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Abstract. One establishes inequalities for the coefficients of orthogonal polynomials

Φn(z) = zn + ξnzn−1 + · · · + Φn(0), n = 0, 1, . . .

which are orthogonal with respect to a constant weight on the arc of the unit circle S =
{eiθ, απ < θ < 2π−απ}, with 0 < α < 1. Recurrence relations (Freud equations), and differential
relations are used. Among other results, it is shown that Φn(0) > 0, n = 1, 2, . . .
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1. Introduction and statement of results.

1.1. Introduction. The analysis of orthogonal polynomials on the unit circle has been limited
for a long time to measures supported on the whole circle (theories of Szegő, and, later on, of
Rakhmanov). Orthogonal polynomials on circular arcs were only known through special cases
(Geronimus, Akhiezer). They now enter a general theory as an important subclass, as can be
seen in Khrushchev’s paper [20] and, of course, in B. Simon’s recent work [27].

Actually, only a very special set of such orthogonal polynomials will be studied here, namely
the Legendre polynomials on an arc, i.e., Φ0,Φ1, . . . are polynomials, with Φn of degree n, and

∫ 2π−απ

απ
Φn(eiθ)Φm(eiθ) dθ = 0

when n 6= m, and where α is given (0 < α < 1).
A property of these polynomials is needed in the solution of the following problem:

“3. The following Toeplitz matrix arises in several applications. Define for i 6= j, Ai,j(α) =
sinπα(i − j)

π(i − j)
and set Ai,i = α. Conjecture: the matrix M = (I − A)−1 has positive entries. A

proof is known for 1/2 6 α < 1. Can one extend this to 0 < α < 1? Submitted by Alberto
Grünbaum, November 3, 1992. (grunbaum@math.berkeley.edu)” [18].

The question was asked by Grünbaum as a result of investigations about the limited angle to-
mography problem [8,17], i.e., how to reconstruct a function f of two variables, with support inside

the unit disk, from the knowledge of line integrals (Pθf)(t) =

∫

√
1−t2

−
√

1−t2
f(t cos θ − s sin θ, t sin θ + s cos θ)ds

for θ = θ1, . . . , θM ∈ [0, θmax]. The approximate reconstruction formula involves functions of one
variable αk(x cos θk + y sin θk) conveniently expanded as series of Chebyshev polynomials Un (for

d−dimensional problems, the convenient polynomials are the Gegenbauer polynomials C
(d/2)
n ).

A least squares search of the unknown coefficients of the Un’s leads to normal equations with a
matrix of elements Un(cos(θk − θm))/Un(1). For a large number of equidistant allowed directions
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θk = kθmax/M , one recovers a Toeplitz matrix of elements close to
sin((n + 1)(k − m)θmax/M)

(n + 1)(k − m)θmax/M
,

i.e., 1/α times the matrix A of the problem above, when (n + 1)θmax/M = α.
The problem also appears in [9], where the authors study the robustness of a signal recovery

procedure amounting to find the polynomial p = p0 + · · · + pNzN minimizing the integral of
|f(θ) − p(eiθ)|2 on the circular arc shown above. This elementary least-squares problem involves
again the Gram matrix I − A of the problem above, and the stability of the recovery procedure
is related to the size of the smallest eigenvalue of the matrix. The corresponding eigenvector is
shown to have elements of the same sign. The theory of this eigenvalue-eigenvector pair should be
more complete if it could be shown that (I−A)−1 has only positive elements, for any N = 1, 2, . . . ,
and any α ∈ (0, 1). It is also reported in [9, p. 644] that Grünbaum stated this conjecture as early
as 1981.

I − A is the Gram matrix [〈zk, zm〉], k,m = 0, 1, . . . , N of the weight w = 1 on the circular arc

απ < θ < 2π − απ: 〈zk, zm〉 =

∫ 2π−απ

απ
exp(i(k − m)θ))

dθ

2π
.

As each power zk can be expanded in the basis of the orthogonal polynomials, it follows that
the Gram matrix is the product of the triangular matrices built with the coefficients of these
expansions. Therefore, the inverse of the Gram matrix is the product of the triangular matrices
made with the coefficients of the reverse expansions of the orthogonal polynomials in the base of
monomials (from [7, lemma 8.7.1]). It follows that the inverse of the Gram matrix is positive if
all the orthogonal polynomials Φk, k = 0, 1, . . . have positive coefficients.

Remark that these coefficients are real, from the symmetry of the weight function with respect
to the real axis [31].

