Calculation of the eigenvalues of Schrödinger equations by an extension of Hill's method

André Hautot (*) and Alphonse Magnus (**)

ABSTRACT

The eigenfunctions of the one dimensional Schrödinger equation $\Psi''+[E-V(x)]\Psi=0$, where V(x) is a polynomial, are represented by expansions of the form $\sum\limits_{k=0}^{\infty} c_k \varphi_k(\omega,x)$. The functions $\varphi_k(\omega,x)$ are chosen in such a way that recurrence relations hold for the coefficients c_k : examples treated are $D_k(\omega x)$ (Weber-Hermite functions), $\exp(-\omega x^2) x^k$, $\exp(-c x^q) D_k(\omega x)$. From these recurrence relations, one considers an infinite bandmatrix whose finite square sections permit to solve approximately the original eigenproblem. It is then shown how a good choice of the parameter ω may reduce dramatically the complexity of the computations, by a theoretical study of the relation holding between the error on an eigenvalue, the order of the matrix, and the value of ω . The paper contains tables with 10 significant figures of the 30 first eigenvalues corresponding to $V(x) = x^{2m}$, m = 2(1)7, and the 6 first eigenvalues corresponding to $V(x) = x^2 + \lambda x^{10}$ and $x^2 + \lambda x^{12}$, $\lambda = .01(.01).1(.1)1(1)10(10)100$.

1. INTRODUCTION

We first recall the form of the one-dimensional Schrödinger equation (SE): $\Psi'' + [E - V(x)] \Psi = 0$ with the limiting condition for the eigenstates:

 $\int |\Psi|^2 dx < \infty$. The aim of this paper is the calculation of the eigenvalues (ev) E_N (N = 0, 1,...) of the energy parameter when the potential function V(x) is of the type :

$$V(x) = x^{2m} + \lambda x^{2n} + \mu x^{2p} + \dots$$

$$(1 \le m < n < p < \dots \text{ integers})$$

Our method will be based on the use of the Hill determinant as presented in a previous paper [1]. However our principal goal here will be the optimalization of the method. We shall try to solve the problem in a simple and neat way. It is known that when λ is small the potential $x^{2m} + \lambda x^{2n}$ can be treated as a x^{2m} potential sligthly perturbed by the x^{2n} term. When λ is large the same potential can be assimilated to a x^{2n} potential sligthly perturbed by the x^{2m} term. That is the reason why we shall first study the potential $V(x) = x^{2m}$. We shall see later that more complex

potentials of the type $x^{2m} + \lambda x^{2n} + \dots$ can be treated in a similar way.

2. THE HILL DETERMINANT METHOD AND THE (k,ω,δ) RELATION

The starting equation can be written as:

$$\Psi'' + (E - x^{2m}) \Psi = 0 \tag{1}$$

We look for a solution of the type

$$\Psi = \sum_{0}^{\infty} c_{k} \varphi_{k} (\omega, x)$$

where the parameter ω is a priori arbitrary. Its essential role will be precised later. Since $V(x)=x^{2m}$ is an even function of the variable x it is eventually possible to deal separately with the odd and even eigenstates by setting:

$$\Psi = \sum_{0}^{\infty} c_{k} \varphi_{2k} (\omega, x) \quad \text{for the even states}$$
 (2)

$$\Psi = \sum_{0}^{\infty} c_{k} \varphi_{2k+1}(\omega, x) \text{ for the odd states}$$

^(*) A. Hautot, University of Liège, Institute of Physics, Sart Tilman 4000, Liège 1, Belgium.

^(**) A. Magnus, U.C.L., Institute of Pure and Applied Mathematics, Chemin du Cyclotron 2, 1348 Louvain la Neuve, Belgium.

The sole restriction on φ_k is : $\varphi_k(-x) = (-1)^k \varphi_k(x)$. Since the distinction between even and odd states brings non negligible simplifications in the calculations we shall use it as far as possible. Note that the generality of the theory is not affected by that distinction.

Let us introduce the expansion (2) in equ. (1); one finds:

$$\sum_{0}^{\infty} c_{k} \left[\varphi_{2k}''(\omega, x) + (E - x^{2m}) \varphi_{2k}(\omega, x) \right] = 0$$

If it is possible to express $\varphi_{2k}^{''}$ and x^{2m} φ_{2k} by means of a finite number of consecutive φ_{2j} functions then by collecting the corresponding terms and by identifying the whole expressions to zero one gets a finite recurrence between the c_k . It is always possible to rewrite that recurrence under the following canonical form:

$$A_{k}^{(n)}(\omega, E) c_{k+1} + A_{k}^{(n-1)}(\omega, E) c_{k} + \dots + A_{k}^{(0)}(\omega, E) c_{k-n+1} = 0$$
(3)

with $c_k = 0$ if k < 0 and k = s, s + 1,... ($s \ge 0$, fixed integer).

In the cases where the recurrence (3) only regards the even states, the other recurrence which corresponds to the odd states can be deduced from it by simply replacing k by k+1/2 in the coefficients of c_{k+1}, c_k . It is possible to rewrite the set of recurrent relations (3) under the form of an infinite linear homogeneous system with the infinity of unknowns c_0, c_1, \ldots The determinant D of the infinite matrix of the system is called the Hill determinant of the recurrence:

$$\mathbf{D} = \lim_{k \, \to \, \infty} \mathbf{D}^{\left(k\right)} \; \text{ and in the same way the roots } \mathbf{E}^{\left(k\right)}$$

of
$$D^{(k)}$$
 tend to those of $D: E_N = \lim_{k \to \infty} E_N^{(k)}$.

More generally even when the sequence $D^{(k)}$ diverges we shall show in section 4 that the roots of $D^{(k)}$ effectively tend to the eigenvalues of equ. (1). Finally we shall adopt the following technique for the calculations: we intend to compute an ev E_N of equ. (1) with a precision at least equal to e^{-p} . We shall compute the corresponding root $E_N^{(k)}$ of the smallest approximant $D^{(k)}$ so that the consideration of a larger approximant would not affect the value just found in the limits of the given precision. Let us precise the notations; we shall write:

$$\left| E_{N} - E_{N}^{(k)} \right| = e^{-\delta}$$
 (absolute error) (5)

$$\left| E_N - E_N^{(k)} \right| / \left| E_N \right| = e^{-p}$$
 (relative error = precision)

We further have
$$: \delta = p - \ln \left| E_{N} \right|$$
 (7)

When one tries to calculate numerically the roots $E_N^{(k)}$ with the aid of a given algorithm one remarks that the order k of the approximant which leads to the ev looked for with the precision e^{-p} strongly depends on the value of the parameter ω . That dependence will be called the (k, ω, p) relation or equivalently because of (7) the (k, ω, δ) relation. The interest for this relation is easily understood: if the value of ω is correctly chosen the calculation of the ev E_N with a given precision will need the consideration of approximants $D^{(k)}$ of minimal dimension and the computation time will be reduced.

$$D = \begin{pmatrix} A_{s}^{(n-s-1)}(\omega,E) & A_{s}^{(n-s)}(\omega,E) & \dots & A_{s}^{(n)}(\omega,E) \\ A_{s+1}^{(n-s-2)}(\omega,E) & A_{s+1}^{(n-s-1)}(\omega,E) & \dots & A_{s+1}^{(n-1)}(\omega,E) & A_{s+1}^{(n)}(\omega,E) & 0 \\ \vdots & \vdots & & \ddots & & \vdots \\ A_{n-1}^{(0)}(\omega,E) & \dots & & & A_{n-1}^{(n)}(\omega,E) \\ 0 & \ddots & & \ddots & & \vdots \\ 0 & \ddots & & \ddots & & \ddots & & \vdots \\ 0 & \ddots & & \ddots & & \ddots & & \vdots \\ 0 & \ddots & & \ddots & & \ddots & & \vdots \\ 0 & \ddots & & \ddots & & \ddots & & \vdots \\ 0 & \ddots & & \ddots & & \ddots & & \vdots \\ 0 & \ddots & & \ddots & & \ddots & & \vdots \\ 0 & \ddots & & \ddots & & \ddots & & \vdots \\ 0 & \ddots & & \ddots & & \ddots & & \vdots \\ 0 & \ddots & & \ddots & & \ddots & & \vdots \\ 0 & \ddots & & \ddots & & \ddots & & \vdots \\ 0 & \ddots & & \ddots & & \ddots & & \vdots \\ 0 & \ddots & & \ddots & & \ddots & & \vdots \\ 0 & \ddots & & \ddots & & \ddots & & \vdots \\ 0 & \ddots & & \ddots & & \ddots & & \vdots \\ 0 & \ddots & \ddots & & \ddots & & \ddots & & \vdots \\ 0 & \ddots & \ddots & & \ddots & & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & & \ddots & & \ddots \\ 0 & \ddots & \ddots & \ddots & &$$

All the elements are zero except those on the main diagonal, on the (s+1) upper adjacent diagonals and on the (n-s-1) lower adjacent diagonals. The ev E_N $(N=0,1,2,\ldots)$ of equ. (1) are precisely the roots of D. These ev may of course not depend on the value given to ω . Practically it is not necessary to consider all the elements of D. Let us truncate D by only considering its k first lines and columns: the $k\times k$ resulting determinant $D^{(k)}$ is the k^{th} approximant of D. With the restriction that the procedure will converge we have:

3. CALCULATION OF THE ev OF EQUATION (1)

We shall successively adopt three types of $\varphi_{\bf k}$ functions. Each procedure will exhibit its own advantages.

