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ABSTRACT

One looks for [formal] orthogonal polynomials satisfying
interesting differential or difference relations and equations (Laguer

. =Hahn theory). The divided difference operator used here is essentiall

the Askey-Wilson operator
B, f(x)-E, £(x)
DEf(x) = —2 = =
E,x~E, X yz(x)—yl(x)

£y, () =£(y, ()

where yl(x) and yz(x) are the two roots of Ay2 + 2Bxy + sz +
+ 2Dy + 2Ex + £ =0 .
The related Laguerre-Hahn orthogonal polynomials are then

i e

introduced as the denominators P _,P.,... of the successive approximaﬁfj

Qn/Pn ‘of the Gauss-Heine-like contifnued fraction

£(x) = 1/(x—ro—sl/(x—rl~sz/... )) satisfying the Riccati equation
a(x)DE(x) = b(x)Elf(x)Ezf(x) + c(x)Mf(x) + d(x) where a,b,c,d are
polynomials and ME(x) = (E;f(x) + E,f(x))/2

In the classical case (degrees a,b,c,d £ 2,0,1,0) , closed-forms

for the recurrence coefficients r and s are obtained and show

that we are dealing essentially wilh the asBociated Askey-Wilson
polynomials. :
One finds for Pn difference relations ~(an+a)DPn = (cn--c)MPn +

+ 2snanP - 2bMQn and a writing in terms of solutions of linear

n-1

second order difference equations P = (X ¥ ,-¥ X ,)/(XY ,-Y X ;) .

1. INTRODUCTION. DIFFERENCE OPERATORS AND EQUATIONS

Classical orthogonal polynomials dre solutions of remarkable

differential relations and equations. This mpakes them very useful as

elements in the representation of solutions of problems of mathematica

“physics, numerical analysis, etc. (see [Nl] Chap. 2, [WP] Chan. 11),

Laguerre ( [LA] , see also [AT] , [Mc] ) found a systematic way o?
generating orthogonal polynomials satisfying differential relations

and equations. A new setting of his theory will be given here.

Classical orthogonal polynomials of a discrete variable are also
used in the same fields. Now, they satisfy difference relations and

‘equations where the fundamental difference operator is Af(x) =

I
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= £(x+1)-f(x) . It happens that the difference formulas are very
similar to the differential ones ( [N1] , Chap. 2, Sect. 12).

Another interesting difference operator is A _f(x) = f(gx)-f(x)
( [ue] p. 99, [H2] ), also used in orthogonal polynomials theory
¢ [a1] , [#2] , [m3D.

By investigating new families of orthogonal polynomials, Wilson
considered the following divided difference operator (see [AS] ’

Sect. 5) : put x = a+bt2 , then

B EG0) = [£(atb (t+1) %) -£ (b (£-1) 2 ]/t

Finally, Askey and Wilson ( [AS] Sect. 5 ) found a further
extension: 1f x = a+b(qm+q_m) , then

L [f(a+b(qm+l/2+q'm_l/2))—f(a+b(qm—l/2+ﬂ—m+l/2))]/(qm-q_m)-

Each of these operators is an extension of the nreceding one,
which can be recovered as a special case and/or a limit case, up to a
linear transformation of the variable. For instance, Af(x) is the
limit when q + 1 of A acting on X of the function
£(Xx-1/(q-1)) with X = x+1/(g~1)... A general form of operator
avoiding these troubles is given now.

We consider the most general divided difference operator of the

form

E2f(x)—Elf(x) f(yz(x))—f(yl(xY
DE(x) = = (1.1)
E,x-E x yz(x)—yl(x)

leaving a polynomial of degree n~1 when f is a polynomial of
degree n . The two first non obvious conditions are

yl(x) + yz(x) = nolynoﬁial of deqgree 1

and (yl(x))2 ty Wy, (x) + (y2(x))2 = polynomial of degree 2

equivalent to yl(x)y2(x) = polynomial of degree % 2 .

This defines Yy and y, as the two roots of an equation of the form

Ay2 + 2Bxy + cx? + 2Dy + 2Ex + f:= 0 , A#0 . (1.2)

+1 n+1

Then, vy = (yl+y2)y]"-yly2yn_1 , l.e., Dx = (yl+y2)Dxn -
- ylyszn_1 shows that Dx" is indeed a polynomial of degree £ n
(see [MR] Section 2 for a similar derivation). Conditions ensuring

Dx"  to be of exact degree n-1 will be given in a moment.

The most important identities involving ¥q and y, are
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¥yt vy = -2(Bx+d) /a (1.3a)
Y1¥, = (Cx2 + 2Ex + F)/A (1.3b)
2 _ 2 2 2 2
(vo-v,)“ = 4[(8°-A0)x” + 2(BD-AE)x + D°-AF]/A (1.3¢c)
5 2 1/2
Y1:¥, = - (Bx+D) /A + [(BZ—AC)[X -2 AE) + 28 ]
BT -AC B ~AC
. 2
if B # AC (1.4)
where ABD
8 = B CE .
DEF
In general (B2 # AC and 6 # 0) , we recover AAW i Aq if
B2 #AC ana 6 =0 ; b, if B®=2AcC and 6 #0 ; & if B2 - ac
and 6 = 0 (implying BD = AE) . Only the differential operator

d/dx must s

till be considered as a limit case.

