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FREUD’S EQUATIONS FOR ORTHOGONAL POLYNOMIALS

AS DISCRETE PAINLEVÉ EQUATIONS.

ALPHONSE P. MAGNUS

Abstract. We consider orthogonal polynomials pn with respect to an ex-
ponential weight function w(x) = exp(−P (x)). The related equations for
the recurrence coefficients have been explored by many people, starting
essentially with Laguerre [49], in order to study special continued frac-
tions, recurrence relations, and various asymptotic expansions (G. Freud’s
contribution [29, 56]).

Most striking example is n = 2twn + wn(wn+1 + wn + wn−1) for the
recurrence coefficients pn+1 = xpn−wnpn−1 of the orthogonal polynomials
related to the weight w(x) = exp(−4(tx2 + x4)) (notations of [27, pp.34–
36]). This example appears in practically all the references below. The
connection with discrete Painlevé equations is described here.

1. Construction of orthogonal polynomials recurrence
coefficients.

Consider the set {pn}
∞

0 of orthonormal polynomials with respect to a
weight function w on (a part of) the real line:

∫
∞

−∞

pn(x)pm(x)w(x) dx = δn,m, n, m = 0, 1, . . . (1)

The very useful recurrence formula has the form a1p1(x) = (x − b0)p0,

an+1pn+1(x) = (x − bn)pn(x) − anpn−1(x), n = 1, 2, . . . (2)

The connection between the nonnegative integrable function w and the real
sequences {an}

∞

1 , {bn}
∞

0 is of the widest interest. It is investigated in combi-
natorics [9, 10, 52], asymptotic analysis [12, 13, 29, 31, 53, 54, 55, 61, 77, 78, 79],
numerical analysis [16, 22, 32, 33, 51, 57], and, of course, Lax-Painlevé-Toda
theory (all the other references, excepting perhaps Chaucer).

However, the connection may seem quite elementary and explicit:

(1) From w to an and bn: let µk =
∫
∞

−∞
xk w(x) dx, k = 0, 1, . . . be the

moments of w, then

a2
n =

Hn−1Hn+1

(Hn)2
, n = 1, 2, . . . bn =

H̃n+1

Hn+1

−
H̃n

Hn

, n = 0, 1, . . . (3)
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where Hn and H̃n are the determinants

Hn =

∣∣∣∣∣∣

µ0 · · · µn−1
...

...
µn−1 · · · µ2n−2

∣∣∣∣∣∣
; H̃n =

∣∣∣∣∣∣

µ0 · · · µn−2 µn
...

...
...

µn−1 · · · µ2n−3 µ2n−1

∣∣∣∣∣∣
, (4)

n = 0, 1, . . . , H0 = 1, H̃0 = 0.
(2) From the an’s and bn’s to w: consider the Jacobi matrix

J =




b0 a1

a1 b1 a2

a2 b2 a3

. . .
. . .

. . .




then, remarking that (2) may be writ-
ten xpn(x) = anpn−1(x) + bnpn(x) +
an+1pn+1(x), (Remark that the coefficients ap-

pear now with positive signs, a very elementary

fact, but always able to puzzle weak souls), or x p(x) = Jp(x), where p(x) is
the column (infinite) vector of p0(x), p1(x), . . . , so that the expansion
of xkpn(x) in the basis {p0, p1, . . . } is xkpn(x) =

∑
`(J

k)n,`p`(x). As
we are dealing with a basis of orthonormal polynomials, this means
that (Jk)n,` is the `th Fourier coefficient of xkpn(x), (where row and
column indexes start at zero), i.e., (J k)n,` =

∫
∞

−∞
xkpn(x)p`(x)w(x) dx.

For any polynomial p, one has

(p(J))n,` =

∫
∞

−∞

p(x)pn(x)p`(x)w(x) dx. (5)

In particular, (Jk)0,0 = µk/µ0.

Direct numerical use of (3) is almost always unsatisfactory, for stability
reasons. Together with various ways to cope with the numerical stability
problem [32,33], compact formulas or equations for the recurrence coefficients
an and bn in special cases have been sought. Of course, quite a number of exact
solutions are known (appendix of [15]) and new ones are steadily discovered
(Askey-Wilson polynomials and other instances of the new “q−calculus” [4,
36,37,47]). The trend explored here is essentially related to weight functions
satisfying simple differential equations. Main innovators were Laguerre in
1885 [49], Shohat in 1939 [77], and Freud in 1976 [29]. Their contributions
are now described in reverse order. On Géza Freud (1922-1979), see [30,68,69].