3.1. First approach: $\varphi_k(\omega,x) = D_k(\omega,x)/\Gamma(k/2+1)$ The D_n are the classical Weber-Hermite functions [2]. They satisfy the following relations:

$$D_n''(u) = (u^2/4 - n - 1/2) D_n^{+}(u)$$

$$u D_n(u) = D_{n+1}(u) + n D_{n-1}(u)$$

The last equation can be generalized as follows:

$$u^{l}D_{n}(u) = a_{-l/2}D_{n-l} + a_{-l/2+1}D_{n-l+1} + \dots + a_{l/2}D_{n+l}$$

$$(l = 1, 2, \dots)$$

where the a_j are given by hypergeometric expressions (j = -1/2, -1/2 + 1, ..., 1/2):

$$a_{j} = \frac{\Gamma(n+1) \ l! \ 2^{|j|-1/2}}{\Gamma(n+1+j-|j|)(1/2-|j|)! \ |2j|!} F(-n+|j|-j,|j|)$$

$$-1/2; 2|j| + 1; 2$$

These relations allow to find the recurrence satisfied by the c_k of equ. (2). After a little calculation one finds (k = m - 1, m, ... i.e. s = m - 1):

$$[E\omega^{2m} - \omega^{2m+2}(k+5/4-m)]c_{k-n+1}$$

$$+ \,\,\omega^{\,2\,m\,+\,\,2}/4\,(k\,-m\,+\,1\,)\,c_{\,k\,-\,m}$$

$$+ \omega^{2m+2}/2(2k-2m+3)c_{k-m+2}$$

$$-\sum_{j=-m}^{m}\frac{(2k-2j-2m+2)!(2m)!2^{\lfloor j\rfloor-m}(k-m+1)!}{(2k-j-\lfloor j\rfloor-2m+2)!(m-\lfloor j\rfloor)!\lfloor 2j\rfloor!(k-j-m+1)!}$$

$$F(-2k+j+|j|+2m-2,|j|-m;2|j|+1;2)c_{k-j-m+1} = 0$$
(8)

Recurrence (8) holds for even states only. The recurrence for odd states can be deduced by simply replac-

Fig. 1.

ing k by k + 1/2 in the coefficients of (8). Recurrence (8) contains (2m+1) terms connecting $c_{k+1}, c_k, ..., c_{k-2m+1}$. The coefficients are polynomials in k of degree m. When m > 3 equ. (8) is rather complicated so that this approach becomes untractable. We have performed various numerical tests in the case m=2 in order to estimate the (k, ω, δ) relation. Figure 1 exhibits the (k, ω) behaviour for the four first even states (N=0,2,4,6) in the case p = 28 (about 12 correct figures for the ev). We remark the decrease of k when ω increases and the limiting $k_{\mbox{\scriptsize opt}} \sim 12$. In practice it is therefore evident that a sufficiently large ω -value must be chosen in order that k be next k_{opt} . For example $\omega = 2.5$ should be convenient. A too large ω -value is not only unnecessary but also prejudicial since in the recurrence (8) ω appears at the power 2m + 2 = 6; it is evident that large coefficients in the recurrence could induce loss of significant figures in the numerical calculations.

Remark: it might be tempting to expand Ψ in series of the eigenfunctions of the harmonic oscillator x^2 i.e. for the even states:

$$\Psi = \sum_{0}^{\infty} c_k D_{2k} (x\sqrt{2})/k!$$

That expansion corresponds to the choice $\omega = \sqrt{2}$. Figure (1) shows that this choice is not the best since the corresponding value of k is about three times k_{opt} .

3.2. Second approach

$$\varphi_{k}(\omega, x) = \exp[-x^{2q+2}/(2q+2)] D_{k}(\omega, x)/\Gamma(k/2+1)$$

This approach is interesting only if m=2q+1 (q=1,2,...) corresponding to the oscillators x^6 , x^{10} , ... Proceeding as in section 3.1 one gets the following recurrence between the c_k (even states): k=q,q+1,...

$$[\mathbb{E}\,\omega^{2q} - \omega^{2q+2}(k+1/4-q)]\,c_{k-q}^{} + \omega^{2q+2}/4(k-q)c_{k-q}^{} -$$

$$+ \ \omega^{2q+2}/2(2k-2q+1) \ c_{k-q+1}$$

$$+ \frac{ q + 1 }{ \sum\limits_{-q = 1}^{\infty} \frac{ (2k - 2j - 2q)! (2q + 1)! 2^{\left|j\right| - q} (k - q)! j }{ (2k - 2q - j - \left|j\right|)! (q - \left|j\right| + 1)! \left|2j\right|! (k - q - j)! } } F(-2k$$

$$+2q+j+|j|,|j|-q-1;2|j|+1;2)c_{k-q-j}=0$$
(9)

Recurrence (9) contains (2q+3) terms and its coefficients are polynomials in k of degree q+1. Let us recall that in the first approach the number of terms was (4q+3) and the degree of the coefficients was 2q+1. It is seen that this approach is simpler but it does not allow to deal with all the values of m. The sole values of q which are practically tractable by this method are the values q=1 or 2. When q>2 the recurrence (9) is too complicated. We have performed several numerical investigations in the case q=1 (po-

tential x^6). The results are collected in figure 2 which exhibits the main features of the (k, ω, δ) relation for the four first even states. One observes a behaviour quite similar to that of the first approach. Of course, the value of k_{opt} is modified.

3.3. Third approach

$$\varphi_k(\omega, \mathbf{x}) = \exp(-\omega \mathbf{x}^2) \mathbf{x}^k$$

In this approach the recurrence between the c_k is easily deduced in the form :

$$(2k+1)(2k+2)c_{k+1}^{2} + (E-2\omega-8\omega k)c_{k}^{2} + 4\omega^{2}c_{k-1}^{2}$$

$$-c_{k-m} = 0$$
 $k = 0, 1, 2, ...$ (even states) (10)

For the odd states let us recall that k must be replaced by k + 1/2. That recurrence is of order (m + 1) though only four terms are different from zero. The structure of the coefficients is quite simple which facilitates the numerical calculations. We have studied numerically the (k, ω, δ) relation in the case m = 2. Figure 3 represents with solid lines the essential of the results for eight even states (N = 0, 4, 8, ..., 28) calculated at the precision e⁻²⁸. Figure 4 does the same for the sole fundamental state at various precisions. One remarks that the bearing of the curves is essentially different: k presents a minimum, k_{opt} , when $\omega = \omega_{opt}$. Therefore numerical investigations must be carried on with a value of ω in the neighbour of $\omega_{\rm opt}$ if one wishes to optimalize the efficiency of the method. That feature of the (k, \omega) curves is characteristic of that approach for the x^{2m} potential. We have reported in table 1 the experimental values of k_{opt} and ω_{opt} for the fundamental state of the potentials x^4 to x^{20} determined at the precision $e^{-28} \stackrel{\circ}{\sim} 10^{-12}$. If one considers the excited states one remarks an increase in the values of kopt and $\omega_{\rm opt}$; they also increase with δ . All the $(k, \bar{\omega})$

Fig. 3.

curves fit in to each other. All the minima approximatively lie on a same curve independent of E and of δ . We shall reexamine this point later. We have used the values of $\omega_{\rm opt}$ contained in table 1 in order to calculate the first 30 states (even and odd) for the oscillators x^4 to x^{14} . They are reported in table 2. Let us recall that the ev spectra are given by simple formulas in two extreme cases:

Table 1. Experimental and theoretical values of $k_{\mbox{\scriptsize opt}}$ and $\omega_{\mbox{\scriptsize opt}}$ (p = 28)

m	k _{opt} (exp.)	ω _{opt} (exp.)	k _{opt} (simpl. proc.)	(simpl.	k _{opt} (refined proc.)	ω _{opt} (refined proc.)
2	30	2.4	25	2.76	27	2.37
3	53	6.0	56	5.29	50	5.83
4	79	11.2	85	10.4	77	11.3
5	109	19	112	18.4	108	19.0
6	143	29.5	138	29.9	143	29.1
7	179	42	163	45.0	182	41.8
8	219	57	188	64.1	226	57.0
9	262	74.5	212	87.4	273	75.0
10	310	95	236	115	324	95.7

if m = 1 then $E_N = 2N + 1$ and if m = ∞ then $E_N = \pi^2 (N+1)^2/4$.

Remark: when m = 2 one has $\omega_{\rm opt}$ = 2.4 if δ = 28 (fundamental state). It is interesting to point out the work of Biswas et alii [3] on the same oscillators: they systematically choose ω = 0.5 without suspecting the role played by the factor ω . The result was that they had to deal with approximants of large order $k \approx 140$ about six times $k_{\rm opt}$. The phenomenon was increased when m = 3, 4, ... since in these cases $\omega_{\rm opt}$ is very different from 0.5. The numerical results they obtained were fragmentary and it is not surprising they renounced to complete them because the time of calculation was excessive.