The companion operator to D is

Mf(x) =
One has

Difg) =
M(fg) =
D(1/f)

(B £(x) + E,f(x))/2 .

Df Mg + Mf Dg ,
Mf Mg + (y2~yl)2/4 Df bg ,
= -Dﬁ«Elf Ezf) .

A first-order difference equation is a link between Elf(x)

= £y, (x)

and Ezf(x) = f(yz(x)) or , if we call X = yl(x),

between f£(X) and Ef(X) = f(yz(y_l(x))) ; Where Y_q and Y_,

are the inve
yoqly ¢
E e (x)

E_,f(x)

This introdu
D*f (%)
M*f (x)

Remark that

Ex+x =

rse functions of ¥y, and Yy (this requires C # 0)

Ny =x oy ,ly,x) =x , Ef(x) = f(y2(y—l(X)))’

lyty_,(x))) v Ef(x) = £y (%) ,

= fly_,(x)) .,

El-x5 5 - ®)" T

-1
By ’ _2%1

)

ces the adjoint operators

= (E_,f(x) - Ef)/ly_,x)-y_; (),
= (E_;£(x) + E_,£(x))/2

, as yl(x) + yz(x) = -2 (Bx+D) /A ,

-2(By_,(x) + D)/A , E lxtx = -2(By .(x)+D)/A .
1) -2
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. . . 1 s Ek(X) N -n-1
A d{fference equation links values on several powex ’ o £(x) = :{l “nx (2.1)
which are situated on the lattice discussed by Nikiforov and Suslov ; : [S)
[nr] , indeed , consider ) . This means that the numerator O = (of degree n-1) and the
- B i - . X
EX + E lX - —2(B(y_l + y_2)+2D)/A—2X = 2(2 Evele 1)X + ) denominator Pn (of degree n2) ?re normally determined by
L N _ -2n- -
+ 4 (BE-CD) /AAE) £ - o (x)/P () = Ox ) x> .
_ k. . . . . . .
and apply B . By o gty = 202 %E -1)E"X + 4(BE-CD)/(RCQ) . ) Equivalently , Qn/Pn is the nth approximant of the Jacobi contin
' fraction of f
Let g satisfy [ ]
_ flx) = 1/ [xr ~-s /(x-r,-s,/... ) (u. = 1) (2.2)
g+ qt=20%/0a0-1 (1.6) ol 102 ©
then, EkX has the form and Pn and Qn satisfy the three-term recurrence relation
I -k , CD-BE I 4 = (x= - - - '
X = aq- + Bg -+ Zoae a # ; : P (¥) = (x-xpP () Sy Ppo1 (0 P =1 P_,=0 (2.3
X BE-CD . 2 1.7 Qn+l(X) = (X_rn)Qn(x) “SnQn—l(x) Ql=l Qo =0 SoQ—l =-1
EX = a + Bk + 2 —Rc k ' qg=1 (1.
deed the discussed in  [NI] Laguerre [LA] realized that families of orthogonal polynomials
i . i the forms cu . . ’ . ' :
for a fixed X These are indee satisfying remarkable differential relations and equations are
The relation (1.4) shows that y;(x)/x and ¥, (x)/x have conveniently described through their generating functions of ‘moment

2 -1/2 n
limits (C/A)l/qu/ and (C/A)a /2 \nen x - . Therefore, DX (2.1) (see also [AT] [MC] ) . The relevant extension follows .

will be of exact degree n-1 if q #1 and q # 1 if g=1
. n _ B
(i.e. B2 = AC) , (1.3a) and (1.3c) show d;rectly that Dx = befinition 2.1. Laguerre-Hahn orthogonal polynomials are dlagonal
= n(_B/A)n—an—l + ... TRemark also that if q = 1 for some integer Padé domominators of an expansion (2.1) satisfying a Riccati equatidh
N , each lattice {Ekx} is reduced to a finite set , this corresponds

; a(x)DE(x) = b(X)E;E(X)B,f(x) + c(x)ME(x) + d(x) (2.4)
however to useful orthogonal nolynomials [AS] .

. -1 where a,b,c,d are polynomials
Second order difference operators link E f(x) , f(x) and 10,Cy o]

Ef (%) Interesting operators with rational coefficients are ( R 1is This will lead to difference relations and equations in Sections

s rational function) 5 and 6 . Conversely, there is increasing evidence [H1] [H3] [BO]

f(x)—E—lf(x) [B2] that all orthogonal polynomials satisfying non trivial differen¢¢

* B e -
D* (R(x) DE (x)) Rly_p(x)) iy relations and equations are those of definition 2.1. As most of this
Bf (5)-£(x)5 ) ) (1.8) evidence has been gathered by W. Hahn (see [H1] [H3] and references
- bEl) "L %) X) - % .
R(y_l(x)) ExX-X / (y_2 Vo1 vtherein), the corresponding polynomials are called here Laguerre-Hahn

~polynomials.
w* [(y, (0 -y, (x)) RGx) DEGR] /(y_p (0-y_; (D)

