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Abstract. We propose q-versions of some basic concepts of continuous
variational calculus such as: The Euler-Lagrange equation and its appli-
cations to the isoperimetric, Lagrange and optimal control problems (”the
maximum principle”), and also to the Hamilton systems and commutation
equations.

1 Introduction.

In [4], J A Cadzow proposed a discrete version of some basic concepts of
continuous variational calculus such as the Euler-Lagrange equation and its
applications to the isoperimetric, Lagrange and optimal control problems.
In the time to follow, most of researches in the area were mainly directed
to the study of the complete integrability of the discrete Euler-Lagrange
equation (see for ex. [7, 8, 9, 10, 13, 11]). That is to say that at our best
knowledge, the question of the generalization of the continuous (differential)
variational calculus, to the calculus of variation on lattices more general than
the linear one (treated in [4]), had never been considered. In this work we
propose an extension of the continuous variational calculus to the variational
calculus on the q-linear lattice x = Aqs + B, s ∈ Z, A, B some constants.
More precisely, we are concerned in the extremum problem for the following
functional

J(y(x)) =
∫ qβ

qα F (x, y(x), Dqy(x), . . . , Dk
q y(x))dqx

def= (1− q)
∑qβ

qα xF (x, y(x), Dqy(x), . . . , Dk
q y(x)) (1)

1The revision of the paper was done during the first days of the three-months stay of
the author in the Abdus Salam ICTP (Trieste, Italy).
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under the boundary constraints

y(qα) = y(qβ+1) = c0

Dqy(qα) = Dqy(qβ+1) = c1

. . .

Dk−1
q y(qα) = Dk−1

q y(qβ+1) = ck−1 (2)

where

Dqf(x) = f(qx)−f(x)
qx−x , 0 < q < 1, k ∈ Z+ (3)

while the summation is performed by x on the set (we shall sometimes write
simply

∑qβ

qβ or
∑

L)

L = {qβ , qβ−1, . . . , qα+1, qα}, 0 ≤ α < β ≤ +∞. (4)

For α ; 0, β ; +∞, (1) and (2) read

J(y(x)) =
∫ 1
0 F (x, y(x), Dqy(x), . . . , Dk

q y(x))dqx

def= (1− q)
∑1

0 xF (x, y(x), Dqy(x), . . . , Dk
q y(x)) (5)

and

Di
qy(0) = Di

qy(1), i = 0, . . . , k − 1 (6)

respectively. If the function F̃ (x) = F (x, y(x), Dy(x), . . . , Dky(x)) is Riemann-
integrable on the interval [0, 1], then it is easily seen that for q ; 1, the
q-integral in eq. (5) and the constraints in eq. (6) tends to the continuous
integral

J(y(x)) =
∫ 1

0
F (x, y(x), Dy(x), . . . , Dky(x))dx (7)

where Df(x) = d
dxf(x), and the boundary constraints

y(0) = y(1) = c0

Dy(0) = Dy(1) = c1

. . .

Dk−1y(0) = Dk−1y(1) = ck−1 (8)
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respectively. Hence the functional in eq. (5) can be considered as a natural
q-version of the one in eq. (7).
Remark 1. By carrying out in (1) the linear change of variable

t(s) = a + x(s)(b− a) = a + qs(b− a) (9)

(a , b, finite for simplicity), we obtain a q-version of the integral obtained
from (7) by the linear change of variable

t = a + x(b− a), (10)

and both the two new integrals have now a and b as boundaries of integra-
tion. Clearly the converse to (9) and (10) transformations are also valid.
Hence in that sense, there is no lost of generalities considering in this work
integrals of type (5) or (7) or even the little bit more general integral in (1).
This allows to avoid cumbersome treatments unessential in addition in the
reasoning.

