Approximation Days 2-3 July, 2012, Leuven.

Three easy pieces, incomplete and unfinished:

beautiful Freud equations, ”1/9”, and elliptic lattices.

Alphonse Magnus,
alphonse.magnus@uclouvain.be ,
http://perso.uclouvain.be/alphonse.magnus

The present file is http://perso.uclouvain.be/alphonse.magnus/Threepieces2012s.pdf

To AH., AR, BD, CB., D.D,D.L, GB.,, HS., JG., JL, JM., JN., LL., LLN.T.,
L.W., M.G., M.G., M.E.H.l.,, P.N., RA., R.B.,, R.C,, RV, S A, t.S.gE, ET., V.P, WG,
W.H., W.V.A.

DR KOPAK: Estamos vivos?
BRICK BRADFORD: Sim P

1 the Spanish gang

2from a Brazilian edition of W.Ritt & C.Gray's " Adrift in an Atom” ( 1937 1938)
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1. The quest for beautiful Freud equations.

In the mid 1970’s, Bernard Danloy made the following comment of Stroud & Secrest’s
book on numerical integration:
Let P, and 11, be the monic orthogonal polynomial of degree n, and the monic kernel
polynomial at the origin of degree m, with respect to the same measure du on (0, 00),
so that one has the general recurrence relations P,11(x) = zIl,(x) — u,P,(x), and
yy1(x) = Pog1(2) — valln(2), with u, = [T/ | Poll?, vn = (| Py [I?/ 11T,
When du(x) = w(z)dx = exp(—x*)dx, 0 < x < oo, one has the beautiful relations

2un(vn—1 + un + 'Un) =n -+ 17

QUn(un + v, + un—i—l) = n + 1.

indeed, 0 = /0 - (T (2) Pu () () dz

EEH;L(x)Pn(x)Jw(x)dx+...+Hn(x)Pn(a:)w(as)—2Hn(x) ﬁjf,(_xl sw(z)

0= /O ~ lpnﬂ(:c)nﬁ(x)xw(x)]i da.

\PT/L_i_l(J?)Hn(mew(x)dx—l—---—2Pn+1(3(:) :B2Hn(ic) w(x)

\—
/

(n+1)T1Z (z)++ o (untontun 1) Ppy(e)+
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o 2

a =¥
B. DARNLOY Censtruction of gaussian quadrature formulas for [ =
ad

Fixidx.

NFWO-FNRS Mesting Leuven 20 Mov. 1875 [unpublished]. Numerical censtruction

Jean Meinguet recognized interesting instances of the L R algorithm (confirmed later
by experts), | intended to establish a convergent numerical method of computation (I did).
We considered to present these results to the numerical analysis world. And the numerical
analysis world rejected this as meaningless junk (it still does).

Then | received a flood of (p)reprints from Columbus, OH 43210, and we, er, | learned
everything on Shohat, Freud, etc. The equations are:
if w(t) = exp(—P(t)) on R,where P is a polynomial, then

(P'(J)pn=0,n=0,1,...
an(P'(J)pm_1=n, n=1,2,...

bo ay
J being the Jacobi matrix [al by ag ] Indeed,
0=/ [Pu(B)pni (D (®)] dt

(Pr(t)=(n/an)pp 1)+ )Py i ()w(t)+—pn(t)py—; (t) P () w(t)
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see the “Bar-le-Duc” stuffinhttp://perso.uclouvain.be/alphonse.magnus/freud/freud.

This is what could be called the beautiful Freud equations.