Other interesting forms of the Riccati equation (2.4) showing

how it links Elf and Ezf are

[-F T WE(y_,(0) + (Bx-xRDE(y_y (0)]/{y 0y, (0) =

O

- -1 -1
= (x+D/A) D*(R(x)DE(x)) + (B/A) D*(xR(x)DEf(x)) (1.9) bE,fE,£ + [(v,=y ) "a + c/2]B £ - [(y,7y)) "a - c/2]B,f + d =0
i (2.5)
2. TAGUERRE~HAHN ORTHOGONAL POLYNOMIALS (bE,f - a/(yz-yl) + c/2) (bE,f + a/(yz—yl) + c/2) =
2 2 2
Formal orthogonal polynomials related to the seguence of = -bd-a /(yz—yl) + c“/4 (2.6)

"moments"  {u,} ‘are the diagonal Padé denominators of " Although measures and weights will not be studied throughly herei
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let us remark that if £ is a Stieltjes function

coo = [ x-wtao(w) : x £ 8
s
with 0 increasing on its real support S , w(x) = ¢'(x) is obtained
almost everywhere as limit of -1 Im f(x+ie) when € + 0 (e > 0).

It is then easy to show that, if b = 0 ,

aDw = cMw , ‘ (2.7)
equivalently (a—(yz—yl)c/2)E2w - (a+(y2—yl)c/2)Elw .
If there is a masspoint of weight w(X) at somé X = E4x (pole of

f with residue n(X)) , (2.5) tells that , still if b = 0 , there is

another one at EX = E,x with a weéight
br(y -y )c/2 av,

U(EX) = U(E2X) = _—T§;_§ITE7§ dyl

W(E )

This shows that there are masspoint on lattices {EkX} interrupted at
zeros of a & (y,~y,)c/2 [if b=0] .If b#0 , it will be shown
in section 6 how f can be represented as a ratio of solutions of
second order difference equations. The measure can then be expressed
in terms of these solutions , as in sect. 5 of [BE] . A very large
set of measures, still far from being completely explored , are

concerned .

3. FUNDAMENTAL RECURRENCE RELATIONS

The importance of the Riccati form (2.4) is that the same form
holds for the equation satisfied by fl (£(x) = l/(x—ro—slfln
Iteration of this remark ([BA] p. 163) will generate a sequence of
Riccati equations whose coefficients will eventually enter difference

relations and equations.

Theorem 3.1. Let the Jacobi continued fraction (2.2) satisfy the
Riccati equation (2.4) where a,b ,c and d are polynomials of
degrees 4 m+2 , m , mtl and m . Then, fn(x) =

= 1/(x—rn—sn+l/(x—rn+l - ...)) satisfies

an(X)Dfn(x) = bn(x)Elfn(x)Ezfn(x) + cn(x)an(x) + dn(x) (3.1)

with polynomials a, bn Cn dn of degrees still bounded by m+2 , m ,

m+l and m .

Moreover,

2
an+l(x) = an(x) *-(yz—yl) dn(x)/z (3.2§)
bn+l(x) = sn+ldn(x) (3.2b)
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cn+1(x) = —cn(x) h2(Mx—rn)dn(x) (3.2¢)
d 10 = [a (0 + b (%) + (Mx-r)e (%) + (y-r)(y,~r )d (x)]/s_.
(3.2d)
(aoza , boEb r G do.——.d)
Inde€d , put fn(x) = l/(x—r el n+l(x)) in (3.1) and (3.2)

follows easily by an induction startlnq with (2.4) at n =10

(f0 = f) . Only the degree of dn+l must still be discussed . As

£(x) = 1/(x~rn) + O(x—3) for large x , (3.1) yields
-1 - - - -
—anD(x—rn) + bnEl(x—rn) 1 EZ(X—rn) 1 + ch(x—rn) 1 + dn = v(x™ 2),
or an+bn+ (Mx—rn)cn + (yl—rn)(yz—rn)dn = "(x¥™ and this means degree
dn+1 ¢m . #
Remark 3.2. The polynomial
X(x) = (a (2% + (v, () -yy )2 b (0d_(0=(c_ (x))2/4] (3.3)
of degree 2m+4 is independent of n ;
S0 = b (0d (0 - (e (x)%/4 =
2 =
= bo(x)do(x) - (co(x)) /4 + (l/2)(ao(x)+an(x)) %; dk(x)
(3.4)

~Remark-also that x appears at the right-hand side of (2.6)

We proceed now with a first exploration of the polynomials a_ ,
; n

bn r S and dn

Lemma 3.3.

The dominant coefficients of a_(x) = a xm+2+... P
m+1 n m n,9

c(x) = ¢ X +en =
- n,o and dn(x) dn,ox +... have the form

a, o= ~(K/2) [q‘“'“+ q“*“) ,
¢, o = Kia/O Y2 (g ™Y (712 g12)
dr.l,O = (KA/C) [q—n—u'-l/Z__qn+u+1/2)/[q—l/z_ql/ZJ L if a A1
4,0 =K 1 oep 6 ® 2k(2/0) Y2 (),
dn,o = (2KA/C) (n+1/2+y) if g=1
hdee§ ; from (3.2a..d) , (1.3¢) and (1l.3a) , one has
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-2,.2
' = - - = - 2B/A
an+l,o an,o 2A °(B Ac)dn,o B Cn+l,0 cn,0+( / )dn,o
and a, o." (B/A)Cn,o + (C/A)dn,o =0 .
After eliminatiog of a5 and an+1,o :
n+l,o | _ -1 2B/A €n,0
- 2
dn+l’Q -2B/C 4B"/(AC)-1 | dh,o |
This matrix has eigenvalues ¢q and qal (from (1.6)) . The square
. . . . 1/2 -1/2
root of this matrix with eigenvalues (¢ and g is
1/2
0 (c/a) _ 1/2
, so that ¢ = (C/B) d, o
—(A/C)l/z ZB/(AC)l/Z n+l/2,0 n,
_ 1/2 -1/2 a This i . s of
dn+l/2,o = (q + q )dn,o dn—l/z,o . This is solved in term
powers of g and q_l if g # 1, of linear functions of n 1if