In the following, we derive a q-version of the Euler-Lagrange equation,
deriving the Euler-Lagrange equation of the functional in eq. (1) and show-
ing that for q → 1 (α ; 0, β ; +∞ in the boundary constraints), it tends
to the Euler-Lagrange equation of the functional in eq. (7). Next, we apply
it to the continuous variational calculus, q-versions of the isoperimetric, La-
grange and optimal control problems. Q-versions of some interconnections
between the Euler-Lagrange equation of variational calculus, Hamilton and
Hamilton-Pontriaguine systems are also sketched. Equally as an application,
a q-version of the commutation equations is also discussed. The reader will
note that most of ideas used here are simply q-versions of similar ideas used
in continuous or discrete variational calculus. But as these ideas work, it
means probably that this generalization of the classical variational calculus
is a natural one.

2 The q-Euler-Lagrange equation.

We consider the q-integral functional,

J(y(x)) = (1− q)
∑qβ

qα xF (x, y(x), Dqy(x), . . . , Dk
q y(x)). (11)

Here the function F (x, y0(x), . . . , yk(x)) is defined on A as a function of x,
together with its first partial derivatives relatively to all its arguments. Let
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E be the linear space of functions y(x) (qα ≤ x ≤ qβ) in which is defined
the norm

‖y‖ = max
0≤i≤k

(max
x∈L

|Di
qy(x)|) (12)

and let E′ be the linear manifold of functions belonging in E and satisfying
to the constraints in (2). We study the extremum problem for the functional
J , on the manifold E′. We first calculate the first variation of the functional
J on the linear manifold E′:

δJ(y(x), h(x)) = d
dtJ(y(x) + th(x))|t=0

= (1− q) d
dt

∑qβ

qα [xF (x, y(x) + th(x), . . . , Dk
q y(x) + tDk

q h(x))]|t=0

= (1− q)
∑qβ

qα [
∑k

i=0[xFi(x, y(x), Dqy(x), . . . , Dk
q y(x))Di

qh(x)] (13)

where

Fi = ∂F
∂yi

(F = F (x, y0, y1, . . . , yk)), i = 0, . . . , k. (14)

The variation is dependent of an arbitrary function h(x). Since the variation
is performed on the linear manifold E′, h(x) is such that y(x)+th(x) belongs
also to the linear manifold E′ and in particular satisfies the contraints (2). A
direct consequence of this is that the function h(x) satisfies the constraints:

h(qα) = h(qβ+1) = 0
Dqh(qα) = Dqh(qβ+1) = 0

. . .

Dk−1
q h(qα) = Dk−1

q h(qβ+1) = 0 (15)

From the relation Dq(fg)(x) = f(qx)Dqg(x) + g(x)Dqf(x), one obtains the
formula of the q-integration by parts:

(1− q)
∑qβ

qα xf(qx)Dqg(x) =

(1− q)
∑qβ

qα xDq(fg)− (1− q)
∑qβ

qα xg(x)Dqf(x). (16)

Using (15), and (16), (13) gives

δJ(y(x), h(x)) =

(1− q)
∑qβ

qα x[
∑k

0(−1)iq
(i−1)

2
iDi

q[Fi(q−ix, y(q−ix), Dqy(q−ix), . . .

. . . , Dk
q y(q−ix)]]h(x) (17)
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(Very important to distinguish Dqf(kx) which means here [Dqf ](kx) with
Dq[f(kx)] meaning Dqg(x) for g(x) = f(kx)). Next, it is necessary to note
that the boundary constraints in eq. (15) are equivalents to the following

h(qα+i) = h(qβ+1+i) = 0, i = 0, 1, . . . , k − 1. (18)

Consequently, (17) gives

δJ(y(x), h(x)) =

(1− q)
∑qβ

qα+k x[
∑k

0(−1)iq
(i−1)

2
iDi

q[Fi(q−ix, y(q−ix), Dqy(q−ix), . . .

. . . , Dk
q y(q−ix)]h(x). (19)

For deriving the corresponding q-Euler-Lagrange equation, we need the fol-
lowing lemma, which constitutes a q-version of what is called ”fundamental
lemma of variational calculus” (for the continuous version, see for ex. [6]).

Lemma 2.1 Consider the functional

I(f̂) = (1− q)
∑
B

xf̂(x)h(x) (20)

where B = {qr, qr+1, . . . , qs}. If I(f̂) = 0, for all h defined on B, then
f̂(x) ≡ 0 on B.

