En ) Pol 41 (¢, x) for the odd states
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The sole restriction on gy is : ¢} (- x) = (- 1)kxpk(x).
Since the distinction between even and odd states
brings non negligible simplifications in the calcula-
tions we shall use it as far as possible. Note that the
generality of the theory is not affected by that distinc-
tion.

Let us introduce the expansion (2) in equ. (1); one

finds

2 o [og) (w,x) + (B- 2™ g, (W, x)]= 0

If it is possible to express gy, and x2™ @, by means
of a finite number of consecutive 9 functions then

by collecting the corresponding terms and by identi-
fying the whole expressions to zero one gets a finite
recurrence between the ¢ Ttis always possible to re-
write that recurrence under the following canonical
form :

A (w,B) AP, e,

1™

0
bt BB =0 (3)

with ¢ = 0ifk<Oandk=5,5+1,... (s= 0, fixed
integer).

In the cases where the recurrence (3) only regards the
even states, the other recurrence which corresponds
to the odd states can be deduced from it by simply .

replacing k by k +1/2 in the coefficients of cf_, 1,6 ...

It is possible to rewrite the set of recurrent relations

{3) under the form of an infinite linear homogeneous
system with the infinity of unknowns ¢q, cq,.-. The

determinant D of the infinite matrix of the system is
called the Hill determinant of the recurrence :

Al iopy AP~
A§n+—1s _2)(w,E) A£n+_ls _1)(w,E)

A (w,E)

n-1

All the elements are zero except those on the main
diagonal, on the (s +1) upper adjacent diagonals and
on the (n-s- 1) lower adjacent diagonals. The ev Ey
(N=0,1,2,...) of equ.(1) are precisely the roots of D.
These ev may of course not depend on the value given
to w, Practically it is not necessary to consider all the
elements of D, Let us truncate D by only considering
its k first lines and columns : the k x k resulting deter-

minant D) is the Kt approximant of D. With the
restriction that the procedure will converge we have :

oo AN,y

At Mwr) alYwE) o

D= Lm DU andin the same way the roots k)

— o

of D(k) tend to those of D : EN= lim Eg().

- 0

More generally éven when the sequence plk) diverges

we shall show in section 4 that the roots of ptk) of
fectively tend to the eigenvalues of equ. (1).

Finally we shall adopt the following technique for the
calculations : we intend to compute an ev Eyg of equ. (1)

with a precision at least equal to ¢ P, We shall compute
the corresponding root El(\lf) of the smallest approxi-

mant D) 5o that the consideration of a larger ap-
proximant would not affect the value just found in the
limits of the given precision. Let us precise the nota-
tions; we shall write :

|EN - Eg{) | = f:—5 {absolute error) {(5)

IEN - EIQI{) ‘ / | En ] =e P (relative error = precision)
(6)

We further have : § =p-In |EN' 67)

When one tries to calculate numerically the roots Eg{)
with the aid of a given algorithm one remarks that the
order k of the approximant which leads to the ev looked
for with the precision e”P strongly depends on the
value of the parameter . That dependence will be
called the (k, w, p) relation or equivalently because

of (7) the (k, @, §) relation. The interest for this rela-
tion is easily understood : if the value of w is correctly
chosen the calculation of the ev Eyg with a given preci-

sion will need the consideration of approximants plk)
of minimal dimension and the computation time will

be reduced.

(4)

A" (o)

3. CALCULATION OF THE ev OF EQUATION (1)

We shall successively adopt three types of ¢) functions.

Each procedure will exhibit its own advantages. .

3.1. First approach : ¢} (w,x} = D} (w,x)/T (k/2 +1}
The D are the classical Weber-Hermite functions [2].

They satisfy the following relations :
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D (u) = (w2/4-n-1/2) D_(u)
an(u) =Dn+1(u) +oDy, 1(11)

The last equation can be generalized as follows :

1
WD, (W=a D1+ a1 Palet T 212 04l

where the aj are given by hypergeometric expressions
G=-12-42+1,...,1/2):
NETEI e

0 1+ 3-Gh(72- 151 1251

Fl-n+jl-3, 1l

-12;211 +1;2)
These relations allow to find the recurrence satisfied
by the c; of equ. (2). After a little calculacion one

finds (k=m-1,m,...ie. s=m-1):

ing k by k +1/2 in the coefficients of (8). Recurrence

(8) contains (2m +1) terms connecting cj | 1,CfCk _am41*
The coefficients are polynomials in k of degree m.

When m > 3 equ. (8} is rather complicated so that this
approach becofmes untractable, We have performed
varions numerical tests in the case m=2 in order to
estimate the (k, w, 8) relation. Figure 1 exhibits the

(k, w) bebaviour for the four first even states {N=0,2,4,6)
in the case p =28 (about 12 correct figures for the ev}.