g = 1 . The constants X and u of the theorem are derived from the
initial values 0 and do,o . #
There is no simple rule for the other coefficients of the

polynomials, they are related by equations where the further unknowns

T, and s, are also involved. If the dn's are supposed to be known,
it is possible to eliminate the a's , b's and c¢'s and to end
with equations for rn and sn . When m = 0 (classical case), dn

is a constant known by lemma 3.3 and formulas in closed form can be
found. The polynomials studied by Askey and Wilson [AN] [aS] [PE]
[Wwr] will be recovered.

4. RELATIONS WITH ASKEY-WILSON POLYNOMIALS

Theorem 4.1. If the degrees of a,b,c,d are less or equal than
2,0,1,0 , the orthogonal polynomials of definition 2.1 satisfy the

recurrence relation (2.3) where

5 = s<(n+u)2)/[dn_l(dn_l/2)2dn]

and where T can be written in four different ways as

r

n yolx) - Ri(n+u)/(dnd

- Ri(—n—p-l)/(dndn+l/2)

n—l/2)
= yz(xi) - Ri(~n-u)/(dndn_l/2) - Ri(n+u+l) (dndn+1/2)

2

with R, (0)R;(-%) =sGM) , di=l,...,4 . Tf q#£1, S(x) isa

polynomial of degree four in qx+q_x , each Ri(x) is a Laurent

(from (3.2b)) , so that s, = [(y2(x)-yl(X))_Z(X(x)—(an(x))z) +

‘numerator and the denominator by (c_ )2
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polynomial of degree two in qx (i.e, a linear combination of q—2x
—-x — e
q , 1, qx and q2x ), and dn = const.(qn+U+l/2—q n-u l/2)

’

if g=1, S and each Ri are polynomials of degree four and
dn = const. (n+u+1/2) .

indeed, from theorem 3.1, rn and sn can be obtained if we

find completely the expressions of the polynomials a b, ¢ and
n n
d .As m=20, dn is a constant already known (lemma 3.3). From

n
(3.2a) , an(x) = ao(x)—(l/Z)(yz—yl)2 ?g% dk . Let us introduce D

such that Dn+l--Dn = dn ;@ function of n that will be very useful.
From lemma 3.3, D= (KA/C) (q—l/z-ql/z)dz(q_n““+qn+“) + constant if
a#1, D = (X&/C) (n+m)? + const. if q = 1 .

Considered as a function of n

, an(x) is therefore a polynomia
of first degree in Dn .

In the polynomia = ‘ i
poly 1 cn(x) cn,ox+cn,1 , only cn,l remains to be

determined. This is done by looking at the coefficient of x in

(3.4) exhibiting Ch,0%n,1 @8 @ quadratic polynomial in D
' '
This shows that cn,ocn(x) as a function of n 1is a polynomial
of second degree in D_ (in (3.3) , the coefficient of x' in x
shows that (cn

2 R
,o) is quadratic in Dn ) .

We have now all the material needed for the recurrence
coeffic%ents : from (3.2c) , r, = Mx + (cn(x) + cn+l(x))/(2dn) for
any choice of x ; in (3.3) , everything is known but bn = Sndn 1

2 N
+ (cn(x)) /4]/(dn_ldn) for any choice of x . By multiplying the

s a i
n,o ’ n ppears indeed as a

: arti 1 . . P 2 .
qu ¢ polynomial in D, divided by dn_l(cn O) dn and the first

part of the theorem follows fro: . ! = 172
m lemma 3.3 (cn,o (Cc/n) dn~1/2,o)‘

" There is a connection between rn and sn which appears when one

“'chooses x as one of the four roots of X(x) = 0 (whence the four

possibilities announced in the theorem). Then
([cn(x) +2(y,(x) =y, (0) ey 0] /20 ) (e, Go-2(y, (=7, (01 8 _(0]

g /(Zdn_l>]
and

f([cnfx)—ﬂyz(x)—yl(x))'lan(x)]/(Zdn)) ([cn(x) 2y, (x)-w, () (0]
/<2dn_1>]

aré two different factorizations of s, - After multiplication of the
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numera?ors and the_denominators by (1/2)(dn_l/2 , each of the
numerators appears as an even function of n+p plus or minus an odd
function of n+u : —Ri(n+u) and —Ri(—n—u) . Finally, the sum of the
factors of the first factorization (where n 1is replaced by n+l

in the second factor) ~gives (use (3.2a) and (3.2.c)) r - Mx

n
+ (yz(x)—yl(x))/2 = rn—yl(x) . The second factorization gives

r -y, (x) . #
Problem 4.2. Find a geometric description of the roots of x(x) = 0.