A direct proof of positivity [24] of (I−A)−1 when 1/2 6 α < 1 is done through the writing of the
orthogonal polynomial Φn(z) as a multiple integral of a positive weight times (z−exp(iθ1)) · · · (z−
exp(iθn)), where θ1, . . . , θn are anywhere on the arc (απ, 2π − απ) ( [28, § 16.2]). From the
symmetry with respect to the real axis, one makes the average of the 2n equivalent angles θk and
2π − θk, k = 1, . . . , n resulting in the integral of (z − cos θ1) · · · (z − cos θn), on απ < θk < π, and
all the coefficients appear to be positive, as all the cosines are negative.

By a similar argument, one also has that all the zeros of Φn have a real part smaller than
cos απ (Fejér, see [28, chap. 16]), so that if α > 1/2, all the zeros of Φn have negative real part, so
Φn(0) = (−1)n times the product of all the zeros must be > 0 (conjugate pairs have no influence
on the sign, and the number of real zeros is n minus an even number).

For all the entries of all the (I − A)−1 matrices to be positive, it is necessary that all the
coefficients Φn(0) > 0, n = 1, . . . , N , and the condition is known to be sufficient [9, p. 645]. This
will be recalled as a consequence of the recurrence relation (3).

Here are some results containing the solution of the problem:

1.2. Theorem. The monic polynomials

Φn(z) = zn + ξnzn−1 + · · · + Φn(0), n = 0, 1, . . .

which are orthogonal with respect to a constant weight on the arc of the unit circle S =
{eiθ, απ < θ < 2π−απ}, with 0 < α < 1, have real coefficients satisfying the following inequalities:

(1) 0 < Φn(0) < σ, n = 1, 2, . . . , where σ = sin(πα/2).
(2) nσ2 < ξn < (n − 1)σ2 + σ, n = 1, 2, . . . ,
(3) nΦn(0) < (n + 1)Φn+1(0) , n = 1, 2, . . . ,
(4) for any integer n > 0, Φn(0) is an increasing function of α,
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1.3. Conjecture. Under the same conditions as above,

Φn(0) < Φn+1(0) , n = 1, 2, . . .

1.4. Method of proof of the theorem.

The proof mimics an algorithm of numerical calculation of the sequence {Φn(0)} through a
(non linear) recurrence relation. It happens that a naive calculation based on an approximate
value of Φ1(0) produces unsatisfactory values, and that such numerical instabilities in recurrence
calculations can be fixed

• In section 2, a recurrence relation for the Φn(0)’s (Freud equations) will be produced,
• in section 3, the set of solutions of the latter recurrence relations will be shown to be

a one-parameter set of sequences {x = {x1, x2, . . . } }, each solution x being completely
determined by x1.
It will also be shown that there is at most one positive solution.

• In section 4, for each N = 1, 2, . . . , one will show how to construct the unique solution

x
(N) satisfying 0 < x

(N)
n < σ for n = 1, 2, . . . , N and x

(N)
N+1 = σ.

• Finally, in section 5, we will see that, for each n = 1, 2, . . . , x
(N)
n decreases when N

increases and reaches therefore a limit x∗
n with which we build a nonnegative solution x

∗.
This solution will finally be shown to be positive, ensuring the long sought existence of
the positive solution!

1.5. Known results.

1.5.1. Asymptotic results. There are many results on asymptotic behaviour [13,14,15, etc.], where
it is shown that Φn(0) → σ = sin(απ/2) when n → ∞, for orthogonal polynomials on the arc
above, with a weight which is positive almost everywhere.

In [13, § 6], Golinskii, Nevai, and Van Assche give asymptotic expansions of Φn(0) for several
measures on the arc S, the simplest one being dµ(θ) = sin(θ/2) dθ. Their result in this case is

Φn(0) = σ −
cos(απ/2) cot(απ/2)

8n2
+ O(1/n3), very likely valid in our case too.

More subtle asymptotic estimates are also of interest in random matrix theory [1, 30].

1.5.2. Exact connection with orthogonal polynomials on an interval. Famous identities found by
Szegő [28, § 11.5] relate orthogonal polynomials on the unit circle with respect to a weight w(θ),
with w(θ) = w(2π − θ), to orthogonal polynomials on the real interval x ∈ [−1, 1] with respect

to the weights (1 − x2)±1/2w(arccos x), where x = cos θ. When the support of w is an arc
απ 6 θ 6 2π − απ, the actual support for x if [−1, cos απ]. If we want to discuss real orthogonal
polynomials on the more usual interval y ∈ [−1, 1], one must perform a further transformation
x = y cos2(απ/2) − sin2(απ/2), resulting in the rather awkward weight [(1 + y)(1 + sin2(απ/2) −
y cos2(απ/2))]±1/2w(arccos[y cos2(απ/2) − sin2(απ/2)]) . . .