4. THEORETICAL STUDY OF THE $(k,\,\omega,\,\delta)$ RELATION

Section 3 has shown several possible (k,ω) behaviours which are to be interpreted. The interest of the theory is evident since it would allow to predict the values of k_{opt} and ω_{opt} in practical cases. In order to attain this aim it is necessary to estimate the error committed when truncating the infinite determinant D to the value $D^{(k)}$ of its k^{th} approximant. A theorem has been

presented elsewhere [1] which allow to calculate recursively the various approximants $D^{(k)}.$ Let us recall its statement : if one constructs (s+1) sequences $N_k^{(j)}\ (j=1,\ldots,s+1)$ satisfying the recurrence (3) with the following initialization $(k\leqslant s)$:

$$N_k^{(j)} = \delta_{k, j-1}$$
 (=1 if k = j-1, otherwise = 0)

One has the following identity:

$$\mathbf{D}^{(k)} = \left| \begin{array}{cccc} A_s^{(n-s-1)} & \dots & A_s^{(n)} & & 0 \\ \vdots & & & \ddots & & \\ A_{n-1}^{(0)} & & & A_{k-2}^{(n)} \\ & \ddots & & & \vdots \\ & 0 & & A_{k+s-1}^{(0)} & \dots & A_{k+s-1}^{(n-s-1)} \end{array} \right|$$

$$= (-1)^{k(s+1)} A_s^{(n)} A_{s+1}^{(n)} \dots A_{k+s-1}^{(n)} \begin{vmatrix} N_k^{(1)} & \dots & N_k^{(s+1)} \\ \vdots & & \vdots \\ N_{k+s}^{(1)} & \dots & N_{k+s}^{(s+1)} \end{vmatrix}$$

$$(11)$$

Whatever large be k, the k×k determinant $D^{(k)}$ is equal to a $(s+1) \times (s+1)$ determinant which order is fixed. Its $(s+1)^2$ elements can be calculated recursively through (3). Recurrence (3) (without the conditions $c_k = 0$ if k < 0) has n independent solutions which are noted $c_k^{(1)}$ (i = 0, 1, ..., n-1). Let us make the assumption (always verified in the practical cases that are in view) that it is possible to order these n solutions so that the (s+1) first dominate the (n-s-1) others i.e.:

$$\lim_{k \, \to \, \infty} c_k^{\left(l^{\, \prime}\right)}/c_k^{\left(l\right)} = 0 \ \ \text{with} \ \ 0 \leqslant l \leqslant s < l^{\, \prime} \leqslant n-1$$

We call subdominant solution any linear combination of $c_k^{(s+1)}, \ldots, c_k^{(n-1)}$, and dominant solution any non subdominant linear combination of $c_k^{(0)}, \ldots, c_k^{(n-1)}$. The subdominant solutions of the recurrence have been numerically studied by Gautschi [4] (in the case n=2, s=0) and Oliver [5]. We shall see that the coefficients c_k present in equ. (2) precisely correspond to a subdominant solution of (3). Let us note ρ_k the ratio of that form which tends the least fast to zero: ρ_k appears as the quotient of the largest subdominant solution to the smallest dominant solution. It is easy to prove that the errors resulting of the replacement of D by its approximant $D^{(k)}$ behave like ρ_k : to see it we first express the $N_k^{(j)}$ in function of the $c_k^{(l)}$:

$$N_k^{(j)} = \sum_{i=0}^{n-1} a_{i,j} c_k^{(i)}$$
 $j = 1,..., s+1$

If we ignore the (n-s-1) last terms in the summation we neglect the subdominant solutions and the error is of the order of ρ_k . Introducing these simplified expressions in equ. (11) we get:

$$\begin{vmatrix} N_k^{(1)} & \dots & N_k^{(s+1)} \\ \vdots & & \vdots \\ N_{k+s}^{(1)} & \dots & N_{k+s}^{(s+1)} \end{vmatrix}$$

$$= \begin{vmatrix} c_k^{(1)} & \dots & c_k^{(s+1)} \\ \vdots & & \vdots \\ c_{k+s}^{(1)} & \dots & c_{k+s}^{(s+1)} \end{vmatrix} \begin{vmatrix} a_{1,1} & \dots & a_{1,s+1} \\ \vdots & & \vdots \\ a_{s+1,1} & \dots & a_{s+1,s+1} \end{vmatrix} (1 + 0(\rho_k))$$

where $0(\rho_k)$ means "tends to zero in the same way as ρ_k when $k\to\infty$ ". One has :

$$\begin{bmatrix} a_{1,1} & \cdots & a_{1, s+1} \\ \vdots & & \vdots \\ a_{s+1,1} & \cdots & a_{s+1, s+1} \end{bmatrix}$$

$$= \lim_{k \to \infty} \frac{D^{(k)}}{(-1)^{k(s+1)} A_s^{(n)} \dots A_{s+k-1}^{(n)}} \begin{vmatrix} c_k^{(1)} & \dots & c_k^{(s+1)} \\ \vdots & & \ddots & \vdots \\ c_{k+s}^{(1)} & \dots & c_{k+s}^{(s+1)} \end{vmatrix}$$

The roots EN of D thus coincide with the roots of

$$\begin{bmatrix} a_{1,1} & \cdots & a_{1,s+1} \\ \vdots & & \vdots \\ a_{s+1,1} & \cdots & a_{s+1,s+1} \end{bmatrix}$$

This determinant is generally an analytic function of E, and has therefore isolated zeros in the complex plane. If E is such a zero, and only then, a linear combination $c_k = \gamma_1 \ N_k^{(1)} + \ldots + \gamma_{s+1} \ N_k^{(s+1)}$ exists

which is a subdominant solution of (3). Consequently, for these values of E only, the Schrödinger equation has a solution whose expansion (2) is built with a subdominant solution of (3). In order to be sure that the original eigenvalue problem has been solved, one must show that these expansions only correspond to square integrable functions. The way to achieve this depends on the choice of the functions $\varphi_k(\omega, \mathbf{x})$. For instance, from the orthogonality relations of the Weber-Hermite functions,

$$\Psi(x) = \sum\limits_{k=0}^{\infty} \, c_k \, D_{2k}(\omega \, x) / (k\,!)$$
 is square integrable if

and only if

$$\int\limits_{-\infty}^{\infty} \left| \Psi(x) \right|^2 \, \mathrm{d}x = \sum\limits_{k=0}^{\infty} (\sqrt{2\pi}/\omega) (2k)! \left| \mathsf{c}_k \right|^2 / (k!)^2 < \infty \ .$$

As another example, it will be shown in section 4.3 that, if c_k is a subdominant solution of (10),

$$\Psi(x) = \sum_{k=0}^{\infty} c_k x^{2k} \exp(-\omega x^2) \text{ behaves like}$$

 $|x|^{-m/2} \exp[-|x|^{m+1}/(m+1)]$ when x is a large real (positive or negative) number, whereas any dominant solution of (10) gives birth to a function behaving like $|x|^{-m/2} \exp[|x|^{m+1}/(m+1)]$ in the same conditions.

If we note $E_N^{(k)}$ the roots of the approximant $D^{(k)}$ we

have $|E_N^{(k)} - E_N^{(k)}| = 0$ (ρ_k) if $E_N^{(k)}$ is of multiplicity one. On account of equ. (5) it is possible to rewrite this relation in the following way:

$$\left|\left.E_{N}^{\left(k\right)}-E_{N}^{}\right|=\left|g\left(E_{N}^{}\right)\right|\left.\left|\rho_{k}^{}\right|=e^{-\delta}$$

The function g(E) is unknown and in fact it seems rather impossible to specify its form through theoretical deductions. In practice we can only hope that g(E) = 0(1) so that we should have with a good approximation:

$$\delta = -\ln |\rho_{\mathbf{k}}| \quad \text{or equivalently on account of equ. (7) (12)}$$

$$p = -\ln |\rho_{\mathbf{k}}| + \ln |E_{\mathbf{N}}| \quad (13)$$

Equ. (12) is precisely the (k, ω, δ) relation that we look for since ρ_k depends on ω and k. It plays an essential role since it allows to predict the order k of the smallest approximant to be considered if one wishes to calculate the ev to a given accuracy. It also allows to predict approximately the values of k_{opt} and ω_{opt} . The procedure can be summarized as follows: one starts with the recurrence brought into the form (3). One calculates the asymptotic behaviour of the n independent solutions $c_k^{(0)},...,c_k^{(n-1)}$. One verifies that (s+1) solutions dominate the (n-s-1) others. One writes ρ_k as the ratio of the largest subdominant solution to the smallest dominant one. Equ. (12) furnishes the desired (k, ω, δ) relation. In order to determine the asymptotic behaviour of the solutions one has the choice between two different methods which we shall successively use in order to be able of comparing their respective advantages.

4.1. Theoretical study of the (k,ω,δ) relation in the case where Ψ is expanded in terms of Weber-Hermite functions

Here we try to recover theoretically the numerical results of section 3.1. The recurrence is given by (8). For the sake of simplicity we only deal with the case m = 2. One has:

$$\begin{split} &(16k^2-4)c_{k+1} + [32k^2 - (24+\omega^6)k + (4+\omega^6/2)]c_k \\ &+ [24k^2 + (\omega^6 - 36)k + (15-3\omega^6/4 - E\omega^4)]c_{k-1} \\ &+ [8k^2 - (18+\omega^6/4)k + (10+\omega^6/4)]c_{k-2} \\ &+ (k^2 - 3k + 2)c_{k-3} = 0 \\ &(k=1,2,\ldots,i.e.\ s=1). \end{split} \tag{14}$$

Here we shall use the technique of Denef and Piessens [6]. The recurrence is of order 4; let us make the hypothesis that when k is large c_k is of the type:

$$c_k \sim a^k k^w \exp{(\alpha k^{3/4} + \beta k^{2/4} + \gamma k^{1/4} + \dots)}$$