Proof. As I(f̂) = 0, ∀h defined on B, we have that:

qrf̂(qr)h1(qr)+ . . . +qsf̂(qs)h1(qs) = 0
qrf̂(qr)h2(qr)+ . . . +qsf̂(qs)h2(qs) = 0

. . .

qrf̂(qr)hs−r+1(qr)+ . . . +qsf̂(qs)hs−r+1(qs) = 0 (21)

for any choice of the (s− r + 1)2 numbers

aij = hi(qj+r−1), i, j = 1, . . . , s− r + 1. (22)

This is a linear homogenous system with the matrix

(aij)s−r+1
i,j=1 (23)

and the vector [Tj = qj+r−1f̂(qj+r−1)]s−r+1
j=1 . Choosing the numbers

hi(qj+r−1), i, j = 1, . . . , s− r + 1 (24)
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in such a way that the corresponding matrix in (23) doesn’t be singular,
(21) gives Tj = 0, j = 1, . . . , s − r + 1 or equivalently, f̂(qj+r−1) = 0, j =
1, . . . , s− r + 1 which proves the lemma.
Next, remark that (19) is written under the form

δJ(y(x), h(x)) = I(f̂) = (1− q)
∑qβ

qα+k xf̂(x)h(x) (25)

where f̂ represents the expression within the external brackets. Hence the
necessary condition for the extremum problem (1)-(4) can be written

I(f̂) = 0 (26)

and this for all h(x) defined on

B = {qr, qr+1, . . . , qs}, r = α + k, β = s (27)

By the fundamental lemma of the variational q-calculus (see Lemma 2.1),
this leads to

f̂(x) ≡ 0. (28)

Thus the necessary condition for the extremum problem (1)-(4) reads

∑k
0(−1)iq

(i−1)
2

iDi
q[Fi(q−ix, y(q−ix), Dqy(q−ix), . . . , Dk

q y(q−ix)]
= 0,

Di
qy(qα) = Di

qy(qβ+1) = ci, i = 0, . . . , k − 1. (29)

For k = 1 and k = 2, for example, we have respectively:

F0(x, y(x), Dqy(x))−Dq[F1(q−1x, y(q−1x), Dqy(q−1x))] = 0,

y(qα) = y(qβ+1) = c0 (30)

and

F0(x, y(x), Dqy(x), D2
qy(x))

−Dq[F1(q−1x, y(q−1x), Dqy(q−1x), D2
qy(q−1x))]

+qD2
q [F2(q−2x, y(q−2x), Dqy(q−2x), D2

qy(q−2x))] = 0,

y(qα) = y(qβ+1) = c0; Dqy(qα) = Dqy(qβ+1) = c1 (31)
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Let us note that while the q-integral (1) tends to the continuous integral
(7) for q ; 1, α ; 0, β ; +∞, the q-equation in (29) tends to the
corresponding to (7) differential Euler-Lagrange equation:∑k

0(−1)iDiFi(x, y(x), Dy(x), . . . , Dky(x)) = 0,

Diy(0) = Diy(1)) = ci, i = 0, . . . , k − 1. (32)

That is why it is convenient to call (29), the q-Euler-Lagrange equation
corresponding to the q-integral (1). The equation (29) is a q-difference
equation of degree 2k which is in principle solved uniquely under the 2k
boundary constraints.
Remark 2. If the functional in (11) is dependent of more that one variable
i.e. J = J(y1, . . . , yn), then the necessary extremum condition leads to type
(29) n q-Euler-Lagrange equations with y replaced by yi, i = 1, . . . , n.

3 Applications.

3.1 On the continuous variational calculus.

The direct application of the variational q-calculus is its application on the
continuous (differential) variational calculus: Instead of solving the Euler-
Lagrange equation (32) for finding the extremum of the functional (7), it
suffices to solve the q-Euler-Lagrange equation (29) and then pass to the
limit while q ; 1. Remark that thought this can appear at the first glad
as a contradiction (by the fact of the phenomenon of discretization), the
variational q-calculus is a generalization of the continuous variational cal-
culus due to the presence of the extra-parameter q (which may be physical,
economical or another) in the first and its absence in the second.