A more symmetrical transformation by Zhedanov [31], based on formulas of Delsarte and Genin,

leads to orthogonal polynomials on x ∈ [−1, 1] with respect to the weights (1−k2x2)±1/2w(2 arccos(kx)),
where k = cos(απ/2).

Polynomials which are orthogonal with respect to similar weights have been reported by Chi-
hara [5, Heine and Rees, chap. 6, § 13, (A) and (G)], but these polynomials depend on implicit
parameters which may be not easier than our Φn(0)s. . .
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1.6. General identities of unit circle orthogonal polynomials.

Monic polynomials orthogonal on the unit circle with respect to any valid measure dµ:

Φn(z) = zn + ξnzn−1 + · · · + Φn(0) , 〈Φn,Φm〉 =

∫ 2π

0
Φn(z)Φm(z) dµ(θ) = 0 if m 6= n, (z = eiθ)

satisfy quite a number of remarkable identities, most of them stated by Szegő in his book [28,
§ 11.3-11.4]. The central one is that, with

Φ∗
n(z) = Φn(0) zn + · · · + ξn z + 1,

Φ∗
n/‖Φn‖

2 is the kernel polynomial with respect to the origin:

(1)
Φ∗

n(z)

‖Φn‖2
= Kn(z; 0) =

n
∑

k=0

Φk(0)

‖Φk‖2
Φk(z)

implying

(2) ‖Φn+1‖
2 = (1 − |Φn+1(0)|

2) ‖Φn‖
2

(3) Φn+1(z) = zΦn(z) + Φn+1(0)Φ
∗
n(z)

(4) 〈Φn, zn〉 = ‖Φn‖
2 ; 〈Φn, z−1〉 = −Φn+1(0) ‖Φn‖

2.

For the last one: 〈Φn, z−1〉 = 〈zΦn, 1〉 = −Φn+1(0)〈Φ
∗
n, 1〉, and 〈Φ∗

n(z), P (z)〉 = ‖Φn‖
2〈Kn, P 〉 =

‖Φn‖
2 P (0) if P is a polynomial of degree 6 n.

(5) Φ∗
n+1(z) =

‖Φn+1‖
2

‖Φn‖2
Φ∗

n(z) + Φn+1(0)Φn+1(z)

(6) Φn+1(z) =
‖Φn+1‖

2

‖Φn‖2
zΦn(z) + Φn+1(0)Φ

∗
n+1(z)

Finally, (3) yields expressions for the coefficients of zn−1 and z in Φn(z):

(7) ξn = ξn−1 + Φn(0)Φn−1(0) = Φ1(0) + Φ2(0)Φ1(0) + · · · + Φn(0)Φn−1(0)

(8) Φ′
n(0) = Φn−1(0) + Φn(0)ξn−1 = (1 − |Φn(0)|2)Φn−1(0) + Φn(0)ξn

2. Recurrence relations (Freud equations).

2.1. The Laguerre-Freud equations. In looking for special non classical orthogonal polyno-
mials related to continued fractions satisfying differential equations, Laguerre found some families
of recurrence relations for the unknown coefficients. Among the people who rediscovered some
of these relations, G. Freud showed how to achieve progress in analysis by deriving from these
relations a proof of inequalities and asymptotic properties, see [4, 11, 22] for more.

For orthogonal polynomials on the unit circle, the crux of the matter is that the weight function
satisfies

(9) dw/dθ = Rw,
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where R is a rational function of z = exp(iθ), the same rational function iP/Q on the whole unit
circle, up to a finite number of points [2]. One shall also need that Qw = 0 at the endpoints of
the support.

2.2. The family of Legendre measures.

Let us consider the measure dµ(θ) = w(θ)
dθ

2π
, with the following weight function:

w(θ) = A , απ < θ < 2π − απ,

= B , −απ < θ < απ,
(10)

with A and B > 0, A + B > 0.
Our problem deals only with B = 0, but we will need the full family (10) in a further discussion.
From symmetry with respect to the real axis, the polynomials Φn have real coefficients.
Let Q(z) = (z − eiαπ)(z − e−iαπ) = z2 − 2 cos(απ)z + 1 = 2z(cos θ − cos(απ)).

2.3. The differential relation for the orthogonal polynomials. We show that QΦ ′
n is a

remarkably short linear combination of some Φs and Φ∗s [2]. To this end, we look at the integral

of
d

dz
[z−1Q(z)f(z)Φn(z−1)] on the two arcs of (10) for various polynomials f . Of course, the two

integrals vanish, as Q vanishes at the endpoints. So,

0 = A

∫ e−iαπ

eiαπ

d[z−1Q(z)f(z)Φn(z−1)] + B

∫ eiαπ

e−iαπ

d[z−1Q(z)f(z)Φn(z−1)]

= 2πi

∫ 2π

0
z

d

dz
[z−1Q(z)f(z)Φn(z−1)]w(θ)dθ,

as dz = deiθ = iz dθ.
The value is also

〈z(z−1Qf)′,Φn〉 − 〈z−2Qf,Φ′
n〉 = 0.