God created the beautiful Freud equations

Recently, M.Ismail & pupils started a quest for discrete Freud eq.
w(yr)} be a sequence of weights satisfying the difference equation (Zw)(xp) :=

Let {wk =
wykt1) — wlyr) = p(zg)(wg + wi41) on the lattices {wx} and {yg}. Then, if w(yg,) =
Yk+1 — Yk
w(yg,) = 0,
ko—1 ko—1
0= > [2(PnPn—iwd) (@) Ay = > [PnPn—i(Ykt1) Wit 1 T+1 — PnPn—i(Yk) Wi k]
k k N
1 1 1 + p(zg) Ay
wi,
1 —p(zg)Ayy
And now?
4/19
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For other weights, it is quite easy to produce ugly equations, see for instance

2(n+ o+ B+ 5+ 2)ap(@n_1 + a, + apy) — 2ladg + (n+ B+ 1)(F5 + 1) + an+

n—1 n—1
+2(2a, —F5—1) > a;+ndg—2ana,_1+2 > (a;+2a5a,_)+(28+1)35 (1—(-1)")/2 = 0,
j=1 j=1

n=1,2,...

such contraptions result from the identity 0 = fS[apnpn_@-w]’da:, when the measure
is du(x) = w(x)dx+ masses at the zeros of the polynomial a, and aw’ = bw.

Or this one on the unit circle:

w(8) = rie” | sin(0 — 61) /2] sin(0 — 62)/2*7, 61 < 6 < 0,
roe” | sin(6 — 61)/2|*%|sin(0 — 02)/2|*° , 0 ¢ [61, 6]

on the two arcs of endpoints exp(i61) and exp(if2).
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(n+1+a+ﬁ—|—i’y)azn+1:

Ty = P,(0):

' 01020+ Ensin + n(e + 2)
X

n

1 — |z,|?
—(n—14+a+p8- 7;’7)81(91%2)3%—1, where &, 1, = T1T0 + T2T1 + - - - + T Tp—1,
n =1,2,... We need x;. For a general ratio ro/r1, one has Im [exp(—i(60; +
g—a .
05)/2) 1| = sin((02 — 61)/2), (here, — 0), and we try various real
2)/2) 1] P S ((02 — 01)/2), ( Y ) y

parts.

One obviously expects ®,,(0) to behave like a combination of €1 and e'?2 with
slowly varying coefficients.

we know that x,, — 0O, and even that £,_1, —n—oc A1, from Szegd-Geronimus
theory, where logw = : - + X 227> + A_12" ' + Ag+ do + Mz + Xz’ + - -+,

log 4(=) log 7(2)

)\1 )\1 e%@j _|_619k
+ 10

Let 0, = 7 = 1,2, and we suspect
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A 107 A 10y
xn, = ©,(0) = L~ ginby 4 2210 7 inby | o(1/n)

without full proof, alas. But we may recover A; and A5 from an enormous number
of numerical runs, checked with P.Nevai's Christoffel reconstruction procedure.

A = (a — pi)eiﬁ(w—02+91)+i¢1 : Ay = (B + ,oi)cz_iO‘(W_QQ—i_Ql)—Hw2 , with
log(r1/72)
27

The absolute values of A; and As are probably correct, as they agree with what
is needed in the Hartwig-Fisher formula.Known cases: when 6; — 681 = 7, and when
w(0)/[| sin(6 — 61)/2|**| sin(6 — 03)/2|*"] is the same constant on the whole circle,
one must have A; = «, Ay = 3, and § = 0 (Badkov, Golinskii, etc.).

The phases 11 and 2 are conjectured here, only for « = 8 = 0 (sorry)
WY1 = —o = —2plogsin((62 — 61)/2) + 2arg'(1 + ip) — 2plog 2

see http://perso.uclouvain.be/alphonse.magnus/num3/m3xxx99.pdf
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2. ”1/9” ou comment s’en débarrasser.
Py (t .
Let e " — 0 ((t)) = (—1)"E,cos((2n 4+ 1)6,(t)), 0 <t < +oo.

and we look where 0, (t) = /2 and 7 /3,

_, P 1/m
(e ? — Qn((z))) ~ exp(2V(z/n) — 2c¢), _1/2
z | | | |
inside  a ncontour, where  the  complex O N —— ‘ | |

potential  V(z) = V;(z) — Vp(z) =
limn " '[> [log(z — interp.) — log(z — poles)]] 1 IM | |

satisfies [ N—
1. its derivative V' takes opposite pure imaginary 5

values on the two sides of the positive real axis ‘
= FE, where V(u) = £i0(u).
2. V' — f'/(2nf) = V' — 1/2 takes opposite 3I
values on the two sides of the scaled arc of poles F', V /y/
and vanishes at the endpoints a and b. -
4 /\\ | | | s