2. Definition of Freud’s equations.

In order to reduce the technical contents of what will follow, only even

weights: ∀ real x, w(−x) = w(x) will be used. Then, the orthogonal poly-
nomials are even or odd according to their degrees; equivalently, all the bn’s
in (2), in (3), and in the Jacobi matrix J vanish. Let a be the sequence of
coefficients {a1, a2, . . . }.

Theorem 1. Let P be the real even polynomial P (x) = c0x
2m + c1x

2m−2 +
· · · + cm, with c0 > 0, and let a1, a2, . . . be the recurrence coefficients (2) of
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the orthonormal polynomials with respect to the weight w(x) = exp(−P (x))
on the whole real line. Then, the Freud’s equations

Fn(a) := an (P ′(J))n,n−1 = n, n = 1, 2, . . . (6)

hold, where ( )n,n−1 means the element at row n and column n − 1 of the
(infinite) matrix P ′(J). A finite number of computations is involved in each
of these elements. The row and column indexes start at 0. We could as
well take the indexes (n − 1, n), as J and any polynomial function of J are
symmetric matrices.

Remark. One has

F1(a) = (JP ′(J))0,0 . (7)

Indeed, the first element of the first row of JP ′(J) is a1 times the element
(1, 0) of P ′(J), i.e., F1(a).

Examples.

w(x) = exp(−x2) Fn(a) = 2a2
n, (8)

w(x) = exp(−αx4 − βx2) Fn(a) = 4αa2
n(a2

n−1 + a2
n + a2

n+1) + 2βa2
n, (9)

w(x) = exp(−x6) Fn(a) = 6a2
n(a2

n−2a
2
n−1 + a4

n−1 + 2a2
n−1a

2
n + a4

n

+ a2
n−1a

2
n+1 + 2a2

na2
n+1 + a4

n+1 + a2
n+1a

2
n+2),

(10)

The elementary Hermite polynomials case is of course immediately recovered
in (8). (9) and (10) were used by Freud [29] in investigations on asymptotic
behaviour, see [12, 53, 56, 57, 67, 69] or more. The rich connection of (9) with
discrete and continuous Painlevé theory will be recalled later on. For a much
more general setting, see [1, Theor. 4.1].

Proof of (6). We consider two different ways to write the integral

In =

∫
∞

−∞

p′n(x)pn−1(x) exp(−P (x)) dx. First, let pn−1(x) = πn−1x
n−1 + . . .

and pn(x) = πnxn + . . . . From (2) (with n−1 instead of n), πn = πn−1/an; so,

p′n(x) = nπnxn−1+ . . . =
n

an
pn−1(x)+ a polynomial of degree 6 n−2. As pn−1

is orthogonal to all polynomials of degree 6 n − 2, what remains is In =
n

an
,

as the orthonormal polynomials have a unit square integral. Next, we per-

form an integration by parts on In = −

∫
∞

−∞

pn(x) [pn−1(x) exp(−P (x))]′ dx =
∫

∞

−∞

P ′(x)pn(x)pn−1(x) exp(−P (x)) dx, using the orthogonality of pn and p′n−1

of degree < n − 1 < n, and the latter integral is (P ′(J))n,n−1, according to
the spectral representation (5). �
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3. Freud’s equations software.

The interested reader (if there is still one left) will find in the “soft-
ware” part of http://www.math.ucl.ac.be/~magnus/ three FORTRAN pro-
grams related to Freud’s equations. freud1.f asks for an exponent m and
puts data associated to the Freud’s equations for x2, x4, . . . , x2m in the file
freud00m.dat. freud2.f produces a readable (sort of) listing out of such a
data file. Finally, freud3.f reads the coefficients of a polynomial P and com-
putes in a stable way a sequence of positive recurrence coefficients a1, a2, . . .
associated to the weight exp(−P (x)) on the whole real line. Actually, weight
functions |x|α exp(−P (x)), with P even, on the whole real line, and
xβ exp(−Q(x)) on the positive real line are considered simultaneously (P (x) =
Q(x2)).

4. Solution of Freud’s equations.

We started from the solution (3), and built the equation (6) afterwards,
when the an’s are recurrence coefficients of orthogonal polynomials associated
to the weight exp(−P (x)).