We remark the decrease of k when  increases and the
limiting k pt 12. In practice it is therefore evident

that a sufficiently large w-value must be chosen in

order that k be next k .. For example w = 2.5 should

be convenient. A too large tw-value is not only un-
necessary but also prejudicial since in the recurrence

(8) w appears at the power 2m + 2 =6; it is evident

that Jarge coefficients in the recurrence could induce

loss of significant figures in the numerical calculations.

Remark : it might be tempting to expand W in series of

the eigenfunctions of the harmonic oscillator x2 ie. for
the even states :

2m 2m + 2
E - -
[Ew w {(k+5/4 m)].:k_n ‘1
' @:? ¢ Dy (xV2)/K!

s @™ 24 mr1)e,
+ wlm* 2, (2k - 2m + 3)c That expansion corresponds to the choice w = V2.
Figure (1) shows that this choice is not the best since

'the corresponding value of k is about three times kopt‘

k-m+2

.o (2k»—2j—2m+2)!(2m)!21j|_m(k—m+1)!
j=m (2k-j-ljl-2m +2)! (m-|j|) 12§ ]! (k-j-m+1)!

Flookaieli o (] e |3 '
(-2k + j+ 1jl+ 2m =2, [jl-m;2 [j| + 1’2)Ck—j—m+1

(8)
Recurrence (8) holds for even states only. The recur-
rence for odd states can be deduced by simply replac-

=0

kk

P28 (N=0,2,46)

50

25F.

Fig. 1.

3.2. Second approach

¢y (@, x) = exp [-x97%(2q +2)] Dy {w, x}/T(k/2+1),

bThi; approach is interesting only if m =2q+1(q=1,2,...)

corresponding to the oscillators xé, 57, ... Proceeding
as in section 3.1 one gets the following recurrence be-
tween the ¢ (even states) : k=q.q +1, ..

2q _w2q+2

' 2q+2
[Ew {k+1/4-q)] ck_q+w /4(k—q)ck_q_:

2q+2
W /2(2k-2q+1)ck_q+1
+q§1 (2kf2j—2q)!(2q+1)!213|—q(k-q)!j
~q-1 (2k-2q-j- 1) Hg-1jl+ 1241 k-q-j)!

P(-2k

+2q+i+ il lil-q-1:2 1§l +1;2) ¢ =0
q+3+1il -9 ] )k_q_J

(9)

Recurrence {9) contains {2q + 3} terms and its coef-
ficients are polynomials in k of degree q +1. Let us
recall that in the first approach the number of terms
was (4q + 3) and the degree of the coefficients was
2q + 1. It is seen that this approach is simpler but it
does not allow to deal with all the values of m. The
sole values of q which are practically tractable by this
method are the values q = 1 or 2. When g > 2 the
recurrence (9) is too complicated. We have performed
several numerical investigations in the case g = 1 {po-
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tential x6}. The results are collected in figure 2 which kd =
exhibits the main features of the (k, w, §) relation
for the four first even states. One observes a behaviour b
quite similar to that of the first approach. Of course, tket) P

the value of kopt is modified. [ =07 s

k1l
/
0ok 0o}

p=128

(N=D0,2,4,6}

75 LK /

50k BO}F \ /

[=INY -]
e
~

\ o ‘ . p=28
e / N=0,4.8,....,28

25 | T

25I 1 L] :
2 3 4 j 5w

Fig. 2.

3.3. Third approach

Y

o (e, x) = exp (_dez) xk

In this approach the recurrence between the ¢y is
casily deduced in the form : i

(2k+1)(2k +2)c E-20-8ek) ¢ 1 4w

PR k-1

/3
—-c =0 k=0,1,2,... (even states) el =078

k-m (10)
For the odd states let us recall that k must be replaced
by k + 1/2. That recurrence is of order (m + 1) though
only four terms are different from zero, The structure
of the coefficients is quite simple which facilitates the 2
numerical calculations. We have studied numerically
the (k, w, §) relation in the case m=2. Figure 3 ' 28
represents with solid lines the essential of the results s '
for eight even states (N =0, 4, 8, ..., 28) calculated at 7

the precision e 28, Figure 4 does the same for the sole
fundamental state at various precisions. One remarks
that the bearing of the curves is essentially different :
k presents a minimum, kopt’ when = Wope There-
fore numerical investigations must be carried on with
a value of w in the neighbour of w . if one wishes to

100

50|

t
optimalize the efficiency of the metﬁod. That feature

of the (k, w) curves is characteristic of that approach ¢ N=0 {p=18,23,28,32)

for the x> potential. We have reported in table 1 the
expetimental values of k__ and w - for the funda-

opt 4

mental state of the potentialsx™ to %20 determined at

the precision e28 . 10712, 1f one considers the excited

states one remarks an increase in the values of k opt ¢ ) 2 3 5 5 5

they also increase with 8. All the (k, w) Fig. 4.

and Wopts
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curves fit in to each other, All the minima approxi-
matively lie on a same curve independent of E and of
5. We shall reexamine this point later. We have used
the values of SI- contained in table 1 in order to

calculate the first 30 states (even and odd) for the

oscillators x* to x1%. They are reported in table 2.
Let us recall that the ev spectra are given by simple
formulas in two extreme cases :