In order to be sure that the assumption is valid we introduce that expression in the recurrence (14) previously divided by c_k . We then obtain expressions that can be developed in powers of $k^{-1/4}$. Collecting the corresponding terms and equating to zero the coefficients of the highest powers of k we obtain the relation that fixes the values of a, w, a, β , γ , ... The result is (l=0,1,2,3):

$$c_k^{(1)} \approx (-1/2)^k \exp\left[-\frac{2}{3}\omega^{3/2} e^{i\pi(2l+1)/4} (2k)^{3/4} - \frac{\omega^{9/2}}{24} e^{-i\pi(2l+1)/4} (2k)^{1/4} + \dots \right] k^{-3/8}$$

It is immediately seen that solutions $c_k^{(0)}$ and $c_k^{(3)}$ dominate $c_k^{(1)}$ and $c_k^{(2)}$. On the other side the subdominant solutions only verify the condition

$$\sum_{0}^{\infty} |c_{k}|^{2} (2k)!/k!^{2} < \infty \text{ and thus alone correspond to}$$

a square integrable eigenfunction of the SE(1) provided there exists a non trivial linear combination of these that vanishes when k < 0. It is easy to calculate:

$$\begin{aligned} &|\rho_k| = |c_k^{(1)}/c_k^{(0)}| \approx \exp\left[-\sqrt{2} \frac{2}{3} \omega^{3/2} (2k)^{3/4} + \frac{\sqrt{2}}{24} \omega^{9/2} (2k)^{1/4}\right] \end{aligned}$$

from which we deduce the theoretical (k, ω, δ) relation :

$$\delta \approx \sqrt{2} \frac{2}{3} \omega^{3/2} (2k)^{3/4} - \frac{\sqrt{2}}{24} \omega^{9/2} (2k)^{1/4}$$

When $\delta=28$ the corresponding (k,ω) curve is represented with dashed lines on figure 1. When ω increases k decreases, passes through a minimum $k_{\rm opt}=9\sqrt{6}~\delta/64$, $\omega_{\rm opt}=(48\,\delta/\sqrt{6}~)^{1/6}$ and increases in accordance with the numerical data. However a discrepancy arises when k becomes too small due to the fact that at low k it is impossible to ensure the validity of the asymptotic expressions for $c_k^{(1)}$.

4.2. Theoretical study of the (k, ω, δ) relation in the case where Ψ is expanded as a Taylor series.

Here we try to explain the numerical results related in section 3.3. We shall deal with the general case of the oscillator \mathbf{x}^{2m} . We start with recurrence (10) (even states). We look for the asymptotic behaviour of the c_k by two different ways.

4.2.1. Simplified procedure

We use again the technique of Denef and Piessens. Let us first put:

$$c_{l_r} = d_{l_r} / \Gamma [1 + 2k/(m+1)]$$

The recurrence for the $d_{\mathbf{k}}$ can be written as :

$$(m+1)(2k+1)d_{k+1} + (E-2\omega-8\omega k)(\frac{2k}{m+1})^{(1-m)/(m+1)}$$

$$... \left\lceil 1 + \frac{1-m}{1+m} \left(2k\right)^{-1} + \ \ldots \right\rceil \ d_k$$

$$+4\omega^{2}\left(\frac{2k}{m+1}\right)^{(3-m)/(m+1)}\left[1+0k^{-1}+...\right]d_{k-1}$$

$$-(2k-m+1)/(m+1) d_{k-m} = 0$$
 (15)

Where use has been made of the well-known identity:

$$z^{b-a}\Gamma(z+a)/\Gamma(z+b) \sim 1 + (a-b)(a+b-1)/(2z) + ...$$

Proceeding as in section 4.1 it is easy to establish that (1 = 0, 1, 2, ..., m):

$$d_k^{(1)} = \left[\frac{e^{2i\pi l/(m+1)}}{(m+1)^{2/(m+1)}}\right]^k \ k^{\frac{-m}{2m+2}} \exp \left[\omega e^{-2i\pi l/(m+1)}(2k)^{2/m+2}\right]^k e^{-2i\pi l/(m+1)} e^{-2i\pi l/(m$$

$$-\frac{2\omega^{2}}{m+1} e^{-4i\pi l/(m+1)} (2k)^{(3-m)/(m+1)} + \cdots$$
(16)

It is easily seen that $c_k^{(0)}$ dominates the other solutions. We have:

$$\begin{split} &|\rho_k\!|\!\!=\!|c_k^{(1)}/c_k^{(0)}|\approx \exp\left[\omega(\cos\frac{2\pi}{m+1}-1)(2k)^{2/(m+1)}\right.\\ &\left.-\frac{2\omega^2}{m+1}\left(\cos\frac{4\pi}{m+1}-1\right)(2k)^{(3-m)/(m+1)}\right] \end{split}$$

We deduce the (k, ω, δ) relation:

$$\delta = 2\omega \sin^2 \frac{\pi}{m+1} (2k)^{2/(m+1)}$$

$$-\frac{4\omega^2}{m+1}\sin^2\frac{2\pi}{m+1}(2k)^{(3-m)/(m+1)}$$
 (17)

The corresponding (k, ω) curve has been plotted in dotted lines on figure 3 in the case $(m=2, \delta=28)$. The coordinates of the minimum are easily deduced from (17):

$$\omega_{opt} = \delta \, \csc^2 \frac{\pi}{m+1} \left[(m+1) \, tg^2 \, \frac{\pi}{m+1} / (16\delta) \right]^{2/(m+1)} \, \pi \, \frac{2l-1}{2m+2} < \arg \, x_1 < \pi \, \frac{2l+1}{2m+2} \, (l=0,\,1,\,\ldots,\,m).$$

$$k_{opt} = 8\delta \cot^2 \frac{\pi}{m+1} / (m+1)$$

When $\delta = 28$ the numerical values of k_{opt} and ω_{opt} are reported in table 1 in the column "simplified procedure". The agreement with the experimental values is good especially when m is small.

4.2.2. Refined procedure

We now turn to another more subtle approach. Let us first recall the expansion guessed for the solution

$$\Psi = \sum_{0}^{\infty} c_{k} e^{-\omega x^{2}} x^{2k} \quad \text{(even states)}$$

The ck may be evaluated in the complex plane via

$$c_k = \frac{1}{2i\pi} \oint_{\mathcal{R}} e^{\omega x^2} \Psi(x) x^{-2k-1} dx$$
 (18)

On another side the independent solutions $c_{\mathbf{k}}^{(0)}, \dots, c_{\mathbf{k}}^{(m)}$ of (3) (without the restrictions $c_k = 0$ if k < 0) are given by such integrals calculated on distincts contours ℓ_0, \ldots, ℓ_m [7, 8].

Let us suppose that & does not approach too much the origin; it is then possible to replace Ψ by its asymptotic behaviour for large x:

$$\Psi \approx x^{-m/2} \exp \left[\pm x^{m+1}/(m+1)\right]$$

If we introduce that Ψ in equ. (18) we can evaluate the integral with the aid of the saddle point method [9].

$$\oint \exp[f(x)]dx \approx \sqrt{-\frac{2\pi}{f''(x^*)}} \exp f(x^*)$$

One has: $f(x) \approx \omega x^2 \pm x^{m+1}/(m+1) - (2k+1+m/2) \ln x$

Hence neglecting the factor $\left[-2\pi/f\,''(x^*)\right]^{1/2}$ one easily finds:

$$c_k^{(1)} \approx \exp\left[\omega x_1^2 \pm x_1^{m+1}/(m+1) - (2k+1+m/2)\ln x_1\right]$$

$$(l = 0, 1, ..., m) \tag{19}$$

where x_1 are the saddle points of f i.e. the roots of:

$$2\omega x_1 \pm x_1^m - (2k + 1 + m/2)/x_1 = 0$$
 (20)

It is assumed that only x_1 and $-x_1$ lie on ℓ_1 [recall that $\Psi(x)$ is odd or even so that x_1 and $-x_1$ contribute for the same quantity in (19)].

Equ. (20) implies that:

$$x_1^{2m+2} - (2k+1+m/2-2\omega x_1^2)^2 = 0$$

where x1 is the root located in the sector

$$\pi \frac{2l-1}{2m+2} < \arg x_1 < \pi \frac{2l+1}{2m+2} (l=0, 1, ..., m)$$

This assumption is justified by the fact that for ω not too large one has $\lim_{\omega \to 0}$, arg $x_1 = \frac{\pi l}{m+1}$ and that $x_1^{m+1} \sim 2k > 0$ because of (20).

From another side following Sibuya [10] each solution of the SE(1) behaves like

$$|x|^{-m/2} \exp(-\frac{|x|^{m+1}}{m+1})$$
 or like $|x|^{-m/2} \exp(\frac{|x|^{m+1}}{m+1})$

when $x \to \infty$ in the direction arg $x = \pi 1/(m+1)$: however the second behaviour only corresponds to (19). Now if the coefficients c_k given by (18) behave like a subdominant solution of the recurrence (3) that means that x_0 and $-x_0$ are not saddle points of $e^{\omega x^2} \Psi(x) x^{-2k-1}$.

The conclusion is that

$$|\Psi(\mathbf{x})| \approx |\mathbf{x}|^{-\mathbf{m}/2} \exp\left(-\frac{|\mathbf{x}|^{\mathbf{m}+1}}{\mathbf{m}+1}\right)$$
 when $\mathbf{x} \to \pm \infty$ i.e.