Example. Suppose it is desirable to find the extremum of the integration
functional

J(y(x)) =
∫ 1
0 (xνy + 1

2(Dy)2)dx, ν > 0, (33)

under the boundary constraints y(0) = c ; y(1) = c̃. The q-version of the
problem consists in finding the extremum of the q-integration functional

J(y(x)) = (1− q)
∑1

0 x[xνy + 1
2(Dqy)2], ν > 0, (34)

under the same boundary constraints. According to (30), the q-Euler-
Lagrange equation of the latter problem reads:

xν −Dq[Dqy(q−1x)] = 0 (35)
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which solution is

y(x) = xν+2[ (1−q)2qν+1

(1−qν+1)(1−qν+2)
] + [y(1)− y(0)− (1−q)2qν+1

(1−qν+1)(1−qν+2)
]x

+y(0). (36)

As it can be verified, for q ; 1, the function in (36) tends to the function

y(x) = xν+2

(ν+1)(ν+2) + [y(1)− y(0)− 1
(ν+1)(ν+2) ]x + y(0), (37)

solution of the Euler-Lagrange equation of the functional in (33).

3.2 The q-isoperimetric problem.

Suppose that it is required to find the extremum of the functional

J(y(x)) = (1− q)
∑qβ

qα xf(x, y(x), Dqy(x), . . . , Dk
q y(x))

Di
qy(qα) = Di

qy(qβ+1) = ci, i = 0, 1, . . . , k − 1 (38)

under the constraints

J̃i(y(x)) = (1− q)
∑qβ

qα xf i(x, y(x), Dqy(x), . . . , Dk
q y(x)) = Ci,

i = 1, . . . ,m. (39)

To solve this problem we needs to consider the following generalities. Let
J(y) and J̃1(y), . . . , J̃m be some differentiable functionals on the normed
space E, or on its manifold E′. We have the following theorem (see for ex.
[6])

Theorem 3.1 If a functional J(y) attains its extremum in the point ȳ under
the additional conditions J̃i(y) = Ci, i = 1, . . . ,m and ȳ is not a stationary
point for any one of the functionals J̃i (δJ̃i(ȳ, h) 6= 0, i = 1, . . . ,m, identi-
cally) while the functionals J̃i, (i = 1, . . . ,m) are linearly independent, then
ȳ is a stationary point for the functional J −

∑m
i=1 λiJ̃i where the λi are

some constants.

Thus by this theorem, the necessary extremum condition for the functional
J(y) under the additional constraints J̃i(y) = Ci, i = 1, . . . ,m, verifying
the conditions of the theorem (let us note that considering the formula
(17), a type (11) functional i.e. satisfying the same definition conditions, is
differentiable on E′), is given by the equation (29) with

F = f −
∑m

i=1 λif
i (40)
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It is a q-difference equation of order 2k containing m unknown parameters.
It is in principle solved uniquely under the 2k boundary constraints and the
additional m conditions.

Example. Suppose it required to solve the problem of finding the extremum
of the q-integration functional

J(y(x)) = (1− q)
∑qβ

qα x[ax2(D2
qy)2 + b(Dqy)2], a, b > 0 (41)

under the boundary constraints

Di
qy(qα) = Di

qy(qβ+1) = ci, i = 0, 1, (42)

and an additional condition that J1(y(x)) = c, c some constant, where J1 is
a q-integration functional given by

J1(y(x)) = (1− q)
∑qβ

qα x2y. (43)

According to the theorem 3.1, the problem is equivalent to that of finding
the extremum of the q-integration functional

J(y(x)) = (1− q)
∑qβ

qα x[ax2(D2
qy)2 + b(Dqy)2 − λxy], (44)

for some constant λ, under the same boundary constraints (42). The corre-
sponding q-Euler-Lagrange equation reads

−λx− 2bDq[Dqy(q−1x)] + 2aq−3D2
q [x

2D2
qy(q−2x)] = 0 (45)

or equivalently after reduction and integration (c1, c2, constants of integra-
tion)

y(x)− [q(q − 1)2b/a + q + 1]y(q−1x) + qy(q−2x) = (1−q)2

2a (c1x + c2

+ λx3

(q+1)(q2+q+1)
). (46)

This is a constant coefficients linear nonhomogeneous second-order q-difference
equation which can be solved uniquely (under the constraints (42)) by meth-
ods similar to that of analogous differential or difference equations.
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3.3 The q-Lagrange problem.