Table 1. Experimental and theoretical values of k

and @, (0 = 28) opt
m kopt wopt kopt wopt kopt wopt
exp.) | (exp.) | (simpl. |(simpl. {(refined |(refined
proc.) | proc.) iproc.) |[proc.)
21 30 2.4 25 2.76{ 27 2.37
31 53 6.0 56 5.29{ 50 5.83
41 79 11.2 85 104 77 11.3
51109 19 112 184 [ 108 [19.0
6 | 143 29.5 138 29.9 | 143 |29.1
7179 42 163 45.0 | 182 418
81219 57 188 64.1 | 226 |57.0
9 (262 74.5 212 87.4 {273 75.0
10 j310 95 236 115 | 324 |95.7
if m=1 then B = 2N + 1 and if m = = then
Ey =72 (N + 1)2/4.
Remark : whenm =2 one has > __ =2.4if 6§ =28

opt
{fundamental state). It is interesthfg to point out
the work of Biswas et alii [3] on the same oscillators :
they systematically choose w = 0.5 without suspecting
the role played by the factor . The result was that
they had to deal with approximants of large order
k ~ 140 about six times k_ .. The phenomenon was

increased when m = 3, 4, ... since in these cases w

opt
is very different from 0.5. The numerical results they
obtained were fragmentary and it is not surprising they
renounced to complete them because the time of

calculation was excessive.

4. THEORETICAL STUDY OF THE (k, w, §) RELA-
TION

Section 3 has shown several possible (k, w) behaviours
which are to be interpreted. The interest of the theory
is evident since it would allow to predict the values of
kopt and Wopt in practical cases. In order to attain this
aim it is necessary to estimate the error committed

presented elsewhere [1] whlch allow to calculate
recursively the various approximants Dk). Let us
recall its statement : if one constructs (s + 1) sequences

Nl(cj) (j= ., s +1) satisfying the recurrence (3) with
the following initialization (k < s) :
1({‘]) = 5k,jw1 (=1if k=j-1, otherwise = 0}
One has the following identity :
(a-s1) )
As As 0
k (0) © n
plk) - Ap Ailz
- {0) (nos-1)
0 Ak+s—l Ak+s 1
(1) {s+1)
Nk - Nk
_piks+1) (n) ((n) (n)
=(-1) AT 1 Brsan

1 .s+1
I

{11

Whatever large be k, the kxk determinant (k) i equaltoa

(s+1} x (s +1) determinant which order is fixed. Its (s +1)2
elements can be calculated recursively through (3}.
Recurrence (3) {without the conditions ¢, =0ifk < 0)

has n  independent solutions which are noted c( )
(1=0,1,...,n-1). Let us make the assumptlon (al-
ways verified in the practical cases that are in view)
that it is possible to order these n solutions so that the
{s + 1) first dominate the (n-s-1) othersie. :

Jim CEWCI((U:O with 0<l<s<l’ <n-1

We call subdominant solution any linear combination

{S+1)!""C]({n_1)

of of , and dominant solution any non

(0)  mn-1)

subdominant linear combination of ef e Op

The subdominant solutions of the recurrence have been
numerically studied by Gautschi {4] (in the case n = 2,

s = 0) and Oliver [5]. We shall see that the coefficients
cj present in eqit, {2) precisely correspond to a sub-
dominant solution of (3}. Let us note py_the ratio of
that form which tends the least fast to zero : p) appears
as the quotient of the largest subdominant solution to
the smallest dominant solation. It is easy to prove that
the errors resultmg of the replacement of D by its ap-

proximant D( ) behave like Py, ¢ to see it we first

when truncating the infinite determinant D to the express the NI({J ¥ in function of the c(l) :
value D) of its Kt approximant. A theorem has been Gy mzl (1) )
N = 2 j=l, s+ 1
i=0 *ij ¢
Journal of Computational and Applied Mathematics, volume 5, no 1, 1979. 7
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If we ignore the {n—-s-1} last terms in the summation
we neglect the subdominant solutions and the error is
of the order of py.. Introducing these simplified expres-
sions in equ. (11} we get :

where 0(py ) means “tends to zero in the same way as
Py when k -+ «”. One has :

419 4 s41 |

as+1,1"' as+1,s+1

plk)

(1) (s+1)

Ny Ny

(1) (s+1)

Nk+s NI4:+s

(1) (s+1)

“k %k 11 21,541

) 5 ) .