We try now to discuss the general solution of (6). With P even of degree
2m, the nth equation of (6) involves an−m+1, . . . , an+m−1 (see [56, 57] or the
examples (8) (9), (10)), so that the general solution depends on 2m − 2
arbitrary constants, for instance an0−m+1, . . . , an0+m−2. I shall only solve the
case a−m+1 = · · · = a0 = 0, and investigate how the solution depends on the
m − 1 initial data a1, . . . , am−1:

Theorem 2. With P (x) = c0x
2m + c1x

2m−2 + · · · + cm, the solution of (6)
with a−m+1 = · · · = a0 = 0 is (3), with (4), where the µj’s of (4) satisfy the

linear recurrence relation of order 2m

2mc0µ2n+2m + (2m − 2)c1µ2n+2m−2 + · · ·+ 2cm−1µ2n+2 = (2n + 1)µ2n, (11)

for n = 0, 1, . . . , and µ2j+1 = 0. µ2, µ4, . . . , µ2m−2 are given by µ2j/µ0 =
(J2j)0,0.

The following lemma will be used:

Lemma 1. Let a(k) = {an,k}
∞

n=1, k = 0, 1, . . . , be the solutions of the

quotient-difference equations

a2
n−1,k+1 + a2

n,k+1 = a2
n,k + a2

n+1,k, if n is odd,

an−1,k+1an,k+1 = an,kan+1,k, if n is even,
(12)

then, Fn(a(k)) satisfies

an−1,k+1

an,k

(
Fn(a(k+1)) − Fn(a(k))

)
=

an,k

an−1,k+1

(
Fn+1(a

(k)) − Fn−1(a
(k+1))

)
,

n even,

Fn(a(k+1)) − Fn(a(k)) = Fn+1(a
(k)) − Fn−1(a

(k+1)), n odd.
(13)

http://www.math.ucl.ac.be/~magnus/
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where Fn(a(k)) = an,k (P ′(Jk))n,n−1, and where Jk is the Jacobi matrix

Jk =




0 a1,k

a1,k 0 a2,k

a2,k 0 a3,k

. . .
. . .

. . .




The quotient-difference equations are
well known in orthogonal polynomials
identities investigations, see [74, 75] for
recent examples. The notation chosen
here is motivated by the interpretation

of an,k as recurrence coefficient of orthogonal polynomials related to the weight
x2kw(x), but we do not need this interpretation in order to establish the
theorem and the lemma. Actually, the theorem 2 is meant to recover an
interpretation of the solutions of (6) in terms of orthogonal polynomials,
but arbitrary initial data a1, a2, . . . , am−1 will yield formal orthogonal poly-
nomials through formal moments µj which, from (11), can still be written

µj =

∫

S

xj exp(−P (x)) dx, but where the support S is now a system of arcs

in the complex plane, see [66, “Laplace’s method”], [62, 63].
Remark that, with an,0 = an and a0,k = 0, all the an,k’s are completely

determined by (12) as functions of a1, a2, . . .
Proof of Lemma 1. The quotient-difference equations (12) can be

written JkLk = LkJk+1, where Lk is the infinite lower triangular matrix

Lk =




a1,k

0 a1,k+1

a2,k 0 a3,k

a2,k+1 0 a3,k+1

a4,k 0 a5,k

. . .
. . .

. . .




One finds also J2
k = LkRk,

J2
k+1 = RkLk, where Rk is the

transposed of Lk (the famous
LR relations). So, J3

kLk =
LkRkLkJk+1 = LkJ

3
k+1,. . . ,

J
2p+1
k Lk = LkRkLkJ

2p−1
k+1 =

LkJ
2p+1
k+1 , for any odd power, so P ′(Jk)Lk = LkP

′(Jk+1), and we look at
the element of indexes (n, n − 1):

(P ′(Jk))n,n−1(Lk)n−1,n−1 + (P ′(Jk))n,n+1(Lk)n+1,n−1 =

(Lk)n,n−2(P
′(Jk+1))n−2,n−1 + (Lk)n,n(P

′(Jk+1))n,n−1,

or Fn(ak)
(Lk)n−1,n−1

an,k
+ Fn+1(a

k)
(Lk)n+1,n−1

an+1,k
=

(Lk)n,n−2

an−1,k+1
Fn−1(a

k+1) +
(Lk)n,n

an,k+1
Fn(ak+1),

leading to (13). �

Proof of Theorem 2. From (13), with (6), (a(0) = a), and F0(a
(k)) = 0

for all k, one finds by induction Fn(a(k)) = n + k(1 − (−1)n), so, using
(7), F1(a