 Ψ is a square integrable solution of the SE(1). The ratio $|
ho_{\mathbf{k}}|$ is easily calculated as equal to $|c_{\mathbf{k}}^{(1)}/c_{\mathbf{k}}^{(0)}|$. Combining with equ. (12), (19) and (20) one finds:

$$\delta = \omega \, \frac{\mathrm{m} - 1}{\mathrm{m} + 1} \, R \, (x_0^2 - x_1^2) + (2k + 1 + m/2) ln \, |x_1/x_0| \tag{21}$$

Let us expand x_0 and x_1 in terms of powers of ω by starting with equ. (20); the two leading terms of the expansions introduced in (21) restitute result (17). However it is possible to determine exactly kopt provided (19) is valid in the region $k \sim k_{opt}$. culation is performed as follows: one has

$$\delta = R[f(x_0) - f(x_1)] \text{ with the conditions}$$

$$f'(x_0) = f'(x_1) = 0$$

When ω varies k passes through a minimum if $dk/d\omega = 0$ i.e. if

$$R\left[\begin{array}{c} \frac{\partial f(x_0)}{\partial \omega} - \frac{\partial f(x_1)}{\partial \omega} \end{array}\right] = 0 \text{ which leads to } Rx_0^2 = Rx_1^2.$$

The root x_0 is real > 0 but x_1 is complex. We put: $x_1^2 = x_0^2 (1 + i \operatorname{tg} \sigma)$. If we introduce these expressions

$$\pm\,\mathbf{x}_0^{\,m}=\mathbf{x}_0^{\,m}$$
 and $\pm\,\mathbf{x}_1^{\,m}=-\,\mathbf{x}_1^{\,m}$ one obtains

$$-x_0^{m+1} = R x_1^{m+1}$$

Hence the equation for σ :

$$\cos\frac{m+1}{2}\sigma = -\cos^{\frac{m+1}{2}}\sigma, \quad \frac{\pi}{m+1} < \sigma < \frac{2\pi}{m+1}$$
(22)

10

Combining with (20) and (21) one finds:

$$k_{opt} = -\delta/\ln\cos\sigma - m/4 - 1/2 \tag{23}$$

$$x_0^{m+1} = (2k_{opt} + m/2 + 1)(1 - \cot \sigma \cot \frac{m+1}{2} \sigma)^{-1}$$

$$\omega_{\mathrm{opt}}(2k_{\mathrm{opt}}+m/2+1)^{\left(1-m\right)/\left(m+1\right)}$$

$$= -\frac{1}{2}\operatorname{cot} g\sigma \operatorname{tg} \frac{m+1}{2}\sigma \left(1 - \operatorname{cot} g\sigma \operatorname{tg} \frac{m+1}{2}\sigma\right)^{(1-m)/(m+1)} \tag{24}$$

 σ easily deduces through (22) and k_{opt} and ω_{opt} follows with (23) and (24). We have calculated the values of k_{opt} and ω_{opt} and we have reported them in table 1 in the column "refined procedure". One notes the remarkable agreement with the experimental numerical data. On another side the (k,ω) curve corresponding to the fundamental state with $\delta=28$ has been plotted in dashed lines on figure 3. One sees that the theoretical curve behaves like the experimental one provided $\omega<5$.

5. APPLICATION TO THE $x^2 + \lambda x^{2m}$ OSCILLATORS

It is possible to deal with the anharmonic oscillators $x^2 + \lambda x^{2m}$ exactly in the same way. If one calculates ω_{opt} in that case one finds that ω_{opt} varies very slowly with λ so that it is possible to perform the numerical calculations by adopting the values of ω_{opt} which are deduced from (22), (23) and (24). Tables 3 and 4 give the six first states (even and odd) of the oscillators $x^2 + \lambda x^{10}$ and $x^2 + \lambda x^{12}$ for λ varying between 0.01 and 100. To the best of our knowledge these quantities are calculated for the first time. That is also the first time that a method is presented that makes the access to the ev of an equation like (1) rather simple.

6. CONCLUSIONS

We now summarize the results. Wishing to calculate the ev of the SE(1) we have exhibited the central role played by the factor ω which enters in the expansion tried for Ψ :

$$\Psi = \sum_{0}^{\infty} c_{k} \varphi_{k}(\omega, \mathbf{x})$$

We have successively used an expansion in terms of Weber-Hermite functions and a Taylor expansion. At first sight the first choice seems preferable because of the orthogonality of W-H functions with the following consequences:

- the evaluation of the norm, of matrix elements,... is simplified
- if the oscillator $x^2 + \lambda x^{2m}$ is treated in a perturbative

way the present method allows to calculate all the terms of the perturbative series with all the desired precision. Let us recall indeed that the functions $D_k(x\sqrt{2})$ are the eigenfunctions of the harmonic x^2 oscillator.

That approach is also interesting since it needs the calculation of approximants of peculiarly low order k. Unfortunately the recurrence (8) is rather complicated and for m>3 it is hardly usable.

On the other side the calculation of the coefficients c_k of the eigenfunction is simpler in the approach with Taylor expansions. Let us now turn to that approach which finally appears as the most advantageous. When one expands Ψ in the form

$$\Psi = \mathrm{e}^{-\omega x^2} \, \, \mathop{\Sigma}\limits_{0}^{\infty} \, \, \mathrm{c}_{k} \, \, x^k$$

it is important to assign to ω a numerical value next ω_{opt} otherwise k will be needlessly large. The theory of section 4 has learned us how to predict the (k,ω,δ) curves. If the agreement is not perfect that is of course due to the fact that the method is approximative in various aspects :

- a) In equ. (12) $\ln |g(E)|$ is neglected beside $\ln |\rho_{k}|$.
- b) In the calculation of the integral giving $c_k^{(1)}$ by the saddle point method we neglect the factor $\left[-2\pi/f''(x^*)\right]^{-1/2}$ beside the exponential.
- c) In the same integral Ψ is replaced by its asymptotic behaviour.

Approximations a) and b) have for consequence that the theory predicts k systematically displaced with respect to the real value. The fact is visible on figure 3. Approximation a) also has for consequence that the prediction is mostly valuable at low E. When E increases (excited states) the discrepancy grows. Approximation a) is interesting to be discussed because it entails that in the calculations $k_{\mbox{opt}}$ and $\omega_{\mbox{opt}}$ are only present in the combination

$$\begin{split} &\omega_{\rm opt}(2k_{\rm opt}+m/2+1)^{(1-m)/(m+1)} \;\; {\rm whatever}\; E \\ &{\rm and}\; \delta \; {\rm are.} \; {\rm The}\; {\rm fact}\; {\rm is}\; {\rm visible}\; {\rm in}\; {\rm equ.}\; (24). \\ &{\rm In}\; {\rm the}\; {\rm special}\; {\rm case}\; m=2\; {\rm equ.}\; (24)\; {\rm is}\; {\rm written}\; {\rm as}\; : \\ &(k_{\rm opt}+1)^{-1/3} \;\; \omega_{\rm opt}=0.780507 \end{split}$$

The corresponding (k,ω) curve has been plotted in heavy lines on figures 3 and 4. We note that it sensibly coincides with the locus of the minima of the (k,ω) curves when E and δ vary. However the coincidence may not be perfect because equ. (24) is not rigorous: that can be seen by pursuing the calculations to higher orders in the frame of the simplified procedure of section 4.2.1. It is found at the third order that $\omega_{\rm opt}$ and $k_{\rm opt}$ become present under various forms incompatible with (24). One could hope to improve the pre-

z	1	m = 3	m = 4	S II	m = 6	F
C	0205040	(3+4T*I	.2258201	5988437	* 36376	21438
	050673697	4.33859871	* 7558744±	9707652	38694156	.63618503
	0000000	9.073084	0.2449469	1.15431.82	8530051	121019
الهبر	12576779	4.9351696	7.3430879	460808I.	0.6616375	1.8747
	26182602	21,7141654	5.8093067	1.04.1	1.4894713	. 549890
	23837202	29,2096459	44978968	0.34261.54	*	* 2825
	\$28471.0	31.613.865	6.3127735	608261	79411	3-27-2
	177.86360	4177555*04	0.5 9002 1 8	7.4332131	4.94121	1.1225010
	50100575	006861.06		114237	2.7784726	0 8 8 8
	0.60	66.3972817	*****	5.8655555	12.184885	2000
	2040202		5483528	17,945191	3.110860	*148604
		5.226.83	15.12000	2125	5,513189	2.8152ec
	0		31,9528831	57.6 52074	3-353742	97,574394
	 		01.444.10	79.17189	4.598466	.990786
	100		55. 744.4	01.803551	L. 216677	56.03270
	\$ \$ 3	7.85.20	85, 50529	25,501257	. 180503	87.671248
	30.68	8 9	5.007345	2414	288.4644561	768618.02
	VR I DO I DO	34 F8587 48	25.232.60	76.0027	0500000	いり、のしなんだい
. m		30.00	46.16317	02.7	3, 90.1730	086175*16
	1 64041	77 50000	67,78405	30,510003	4.011242	9.650015
		504283472	90.08196	59,220549	8.3578	20 20 20 20 20 20 20 20 20 20 20 20 20 2
	4	0000000000	13.042004	58.693552	3,922992	09.677963
**			NO. 00 N	19.475330	90.690159	+9868916
j id			8 7006 09	30.00.08	20.643817	95, 451853
		1704.74	85.17656	83.412985	567.7692944	4684
		· ^ ·	1.20941	16.7	8.052702	94950
1		40.034824	7.36943	50,930078	6698084.649	34.667425
	100	26. 68.65.2	4.06753	86.0	692.04.1X63J	3.86258
ď	2000	1999	1.354	6.21.9340.933	*****	*