: - 0
1) Js+1) a a +0e)
k+s " “kes s+1,1 77 Ysalsel

ko e ke tigind A f el 4D
il) (s-+1)
Ck+s Ck+s

The roots Eyg of D thus coincide with the roots of

a

1,1 7 Myl

=;ls+1,1"' as+1,s+1

This determinant is generally an analytic function of
E, and has therefore isolated zeros in the complex
plane. If E is such a zero, and only then, a linear com-

bination =" Nl((l)l+ et Yo ut N(ks+1) exists
which is a subdominant solution of (3). Consequently,
for these values of E only, the Schrédinger equation
has a solution whose expansion (2) is built with a sub-
dominant solution of (3). In order to be sure that the
original eigenvalue problem has been solved, one must
show that these expansions only correspond to square
integrable functions, The way to achieve this depends
on the choice of the functions ¢ {@, x). For instance,
from the orthogonality relations of the Weber-Hermite
functions,

W(x) = L EO ¢ Dyp(wx)/(k!) is square integrable if

and only if

o dx=

— o

kifro(\/z_m'w)(zk)z ey 121 (k% < o .

As another example, it will be shown in section 4.3
that, if ¢ is a subdominant solution of (10),

Tix)= k§0 <L <K exp (—wa} behaves like

m/2 m+1],(

exp [-|x| m+1)] when x is a large real

x|
(positive or negative) number, whereas any dominant

solution of (10) gives birth to a function behaving like

-m/{2 m+1

|x] exp{ |x| /{m +1)] in the same conditions.

(k)

k),
N

If we note E',’ the roots of the approximant D e
have LESI() - ENl =0{py) if Ey is of multiplicity one.
On account of equ. {5} it is possible to rewrite this rela-
tion in the following way :

B - pyl= gy oy | =70

The fanction g (E) is unknown and in fact it seems
rather impossible to specify its form through theoretical
deductions. In practice we can only hope that g(E}=0{1)
so that we should have with a good approximation :

=-In|py | or equivalently on account of equ. {7) {12)
p =-Inlpl + In|Eyl (13)

Equ. {12) is precisely the (k, @, §) relation that we look
for since py_depends on w and k. It plays an essential
role since it allows to predict the order k of the smallest
approximant to be considered if one wishes to calculate
the ev to a given accuracy, It also allows to predict ap-
proximately the values of kopt and w opt- The procedure
can be summarized as follows : one starts with the recur-
rence brought into the form (3). One calculates the
asymptotic behaviour of the n independent solutions

(©)
k

dominate the (n-s-1) others. One writes p}_ as the

yeeny

c:(n gl). One verifies that (s +1) solutions

ratio of the largest subdominant solution to the smallest
dominant one. Equ. (12) furnishes the desired (k, w, 8)
relation. In order to determine the asymptotic behaviour
of the solutions one has the choice between two dif-
ferent methods which we shall successively use in order
to be able of comparing their respective advantages.

4.1, Theoretical study of the (k,ww, 8) relation in the
case where ¥ is expanded in terms of Weber-
Hermite functions

Here we try to recover theoretically the numerical
results of section 3.1. The recurrence is given by (8).
For the sake of simplicity we only deal with the case
m = 2. One has :

Journal of Computational and Applied Mathematics, volume 5, no 1, 1979. 8
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(16k2 -4l 1t [32k2—(24+ w6)k+ (4+ w6i2)]ck
+ [24K2 + (w8 -36)k + (15-3w0/4-Ewle,

+ [8K2- (18 + b7k + (10 + w¥/4)) ¢,

+ (k% -3k #2)c,_5=0 (14)

(k=1,2,...,i.e. s=1).

Here we shall use the technique of Denef and Piessens
[6]. The recurrence is of order 4; let us make the
hypothesis that when k is large cj_is of the type :

€~ RN exp (dk3/4 + ,fikzM + 7k1/4 + o)

In order to be sure that the assumption is valid we
introduce that expression in the recurrence (14)
previously divided by c; . We then obtain expressions

that can be developed in powers of K14, Collecting
the corresponding terms and equating to zéro the
coefficients of the highest powers of k we obtain the
relation  that fixes the values of a, w, @, 8,7, ... The
resultis (1=0,1,2, 3) :

2141)/4 . \3/4

Cl(cl) = (- 1,;’2)k exp [%0.73/2 ei‘n’(
w9l 2
24
Tt is immediately seen that solutions cl((o) and CE’J
and cl(cZ)‘ On the other side the sub-

dominant solutions only verify the condition

(2k)

R CICIER VN TR

. (1)
dominate cp

% lckl2 (2k)!/k !2 < w and thus alone correspond to

a square integrable eigenfunction of the SE(1) provided
there exists a non trivial linear combination of these.
that vanishes when k < 0. [t is easy to calculate :

oy = 1cfref® |~ exp - \/5%- w312 (2k)3/4
+—ﬁ w9/2(2k)1l4]
24

from which we deduce the theoretical (k, w, 8) rela-
tion :

PN % W32 (2034 _ %/% w912 iyl

When § = 28 the corresponding (k, w} curve is repre-
sented with dashed lines on figure 1. When w increases
k decreases, passes through a minimum kopt = 9/6 5/64,

Wopt = (48 51V6 )1/6 and increases in accordance
with the numerical data. However a discrepancy arises
when k' becomes too small due to the fact that at
low k it is impossible to ensure the validity of the