Theorem 4.1. Tells that we are dealing with a family of orthogonal
polynomials depending on 6 essential parameters (g , U , andvthe 4
zeros of 8) and 2 inessential parameters wich are the dominant
coefficient of S (dilation of the variable) and one of the

yi(xj)‘s (translation). Apparently, the conic (1.2) defining vy,

and y2 requires 5 parameters and a,b,c,d of degrees 2,0,1,0

ask for another 7 of whom we subtract 1 for homogeneity and 1 for
the constraint Uy = 1 , leaving 10 parameters. Several operators El
and Ez will therefore lead to the same family of orthogonal
polynomials. The two remaining degrees of freedom can be used to

make E X = X (possible only if 6 = 0 (see (1.4))) or to ?jge a
convenient symmetry A = C and D =E implying E_l = E2 = E .
E,=E, = E /% (Askey and Wilson's choice : [AS] Section 5).
Theorem 4.3. Under the conditions of Theorem 4.1 and if b =0 ,
the orthogonal polynomials of definition 2.1 are the Askey-Wilson
polynomials [AN] [As] [WI] . If b # 0 , they are the associated

Askey-Wilson polynomials.

Indeed, if we look at different recurrence relation writing for
the Askey-Wilson polynomials, such as [AN] p. 56 or [aS] p. 5 ,
we obtain the forms of Theorem 4.1 (our s, is the An_lcn of
[an] ana [AS] ). However, there is a constraint S(u”) =0 so0
that s =0 in [Au] and [AS]. This hapnens indeed if b=0. If b#0,
let v be such that R, (v)=0 and let us write ™=’ SnSnev-p Then
T, and s, are the recurrence coefficients of a valid set of Askev-Wilson
polynomials with v insted of u . This shows that we are dealina with -

S

the associated Askev-Wilson nolvnomials.

Wilson [WI] and Askey-Wilson [aN] [aS] polynomials have been
introduced through contiguity relations for 4F3 and 4*93
hypergeometric functions. These hypergeometric expansions can also be
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recovered here:

Theorem 4.4. With r, and sn given by Theorem 4.1, the recurrenc
relation

Zn+l = (X—rn)zn_snzn—l (4.1)

has special solutions of the form

n = (k-1
z, = g R (3 (m+u)) o o m S(n+uFye=k+1) S(n+utyva+k)} (x-E yi (%))

. \
dm-18m-1,2 m=0  K=1 8(KI&C(KEvq2yy) 5C(Kvqytyy) S(Rtvqtry) (4.2

where the upper signs correspond to 3j=1 and the lower sincs to
j=2 and where 6(n) = h/2- 172 = (KA/c)(q_n/2~qn/2)/(q‘l/z_ql/z)
if g# 1 ; 8(n) = fRan/C if q =1 .

Indeed, for one of the values of i = 1,...,4 allowed by
Theorem 4.1, (4.1) becomes

R; (2(n+p)) . R.(I(n+u+1))] R (2(n+p) )R (F(n+u))
. -

Znea = [N‘YJ (xy) + Zn-1 -
dn-4(dn-4,2)%dn

dl’\dl'l-“ r2 d'\dlhb‘l /72
If x_= yj(xi) » (4.1) has the simple particular solution
n R, (fmtw)) n R (+(m+p))
==z . Writing 2_ = 7 the recurr
A= 190-1/2 n d-1%-172 ® erenes

relation becomes

Ry (F(n+u+1)) Rg (& (n+ud)

(Zn=Zn-1) <4.§)

M Enia=Zn) = (x-y; (x))%q +

dnQnea /2 dnGn-4 /2

Consider ﬁn as a function of n+p+l/2 . Then this recurrence acceﬁif
solutions which are even functions of n+p+l/2 (4 is an odd
function of n+y+l/2) . Wether there are interestiﬁg forms of % ay
and odd function of n+u+1/2 1is not investigated here. Furthermgre,
from Theorem 4.1, Ri(t) can be factorized as Ri(t) =

= pé(t-vl)5(t-v2) G(t—vB)G(t—v4) . So if +(n+y) =~ vy s i;e.

no=-utov oy there is a simple relation between Zn and Z 1
n

This suggests for %n an expression containing 6(n+uivl) ’

6(n+u$vl)5(n+u?v1-l),... and as it must be even in n+p+l/2 , the
following is proposed:

[
3

~ m
2= 2. & Fv, - »
- éég n g:g § (n+1Ty; =k+1) § (kv +k) . (1.

3 . ~r ~
- Expanding 7 -7 -1 + ©ne encounters 6(n+u$vl)6(n+u+vl+m) -

n n
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which is neatly factorized as § (m)§ (2n+2u) =