Suppose now that it is required to find the extremum of the functional

J(y1(x), . . . , yn(x))

= (1− q)
∑qβ

qα xf(x, y1(x), . . . , yn(x), Dqy1(x), . . . , Dqyn(x)) (47)

under the constraints

f i(x, y1(x), . . . , yn(x), Dqy1(x), . . . , Dqyn(x)) = 0, i = 1, . . . ,m;m < n,

yi(qα) = yi(qβ+1) = ci, i = 1, . . . , n. (48)

This problem can be transformed in the q-isoperimetric one as follows:
First, multiply every ith equation in (48) by an arbitrary function λi(x)
defined as all the remaining on L = {qβ, . . . , qα} and then apply the q-
integration on L on the result:

J̃i(y1(x), . . . , yn(x))

= (1− q)
∑qβ

qα xλi(x)f i(x, y1(x), . . . , yn(x), Dqy1(x), . . . , Dqyn(x)) = 0,

i = 1, . . . ,m (49)

The remaining question is that of knowing if the two constraints (48) and
(49) are equivalent. The answer is yes since obviously from (48) follows
(49). Finally, it is by the fundamental lemma of the variational q-calculus
(see Lemma 2.1) that (48) follows from (49).

Example. Suppose that the problem consists in finding the extremum of
the functional

J(x(t), u(t)) = 1
2(1− q)

∑qβ

qα t[u2(t)− x2(t)] (50)

under the constraints

D2
qx = u

x(qα) = x(qβ+1) = c;Dqx(qα) = Dqx(qβ+1) = c̃. (51)

The problem is equivalent to the q-Lagrange problem of finding the ex-
tremum of the functional

J(x(t), y(t), z(t)) = 1
2(1− q)

∑qβ

qα t[z2(t)− x2(t)] (52)

10



under the constraints

Dqx = y; Dqy = z

x(qα) = x(qβ+1) = c; y(qα) = y(qβ+1) = c̃. (53)

Hence the problem is equivalent to that of finding the extremum of the
functional

J(x, y, z, λ1, λ2) = (1− q)
∑qβ

qα tF (x(t), y(t), z(t), λ1(t), λ2(t)) (54)

where

F (x(t), y(t), z(t), λ1(t), λ2(t))
= 1

2(z2(t)− x2(t)) + λ1(t)(Dqx(t)− y(t)) + λ2(t)(Dqy(t)− z(t)) (55)

under the boundary constraints

x(qα) = x(qβ+1) = c; y(qα) = y(qβ+1) = c̃. (56)

The corresponding q-Euler-Lagrange equations give

y(t) = Dqx(t); z(t) = λ2(t) = D2
qx(t); λ1(t) = −q2D3

q [x(q−1t)], (57)
−x(t) + q5D4

q [x(q−2t)] = 0. (58)

Hence it is sufficient to solve the equation (58). Searching its solution as
an integer power series x(t) =

∑∞
0 Cntn, one is led to the following fourth

order difference equation for the coefficient cn:

Cn = q2n−5( 1−q
1−qn )( 1−q

1−qn−1 )( 1−q
1−qn−2 )( 1−q

1−qn−3 )Cn−4 (59)

with the coefficients C0, C1, C2, C3 determined by the four boundary con-
straints (56).The solution of (59) reads

Cn =
∏n

i=nc
( 1−q
1−qi )