(1)
L

asymptotic expressions for ¢

4.2. Theoretical study of the (k, w, 8) relation in the
case where ¥ is expanded as a Taylor series.

Here we try to explain the numerical results related in
section 3.3. We shall deal with the general case of the
oscillator xZM, We start with recurrence (10) (even
states). We look for the asymptotic behaviour of the
Cl by two different ways,

4.2.1. Simplified procedure

We use again the technique of Denef and Piessens.
Let us first put

¢ = di /B {1+ 2k/{m + 1)]
The recurrence for thg dk can be written as :

(m+1)(2k+1)d 4 +(E-20 _ka)(%)(l—m)/(m+1)

_ 1
...[1+ 11;;‘1 2k« 1 dp
3 1 _
+4w2(m2}:1)( m)/(m + )[1+0k 1+ ] dk-l

-2k-m+1)/(m+1)d =0

{15)
Where use has been made of the well known identity:

b

z

AP 2+ )T (z+b)~ 1+ (a-b)(a+ b-1)/{22) + ...

Proceeding as in section 4.1 it is easy to establish that
1=0,1,2,...,m) :

-m
d(l): 6217r1/2(;1(1+1i) 247 exp wef2iﬂ1!(m+1)(2k)2!
(m41)~/\mF

20% e—4i'n’1,f(m+1) (zk)(z -m)/(m+1)
m +1

(16}

It is easily seen that CI((O) dominates the other solutions.
We have :

(1), (0), _ 2 2/(m+1
loy=leg e | = exp [w(cos H—I%—l)(Zk) (m+1)
_26? o 4T _1)(2k)(3~m)}'(m+1):\

m+1 m+

We deduce the (k, w, 8) relation :

§ = 20 sin? T (2k)2/(m+1)

m+1
2
4w Sinzﬂ_(zk)@—m)l(mqul) (17)
m+1 m+1

The corresponding {k, w) curve has been plotted in
dotted lines on figure 3 in the case (m =2, § = 28).
The coordinates of the minimum are easily deduced

from (17) :

Journal of Computational and Applied Mathematics, volume 5, no 1, 1979.
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b

2
— [m+1)tg

W = b cc>sec2

T
op 1(168))

m+

_ 2 7
kopt =88 cotg — ) f{m +1)
When & = 28 the numerical values of k__, and Wopt
are reported in table 1 in the column “simplified
procedure”. The agreement with the experimental
values is good especially when m is small. '

4.2.2. Refined procedure

We now turn to another more subtle approach. Let
us first recall the expansion guessed for the solution
of equ. (1) :

2k (even statés)

- 2
¥=% ¢ eWE ¢
0
The ¢ may be evaluated in the complex plane via
Cauchy’s theorem :
2
2_”1‘ ﬁz WX ¥(x) x_2k— 1 dx

(18)

Ck:

On another side the independent solutions

(0)
3

¢ = 0if k < 0) are given by such integrals calculated

yeres cf{m) of (3) (without the restrictions

on distincts contours £4,..., &y, [7, &].
Let us suppose that ] does not approach too much

the origin; it is then possible to replace ¥ by its
asymptotic behaviour for large x :

¥ 2 exp [+ xm+1/(m+ 1)]

If we introduce that ¥ in equ. (18) we can evaluate
the integral with the aid of the saddle point method {9}

$exp [f(x)]dx~v- f—(zi'%— exp f(x*)

with £ (x*) =0

One has : f(x) » wx? & x™ +1,v'(rn +1)-(2k+1 +m!2)1n x

Hence neglecting the factor [-27/f ”(x"‘)}l'f2 o

easily finds : :

KU

ne

~ explwxs s " (m 1) - (2k+ 1+ m/2)ln x)]
1=0,1,...,m) (19)

where x| are the saddle points of fi.e. the roots of :

2w xltx{n—(2k+l+m1’2),’xl=0 (20)

It is assumed that only x; and -x lie on £ [recall that

2m+1} 211

21+1
2m + 2

This assumption is justified by the fact that for w not

it

m+1

<argx < W 1=09,1,...,m).

2m + 2

too large one has  lim , arg Xy = and that
w—0

£ x) 1 _ 2k > 0 because of (20).
From another side following Sibuya [10] each solution
of the SE(1) behaves like
—m/2 m+1 _ m+1
x| m/ exp (- |_XL__) or like x| mlzexp(lj(l———)
m+ 1 m+ 1

when x - = in the direction arg x = w1/ (m +1) : how-
ever the second behaviour only corresponds to (19).
Now if the coefficients ¢y given by (18) behave like a
subdominant solution of the recurrence (3) that means

2
that x, and -X are not saddle points of eWE ‘If(x)x_Zk_l.

The conclusion is that

“m/2 Irn+1

|x

¥ (x)| = x|

exp (- jwhenxz— ¢ = ie.

m +
V¥ is a square integrable solution of the SE(1).