097 5.59222370 10.48429623 15.15429 378 7.07747895 11.4644248 16.21542 378 7.07747895 12.01203115 17.40335501 378 7.40335501 12.01203115 17.4033500 45 7.40335501 12.01203115 18.29824 663 8.1934718 12.45696904 18.29827 663 8.1934718 13.4617417 22.53607 663 8.3213950 13.1339345 19.3392 741 8.0381102 13.4617410 20.22538 769 8.3981047 15.5974045 20.22534 741 8.4937584 17.32654485 20.416121 20.41612 740 8.87204475 17.4094 20.4093 20.716448 772 11.49194784 17.4094 20.276445 772 11.4376491 20.276445 20.776448 773 11.4376491 20.276448 20.276448 773 11.4376491 20.276449 20.276449 713 <t< th=""><th></th><th></th><th>6</th><th>rr.</th><th>***</th><th></th></t<>			6	rr.	***	
1. 4034501	i.	Č	2 7 7 7	೧ ್ಟ	d	a l
7.40335511 12.01203115 17.57153 7.55554354 12.47509441 18.280749 7.55554334 12.47509441 19.29428 8.33213950 13.47395945 19.39428 8.33213950 13.47395945 20.22533 8.33213950 13.47395945 20.22533 8.33213950 13.47395945 20.22533 9.39889204 13.494121 22.0491121 23.19210 10.34937584 17.32654506 20.20135 10.34937584 17.32654506 25.79217 10.34937584 17.32654506 25.79217 10.96845228 13.49294665 20.27420 11.477410 18.86060312 28.14098 11.4784912 19.60208996 29.27440 11.4784912 19.60208996 29.27440 11.4784912 19.60208996 29.27440 11.4784912 19.60208996 29.27440 11.4784912 19.60208996 29.27440 11.4784912 19.60208996 29.27440 12.406495504 22.65601615 23.45126 13.41359426 22.19291669 29.27440 14.58230135 26.65601615 33.45126 15.49621313 22.65601615 33.45126 16.54833119 20.66562463 33.45126 16.54833119 20.66562463 33.45126 16.54833119 29.2663 20.2048 16.54833119 29.2663 20.2048 17.27474 23.475521 27.6562463 20.2048 18.26575571 27.2774 22.40587062 23.63331199 24.2527339 20.2048 17.72774 23.47567052 23.633311995 20.2043 17.52774 23.4756715 40.165520 41.70520		2 00	0374750	7.7.0		30
7.8545434 12.47609441 18.29824 7.85126370 12.47609441 19.29824 8.33213950 13.46179255 20.29536 8.33213950 13.4617925 20.29536 8.45795324 13.4617925 20.57688 8.45795324 13.4617170 20.57688 8.45795324 12.9414121 23.192169 8.45795324 12.9414121 23.192169 8.45795324 12.9414121 23.192169 8.45795324 12.9414121 23.192169 9.39881204 12.96185 10.68405504 17.32654908 25.79210 10.68405509 17.3264475 26.77921 10.68405509 18.46260 12.47049 11.43754292 18.46060312 28.147098 11.43754292 18.46060312 28.147098 11.43754292 18.46060312 28.14098 11.43754292 18.46060312 29.26445 12.4058769 26.413950 39.46196 12.575433719 28.18421908 40.56495 15.53035504 27.6560136 27.6560483 16.524933719 28.18421908 40.56495 16.54933719 28.18421908 40.56495 16.54933719 28.18421908 40.56495 16.54933719 28.18421908 40.56495 16.54933719 28.18421908 40.56495 16.54933719 38.33617099 50.2049 17.52.927898 20.205234 18.82623769 38.33617099 50.2052 18.226243 38.33617099 57.72379 22.40587062 38.33617099 50.2052 22.40587062 38.33617099 60.52045 22.40587062 38.33617099 60.52045 22.40587062 38.33617099 60.52045 22.40587062 38.33617099 60.52045 22.40587062 38.33617099 60.52045 24.3508195 40.68195 60.52045	*	is `	4033550			
2.1 7.86126370 12.885699004 18.89778 3.50 8.03811122 13.71363945 19.83478 3.3213950 13.71363945 19.83395 4.3 8.371395 13.71363945 19.83395 4.1 8.45795324 13.461121 20.25539 4.1 8.45795324 13.461121 20.391395 8.45795324 13.4614121 20.30135 20.391395 8.45795324 13.4614121 20.30135 20.3414121 20.3913510 8.5732335 14.15049764 20.3914121 20.4914121	് ന്	INI Int	. 6545433	4460944	8 7 8 8 7 4 8	03.7
5.00 8.003811122	5 €	CS.	* 8612637	.8556900	ERLOSO.	5.87904
43 8.19334718 13.46179595 19.83392 441 8.45795324 13.71393945 20.22533 441 8.45795324 12.94197170 20.57888 16 9.39881047 15.63414171 20.57888 17 9.39881047 15.63414171 20.57888 18 9.39881047 15.63414170 20.57888 10 96845228 17.91944883 26.70073 10 96845228 17.91944883 26.70073 10 96845228 18.86069312 28.14098 11 43764912 18.86020445 28.14098 11 4376426 19.60208996 29.27649 13 13.55426 22.556416 29.27649 13 13.55426 22.5564 29.27649 13 13.55426 22.5564 29.27649 13 13.55426 22.5766 29.26445 14 5823015 25.2564 29.26445 15 10.655433 26.4113996 29.26445	3	(A)	*0381112	.1789677	¥.394266	59287
8.33213950 13.71393945 20.22533 441 8.43732335 14.1593945 20.57888 74 9.39889204 15.63414121 23.19210 74 9.39889204 15.63414121 24.90185 786 10.34937584 17.32654506 23.79217 786 10.68405580 17.32654475 24.779217 740 10.68405580 17.32654475 24.779217 740 11.43784712 25.64475 27.47043 740 11.43784712 28.14098 27.7420 72 11.4194578 27.5020894 29.776445 73 13.81359426 27.5020899 29.76445 73 13.81359426 27.6445 27.76445 73 13.81359426 27.07074879 29.76445 74 58.2303504 26.4139505 34.45250 74 58.2303504 27.07074879 28.1842120 74 58.2553482 42.53291 74 57.53739 57.2373 74 27.527	ersiğ ersiğ er	4	1933471	**61753	36cc0.4	(A)
4.1 8.45795324 13.94197170 20.57888 7.4 8.45795324 14.15049764 20.90185 7.4 9.39881047 15.63414121 23.19210 1.6 10.3493784 17.314483 26.70139 1.0 3493784 17.9194483 26.70144 2.6 10.6840550 17.9194483 26.7044 3.6 10.6840550 27.0444 27.47044 3.6 10.6840550 27.47044 28.14098 3.6 11.4378492 28.1600312 28.14098 3.6 11.437849 28.16448 28.17404 3.7 11.437849 28.16448 28.15448 3.7 13.41359426 28.164483 26.7448 3.7 13.41359426 28.164483 28.154485 3.7 13.41359426 28.164483 28.164483 3.7 13.41359426 28.164483 28.164483 3.7 14.58233119 28.164483 28.164483 3.8 16.2669446 28.16695466 28.	ر محود د هستو د ه	co Un I	. 3321395	.7139394	: 🕱	69423
6.9 8.57323355 14.15049764 20.30185 774 9.39881047 15.63414121 23.19210 113 9.39881047 15.63414121 24.6130 10 9.39881047 15.63414121 24.6130 10 9.39889204 17.3216457 25.19217 10 10.4645228 17.41007 27.47044 10 11.21677410 18.86060312 28.14098 11 11.43764912 19.25037754 29.27420 12 11.43764912 19.25037754 29.27420 13 11.43764912 19.25037764 29.27420 14 11.43764578 22.1922160 29.276445 13 13.91359426 22.1922160 29.276412 13 13.91359426 22.1922160 29.276412 14 582533119 25.65601615 35.45361 15 20955433 25.65601615 35.4536 15 20955433 25.65601615 35.4536 16 15.2653482 27.45374	esi Sai	*	4579532	.0419717	. 9	269387
17.4 9.59881047 15.63414121 23.19210 113 9.59889204 16.59740457 24.7320 18.6 10.34937584 17.32654508 25.79217 19.6 10.6845523 18.46224475 28.14704 10.96845523 18.66060312 28.14704 11.216774410 18.86060312 28.14704 11.4376426 19.25037754 28.14098 11.63764296 19.6020894 29.27420 12.13.11359426 22.192103 28.17644 13.1359426 22.192104 29.27420 13.1359426 22.19291669 23.22544 13.1359426 22.19291669 23.22544 13.1359426 23.65601615 35.45321 14.58230135 24.754619 24.75321 24.756433 25.65601615 35.45321 25.65601615 25.65601615 35.45321 25.767333 25.65601615 35.45321 26.76562463 27.070748 27.6560264 27.76523076 27.6560266 27.6766 <	Ž.	- C3-	5732336	* 1504976	*90185	725844
13 9.9389204 16.59740457 24.67330 186 10.34937584 17.32654506 25.79217 24.615506 17.91944643 22.79217 24.615228 19.4224475 27.47044 11.21677410 18.4224475 22.70073 27.47044 11.43764912 19.25037754 29.77420 11.43764912 19.25037754 29.77420 13.9195426 19.92310357 29.77420 13.9195426 19.92310357 29.77420 13.9195426 22.19291669 29.7742126 29.7742126 29.7742126 29.7742126 27.0774879 24.75922862 35.4522126 27.0774879 2	ŏ	*	.3988104	.6341412	3.192104	956399
10.34937584 17.32654506 25.79217 26 10.68405560 17.91944683 26.70073 84 10.68405560 17.91944683 27.47044 11.21677410 18.42224475 27.47044 14.0384912 19.6060312 28.73682 29.7420 11.637426 27.9210357 29.7424 29.7424 13 13.945788 19.92310357 29.7424 29.7424 13 13.95426 23.65601615 29.76445 29.76445 13 13.95426 23.65601615 29.76445 29.76445 13 13.95426 23.65601615 29.76445 29.76445 14.58230135 24.75922862 24.75922862 24.75922862 25.4139505 25.41386 27.6445 15.59035504 26.4139505 27.65635483 24.2556 42.5350 42.5350 42.5350 42.5350 42.5350 42.5350 42.5350 42.5350 42.5350 42.5350 42.5350 42.5350 42.5350 42.5350 42.5350 42.5350 42.5350	če :		. 9388920	. 59 74045	4.073307	041070
66 10.68405560 17.91944683 26.70073 84 10.9684523 18.42224475 27.47044 14.0 11.21677410 18.86060312 28.74098 17.5 11.43784912 19.60208994 29.7742 18.622445 29.27420 29.7440 19.9 21.95894 29.77440 13 13.496788 22.19291669 29.76445 13 13.959426 22.19291669 29.76445 13 13.45077378 22.47591669 23.2584 14.58230135 25.41139505 35.45126 15.0954333 25.41139505 38.64198 16.2457571 28.184219 42.5351 16.2457571 28.184219 42.06455 16.2457571 28.18421739 42.06455 17 20.96322807 38.2132739 42.0645 17 20.96322807 38.2132739 42.0645 18 22.4058762 38.2132739 54.0060 18 22.4058762 38.2132739 54.0060	ð.	w.	*3493758	.3265450	.7921733	513890
84 10.96845223 18.42224475 27.47044 84 10.96845223 18.86060312 28.14098 75 11.4378496 19.25037754 28.73682 98 11.6375426 19.6020899 29.27420 72 11.81995788 19.92310357 29.76445 73 13.450426 22.19291669 29.76445 37 14.58230135 24.7592862 35.45321 37 15.9027378 25.65601615 35.45321 37 15.7902862 26.4139505 38.64382 37 15.59035504 27.07074879 40.645342 39 15.29035504 27.07074879 40.66645 39 15.29035504 27.07074879 40.66645 39 15.2453719 28.46562463 20.645349 30 26.4652764 41.56626463 37.13119 20 26.2652764 27.07074879 42.33256 31 26.4652764 42.2652463 22.406455 34 26.4652763 37.213273	. کپروب کهمین	<u></u>	• 6840556	.9194488		068
11.21677410 18.86060312 28.14098 75 11.43784912 19.25037754 28.73682 98 11.6375426 19.60208996 29.27420 72 11.81995788 19.92310357 29.7445 13 13.91359426 22.19291669 23.22564 73 13.959426 22.19291669 23.22564 37 14.58230135 24.75922862 37.13113 37 15.09564333 25.65401580 38.45126 39 15.95035504 26.4139505 38.463126 39 15.5453711 27.07074879 40.64382 40.54935137 28.18421908 41.506455 34 16.24575771 28.18421908 41.506455 34 16.24527045 28.26546263 41.506025544 40.1855482 54.00605 57.72374 74 22.4058705 39.35817379 54.00605 74 22.97269481 39.31683582 59.20543 74 22.97269481 39.316399 60.52045 73 22.9278528 40.965831439 60.52045 73 24.34068195 40.965831439 60.52043 73 24.34068195 40.96831439 60.520648	Ň	30) +~1	• 9684522	9.4222447	.4704423	7
11.43784912 19.25037754 28.73582 19.80208996 29.27420 19.60208996 29.27420 13.11.81995788 19.92310357 29.76445 29.27420 29.27420 29.27420 29.27420 29.27420 29.27420 29.27420 29.27420 29.2752544 29.292564 29.2641333 25.65601615 39.64198 29.264133 29.64198 29.6562463 29.6562463 29.6562463 29.6562463 29.20548 20.992891 29.2052373 29.20548 29.26928 29.20548 29.26928 2	~	Ž.	.2167741	8.8606031	1409	,,,,,,
11.63/54296	· .		+4378491	9.2503775	136826	0
13 11.81996788 19.92310357 29.76445 13 13.1359426 22.19291669 23.22584 73 13.95027378 23.65601615 35.45321 87 15.0955433 25.65601615 35.45321 87 15.90915186 27.07074879 40.645872 83 15.4575771 27.07074879 40.645842 83 15.4575771 27.05623482 41.53256 83 16.8262976 28.1662483 41.53256 84 16.7818282 41.50495 84 16.8262976 42.16455 84 15.78182 42.06455 84 15.282743 40.21625 87 21.7267052 34.215710 51.51845 81 22.40562807 35.88317379 54.00605 81 22.97269481 39.20543 54.00605 81 22.97269481 39.20543 81 23.9278528 40.96831439 61.70523 80 24.34068195 41.68169145 62.78520	-	*	.6375429	6580209.6	₽.	40.50071666
13 13:11359426 22:19291669 23:22584 73 13:95027378 23:65601615 35:45321 37 14:58230135 24:75922862 37:13115 37 15:0955433 25:65401580 30:49126 39 15:0955433 25:65401580 30:45126 39 15:0955186 27:07074879 40:658342 33 16:2457571 28:18421908 41:53256 34 16:781828 28:18421908 42:06455 34 16:7818283 43:06022544 43:06455 35 20:06022544 43:2132739 54:00605 36 20:06022544 43:2132739 54:00605 37 20:06022544 43:2132739 55:00602048 37 21:32139 55:00602048 37 21:33817379 55:00602048 37 31683382 57:72379 41 22:9278558 40:96831439 60:52045 30 23:9278558 40:96831439 61:70523 73 24:34068195 41:68169145 62:78520	ear}i	Parious :	48199578	9.9231035	.764457	879776
73 13.95027378 23.65601615 35.45321 37 14.58230135 24.75922862 37.13115 67 15.0955433 25.65401580 30.49126 39 15.90915186 27.07074879 40.645872 30 16.24575771 28.18421908 42.53391 28 16.5493719 28.18421908 42.53391 28 16.781828 32.06022544 42.53391 34 16.781828 32.06022544 42.06455 37 20.96922807 34.2413107 51.5182 37 20.96922807 34.2413107 51.5182 36 20.965281 43.2132739 55.00605 37 22.9662481 37.21339 55.0243 36 22.97269481 39.31683582 50.52379 37 22.927858 40.96831439 61.70523 39 22.78520 41.68169145 62.78520	≕าง		1135942	2,1929166	2258	
37 14.58230135 24.75922862 37.13115 87 15.0955433 25.65401580 30.49126 39 15.90915186 27.07074879 40.64342 36 16.24575771 28.18421908 41.53256 36 16.82633719 28.18421908 42.33391 26 16.82633769 28.16622643 43.06455 37 20.96922807 34.24137107 51.51322 37 20.96922807 34.24137107 51.51828 36 21.7567352 34.33817379 54.0005 37 22.97269481 39.31683582 59.20343 41 22.9278528 40.96831439 61.70523 33 24.34068195 41.68169145 62.78520		(√) 	4 9502737	3.6560161	55	528591
87 15.09554333 25.65401580 30.49126 39 15.53035504 26.41139505 39.64196 37 15.24575771 27.07074879 40.64342 30 16.24575771 27.07074879 40.64342 30 16.24575771 27.65633482 41.53236 36 16.2493719 28.18421908 42.3339 36 16.26938763 34.24137107 51.51222 37 20.96622807 34.24137107 54.00605 37 21.7557577 37.21327339 54.00605 36 22.97269481 39.31683582 59.20543 41 22.9278528 40.96831439 61.70523 33 24.34068195 41.68189145 62.78520	- m	1	* 5823013	4.7592286		1.4994771
33 15.53035504 26.41139505 39.64198 74 15.90915186 27.07074879 40.64342 33 16.54533719 28.18421908 42.53361 26 16.54933719 28.18421908 42.53361 26 16.781519 28.466562483 43.064555 27 20.96022807 32.46622564 48.21522 37 20.96622807 34.2413107 54.0005 36.88317379 54.0005 54.0005 37.21327339 56.02048 37.2137339 56.02048 37.223734 41.237435 41.6854820 60.52043 33.47507715 40.966831439 61.70523 33 22.76523 33 41.68169145 62.76523	M.	*	.0455433	5.6540	7	3,400
74 15.90915186 27.07074879 40.64342 33 16.24575771 27.65635482 41.53256 63 16.5493719 28.18421908 42.53391 28 16.78161828 28.66562483 43.06455 34 15.78161828 38.26562483 43.06455 07 20.946224819 35.88317379 54.00405 74 21.75570527 35.88317379 54.00405 74 22.97269481 39.31683582 59.20543 74 23.47507715 40.18554826 60.52043 73 24.34068195 41.68169145 62.78520	W	on i	\$303230	5.4	2419842	. 00921
33 16.245/5771 27.65633482 41.53256 63 16.54933719 28.18421908 42.33391 28 16.8263764 28.66562483 43.06455 34 18.7818182 32.06022644 48.21322 37 20.49824819 35.88317379 54.00405 74 21.75670527 37.2132739 56.02048 74 22.40587062 38.33817095 57.72373 74 22.97269481 39.31683582 59.20543 74 23.47507715 40.18554826 60.52045 73 24.34068195 41.68189145 62.78520	4	***	01.000	7.070.7	3	ò
03 10.54933119 28.18421908 42.3391 28 16.82623769 28.66562483 43.06455 34 18.78181828 32.06022644 48.21322 12 20.98624319 35.88317379 54.00405 74 21.756737 37.2132739 54.00405 181 22.40587052 38.33817095 57.72379 141 22.97269481 39.31683582 59.20543 141 23.47507715 40.18554826 60.52045 130 24.34063195 41.68189145 62.78520	**		245757	.0260	1.532568	1
28.6562483 45.06455 34 16.78181828 28.66562483 45.06455 34 20.262264 48.21322 12.20.98524819 35.88317379 54.00605 17 20.98524819 37.21327339 56.02048 18. 22.40587062 38.33817095 57.72374 14. 22.9720481 39.31683582 59.20543 14. 23.47507715 40.18554826 60.52045 13. 24.3406195 41.68189145 62.78520	1	9	5493371	8.1842190	19888.5	8.7702626
34 16.78181828 32.06022544 48.21322 07 20.09622807 34.24137107 51.51885 72 20.98624819 35.88317379 54.00605 74 21.75570527 38.3381739 56.02048 81 22.40587052 38.33817095 57.72379 74 22.97269481 39.31683582 59.20543 74 23.92785258 40.96831439 61.70523 73 24.34063195 41.68189145 62.78520	ŏ	1	• 825.29.76	8 * 6656248	3.064	6.79
8507 20.04022807 34.24137107 51.51885 1172 20.98324819 35.88317379 54.00605 1574 21.75570527 37.21327339 56.02048 2081 22.40587052 38.33817095 57.72379 9274 22.97269481 39.31683582 59.20543 7941 23.47507715 40.18554826 60.52045 7530 22.945258 40.96831439 61.70523 0973 24.34068195 41.68189145 62.78520	٤,	74	6.7818182	2*0602254	6.4.132	.O
1172 20.98624819 35.88317379 54.00605 1574 21.75670527 37.21327339 56.02048 2081 22.40587052 38.33817095 57.72379 9274 22.97269481 39.31683582 59.20543 7941 23.47507715 40.18554826 60.52045 7530 23.92785258 40.96831439 61.70523	*	0	0.0402280	**2413710	* 54 de	71.59288965
1574 21.75670527 37.21327339 56.02048 2081 22.40587062 38.33817095 57.72379 9274 22.97269481 39.31683582 59.20543 7941 23.47507715 40.18554826 60.52045 7530 23.92785258 40.96831439 61.70523 0973 24.34068195 41.68189145 62.78520			0.9852431	5.8831737	.0000	5,0631727
2081 22.40587062 38.33817095 57.72374 9274 22.97269481 39.31683582 59.20543 7941 23.47507715 40.18554826 60.52045 7530 23.92785258 40.96831439 61.70523 0973 24.34068195 41.68189145 62.78520		ici i	1.7567352	7.2132733	\$020	8733682
9274 22.97269481 39.31883582 59.20543 7941 23.47507715 40.18554826 60.52045 7530 23.92785258 40.96831439 61.70523 0973 24.34068195 41.68189145 62.78520		208	2.4058706	3.338LT09	7237926	0.249249
941. 23.47507715 40.16554826 60.52045 530 23.92785258 40.96831439 61.70523 973 24.34063195 41.68189145 62.78520	0.02	92.7	2.9726948	9.3168358	.2054387	3157521
53.0 23.92785258 40.96831439 61.70523 973 24.34068195 41.488189145 62.78520	100 100 100 100 100 100 100 100 100 100	4	3,4750771	0.1855482	. 520453	4.1497092
740973 24.34068195 41.68189145 62.78520	÷	in.	3,9278525	0.9683143	1.7052383	5,8019
	(A)	4097	4.3406819	1.6818914	2.7852	30791