The second scalar product is also 〈f,QΦ′
n〉, as z−2Q(z) = Q(z−1), so

〈f,QΦ′
n〉 = 〈z(z−1Qf)′,Φn〉,

showing already that QΦ′
n is a polynomial of degree n + 1 which is orthogonal to z, . . . , zn−2.

By subtracting a suitable multiple of the kernel polynomial QΦ′
n − XnKn−1 is orthogonal to all

the polynomials of degree 6 n − 2, where Xn = 〈QΦ′
n, 1〉 = 〈z − z−1,Φn〉 = Φn+1(0)‖Φn‖

2.

(11) QΦ′
n = Xn‖Φn‖

−2Φ∗
n−1 + nΦn+1 + YnΦn + ZnΦn−1,

with the value of Xn found above, even when n = 1, as there is no other orthogonality constraint.
The coefficient of Φn+1 is obvious from the leading coefficient of QΦ′

n. By looking at the coefficient
of zn in the expansion of QΦ′

n, we get

Yn = (n − 1)ξn − 2n cos(απ) − nξn+1 = −ξn − 2n cos(απ) − nΦn+1(0)Φn(0).

For Zn,

Zn‖Φn−1‖
2 = 〈QΦ′

n,Φn−1〉 − Xn〈Kn−1,Φn−1〉

= 〈z(z−1QΦn−1)
′,Φn〉 − XnΦn−1(0)

= 〈nzn + · · · − Φn−1(0)z
−1,Φn〉 − XnΦn−1(0)

= n‖Φn‖
2.

QΦ′
n = (1−Φn(0)2)Φn+1(0)Φ

∗
n−1+nΦn+1−[ξn+2n cos(απ)+nΦn(0)Φn+1(0)]Φn+n(1−Φn(0)2)Φn−1
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or also

(12) QΦ′
n = (n + 1)(1 − Φn(0)2)Φn+1(0)Φ

∗
n−1 + [nz − ξn − 2n cos(απ)]Φn + n(1 − Φn(0)2)Φn−1

which we evaluate at z = 0:

2.4. Recurrence relation for Φn(0).

(13) (n + 1)Φn+1(0) − 2
ξn + n cos(απ)

1 − Φn(0)2
Φn(0) + (n − 1)Φn−1(0) = 0,

for n = 1, 2, . . . , and where ξn = Φ1(0) + Φ1(0)Φ2(0) + · · · + Φn−1(0)Φn(0).
Which is the recurrence relation determining Φn+1(0) from Φ1(0), . . . ,Φn(0), and which will be

discussed in more detail in the next section.

2.5. Differential equation for Φn. Now, (12) can be transformed into a differential system for
Φn and Φ∗

n:

zQ(z)Φ′
n(z) = [nQ(z) − (ξn + (n + 1)Φn(0)Φn+1(0))z]Φn(z) + [(n + 1)Φn+1(0)z − nΦn(0)]Φ∗

n(z)

Q(z)(Φ∗
n)′(z) = [nΦn(0)z − (n + 1)Φn+1(0)]Φn(z) + [ξn + (n + 1)Φn(0)Φn+1(0)]Φ

∗
n(z)

(14)

Remark that, when Q(z) = 0,

Φn(e±iαπ)

Φ∗
n(e±iαπ)

= exp[∓inαπ + 2i arg Φn(e±iαπ)] =
(n + 1)Φn+1(0) − nΦn(0)e∓iαπ)

ξn + (n + 1)Φn(0)Φn+1(0)
,

which makes sense if

|ξn + (n + 1)Φn(0)Φn+1(0)| = |(n + 1)Φn+1(0) − nΦn(0)e±iαπ)|,

another interesting identity about the Φn(0)’s. By squaring2, one has

(15) [ξn +(n+1)Φn(0)Φn+1(0)]
2 = (n+1)2Φ2

n+1(0)−2n(n+1)Φn(0)Φn+1(0) cos(απ)+n2Φ2
n(0).

Also, if one writes the system (14) as

[

zQΦ′
n

Q(Φ∗)′n

]

=

[

A B
C D

] [

Φn

Φ∗
n

]

, then AD − BC = nξnQ, one

gets the scalar differential equation for Φn, see [2, 19].