∏n−nc
4

i=1 q2(nc+4i)−5Cnc (60)

where n ≡ nc mod 4, 0 ≤ nc ≤ 3.
To obtain the four basic elements for the space of solutions of (58), one can
make the following four independent choices for the constants C0, C1, C2, C3:
Choosing (a) Cn = 1

n! for n = 0, . . . , 3 leads to x(t) = et
q; (b) Cn = (−1)n

n! for

n = 0, . . . , 3 leads to x(t) = e−t
q ; (c) Cn = (−1)

n
2 [(1)n+(−1)n]

2n! for n = 0, . . . , 3
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leads to x(t) = cosqt; (d) Cn = (−1)
n−1

2 [(1)n−(−1)n]
2n! for n = 0, . . . , 3 leads to

x(t) = sinqt.
The functions et

q, e
−t
q , cosqt and sinqt have in the integer power series, the

indicated coefficients for n = 0, . . . , 3 and the coefficients in (60) for n > 3.
As it can be verified, for q ; 1, these functions have as limits the functions
et, e−t, cost and sint, respectively. The latter are nothing else than a basis
of the space of solutions of a similar to (58) differential equation for the
corresponding continuous problem.

3.4 The q-optimal control problem.

Suppose that it is given a k-order q-difference equation of the type

f0(x, y(x), Dqy(x), . . . , Dk
q y(x), u(x)) = 0 (61)

The equation is said to be controlled, u(x) and y(x) the control function and
control trajectory respectively. Let J(y(x), u(x)) be a controlled q-integral
functional in the sense that it depends on the control function u(x):

J(y(x), u(x)) = (1− q)
∑qβ

qα xf(x, y(x), Dqy(x), . . . , Dk
q y(x), u(x)) (62)

The optimal control problem consists in that among all admissible control
functions u(x) for which the corresponding solution of the q-difference equa-
tion in (61) satisfies the boundary constraints

Di
qy(qα) = Di

qy(qβ+1) = ci, i = 0, 1, . . . , k − 1 (63)

find that for which the solution in question is an extremum for the functional
in (62). For that it is convenient to reduce the q-difference equation (61) in a
first order q-difference system of range k (supposing that the equation (61) is
solvable in rapport with Dk

q y(x)): Letting z1 = y(x), z2 = Dqy(x), . . . , zk =

Dk−1
q y(x), and z =


z1

.

.

.
zk

. In that case, (61) and (63) can be written

simply

Dqz(x) = f̃0(x, z(x), u(x))
z(qα) = z(qβ) = C (64)
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and the functional in (62) takes the form

J̃(z(x), u(x)) = (1− q)
∑qβ

qα xf̃(x, z(x), u(x)) (65)

We note by passing that the algorithms for the evaluation of f̃0 and f̃ are
elementary ones. Thus following the q-Lagrange problem, our extremum
problem consists in finding the extremum of the functional under the con-
straints below (remark that as there is no any derivative of u(x), no boundary
constraints for it are needed):

Ĵ(y(x), u(x)) = (1− q)
∑qβ

qα x{f̃(x, z, u)− λ(x)[f̃0(x, z, u)−Dqz]},
z(qα) = z(qβ) = C (66)

According to (30), the corresponding q-Euler-Lagrange system reads

(f̃z − λ(x)f̃0
z )−Dq[λ(q−1x)] = 0

f̃u − λ(x)f̃0
u = 0 (67)

Combining (67) with the first eq. in (64), we conclude that the solution of
the problem satisfies the system:

Dqz = +Hλ

Dq[λ(q−1x)] = −Hz

0 = Hu (68)

where

H(x, z, λ, u) = −f̃(x, z, u) + λ(x)f̃0(x, z, u) (69)

Seen the similarities of the problem posed and the formula obtained (eqs.(68)-
(69)), with their analogs in the continuous optimal control, one can say that
we were dealing with a q-version of one of the version of the ”maximum
principle” (see [12] or [6] for ex.). Hence we can refer to H in (69) as
the q-Hamilton-Pontriaguine function, (68) as the q-Hamilton-Pontriaguine
system. Recall that the reference to L S Pontriaguine is linked to the ”max-
imum principle” in [12], the one to Hamilton is linked to the fact that in
the case of pure calculus of variation (the control function and system are
not present explicitly), the Hamilton and Hamilton-Pontriaguine systems
are equivalent (see the following subsection for the q-situation).