6(n+uiyl—m)6(n+uiv1)
= <S(m)dn_l/2 . After a little work cn (4.3) , one must satisfy the
identity

o w1
I Em §16(n+u3v1—k+1)8(n+u:y1*k)(xn,.-(x—y,(x.))dné(n+uiv1-m+1)8(nfntv,+m)} =0,
4

where Xn,m = pé m) [5 (n+u+ \)l+m) r;cs (n+u+1ivk) -

- 5(n+u¥vl—m+l) rTé(n+u+v )y is an odd function of n+u+1/2 and

can be factorized as 4, [a + B 6(n+u+vl—m+l)6(n+u+vl+m) . Then

becomes

umim + (@m 1~x+y (x ))g 0 follows , so that (4.4)
2n = 10kﬂ1(«;.) ‘8(n+u+n-k#1)8(n+u*v1+k)(x—y, (%) "ﬂk-t‘) » (4.5)
B=0k=
% is easily found by taking n = -u+m-liv, as pé(m)rjd m+vl+vk),

n,m and B 0 , one

is a combmnatlon of q '

from the highest powers of g and q " in X
) - 4
finds Bm = o8 (m)8 (m+ 1 + zl_'\)k) . So Bm

g™ and a constant. The coefficients of o and q ™ are the same
as in [C(q_l/z—ql/z)/KﬂzRi(i(m/2+l/4)) , from the factorization of
Ri . In order to see the link between Bm and E+m Yﬁ(xi) , one
returns to the definition of R. in theorem 4.1 in terms of an(xi)
and ¢ (x.) to get finally B8 _ = (=1/2) (C/A) 172
ED—;E -m-1/21 m+l/2 T -m-1/2_ w+l/2

g + =5 —1 @ +q ) ¥ (1/2><y2~y1> e *

’ B"-AC q -q

+ constant , where the constant is such that Bo = 0 . It then happens

that Y5 (x5 )48 is of the form (1.7) . Checking that

2y (x )+B +B = —2(Bx +D) /A and comparing with (1.5)

(4.2) follows . #

Tn
yj(xi)+ Bp = Eﬁ yj(xi) and

5. DIFFERENCE RELATIONS

We return to the general theory of sections 2 and 3 in order to

show how the polynomials of definition 2.1 satisfy difference relations

involving the polynomials a ., bn v Sy and dn of section 3.

Before that, the following functions will be found useful:
Bn(X) T —Sq...Snoq (Ba(X)/(Ya—ya) +cnlx)/2 )
CalX) = Sq...5n-1 (an(x)7(ye=y1) —cn(x)/’72 )
Bntid
dnt)

S4...Spn-1 bn(X)}/8y

64.-. Sn dnlx)

Remark that the Riccati forms (2.5) and (2.6) (with indexes n)

yields indeed

can be written

s E.f - 3 =
v ( ) b 1 nE2fn SnanElfn n nE2fn+dn =0 (5.1)
and

B oy 2 2

(SnbnElfn )(snbnEZfn n) = -(sl...sn_l) X/(y2~yl) (5.2)
Lemma 5.1. TLet- X and Yn be two independent solutions of Z_ ., , =
= . —_ T n
= (x rn)Zn ann I then there are functions «,8,Yy,8 of x ,

independent of n , such that

kfour choices E

‘“product) .

Theorem 5.2.

:n = «(EqXn-1)(EaXpn IHB(E1YnoqY(EsXn IHI(E1Xn-4)(EaYyn I+E(E;¥qq)(ExYy )
Cn = «(EqXn I EaXn-q4)4B(EqYn I (EgXn-a)¥I(EsXn I(E3¥n_q)+8(Es¥n I(E3¥n.q)
gn = q(E4Xnog Y(EaXnoa ) 4B E4Ynoq I EsXn g J+FCELXn 9 ) (Ea¥n. 1 )+S(E1Yn-4 ) (EaXn_q)

n T @(EqXp J(EaXn I+B(E Y, )I(EgXny I+¥(EqXn I(Ea¥n I+S(EqY¥y JI(Ea¥n )
@nE1Xn ~GnEq1Rneqr = (BEaXn +5E;¥yn ) Eqly (5.3a)
GnEs¥n —dnEsXn-q = (FE¢Xp +SE(¥n ) Eoly (5.3b)
ShEs ¥y ~dnE1¥nen = —(IE2¥n +o€aXn ) EqTn (5.4a)
CnE2¥n ~dnEe¥n-q = ~(BE,Yn +xE4Xpn ) Ealn (5.4b)

where T i i i i i
i B nr is the Casorati determinant XnYn_l—Xn_lYn satisfying
n+tl “Sa'n -
EnOn-Pnldn = (53...80-1)2(~(8n)2/(ya=y4)2+(Cn)2/4=bndn)
= (840 Bne1)2X/ya=y1)? = (B¥-a«8)Esln Ealn - (5.5)
Indeed, from (3.2) , the recurrence relations for Y ,...,a' can
be written " "
;mﬂ Y ~En ¥Y2=Tn ;n
Cnet = ~Sn 0 0 Y17 Xn En
Brsa ° ° 0 1 18
Tner]|  |-Salya-zn) =Snlya—za) (sp)? (g4-zadlya-rad| |dn
o Now; if & = - E -8 & =
! n+l (y2 rn) n Snn-1 and Yp+1 T (yl_rn)Yn-SnYn—l ’
: that’is exactly the recurrence relation for g ) E

2 Y 1= Yo.rk Y
o ] ) n'n-1"n-1'n""n-1"n-1
. A basis of solutions of this recurrence is obtained by the

L= E,X ~or EZYn roY, = Elxn or ElYn (tensorial

(5.3) and (5.4) , which are the actual difference

“ relations, follow easily.

The monic orthogonal polynomials defined in Section 2

/
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satisfy the difference relation
= - - 5.6

(ah+a)DPn = (cn CIMP  + 2s d MP 2bMQ ( )
Indeed, with Xn = Prl and Yn = Qﬂ s, 8 , v and § of lemma 5.1
are readily found to be (take n = 0 and use P-—l =0, PD =1,

~ ~
QU =-1s,,09,=0, a=d =d , B=-s8 = a/(y,~y ) +c/2,
~ 2~ .