3. Properties of the solutions of the recurrence relations.

3.1. The set of solutions.

We now want to investigate all the solutions of the recurrence relation

(16) (n + 1)xn+1 − 2
ξn + n cos(απ)

1 − x2
n

xn + (n − 1)xn−1 = 0,

for n = 1, 2, . . . , where ξn = x1 + x1x2 + x2x3 + · · · + xn−1xn.
Each solution is a sequence {x1, x2, . . . } completely determined by the initial value x1 (the

value x0 = 1 is common to all the solutions considered here).

2Squaring yields a proof by induction: take the identity at n − 1 and add 2{ξn + Φn(0)[(n + 1)Φn+1(0) + (n −
1)Φn−1(0)]}Φn(0)[(n + 1)Φn+1(0) − (n − 1)Φn−1(0)], so, (15) appears as a kind of first integral of (13). The form
(15) appears essentially in Adler and van Moerbeke [1], and in Forrester and Witte [10].
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The particular solution we are interested in is determined by

x1 = Φ1(0) = −

∫ (2−α)π

απ
e±iθ dθ

∫ (2−α)π

απ
dθ

=
sin(απ)

(1 − α)π
.

But as (13) is valid for all the weights (10), we find that xn is the related Φn(0), and that x1

is the ratio of moments

(17) x1 = −

A

∫ (2−α)π

απ
e±iθ dθ + B

∫ απ

−απ
e±iθ dθ

A

∫ (2−α)π

απ
dθ + B

∫ απ

−απ
dθ

=
(A − B) sin(απ)

A(1 − α)π + Bαπ
,

relating A/B to any x1 (and even negative values of A/B if x1 /∈ [− sin(απ)/(απ), sin(απ)/((1 −
α)π)]).

3.2. Monotonicity with respect to x1. Proposition. While x1, x2, . . . xn−1 are positive and
less than 1, and while xn is positive, xn is a continuous increasing function of x1.

Indeed, let us write the ith equation of (16) as

(i + 1)xi+1

ixi
= 2

x1 + x1x2 + · · · + xi−1xi + i cos(απ)

i(1 − x2
i )

−
1

ixi

(i − 1)xi−1

,

for i = 1, 2, . . . , n − 1. As x1, . . . , xn are positive, and 1 − x2
1, . . . , 1 − x2

n−1 are positive too, the
numerators ξi + i cos(απ) are positive too up to i = n − 1. When i = 1, we see that x2/x1, and
therefore x2, is an increasing function of x1.

If 2x2/x1, . . . , ixi/((i − 1)xi−1) are continuous positive increasing functions of x1, then so is
xi+1/xi, and therefore xi+1, as the two terms of the right-hand side are increasing. �

We look at the evolution of a solution with respect to x1 ∈ (0, 1). We guess that if x1 is too
small, some xn will be negative, and that if x1 is too large, some xn will be larger than 1.

3.3. Unicity of positive solution. Proposition. The recurrence (16) has at most one positive
solution.

Indeed, we consider four possibilities for x1, according to the ratio A/B in (17):

(1) x1 =
sin(απ)

(1 − α)π
, corresponding to B = 0. This is the solution we hope to show to be

positive.

(2) −
sin(απ)

απ
< x1 <

sin(απ)

(1 − α)π
, corresponding to A > 0 and B > 0. We then have a Szegő

weight, with xn → 0 and ξn remaining bounded when n → ∞. For n large, and p =
0, 1, 2, . . . , P fixed, we have

xn+p+1

xn+p
∼ 2 cos(απ) −

1

2 cos(απ) −
1

. . . −
xn−1

xn

=
sin((p + 1)απ + ρn)

sin(pαπ + ρn)
,

so that xn+p ∼ Cn sin(ρn + pαπ), p = 0, 1, . . . , P − 1. We now choose P so that Pα is
close to an even integer. The sines must change their signs, as the sum of these P values
is close to zero (actually, is o(Cn)).

(3) x1 = −
sin(απ)

απ
, corresponds to A = 0, and has of course no chance, as x1 is already

negative!
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(4) x1 /∈

[

−
sin(απ)

απ
,

sin(απ)

(1 − α)π

]

, corresponds to a non positive weight A/B < 0, and we will

either encounter a negative xn, or xn > 1, but then xn+1 < 0 3.

That means that if we succeed in constructing a positive solution of (16), this solution will
have to be of the type 1) above, and that will be the proof of positivity of the sought solution.

4. Construction of a positive solution for n = 1, 2, ..., N + 1.

4.1. Iteration of positive sequences.

As it is so difficult to “push” a positive solution through an starting value x1, we try to build
a positive solution of (16) through an iterative process keeping positive sequences. A good start
is to write (16) as

(18) xn =
√

A2
n(x) + 1 − An(x) =

1
√

A2
n(x) + 1 + An(x)

, n = 1, 2, . . .

where

An(x) =
x1 + x1x2 + · · · + xn−1xn + n cos(απ)

(n − 1)xn−1 + (n + 1)xn+1
.