(k)) = (JkP
′(Jk))0,0 = 2k + 1, k = 0, 1, . . . Let µ2k = constant

×a2
1a

2
1,1a

2
1,2 · · ·a

2
1,k−1 and µ2k+1 = 0. From the LR relations, (J 2p

k )0,0 =

(LkLk+1 · · ·Lk+pRk+p · · ·Rk+1Rk)0,0 = a2
1,ka

2
1,k+1 · · ·a

2
1,k+p−1 = µ2k+2p/µ2k.
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Finally, 2k + 1 = (JkP
′(Jk))0,0 = 2mc0(J

2m
k )0,0 + (2m − 2)c1(J

2m−2
k )0,0 +

· · · + 2cm−1(J
2
k)0,0 = 2mc0µ2k+2m/µ2k + (2m − 2)c1µ2k+2m−2/µ2k + · · · +

2cm−1µ2k+2/µ2k, whence (11), and the determinant ratios (3) follow from
(12): a2

n,k = Hn−1,kHn+1,k/(Hn,k)
2 where Hn,k is the Hankel determinant of

rows µ2k, µ2k+1(= 0), . . . , µ2k+n−1; µ2k+1, . . . , µ2k+n, etc., up to
µ2k+n−1, . . . , µ2k+2n−2. �

The isomonodromy approach looks at the linear differential equation sat-
isfied by an orthogonal polynomial pn [5, 17, 18, 38, 39] and produces isomon-
odromy identities of interest here. For instance, working (9) leads to a2

n =
(4α)−1/2PIV((4α)−1/2β;−n/2,−n2/4) (Kitaev, [24,25,26,27,11]), where PIV(t; A, B)
is the solution of the fourth Painlevé equation

ÿ =
ẏ2

2y
+

3y3

2
+ 4ty2 + 2(t2 − A)y +

B

y

which remains O(t−1) when t → +∞ [60, pp. 231-232] (the importance and
relevance of this latter condition is not yet quite clear). See [1,2,3,17,18,19,
20, 21, 23, 24, 25, 26, 27, 40, 11, 44, 46] for more on such connections.

5. Freud’s equations as discrete Painlevé equations.

As far as I understand the matter, discrete Painlevé equations were first
designed as clever discretisations of the genuine Painlevé equations, so to keep
interesting features of these equations, especially integrability. For instance,
(9) when β 6= 0 is a discretisation of the Painlevé-I equation [24, 25, 26, 27,
34, 35, 11]. Then, these features are examined on various discrete equations
not necessarily associated to Painlevé equations. So, for instance, [34, p.350]
encounter (9) with β = 0 as a discrete equation which is no more linked to
the discretisation of a continuous Painlevé equation (and the authors of [34]
call (9) a discrete Painlevé-0 equation when β = 0).

If we want to check that the Freud’s equations are a valuable instance of
discrete Painlevé equation, the following features are of interest, according to
experts [48]:

5.1. Analyticity. Each a2
n+m−1 is a rational function of preceding elements,

so a meromorphic function of initial conditions.

5.2. Reversibility. There is no way to distinguish past and future, (6) is
left unchanged when an+1, an+2, . . . are permuted with an−1, an−2, . . . Indeed
( [56, p.369]), (6) is a sum of terms a2

na2
n+i1a

2
n+i2 · · ·a

2
n+ip, provided 0 6 i1+1 6

i2 + 2 6 · · · 6 ip + p 6 p + 1. Then, {−i1,−i2, . . . ,−ip} satisfies the same
conditions and is therefore present too: 0 6 −ip + 1 6 −ip−1 + 2 6 · · · 6

−i1 + p 6 p + 1.

5.3. Symmetry. An even stronger property is the following:

Theorem 3. The matrix of derivatives

(
∂Fn(a)

∂ log am

)

n,m=1,2,...

is symmetric.
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Proof: see [56, 57].

5.4. Integrability. The existence of the formula (3) according to Theorem 2
shows how (6) can be solved. The similarity of (3) with known solutions of
discrete Painlevé equations is also striking [43, 45]. The structure of the
solution leads also to

5.5. Singularity confinement. The movable poles property of continuous
equations is replaced by the following [35]: if initial values are such that
some an, say an0

becomes very large, only a finite number of neighbours
an0+1, . . . , an0+p should be liable to be very large too; moreover, an0+p+1, etc.
should be continuous functions of an0−1, an0−2 etc. The formula (3) shows
that the singularities of an are the zeros of Hn which are determinants built
with solutions of (11), therefore continuous functions of the initial data.