3. for Vitself, V(400+0i) —V(4+00—0i) = 271. \/ \A\/ | | | T
ne has V' (z2) = - /1\ | | i |
One has V7() 2v/23(z/a —1)(2/b — 1) AV /X*/
(Gonchar and Rakhmanov). N
72 SZE N
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i L7

(72) 1—9x—25x3+49x5+81m10+...+(zn+1)2(—x') e W

(:el,t.e cquation a une et une seunle racine &Ly comprise entre zéro
et I'unité, ce qui sera prouve en toute rigueur au Chapitre XIII,
et la forme (72) permet de la calculer avec six décimales exactes
au moyen des quatre premiers termes seulement; on trouve

(73) x = 0,107653. ...

Vi(2) = 270 + Vi(2) = n(V,(2))% V,,,(2) = Vai(z) = Va(z) = 27 -
n(V!(2))?. Denominator = [](1 — z/poles) ~ exp(n(V,,(z) — Vn,(0)) =
exp(—2zcos0/v/a1b; + z°/(6naib;) + ---), has a fixed limit when n — oo.
Moreover, exp(—2z cos 0 /+/a1b1) = exp(—0.71203...z) fits with tables.

qg(z)e” — p(x) = [To, . ) Tmtns Tlg@)exp(z) (T — To) -+ (T — Tpgn). The
product of the x — x;'s behaves like exp(nV,(x)), and the divided difference will be
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explored right now.

Denominator g is the orthogonal
polynomial of degree n with respect
to the scalar product (f,g), =

(%0, - - -y Trmtn] f(2)g(z) exp(a) =
m-—+n

j=0 metj
1 f(t)g(t) exp(t) dt

27t Jo, (t —x0) -+ (t — Timtn)
B-spline formula (fyg)n =

[ B@ @@ dr.

m—+n
The shape of things to come. Here

are some instances of (m + n)! times
B(x) and B(x)e" on the x;'s of best
approximants, m = n — 1. And CF
[Gutknecht & Trefethen]?

SO f(zj)9(x;) exp(z;) [ —an) =

0.43
_1.6
| 0.24
—6 _2.9
| 0.15
8  —438
© o 0.11
~10 —7.0
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Application to best approximation to exp(—(nA + B)z) on [0, ¢]

z(z — c) , t(t — c) dt
TR R 27m/\/(t—a)(t—b)z—t

const. z + const.

= V'(2) = (Herbert and the Russians).
VoG- —a)z -
1 1+it ’
, b= 1+ a)(, itan¢) found from two equations Ac = A
2(1 £iatan§) (1 — a?)E(K —E)

™ /1 + tan® € cos2 6

(1 4+ i tan £ cos 6)?
k = sin €&.

and

df = 0, (integral of third kind), with unknowns « and

1
The error decreases essentially (root asymptotics) like p™, with log— =
o
a(K — E)(K' — E') — EE’
(a — 1)E(K — E)
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Strong asymptotics from Aptekarev (2001): E, ~ 2p"pp, where 2log pp =
Re{(Vp+ + (2) + VB (2))E — [VB.+(2) + VB, _(2) + 2Bz]r}, V3 = V' being
analytic outside FE |J F', taking opposite values on the two sides of E = [0, ],
V5(z) + B taking opposite values on the two sides of F', or any arc of endpoints a and
b, and corresponding to a positive unit charge on F', and a negative unit charge on F,
and finally V5 (2) = const. 272 4+ - - - when 2 — 0.