Indeed, consider (16) as an equation of degree two for xn

x2
n + 2An(x)xn − 1 = 0,

and take the unique positive root, which is (18).
Therefore, the positive solution of (16), if it exists, must satisfy (18), and if we find a (positive,

of course) sequence satisfying (18), we will have found the unique positive solution of (16).
One may then consider to iterate (18), hoping to see it to converge towards the long sought

positive solution.
Heavy numerical experiments (see [23, § 4.2]) suggest that convergence indeed holds, but that

no easy proof is at hand. Moreover, some inequalities of Theorem 1.2 do not hold for intermediate
steps of application of (18).

A modified iterative scheme will be much more satisfactory:

4.2. An iteration of finite positive sequences.Proposition.

• For any α ∈ (0, 1) and ε > 0, the function F
(N,ε) acting on a sequence x = {xn}

∞
1 by

F (N,ε)
n =

√

[A
(N,ε)
n x)]2 + 1 − A(N,ε)

n (x) =
1

√

[A
(N,ε)
n (x)]2 + 1 + A

(N,ε)
n (x)

, n = 1, 2, . . . , N

= σ, n = N + 1, N + 2, . . .

(19)

where σ = sin
απ

2
, and

(20) A(N,ε)
n (x) =

Nσ2 + ε − xnxn+1 − · · · − xN−1xN + n cos(απ)

(n − 1)xn−1 + (n + 1)xn+1
, n = 1, 2, . . . , N,

transforms a positive sequence into a positive sequence;
if x > F

(N,ε)(x) (element-wise), then, F
(N,ε)(x) > F

(N,ε)(F (N,ε)(x)) when ε > 0.

3 If xn−2, xn−1, and xn are positive, with xn−1 < 1, then ξn−1 + (n − 1) cos(απ) > xn/xn−1 − xn−1xn, using
(16) with n − 1. So, ξn + n cos(απ) = ξn−1 + (n − 1) cos(απ) + xn−1xn + cos(απ) > xn/xn−1 + cos(απ) > 0, and
xn+1 < 0
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• Iterations of F
(N,ε), starting with the constant sequence xn = σ, n = 1, 2, . . . , converge

to a positive fixed point x
(N,ε) of F

(N,ε), i.e., a positive solution of

(21) (n + 1)xn+1 − 2
Nσ2 + ε − xnxn+1 − · · · − xN−1xN + n cos(απ)

1 − x2
n

xn + (n − 1)xn−1 = 0,

for n = 1, 2, . . . , N , and xn = σ for n > N .
• For any ε > 0, we now consider the function

fN(ε) = Nσ2 + ε − x1 − x1x2 − · · · − xN−1xN

built with the sequence {x
(N,ε)
1 , . . . , x

(N,ε)
N } found above. The set of equations (21) can

also be written as

(22) (n + 1)xn+1 − 2
fN (ε) + ξn + n cos(απ)

1 − x2
n

xn + (n − 1)xn−1 = 0,

Then, fN is an increasing function, fN (0) = σ2 −σ < 0, fN(ε) > σ2 −σ + ε, so that there

is a unique positive zero εN of fN , and the found positive solution x
(N,εN ) of (21) is then

the positive solution x
(N) of the equations (16) for n = 1, 2, . . . , N , and xN+1 = σ.

Indeed, whenever x is a positive sequence, each A
(N,ε)
n (x) is a decreasing function of the xi’s,

therefore, F
(N,ε)
n (x) is an increasing function of x.

Next, the constant positive sequence xn = σ, n = 1, 2, . . . satisfies x > F
(N,ε)(x), as A

(N,ε)
n (x) =

nσ2 + ε + n cos(απ)

2nσ
>

σ−1 − σ

2
, n = 1, 2, . . . , N, from (20), and cos(απ) = 1 − 2σ2.

Each xn will therefore decrease at each new iteration of F
(N,ε)
n , and will reach a nonnegative

limit called x
(N,ε)
n , which satisfies (22), as stated above. Remark that this limit is not only

nonnegative, but actually positive: if x
(N,ε)
1 = 0, then x

(N,ε)
n = 0 for all n > 0; if x

(N,ε)
n−1 > 0, and

x
(N,ε)
n = 0, with n > 0,then x

(N,ε)
n+1 < 0, and we could not have xN+1 = σ.

We also have x
(N,ε)
n < σ if ε > 0.

Finally, we compare the values of some xn when the iterations (19-20) are performed with two
different values of ε, and find that xn is a decreasing function of ε, whence the increasing character
of the function fN .

