Polignac-Whittaker.

Thanks to a student who wanted references on Legendre functions, I fell on a hidden
Polignac statement in Whittaker & Watson’s famous book!
Problem 29 in p. 333 of the edition of 1920:
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(Math. Trip. 1898).
The first of these expressions for W, _1(z) was given by Christoffel, Journal fir Math. LV
(1858).

end of quotation

(W&W write f,—; for W,_1).

Maybe the last formula may give a hint towards a fast proof!

Also, did the writer of the tripoes of 1898 know of Polignac, of Catalan?

The Answer follows from another exercise (solved in the book, thank God) of W&W (p.223 in
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become very clumsy again. As I want to recover the numerator polynomial W,,_; known
by its expansion at z = 1,
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A research subject in 1875 (Polignac) and in 1891 (Catalan) became an exercise for
(advanced) students in 1898. Catalan was very likely unaware of valuable British literature
in 1891. And Polignac, who spent some time in London, may have picked the statement
there, trying later on to make a proof of his own.