The ratio |py | is.easily calculated as equal to ic%{l) fc%co)L

Combining with equ. (12}, (19) and (20) one finds :

m-1

2
b=w LR (<2 -x2) + (2 + 1 rm2)ln |xy x|

{21)
Let us expand x and x in terms of powers of w by

starting with equ. (20); the two leading terms of the
expansions introduced in {21} restitute result (17).
However it is possible to determine exactly k__.
provided (19} is valid in the region k ~ kopt' '?he cal-

culation is performed as follows : one has

8= R[f(xo) -f(x;)] with the conditions

f’(xo) = f'(xl) =0

When « varies k passes through a minimum if

dk/dw=10 ie if
af (=) of(x,)
R[ o 1

A

} = 0 which leads to sz =Rx;.
BRI 0

The root x is real > 0 but x4 is complex. We put :
x% = x(z) (1 + itga). i we introduce these expressions
in equ. (20) with

m m m m .
tx. o =x andtxlz—x - one obtains

1
T (x) is odd or even so that xand —x| contribute for 00
the same quantity in (19)]. _xgH'l = Rx;n*l
Equ. (20) implies that : ]
om 42 39 Hence the equation for ¢ :
x| —(2k+1+m,"2—2wx1) =0 m+1
cos L o _cos z a L o< 2T

where x] is the root located in the sector ) > m+1l m+1

(22)

10
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Combining with (20) and (21) one finds :

kopt: —8/lncoso-mf4-1}2

R
o =

(21:-0Pt +m/2 + 1)(1—cotgatg£;—1

wOPt(Zkopt+ m/Z + 1)(1 - l'l'i)f(m + 1)

1 m+1
2

e Lcoigotg m + 1, (1-m)/(m+1)

o(l-cotgotg —
(24)

a easily deduces through (22) and kopt and Wopt follows

with (23) and (24). We have calculated the values of

k opt and w opt and we have reported them in table 1

in the column “refined procedure”. One notes the
remarkable agreement with the experimental numerical
data. On another side the (k, w) curve corresponding

to the fundamental state with § = 28 has been plotted
in dashed lines on figure 3. One sees that the theoretical
curve behaves like the experimental one provided

w< 5,

5. APPLICATION TO THE x2 + Ax2™ OSCILLATORS

It is possible to deal with the anharmonic oscillators

x2 4 ax2m exactly in the same way. If one calculates

Wept In that case one finds that w_,, varies very slowly
with X so that it is possible to perform the numerical
calculations by adopting the values of w . which are

deduced from (22), (23) and (24). Tables 3 and 4 give
the six first states (even and odd) of the oscillators

x%+ Ax1% and x% + Ax12 for n varying between
0.01 and 100. To the best of our knowledge these
quantities are calculated for the first time. That is also
the first time that a method is presented that makes
the access to the ev of an equation like (1) rather
simple. :

6. CONCLUSIONS

We now summarize the results. Wishing to calculate the
ev of the SE(1} we have exhibited the central role

played by the factor w which enters in the expansion
tried for W :

‘I’:OE ¢ ¥ (W, x)

We have successively used an expansion in terms of
Weber-Hermite functions and a Taylor expansion. At
first sight the first choice seems preferable because of
the orthogonality of W-H functions with the following
consequences :

- the evaluation of the norm, of matrix elements,...
is simplified
-if the oscillator x2 + Ax2™ is treated in a perturbative

way the present method allows to calculate all the
terms of the perturbative series with all the desired
precision. Let us recall indeed that the functions
Dy (x/2 ) are the eigenfunctions of the harmonic

x2 oscillator.

That approach is also interesting since it needs the
calculation of approximants of peculiarly low order k.
Unfortunately the recurrence (8) is rather complicated
and for m > 3 it is hardly usable.

On the other side the calculation of the coefficients

N of the eigenfunction is simpler in the approach

with Taylor expansions. Let us now turn to that ap-
proach which finally appears as the most advantageous.
When one expands ¥ in the form

2

Wx k
Z ¢ X
0 k

¥ =e
it is important to assign to w a numerical value next
Wopt otherwise k will be needlessly large. The theory
of section 4 has learned us how to predict the (k,, §)
curves. If the agreement is not perfect that is of course

due to the fact that the method is approximative in
various aspects :

a) Inequ. (12) In[g(E)| is neglected beside In|py |.

b) In the calculation of the integral giving cl({l) by the
saddle point method we neglect the factor
[-2m/f" (x*)]_u2 beside the exponential,

¢} In the same integral ¥ is replaced by its asymptotic
behaviour.