61,97611766 68,32096478 4.48740524 05.75691171 61550196.9 28.02342879 31.89256669 32, 85744185 32.11459338 44.4451535 56.23946529 61.06638968 02264941.11 0 # 406 7 17 67 01.53502526 93.09086369 31.33074163 39.04102234 43.47091924 +1.90654593 42,80440205 60.06576884 26,58697993 32,39776052 36.07221231 43.59838193 65160796*** 32.36733741 54.51266257 57.69271291 72.33900933 75.33626674 2156160*62 29,96518091 30.69633121 44,31282361 Z1.00i01745 96112076*62 31.75501729 33,40640780 38.96496210 40.1301.320 41.22149000 42.11524750 26.16092940 59.20638870 60.2593520 61.16203793 7.01491522 19,24340517 22.12350699 *********** 1076176012 30.03272870 30.00793740 32.13531.135 31.4443/0162 44.602207.44 46.76879cl St. be 371032 77.705 67.56 20,24757611 21.60930761 26.56953432 7.049.67 28 - 4300 + CV 27.30013.73 31.4.306.300 0644504.74 79+6019+64 35.4684039 56.911000 4.41532385 13.58377.163 8 . 18452565 13.50200264 06198675.61 19.02044308 08840686.62 21.02015348 21.32474112 23.41279878 24.73935019 73003007 27.20199216 24 * 78 500003 20.30100094 32.12960732 13.27007080 76.500.50° 1.98353987 4.064076.2 4.09663364 6.4661.064.4 5.10149715 1.2525494 23,69799767 24.52235844 29.18628460 33.44000000 のかのすべてのか・9% 40.4.23461061 5.3554361 78**46*57 13.61558751 35.3832362 85414658 *C1266+16 23.27875005 11.13086529 9.70985336 75 * 15 4 6 4 7 9 7 7,86737165 8,21365340 8,47587489 8,68903653 3.86971282 9.02714075 9,16703264 9,29318328 3,40824995 10, 21950397 13, 73990880 1.44701490 1.71394135 1.94581258 2.33633178 3.68505327 4*43695139 4. 99965504 5,45351784 5,83593502 6.16772853 6.45142822 6. 72545801 5.96565073 8.64425846 20.50581813 21.14699120 21.68579055 22,56860043 27* 94054442 7,33525661 2.15134422 2,50470841 5.571.97896 5, 83989448 9,08357908 9,43796890 9.72378664 .0.67592552 4,59708359 6. 75355698 7.00017969 7.19955450 7.86623529 0.17352095 0.35845100 0.52469444 4.21500379 4.30148236 5.91264618 6.42512257 7,36785295 7.51 40263 7 7.76015247 8,60997055 4,37521696 4,43976527 4.93617723 5.15616980 5.45 756355 5,76011264 0.0670406.6 3.97168762 4.10946405 6.44734433 4.54943607 5.3224-897 7.64357941 Table 4. Eigenvalues of the $x^2 + \lambda x^{12}$ oscillator. 2,75717980 .* 19347679 .23388502 .28739655 . 29 782560 *46096018 . 49204918 . 51851898 .71905884 .. 79741446 * 94521709 . 98058759 2.01199333 2.04029481 2.06609502 2,24766462 2,36389879 2.63274870 S*569612*2 .. 16516425 .21556182 .26356295 .27604533 .37317062 E9446224 * . 59799050 .90458142 2.45112644 2.52161435 2.67851823 .24965491 . 8565757 1,58109751 . 54166541 . 5622942 . 5809433 0 0,40 20.00 30.00 50.00 80° 90.0 288 600 0.40 0.53 0.70 1.00 2.00 5.00 00.0 8. 8 • 0.01 70.00 100.00 6.03 *O*O 90.0 10.0 0.80 05*0 3.00 **6.**00 00*8 00.04 90**.**09 80.08 90.06