�

Much more general iterations with monotony properties are worked in Chapter 3 of Collatz’
book [6].

5. Final limit process.

5.1. Proposition . The sequence x
(N) built above as the unique positive solution of (16) for

n = 1, 2, . . . , N with xN+1 = σ, decreases when N increases and converges to the unique positive
solution x of (16), whose existence had to be established.

Indeed, from x
(N)
N+1 = σ, and x

(N+1)
N+1 < σ, x

(N+1)
1 < x

(N)
1 must follow, from Proposition 3.2, and

then x
(N+1)
n < x

(N)
n for all n 6 N + 1.

Moreover, x is actually positive, and not merely nonnegative, as xn < σ and εN > 0 ⇒ 0 >

Nσ2 + εN −x
(N)
1 − (N − 1)σ2: x1 > σ2. And, as we saw above, we can not have xn−1 > 0, xn = 0,

and xn+1 > 0.
This achieves the proof of (1-2) of Theorem 1.2.
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5.2. Numerical illustration and software.

we choose α = 1/4, then σ = sin(απ/2) = 0.382683...,

We iterate F (5,0.01), starting with the constant sequence xn = σ :

it. res. x1 x2 x3 x4 x5 x6

1 0.01306 0.38268 0.38268 0.38268 0.38268 0.38268 0.38268

2 0.01053 0.37937 0.38102 0.38157 0.38185 0.38201 0.38268

3 0.00960 0.37673 0.37939 0.38060 0.38118 0.38176 0.38268

4 0.00804 0.37436 0.37803 0.37975 0.38076 0.38157 0.38268

5 0.00679 0.37239 0.37686 0.37913 0.38041 0.38144 0.38268

6 0.00542 0.37074 0.37594 0.37860 0.38017 0.38134 0.38268

7 0.00445 0.36943 0.37517 0.37820 0.37996 0.38126 0.38268

8 0.00352 0.36837 0.37457 0.37787 0.37980 0.38120 0.38268

9 0.00285 0.36753 0.37408 0.37761 0.37968 0.38116 0.38268

10 0.00226 0.36685 0.37370 0.37740 0.37958 0.38112 0.38268

where “res” is the norm of the residue at the particular iteration step, i.e., the largest absolute
value of the left-hand sides of (21), n = 1, 2, . . . , N . This error norm decreases rather slowly, and
we proceed up to the reception of a reasonably small value:

it. res. x1 x2 x3 x4 x5 x6

50 0.00000 0.36420 0.37218 0.37659 0.37918 0.38097 0.38268

one finds f5(0.01) = −0.18493. We already knew that f5(0) = σ2 − σ = −0.23623...
We start the whole process again with various values of ε:

eps. f(eps) x1 x2 x3 x4 x5 x6

0 -0.23623 0.38268 0.38268 0.38268 0.38268 0.38268 0.38268

0.01 -0.18493 0.36420 0.37218 0.37659 0.37918 0.38097 0.38268

0.02 -0.13634 0.34700 0.36206 0.37061 0.37571 0.37927 0.38268

0.03 -0.09021 0.33097 0.35231 0.36474 0.37228 0.37758 0.38268

0.04 -0.04633 0.31600 0.34291 0.35898 0.36889 0.37591 0.38268

0.05 -0.00450 0.30200 0.33384 0.35333 0.36552 0.37424 0.38268

0.06 0.03544 0.28888 0.32509 0.34778 0.36220 0.37259 0.38268

we find ε5 = 0.0511, and perform the whole thing again for several values of N :

N eps x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

5 0.05110 0.30051 0.33286 0.35271 0.36516 0.37406 0.38268

6 0.04124 0.30024 0.33242 0.35194 0.36370 0.37118 0.37682 0.38268

7 0.03443 0.30015 0.33227 0.35167 0.36319 0.37019 0.37482 0.37853 0.38268

8 0.02953 0.30012 0.33221 0.35157 0.36301 0.36984 0.37411 0.37707 0.37962 0.38268

9 0.02585 0.30011 0.33219 0.35154 0.36295 0.36971 0.37385 0.37654 0.37852 0.38034 0.38268

10 0.02299 0.30011 0.33219 0.35152 0.36292 0.36967 0.37376 0.37634 0.37810 0.37948 0.38084

And we see that we have indeed reconstructed x1 = Φ1(0) =
sin(απ)

(1 − α)π
= 0.3001054....