The problem is solved by VA/2 =V if B= A/2. And if B = 07 Then, V6 is the simple

_ _ / constant _ _ _
algebraic function Vy(2) = associated to the potential of a plain (and plane)

Vz(z—c)(z —a)(z —b)
condenser (E, F), although we do not need to know what F is. The capacity is 2K/(7wK’), and

7 K’ 2B 2B _ ,
PO = €xp 5% ) And for any B, Vg = IV + 1— e Vo does the trick, see Meinguet

B/Ap(()l—QB/A)

[2000] for such relations. So, pg = p . and we just have to get pg = exp(—1/C), where

C' is the plain condenser capacity of (E, ﬁ)

—nz pn(2)
qn(2)

on [0, ], and the products p~ " E}, /2

Now, we look at some error norms E,, = I'e

which should tend towards pq: >

3 pieces . Leuven 2012. 12/19



n c = 1 c = 5 c = o0
E, p  "Ep/2 E, p "En/2 E, p "Ep/2
1 1.58E — 3 0.04509 3.13E — 2 0.1946 6.68E — 2 0.3104
2 3.19E — 5 0.05206 2.76E — 3 0.2140 7.35E — 3 0.3175
4 1.06E — 8 0.05667 1.88E — 5 0.2248 8.65FE — 5 0.3221
5 1.9FE — 10 0.05771 1.52E — 6 0.2270 9.34FE — 6 0.3232
lim 0.06241 0.236 0.328
_ K/
e 2 0.06240 0.2362 0.328
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The last rows are: the limit when n — oo estimated through a simple step of Thiele
interpolatory continued fraction, i.e., A from A 4+ p/(n + v) interpolation three values,
= first nontrivial step of p—algorithm [Brezinski];
and the formula exp(—7K’/(2K)).

For more, seehttp://perso.uclouvain.be/alphonse.magnus/num3/m3xxx00 . pdf

Was elliptic functions such a dead subject (before Brent, Salamin, and the Borweins)?
Not so in Leuven-Louvain: Georges Lemaitre, of big bang fame, taught analytical
mechanics with elliptic functions examples (to often bewildered students), and Vitold
Belevitch used them in filtering problems (see papers by J. Todd) in MBLE research lab.
J.Meinguet was in both lines, so was J.P.Thiran (Namur). See papers and books by M.

d’'Udekem-Gevers (Namur). And now, cryptography (J.J. Quisquater).
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3. These & ©@%* elliptic lattices.
| met the Devil in Bar-le-Duc (1984). He told me this:

Manifesto.(Bi)orthogonal polynomials and rational

_________ e o functions satisfy remarkably simple (?) differential
" ) or difference equations and relations when the
L N orthogonality form satisfies itself a differential or
R N 1 A \, /e oo difference equation of first order, a Riccati equation
_____ | L :;: aZf =bfTf~ +c(ft + f) + d, with
N e

polynomial coefficients.  The statement s va/i% for any difference operator of the

form (@f)(:lj) _ f (CU) - f_(CU _ f(lb(fv - f(SO(CU))
zt— P(z) — ¢(z)
the two y—roots of F'(x,y) = 0 of second degree in y. The adjoint operator

; 9@ (W) —gle ()
T W) = S o o i)

(The Devil did not tell everything). In a nutshell: f is approximated by gqn/pn with

, where @ and 1 are

must be in the same class = F' biquadratic.

an error of order 2n (Padé setting), or vanishing at 2n points (interpolation setting)

+ - + -
f = dn + €9,,0 = a9 _ bq:{qz —c (q—ﬁ_—i—q—ﬁ) — d-+ something small, say m9,, so
DPn Dn Pn Pn Pn Pn
4P — dn P + - + = =+ +, — +, —
a nxi — xn_ ~ —bq,q, —cla, v, + a, ] — dp, P, = —N2nb, P,, Which is a rational function

of bounded degree, whence a lot of relations, together with Casorati-Wronski relations, etc. Higher order
Riccati-like equations match other orthogonality-approximation schemes: multiple (or d—) orthogonality.
3 pieces . Leuven 2012. 15/19




Why elliptic? Successive points on the curve
F(z,y) = Xo(x)y® + X1(x)y + Xo(z) = 0 are
= (n, Yn), then (x,,yny1) where y,.1 is the other
e y—root of F(x,,y) = 0, and (xpi1,Ynsr1) where
Xn+1 is the other z—root of F'(x, y,+1) = 0. Relation