diction for the excited states by taking into account the contributions of the third, fourth, ... order which are influenced by E. The calculation is perfectly possible but unfortunately the series for $c_k^{(1)}$ is found to be divergent though it is of course asymptoticaly convergent. As shown in section 4.2.1 it happens that the series limited to its two first terms gives the essential of the results attainable through that procedure. If one wishes to refine the prediction of the (k,ω,δ) relation for the excited states it is necessary to return to the refined procedure of section 4.2.2 and to introduce the energy parameter E in the calculations. To attain that goal it is necessary to start with an asymptotic expansion for Ψ which is more accurate than the one we have considered (which was independent of E).

REFERENCES

- HAUTOT, A. et POSSOZ, L.: "Sur une méthode de résolution approchée de l'équation de Schrödinger", Bull. Soc. Roy. Sc. Liège, To appear in 46 (1977), 249-309.
- ABRAMOVITZ, M. and STEGUN, I. A.: Handbook of mathematical functions, Dover, NY (1965).

- BISWAS, S. N.; DATTA, K.; SAXENA, R. P.; SRIVASTAVA, P. K. and VARMA, V. S.: "Eigenvalues of λx^{2m} anharmonic oscillators", J. Math. Phys. 14 (1973), 1190-95.
- GAUTSCHI, W.: "Computational aspects of three-term recurrence relations", Siam Review 9 (1967), 24-82.
- OLIVER, J.: "The numerical solution of linear recurrence relation", Numer. Math. <u>11</u> (1968), 349-360.
- DENEF, J. and PIESSENS, R.: "The asymptotic behaviour of solutions of difference equations of Poincaré's type", Bull. Soc. Math. Belgique XXVI (1974), 133-146.
- MILNE-THOMSON, L. M.: The calculus of finite differences, Macmillan, London (1933).
- MAGNUS, A.: "Applications des récurrences au calcul d'une classe d'intégrales", Séminaires de mathématique appliquée et mécanique, rapport no 71 (1974), Université Catholique de Louvain.
- 9. DE BRUIJN, N. G.: Asymptotic methods in analysis, North Holland, Amsterdam (1958).
- SIBUYA, Y.: Global theory of a second order linear ordinary differential equation with a polynomial coefficient, North-Holland, Amsterdam (1975).