13



Example(q-Linear-quadratic problem). Suppose that the problem is that
of finding a control function u(x) such that the corresponding solution of
the controlled system

Dqy = −ay(x) + u(x), a > 0 (70)

satisfying the boundary conditions y(qα) = y(qβ+1) = c, is an extremum
element for the q-integral functional (q-quadratic cost functional)

J(y(x), u(x) = 1
2(1− q)

∑qβ

qα x(y2(x) + u2(x)). (71)

According to (68) and (69), the solution of the problem satisfies

Dqy = Hλ

Dq[λ(q−1x)] = −Hy

Hu = 0, (72)

where

H(y, λ, u) = −1
2
(y2 + u2) + (−ay + u)λ(x). (73)

(72) and (73) give

Dqy = −ay + u

Dqλ(x) = qy(qx) + aqλ(qx)
λ = u. (74)

In term of y(x), this system can be simplified in the following

D2
qy(x) + aDqy(x) = (a2 + 1)qy(qx) + aqDqy(qx). (75)

Searching the solution of (75) under the form of an integer power series

y(x) =
∑∞

0 cnxn (76)

one is led to a variable coefficient linear homogenous second-order difference
equation for cn:

cn = a(q − 1)cn−1 + q(a2 + 1) (1−q)2

(1−qn−1)(1−qn)
cn−2. (77)

This difference equation can naturally be solved recursively starting from
the initial data c0 and c1.
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However, even without solving it, we can search for what give the corre-
sponding function in (76), in the the limiting case when q ; 1. In (77), for
q ; 1, the factor of cn−1 give zero, while that of cn−2 give a2+1

n(n−1) . Hence
for q ; 1, (77) give

cn = a2+1
n(n−1)cn−2; n = 2, . . . . (78)

Choosing c0 and c1 (this equivalent to that choosing y(qα) and y(qβ+1) )
as c0 = 1 and c1 =

√
a2 + 1 or c1 = −

√
a2 + 1, (78) give as solutions

cn = (a2+1)
n
2

n! or cn = (−1)n (a2+1)
n
2

n! and the corresponding power series give
y(x) = exp(

√
a2 + 1x) or y(x) = exp(−

√
a2 + 1x) respectively. As it can be

verified, the latter are the solutions for y(x) in the corresponding continuous
problem.

3.5 Interconnection between the variational q-calculus, the
q-optimal control and the q-Hamilton system.

Here, we want to show that for the simplest case of finding the extremum
of the functional

J(y(x)) = (1− q)
∑qβ

qα xF (y(x), Dqy(x)),

y(qα) = y(qβ+1) = c0 (79)

the three kinds of problems are equivalents i.e. are equivalent the q-Euler-
Lagrange equation, the q-Hamilton-Pontriaguine and the q-Hamilton sys-
tems. We show this in three steps:
a)We first show how to obtain the q-Hamilton system from the q-Euler-
Lagrange equation. For the functional in (79), the q-Euler-Lagrange equa-
tion reads

F0(y(x), Dqy(x))−Dq[F1(y(q−1x), Dqy(q−1x))] = 0. (80)

Letting

λ(x) = F1(y(x), Dqy(x)), (81)

and

H = −F + λ(x)Dqy, (82)
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then we get from (80),(81) and (82) the q-Hamilton system

Dqy = +Hλ(y(x), λ,Dqy)
Dq[λ(q−1x)] = −Hy(y(x), λ,Dqy) (83)

b) To get the q-Hamilton-Pontriaguine system from q-Hamilton system (83),
it suffices to suppose u(x) = Dqy(x) to be the control q-equation for the
given initial non controlled extremum problem. In that case, (83) gives

Dqy = +Hλ(y(x), λ, u(x))
Dq[λ(q−1x)] = −Hy(y(x), λ, u(x)) (84)

with

H(y(x), λ(x), u(x)) = −F (y(x), u(x)) + λ(x)u(x), (85)

the q-Hamilton-Pontriaguine function, and from (81) we get the third equa-
tion in (68):