Ysp -~

Vel - with the more familiar picture of points in arith-
& B NG I e metic progression on a cubic (elliptic curve): with
S . P = X12 — 4XyXs, of zeros zi,...,z4, so that
Xs — X1 t+vVP . . .
y = 1X \/_, let the birational transformation
1 ? 1
§ = , T =z + -
T — 21 3 )
(&5 M)step y— X1(z) + 2y Xo(x) ) — —X1(21 +1/8) +n/¢
(x —21)2 2Xo9(z1 +1/&)

(Appell & Goursat), then n® = &*P(z + 1/€)
2" which is the cubic polynomial Ps(¢) = P’'(z)¢* +
/ 5721 (;P_N Zl)/2)£2 _|_ (P/N(Zl)/6)£ + P/////24_

_ Iintd +77"(g — &,) joining (&n,Mn) to (&ngis —Mnt1)
Sn—l—l - gn

meets the cubic curve at  (&,7M)sep  independent  of n. see
http://perso.uclouvain.be/alphonse.magnus/num3/m32006.pdf

The line n = n,
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What are the classical recurrence coefficients?

d/dx

A } rat. f. of degree 4 in n,

: Ellipt.
q n ?
ANSUW} rat. f. of degree 4 in q } and now?

Discussing recurrence relations is equivalent to discussing the continued fraction

fn(x) _ L — Y2n |
oy + Bpr — (37 - y2n+1)fn+1(37)
(CU - y2n)/fn(37) at yont1 and yopqo. If a,Zf, = bnf—i_fr: -+ Cn(fr—:_ + fn_) + dy,

frn(Yant1) = dn(x2n)/lan(T2n) /(Y2n+1 — Y2n) — cn(x2n)], etc.

where «,, + B, x interpolates

Manifesto (continued). When the degrees of a, b, c, d are < 3, classical setting holds:
explicit formulas for recurrence relations (done by V. Spiridonov and A. Zhedanov in 2000
with theta functions), elliptic hypergeometric expansions (7), elliptic Rodrigues formulas
(77), difference relations and equations.

Partial check: at each of the 4 zeros zi,...,z4, one has ai(zi) =
anq; — x%_lag(zi) (Luminy 2007 - JCAM 2009). As a polynomial of 3" degree is

Z; — L1
completely determined by 4 values, we see why explicit formulas are possible. But how

can z; — Top_1 be a square?
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In the simpler trigonometric case, 1 —sinf = 1 — cos(§ — 7 /2) = 2sin*(0/2 — 7 /4).
Also, the three differences e; — p(x) of the Weierstrass elliptic function are squares of
remarkable functions (see the Painlevé Handbook of Conte & Musette).

n
) Here: we relate (x, y) on the biquadratic curve to (Z, ¢) on the
(&:7) : ¢ same curve, such that (£,m) is the double of (£, 1) according
| .

| to the addition rule of elliptic curves: the tangent at (£, 77) must
: meet the cubic curve n? = P3(€) at (&, —n). Equality of slopes:
—n—17 _ P3(§) 2 .2 - ol B2

c ¢ o7 D AnTi = 4P3(8) P3(€) = [2P3(€) + (£ — &) P3(8)]
o (PO 2P @R _ o L BBE) P o
> E=8t 2P’”P3(§)/3 = A4 2p///P3(5) “ 6 (B Q) =

P3(&) =€ P(zl +1/€). Note that & = pg + p3 + pa, where £ = ,oZ = (z; — zl) ,1=2,3,4 are

the three roots of P3(£) = 54~P(21 + }/5) = 0. Then, £ = 3 4?235—25826245— —1|:I€H— g?;iQE
(€% — 2pi€ + 1 — 2Q/p;)*

Y

ST U@ CsE e — Q) = 4Py /(P'/6) = 4/ (FY[6)
Zi — Tan—1 1 1 (&2 — 2pi&y + I — QQ/Pz)

_ |1 = . YES!
21 — Top_1 [Pz‘ £2n1i| San-1 4p;n2/(P"/6)

Manifesto (end).And when the degrees > 3, one gets nonlinear equations for the
recurrence coefficients, probably discrete Painlevé equations. Or Freud equations (probably
the ugly kind).
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Estamos Sim. .. Vou ver como esta
{ Vivos? Beryl. m
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