6. Generalizations of Freud’s equations: semiclassical
orthogonal polynomials, etc.

Let the weight function satisfy the differential equation w′/w = 2V/W ,
where V and W are polynomials. The related orthogonal polynomials on a
support S are then called semi-classical [6,7,8,41,42,64,65,72] (classical: de-
grees of V and W 6 1 and 2). One can still build equations for the recurrence

coefficients by working out the integrals In =

∫

S

W (x)p′n(x)pn−1(x)w(x) dx,

and Jn =

∫

S

W (x)p′n(x) pn(x)w(x) dx. Many equivalent forms can be found,

and it not yet clear to know which one is the most convenient. If we manage to
have W (x)w(x) = 0 at the endpoints of the support S, explicit formulas fol-
low [77] (see also formula (4.5) of [1]). For instance, with w(x) = exp(−Ax2)
on S = [−a, a] (see [16] for other equations), one takes W (x) = x2 − a2

and V (x) = −Ax(x2 − a2), uses p′n = npn−1/an + [2(a2
1 + · · · + a2

n−1) −
na2

n−1]pn−3/(an−2an−1an) + · · · from (2), to find 2(a2
1 + · · · + a2

n−1) + (2n +
1)a2

n − na2 − 2Aa2
n(a2

n−1 + a2
n + a2

n+1 − a) = 0, or (2n + 1)xn+1 − (2n− 1)xn −
na2 − 2A(xn+1 − xn)(xn+2 − xn−1 − a) = 0, where xn = a2

1 + · · ·+ a2
n−1.

It is not clear how to recover reversibility and symmetry. For an even
much more nasty case, see [61].

But the root of the matter lies even deeper, as already recognized by La-
guerre in 1885 [49]! The point is to derive equations for the coefficients in

the Jacobi continued fraction f(z) =
1

z − b0 −
a2

1

z − b1 − · · ·

from a differen-

tial equation Wf ′ = 2V f + U with polynomial coefficients (same W and
V as above: orthogonal polynomials lead to this continued fraction through

f(z) =

∫

S

(z − x)−1w(x) dx). See [31, 72] for this technique.
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The continued fraction approach leads readily to the Riccati extension
Wf ′ = Rf 2 + 2V f + U [21, 55], as each continued fraction

fk(z) =
1

z − bk −
a2

k+1

z − bk+1 − · · ·

is found to satisfy a Riccati equation Wf ′

k =

−a2
kΘk−1f

2
k +2Ωkfk−Θk too, where Θk and Ωk are polynomials of fixed degrees

(i.e., independent. of k). Equations for the recurrence coefficients ak’s and
bk’s follow from recurrence relations for the Θk’s and Ωk’s (use f0(z) = f(z)
and fk(z) = 1/[z − bk − a2

k+1fk+1(z)]).

Finally, the differential operator can be replaced by a suitable difference

operator, amounting to W (z)
f(ϕ2(z)) − f(ϕ1(z))

ϕ2(z) − ϕ1(z)
= R(z)f(ϕ1(z))f(ϕ2(z))

+V (z)[f(ϕ1(z)) + f(ϕ2(z))] + U(z), where ϕ1(z) and ϕ2(z) are the two roots
of a quadratic equation Aϕ2(z) + 2Bzϕ(z) + Cz2 + 2Dϕ(z) + 2Ez + F = 0,
see [37, 58].
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ance in quantum gravity, Commun. Math. Phys. 142 (1991) 313-344.

[26] A.S. Fokas, A.R. Its and A.V. Kitaev, The isomonodromy approach to matrix models
in 2D quantum gravity, Commun. Math. Phys. 147 (1992) 395–430.

[27] A.S. Fokas, A.R. Its and Xin Zhou, Continuous and discrete Painlevé equations, pp. 33-
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[37] F.A. Grünbaum, L. Haine, Some functions that generalize the Askey-Wilson polyno-
mials, to appear in Commun. Math. Phys.

[38] W.HAHN, On differential equations for orthogonal polynomials, Funk. Ekvacioj, 21

(1978) 1-9.
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solutions for the discrete Painlevé-II equation, J. Phys. A: Math. Gen. 27 (1994) 915-
922.

[46] Y. Kodama, K. T-R McLaughlin, Explicit integration of the full symmetric Toda
hierarchy and the sorting property, Letters in Math. Phys. 37 (1996) 37-47.

[47] R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polyno-
mials and its q−analogue, Report 94-05, Delft Univ. of Technology, Faculty TWI, 1994.
See also the “Askey-Wilson scheme project” entry in http://www.cs.vu.nl/~rene/

for errata and electronic access.
[48] M. Kruskal, Remarks on trying to unify the discrete with the continuous, Conference

talk.
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