Hu = 0. (86)

c) We finally show how to obtain the q-Euler-Lagrange equation (80) from
the q-Hamilton-Pontriaguine system (84), (85) and (86). From (85) and
(86), we have

λ(x) = F1(y(x), u(x)) = F1(y(x), Dqy(x)), (87)

while from (84) we get

Dq[λ(q−1x)] = F0(y(x), u(x)) = F0(y(x), Dqy(x)). (88)

Finally, (87) and (88) give the q-Euler-Lagrange equation (80).

3.6 A q-version of the commutation equations.

Let L = −D2+y(x), where Df(x) = df(x)
dx = f ′(x), be the Schrodinger oper-

ator and let Am be a sequence of differential operators of order 2m+1,m =
0, 1, 2, . . ., which coefficients are arbitrary differential polynomials of the po-
tential y(x). By commutation equations, one understands the equations
[L,Am] = LAm −AmL = 0, in the coefficients of the operators. It is known
since [2, 3] that for any m,m = 0, 1, 2, . . . there exists such an operator
Am of order 2m + 1, such that the operator [L,Am] = LAm − AmL is an
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operator of multiplication by a scalar function fm(y, y′, y′′, . . .): [L,Am] =
fm(y, y′, y′′, . . .). The corresponding commutation equations then read

[L,Am] = fm(y, y′, y′′, . . .) = 0 (89)

Its non-trivial solutions are elliptic or hyperelliptic (or their degenerate
cases) functions for m = 1 and m > 1 respectively (see [2, 3]). Since years
seventies of the last century (see for ex. [5], paragr. 30), it is known that
the commutation equations (89) are equivalent to type (32) Euler-Lagrange
equations for the functionals

Jm(y(x)) =
∫ b

a
Lm(y(x), y′(x), . . . , y(k)(x))dx (90)

with Lm related to Am in a known way (see for ex. [5]).
If m = 1 for example, L1(y, y′) = y′2/2+ y3 + c1y

2 + c2y, (c1, c2: constants),
and the corresponding Euler-Lagrange equation (commutation equation)
reads:

y′′ = 3y2 + 2c1y + c2 . (91)

Up to a linear transformation y → c3y + c4, its solution is the well known
Weierstrass function P(x).

Considering now the q-functional

Jm(y(x)) = (1− q)
∑qβ

qα xLm(y(x), Dqy(x), . . . , Dk
q y(x)) (92)

we obtain that the corresponding to type (29) q-Euler-Lagrange equations
are q-versions of the commutation equations (89). For example for m = 1,
we have L1(y(x), Dqy(x)) = [Dqy]2/2+y3+c1y

2+c2y and the corresponding
q-Euler-Lagrange equation reads

3y2 + 2c1y + c2 − qD2
q [y(q−1x)] = 0 (93)

or equivalently

y(qx) = (q + 1)y(x) + (qx− x)2(3y2(x) + 2c1y(x) + c2)− qy(q−1x) .(94)

Obviously, the q-Euler-Lagrange equation(93) (or (94)) tends to the Euler-
Lagrange one in (91), while q ; 1. One will note that thought we up to now
don’t know an analytical resolution of this equation, its solution satisfying
given boundary constraints, can be found recursively. Here is naturally the
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main advantage of the analysis on lattices.
Remark 3. What we done in this subsection is to give a q-version of the
commutation equations in terms of the q-Euler-Lagrange equations of q-
integration functionals. One may ask why do not give q-versions of commu-
tation equations in terms of commutation equations of q-difference operators
i.e operators obtained from differential ones replacing D by Dq. The situa-
tion is that this line of attack is not hopeful especially because of the absence
of symmetries in most of operations with the q-derivative. For example, the
simple fact that the formula Dqfg = f(qx)Dqg + g(x)Dqf is not symmetric
in rapport with f and g is tedious in classical q-analysis. Clearly, a study
of the q-commutation equations using the q-variational method needs an
independent consecration.
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