Approximations a) and b) have for consequence that
the theory predicts k systematically displaced with
respect to the real value. The fact is visible on figure 3.
Approximation a) also has for consequence that the
prediction is mostly valuable at low E. When E in-
creases (excited states) the discrepancy grows.
Approximation a) is interesting to be discussed be-
cause it entails that in the calculations k . and w
are only present in the combination

(-m}/(m+1)

Pt

wopt(Zkopt + mf{2+1) whatever E

and & are. The fact is visible in equ. (24}.
in the special case m = 2 equ. (24) is written as :

(kop,E + 1)'1"3 Wope = 0780507
The corresponding (k, w) curve has been plotted in
heavy lines on figures 3 and 4. We note that it sensibly
coincides with the locus of the minima of the (k,w)
curves when E and § vary. However the coincidence
may not be perfect because equ. (24) is not rigorous :
that can be seen by pursuing the calculations to higher
otders in the frame of the simplified procedure of sec-
tion 4.2.1. It is found at the third order that Wopt and
kopt become present under various forms incom-
patible with (24). One could hope to improve the pre-

Journal of Computational and Applied Mathematics, volume 5, no 1, 1979.

11

9/13



G A0BT ~ORE
1S94L6EHER

GRS

CHETESTTE0eL
ﬂﬁmmwab wﬁw

ﬂ@ whahEgT
L ZE0G0RTEGE
L SELRITETIER

R R SE e LT
o m“@wﬁmaudm.ﬁ

trrii v gy
EHOREETIES
7B GTAR YIS

GLOCEH 0S|
TSHBA0ELYSTS

ROz HTIY YRS

BLIG0BLTOGY

wmﬂzﬁwm D%m

10208720
BILEIDOY LT
HEARTRTCREE

HEIGEIHG¥GRY

L pisseestior

T e

ThEEFTZ T LEY

TG TEHETLTT .
SR L
S pnpReTOeTE.

23 LERERT LY

1IG0E261°6%

o morereere
S GREERGE 18R
m@mﬂwﬁ&a&ﬁ%

GTEEeRLALIT -
BELIEILTINT

wmw¢w¢¢m or
G hnl SE5E 0
»310TEEER 41

wwwdﬁmm»

CETEETIATTET

hNWﬂ%vam%M

_ﬁ@maﬁmmm_¢ﬂ_

THReRBv LD 4

ZILBESRER ™
.fmmwnﬁ¢¢«aw‘

ﬂ”ﬂ.ﬂ

.m.uOHm—..—.mUmO w

@qawgmwm,@m_

T GER RS TT

5516965971

% 30 sanfeauadis 18701 O

< *T9EL

12

Journal of Computational and Applied Mathematics, volume 5, no 1, 1979,

10/13



TS IT6LOEL §
16056 108 *58
ET60L65 109
21261616729
BOOY 2647 08
12895 €48 L
YLELIEO0YGL

SREREZHE UL
FHLEGHLO T
BETOBOELES
SYEITOLLAGE
SHOEROGIVEG

CHYSLROYTEE

05972600 7¢8"
CEEGTROOY ARG

LILLY665 714
OYBLE TS T 6Y
LISBTGE0 "9
BRLIGIBTIT LY
gegtiong . (%
_mmmw«w¢~,wm

CIOPGRL 7Y

BERCEGDLTTR
ZOECHUTC Oy

TERRERGDE ey
S9PELETLESLG

.@@@Mﬁwﬂﬁ hﬂ

gE9TFESY vOE
CORGREPZ LT

L BELGHED 67
LEENZHLZ VAT

ARl Bl b4

BDTRADYY t87

GrREDLE CET
svﬂMhﬁﬂhnﬁw

oetroTerater
_;wu¢mdwmm mw

o ssmwroiotie

EHTARTERY TS
HEHTEHIE LY

VIRHELEGT 06

rRGERYLE - @m

GOEEETI v gE
OREINHGe L

ZORTTHGL YT

ETRTRY5Y LY
R S
LEEeTEZ e 61
BEABOET R AL
BAIEEQGZ 6T

ZTEE9099° BT

CEBHTEEG BT

eRoRbATEY T

POCHEGTE 4]
Lebibi6G0 01
TZTHTHE97 61

L EGEERDGIAST

wm@mmﬁ¢m ﬁm

SAETER0HE" ST
BRICHLZH LY
STEEGSEY 5L
TeHEIELE E2

L PR A
e LEERGLT :
G185 7ERE 07
,wammwm¢m,¢:~

ET1E

.acam_nahwwwm¢m‘

RETLIE0675]

C ROSSERES LT

EEEDGLHLT LY
SEICEREG %1
BIEIZ0GE
GIHEGETTLET
BRLGHETRY 1]
GEEHEITH T
21698185 1T
m~¢wﬁﬁwm,ﬁﬁ
ELTURETE YO
HGESOHES 0T
HHGEERRECOT
HOZEREBEE