Y =-s;c, = -a/(y2~yl)+c/2 , 8 = (so) bo = b . Now, adding (5.3a)
and (5.3b) :

- - - P 2 -
Sq-+-S,_ 1 [an(Ean E,P )/ (y,myy) c, (EP +E, W/

= Spdn(ByP _g¥ByP 0] = [a(B,P -E P ) /(y)myy) +
+ C(E P +E,P ) /2 + b(E,0 +E,0 ) ]T

n

and this is exactly (5.6) after using Fn =5 ...s8 Fo =

6. DIFFERENCE EQUATIONS
Theorem 6.1. If b =0 in (2.4) , the orthogonal polynomials
defined in section 2 satisfy the second-order difference equation with

rational coefficients

a c
D'( —Dpn] - (y-,—y-q )-IN* ((yg-Y1 )—-‘DP,‘] = (6.1)
dn dn
[ )-1 e 2(a~ay,) + D Cp—¢C
(y_a-y_4)-' N ] n
(y2-y1)dy 2d,
Other interesting forms are n-1
~ % dl
u Gn—C 5.2
D*( — DP,) = [(v_,-y-.)-fn'((y,—y1) ] + D* ]up“ (5.2)
dn N dn 2dn
-with w form (2.7) and W = (a+(y2-yl)c/2)Elw = (a—(yz—yl)c/Z?Ezw,
X1/ Z-ay
x1/2 [ Cn -1 e[ Yurv2p, (6.3
172 ] Fee + 2(y._2~Y_4) M n
n-[ o Pa)] = [0 ™ Y-2-¥-1 P—
Indeed, as b = 0 , choosing Xn = XOPn , Yn = -sOY_lgn in lemma
5.1, one finds § = 0 . Therefore (5.3) involves only X and
Xpo1 ¢ with 8 =& /(BY_|E,X ) , v = G /(E;X E,Y_1)

Elimination of Xn—l yields

~ ~ -1 _
E_l(B/dn)FnEXn—E_z(Y/dn)FnE X, =

= [E—l(gn/a;)—E—Z(an/a;)]xn
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which can be rewritten using (1.8) and (1.9) as

(B3 B+
D* (== (va=ys)DXy ) - veamyoad-t n'[d—- (Ya=y+ DX, | =

2d, n
2 a 1 c 1 3+8 1 3-8
,[ e n - pet . Ipe3tR * ]Xh
Solo(y_2~y_4) (ya-yqldn 254Te dy 2 dy Y-2"Y-4 dn

With X =Y , =1, 8 and y = [—co/ziao/(yz-yl) /85

Po = 1 and this qgives (6.1) which is the extension of Laguerre
differential equation [AT] [H1] [La] [MA] . For the two other forms,
B = -y , possible if T (X, /Y ) = ‘EQEz‘Xo/Y~1) PX /Y =W

With Y—l = 1/w , X0 =1, one has (6.2) s Which is the form used
by Askey and Wilson ([As] Section 5). Remark also that, in the

classical case (degrees a,b,c,d = 2,0,1,0) , the richt-handsides of
(6.1) and (6.2) have the form AnPn and xann H dn is independ@nt
on x , cp is deaoreee 1 and use (1.9) [and (3.2a)]. With

_ ~1/2
Y 17w

; Xy = wl/2 » and using (5.5) , one obtains (6.3).

#
Theorem 6.2. The orthogonal polynomials of definition 2.1 satisfy

a linear fourth-order difference equation whose coefficients depend

on a,b,c,d and a ;r b y C and g
4 n n n n
Indeed, we consider again lemma 5.1 with Xn = Pn and Yn = Qn
and o , 8 , vy and S8 determined from 55 , Eo , 8; and 3; i.e.

from a , b, ¢ anda 4 , but now § 20 in general., Elimination of
X1 = P4 and Y1 = 9 g erT (5.3) and (5.4) gields two
equations involving Pn ’ EPrl ;s E Pn ’ Qn ’ EQn and E Qn .

Applying the operators E and E_l to the two equivalent equations

~involving only Q and E & for the first, and Q. and EQ_  for
n n n n

the second, we get two new eéquations. Final elimination of ¢

N r
EQn- and E lQn from the four resulting equations leaves a single
relation involving E 2p , B lp v P, EP_ and E%P_ , which is
n n n n n

the fourth-order difference equation.

The complete writing of this equation would be very tedious. It
is much more interesting to see how its solutions are related to
solutions of second order difference equations ([Hl] eqg. 17)

Theorem 6.3. The orthogonal polynomials of definition (2.1) can be
written

P = (X Y_l—Ynx_l)/(xoY_l—Yox_

n n l) ’ (6.4)

“where the functions of x and n Xn and Yn satisfy simultaneously
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the three-terms recurrence relation

— - - 6.5
Zn+l (x rn)Zn SnZn—l ' ¢ )

the second order difference equation
X
o+

and the difference relation

172

c x1/2-an
nz“] = [n' T 4 2(y.a-yoq)t H‘[ )]z“ » (6.6)
dn 2dn (ya=yq)ddn

1/2

- 6.7
(% +an)DZn chZn + 2SnanZn-l ( )