The gp-pari [3] program used here can be found at
http://www.math.ucl.ac.be/~magnus/freud/grunbd.gp.
A more experimental program, allowing Gegenbauer polynomials too is at
http://www.math.ucl.ac.be/~magnus/freud/grunb2.gp.
There is also a java program available at
http://www.math.ucl.ac.be/~magnus/freud/grunbd.htm.
The numerical efficiency of this demonstration is close to zero! Should somebody really need a

long subsequence of the Φn(0)’s, a Newton-Raphson procedure should be built, as in [21].

http://www.math.ucl.ac.be/~magnus/freud/grunbd.gp
http://www.math.ucl.ac.be/~magnus/freud/grunb2.gp
http://www.math.ucl.ac.be/~magnus/freud/grunbd.htm
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5.3. Proof of (3) of Theorem 1.2. We show that, if x is a positive sequence bounded by σ,

and with nxn increasing with n, then the same holds for F
(N,ε)(x). Indeed, by (19),

nFn =
1

An

n
+

√

(

An

n

)2

+
1

n2

is increasing if An/n is decreasing. Now, by (20),

An

n
=

yn + cos(απ)

(n − 1)xn−1 + (n + 1)xn+1
,

where yn =
Nσ2 + ε − xnxn+1 − · · · − xN−1xN

n
,

has an increasing denominator, and a decreasing numerator. Indeed,

yn+1 − yn =
(n + 1)yn+1 − nyn − yn+1

n
=

xnxn+1 − yn+1

n
< 0,

as xn < σ and ε > 0 ⇒ yn > σ2 . �

6. Differential equations with respect to α.

Let Φn and Φ̃n be the monic orthogonal polynomials of degree n with respect to the measures dµ
and dµ̃. As any polynomial of degree n−1, Φ̃n−Φn is represented through the kernel polynomial
Kn−1:

Φ̃n(z) − Φn(z) =

∫

|t|=1
(Φ̃n(t) − Φn(t))Kn−1(z, t) dµ.

We may suppress in the integral Φn, which is orthogonal to Kn−1; and replace dµ by dµ− dµ̃, as
Φ̃n is orthogonal to Kn−1 with respect to dµ̃:

Φ̃n(z) = Φn(z) −

∫

|t|=1
Φ̃n(t)Kn−1(z, t) (dµ̃ − dµ).

sometimes called the Bernstein integral equation for Φ̃n [26], also Bernstein-Korous identity by
Golinskii [14, eq. (70)]. Here, dµ̃ − dµ only lives on small neighborhoods of eiαπ and e−iαπ, and

(23)
∂Φn(z)

π∂α
= (A − B)[Φn(eiαπ)Kn−1(z, eiαπ) + Φn(e−iαπ)Kn−1(z, e−iαπ)]

At z = 0:

dΦn(0)

πdα
= (A − B)[Φn(eiαπ)Kn−1(0, e

iαπ) + Φn(e−iαπ)Kn−1(0, e
−iαπ)]

= (A − B)‖Φn−1‖
−2[Φn(eiαπ)Φ∗

n−1(e
iαπ) + Φn(e−iαπ)Φ∗

n−1(e
−iαπ)]

(24)

relating Φn(0) to values at e±iαπ, which may not be easier. However,

dΦn(0)

πdα
= (A − B)

|Φn−1(e
iαπ)|2

‖Φn−1‖2

[

Φn(eiαπ)

Φ∗
n−1(e

iαπ)
+

Φn(eiαπ)

Φ∗
n−1(e

iαπ)

]

,

and we know that
Φn(eiαπ)

Φ∗
n−1(e

iαπ)
= eiαπ Φn−1(e

iαπ)

Φ∗
n−1(e

iαπ)
+ Φn(0)

=
nΦn(0)eiαπ − (n − 1)Φn−1(0)

ξn + (n − 1)Φn−1(0)Φn(0)
+ Φn(0),
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and

(25)
dΦn(0)

dα
= π(A − B)[1 − Φ2

n(0)]
|Φn−1(e

iαπ)|2

‖Φn−1‖2

(n + 1)Φn+1(0) − (n − 1)Φn−1(0)

ξn + (n − 1)Φn−1(0)Φn(0)

which achieves the proof of (4) of Theorem 1.2. �

We certainly would like more explicit differential relations and equations (Painlevé!) with
respect to α here! There are such relations in [10, 30],
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95 (1998) 229-263.

[15] L. Golinskii, P. Nevai, F. Pinter, W. Van Assche, Perturbation of orthogonal polynomials on an arc of the unit
circle II, J. Approx. Th. 96 (1999) 1-33.

[16] L. Golinskii, On the scientific legacy of Ya. L. Geronimus (to the hundredth anniversary), pp. 273-281 in Self-
Similar Systems, edited by V.B. Priezzhev and V.P. Spiridonov, Joint Institute for Nuclear Research, Dubna,
1999.
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