CERUIEROE "6

SHEEIEIGE
HZECHLIGH 6
DE6ETEEE" G
BILYEE6T G
ZZLITREL 4

_ w>: o EEYEIgE L

SEEHEHET L
TEGSTEOY L

CERBLIBFIOTL

BEEPZ2HG %S
A

Y1 105095
EEONG ThE
CLHETRE60
LS5 LG B

ELH0RELETTT
GEeEGIRUGC 11
TH6LEREE "0 T
YL EBGHRTG G

L IBOZERLIENOT.
L wELSTEREO T
Nhﬁwmmmm

£LEIEERG G
ETigEwEZ™Y
FLEVEH GO "G
BaGLI0RG S
51EU9E6% 45
DHRHTGHY "
YR IETTRZ *G
166091

L QuLELE IS
CIHSTTEE "%
BLeTEETY Y

EREESO BT
TRISOEET "%
CHLGF TRy
EVRag T
D5 e0R TS0 Yy
TEITEInd g

SIECHRNE YT
HEREEEDE *E

FLEOGE RG E
ls0gboagE

:

LEZEYSTET
6IZ6L656 2
GHGEYRID 2
81660 *T
ERELERLY T

L 2LTGEGTSE

mwmwm@mm¢w

EOEEHOYY 1
CIRTEZER Y
: LBE ST
G120n645E "1

- BTESRROE T

ESGEQETEY

RIUGLEZECT-
SLTISZIZNL

..«mwwwwwﬂ T
S RUMRECLETT

60HERYET T
ELEDI9ET Y

GERBZITICY.

FHETEFIOT
o

GBETEEEET.
LEZETRILST
B2Z968L7 1
1GE029b5

GOETLIZST
TOLTGELOG

eOT
8T ¢

{aoron

GOMGL
onvog
bG«Qm

R

oore
LR
SR
080
[SF R4+
Gu~ g
[ e

g

agmg
DEv ..

e

XA

LT

6070
Tegre

s
LRI SO
Zygnon
o

R

..HOudﬂ_..muWO O._”umam + Num Y1 30 mvﬂ—._.mbﬂvm..ﬁm C uﬁn—.m..._...

Journal of Computational and Applied Mathematics, volume 5, no 1, 1979.

13

11/13



FECTR T

GHITATONTTZ  aeegugEnte]
:ﬁaQMﬁ BFROE :;”wm@sﬁmﬂﬂ £1

CERRIAGHESY
HLE50 THETHE ._wwmﬁayhﬁy;ﬁ_

4 ¥ . ot

mm@?ﬂhmm m.
TERLRLEGRT R
EGUTDEEG S .
GEYIRSEY S
S BRESHEIDTE
o m@wwmm&m

o eeeteszity
::mﬂﬁmw#M0%4

B

.uOuj\momO

Xy + NH 213 Jo san[eausdn " S[qEL

4!

12/13



diction for the excited states by taking into account 3. BISWAS, $.N,;DATTA, K.; SAXENA, R.P;
the contributions of the third, fourth, ... order which SRIVASTAVA, P. K. and VARMA, V. 8. : “Eigenvalues
are influenced by E. The calculation is Il:verfectly pos- of Ax>™ anharmonic oscillators”, J. Math. Phys. 14
sible but unfortunately the series for ci) is found to . (1973),1190-95.
be divergent though it is of course asymptoticaly con- 4. GAUTSCHI, W._: “(’Zjom_putatiol?al aspects of three-term
. \ . recurrence relations”, Siam Review § (1967), 24-82.
vergent. As shown in'section 4.2.1 it happens that the =
series limited to its two first terms gives the essential 5. OLIVER, J.: “The numerical solution of linear recur-
of the results attainable through that procedure. rence relation”, Numer. Math. 11 (1968), 349-360.
If one wishes to refine the prediction of the (k,w, §) 6. DENEF, J. and PIESSENS, R. : “The asymptatic
relation for the excited states it is necessary to return behaviour of solutions of difference equations of Poin-
to the refined procedure of section 4.2.2 and to in- C?g’i;zpe’ , Bull. Soc. Math. Belgique XXVI (1974),
. N 133- .
troduce the energy parameter E in the calcualations.
To attain that goal it is necessary to start with an 7. MILNE-THOMSON, L. M. : The calculus of finite dif-
asymptotic expansion for ¥ which is more accurate ferences, Macmillan, London (1933).
than the one we have considered {which was in- 8. MAGNUS, A. : “Applications des récurrences au calcul
dependent of E). d’une classe d’intégrales”, Séminaires de mathématique
p gr q
appliquée et mécanique, rapport no 71 (1974}, Université
Catholique de Louvain.
REFERENCES 9. DE BRUIJN, N. G. : Asymptotic methods in analysis,
North Holland, Amsterdam (1958).
1. HAUTOT, A, et POSSOZ, L, : “*Sur une méthode de réso-
lution approchée de ’équation de Schrédinger”, Bull. Soc. 10. SIBUYA, Y. : Global theory of a second order linear
Roy. Sc. Liége, To appear in 46 {1977), 249-309. ordinary differential equation with a polynomial
coefficient, North-Holland, Amsterdam (1975).
2. ABRAMOVITZ, M, and STEGUN, L A. : Handbook of
mathematical functions, Dover, NY (1965}
Journal of Computational and Applied Mathematics, volume 5, no 1, 1979. 15

13/13