Indeed, let us start with Xn and Yn , two independent
solutions of (6.5). Then, (6.4) is obviously a solution which is a
polynomial of degree n in x , and this is Pn . We are still free
to choose the four functions of x X  , X_; » ¥ and Y_, . Here is
a way to have o« =8 = 0 1in Lemma 5.1 , which will lead to considerable
simplification : it is based on the fact that if ZO/(SOZ_l) is a
solution of the Riccati equation (2.4) , and if the recurrence
relation (6.5) holds , then Zn/(snzn_l) is a solution of the
Riccati equation (3.1) . This is a consequence of the construction
of (3.1) . So let us choose a solution g of (2.4) and fix the
ratio Xo/(sox-l) = g (of course, g could be £ itself, and this
will indicate a representation of £ as a ratio of solutions of
second-order differences equations), and let 9, = Xn/(san_l) . We
multiply now the four.lines of lemma 5.1 by -s Elgn ' —snEzgn '

n
(s )2ElgnE2qn , 1 and we make the sum . The left-hand side vanishes,
n ’ .

as we have reconstructed the Riccati equation of 9y in the form
(5.1) . In the right-hand side, we find various products with the

. : s - i left
vanishing factor snann_1 Xn and the single product le

- - . T f § =0 . Fixin

SEl(sngnYn_l Yn>E2(sngnYn—l Y ) herefore, g

n
YO/(SOY_ ) = h , another solution of (2.4) , we have also a = 0 .

1
Now, eliminating X1 and Yn—l from (5.3) and (5.4) :

FaEe1 (B3n) EXn =~ TaE-aC3/dn) E-'%n = (Ecq (Gurdn)-EosGurdnd) | Xn

(6.8)
“TaE-3 (3/8n) Eta + [aEa(8rdn) B2 = (E4 CRnrdn)-E- 2 Gnrllad]tn
ith By = - (3.8 -B &)/ (&, BT ) = -x/[s %(y,~v)%E,T BT ] .
with By = 25% 0% 1072 0 X/ 1Sq Wpm¥y 1'072°0
These equations are the some if vy = - . With the choice Fo =1,

we proceed as in the proof of Theorem 6.1 and we get (6.6), which

has indeed the same form as (6.3) .
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Now, let us define

X1’z 1 ¢ a, Cn
Wn = E.q EZn - 5-1‘-( + "J Zn
(ya=~y4dda dn'y2-ys 2
(6.9)
x1/2 1 an Cn
= ~E_g————— E-1Z, + E-z——[ - "—J n »

(ya-ys1ldn da'y2~ys 2
the second equality coming from (6.8) . Applying E ‘and E_l to
(6.9) and eliminating Zn ’ EZn and E—lzn , it appears that Wn
satisfies (6.8) with =n-1 instead of n . Writing Wn = snznul ’

(6.9) 1is a difference relation which can be put in the form (6.7) ,

and (6.5) can be checked using (3.2). #

In the classical case, it would be interesting to get expressions
of Pn and Qn = (%DYO—YDXO)/(XIYO—leo) in terms of hypergeometric
expansions, as in |[BE] p. 281 and 285.
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LE CALCUL DES FORMES LINEAIRES ET LES POLYN8MES
ORTHOGONAUX SEMI-~-CLASSIOUES

Pascal MARONI
Université P. et M. Curie

Laboratoire d'Analyse Numérique
4, Place Jussieu
75252 Paris Cedex 05

INTRODUCTION

Dans 1l'étude des suites de polyngmes, la forme linéaire par ra-
Y

nport a lagquelle une suite est orthogonale, joue un r8le essentiel et

il est utile de déterminer ses propriétés . indépendamment de toute re-
présentation. Par example, la donnée d'une forme lindaire est équiva-
lente a la donnée de ses moments ; trés souvent, la suite des moments
vérifie une relation de récurrence. A l'aide d'un cadre algébrique.
convenable cela se traduit par une Equation vérifie par la forme :
c'est une propriété intrinséque.

L'objet de cet article est double: formaliser un certain nombre

“d'opérations habituelles sur les formes lindaires et appliquer le for

A . -
malisme -obtenu aux polynomes orthogonaux semi-classiques.

Dans le §1, on introduit le cadre topologique adéquat [7] de

‘maniére & définir systématiquement, par transposition, des opérations

sur les formes linéaires i partir d'opérations sur les polyndmes. De
ce point de vue, l'espace vectoriel des séries formellesagpparait com-
me - un miroir de 1'espace vectoriel des formes lindaires. On introduit
un produit multiplicatif de deux formes linéaires, qui intervient

naturellement dans la détermination de la forme canonique de la suite

associée a une suite orthogonale.

Dans le §2 , on introduit la transformée de Fourier d'une forme

lindaire et le produit de convolution de deux formes lindaires [2] ,

8.

On établit en passant un résultat éguivalent au théoréme de Bo-
rel sur les séries formelles june forme lindaire peut toujours &tre

eprésentée par une ultradistribution 3 décroissance rapide.

Enfin dans le §3 , on indique la définition et les diverses ca-

‘ractérisations des suites orthogonales semi-classiques [3] . En par-

iculier, on montre 1'identité de l'ensemble des suites semi-classique

-dé‘l’ensemble des suites dont la fonction de Stieltjes formelle

10



