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1. Orthogonal polynomials and Gaussian quadrature formulas.

Let µ be a positive measure on a real interval [a, b], and Pn the related monic orthogonal
polynomial of degree n, i.e., such that

Pn(x) = xn + · · · ,
∫ b

a

Pn(t)Pm(t)dµ(t) = 0,m 6= n, n = 0, 1, . . . (1)

An enormous amount of work has been spent since about 200 years on the theory and the appli-
cations of these functions. One of their most remarkable properties is the recurrence relation

Pn+1(x) = (x− bn)Pn(x) − a2
nPn−1(x), n = 1, 2, . . . , (2)

with P1(x) = x−b0. See, among numerous other sources, Chihara’s book [13], Gautschi’s one [27],
chap. 18 of NIST handbook [60].

Orthogonal polynomials are critically involved in the important class of Gaussian integra-

tion formulas. A classical integration formula (Newton-Cotes, Simpson, etc.)
∫ b
a f(t)dµ(t) ≈

w1f(x1) + · · · + wNf(xN ) is the integral
∫ b
a p(t) dµ(t) of the polynomial interpolant p of f at

the points x1, . . . , xN . Interpolation errors can sometimes become quite wild, to the opposite

of least squares approximations made with a polynomial q minimizing
∫ b
a (f(t) − q(t))2dµ(t) ⇒

∫ b
a (f(t) − q(t))r(t) dµ(t) = 0 for any polynomial r of degree < N . We want the favorable aspects

of both sides! i.e., easy use of numerical integration formulas, and safety of least squares approx-
imation. Take at least for f a polynomial of degree N , see that f − p vanishes at x1, . . . , xN and
will be orthogonal to all polynomials of degree < N if it is a constant times PN , so if x1, . . . , xN

are the zeros of PN . All least squares problems are then satisfactorily solved with the discrete

scalar product (f, g)N =
∑N

1 wjf(xj)g(xj). See Davis & Rabinowitz [17, § 2.7], Boyd [7, chap. 4]
for this discussion.

Approximate integration formulas are not only used in area or volume calculations from time to
time, they are also used massively in pseudospectral solutions of big partial derivative equations
and other functional equations. As an example of numerical procedure, a polynomial approxima-
tion to the solution of a functional equation F (u) = 0 is determined by orthogonality conditions
∫ b
a F (u(t))r(t) dµ(t) = 0 for any polynomial r of degree < N (Galerkin method), where the in-

tegral is replaced by its Gaussian formula (F (u), r)N = 0. See for instance Boyd [7, chap. 3, 4],
Fornberg [21, § 4.7], Mansell & al. [51], Shizgal [66].
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2. Power moments and recurrence coefficients.

2.1. Recurrence coefficients and examples.

Let us consider the generating function of the moments µn, which is called here the Stieltjes
function of the measure dµ

S(x) =

∫ b

a

dµ(t)

x− t
=
µ0

x
+
µ1

x2
+ · · · , x /∈ [a, b], µn =

∫ b

a
tndµ(t). (3)

Sometimes, S is called the Stieltjes transform of dµ, but technically, the Stieltjes transform of a
measure is the integral of (x+ t)−1dµ(t) on the positive real line [38, chap. 12]. For measures on
the whole real line, one should use the name “Hamburger transform”. P. Henrici [39, §14.6] speaks
of “Cauchy integrals on straight line segments”, Van Assche [69] calls S “Stieltjes transform” for
(3) in all cases.

The power expansion (3) is an asymptotic expansion. If [a, b] is finite, the expansions converges
when |x| > max(|a|, |b|).

The function S is also the first function of the second kind Qn(x) =

∫ b

a

Pn(t) dµ(t)

x− t
. The

recurrence relation (2) holds for the Qns too. Indeed,

Qn+1(x) =

∫ b

a

[(t− bn = t− x+ x− bn)Pn(t) − a2
nPn−1(t)] dµ(t)

x− t
= −µ0δn,0 + (x − bn)Qn(x) −

a2
nQn−1(x). At n = 0, Q1(x)−(x−b0)Q0(x)+µ0 = 0. We have

Qn(x)

Qn−1(x)
=

a2
n

x− bn − Qn+1(x)

Qn(x)

, [29,

eq. (2.15)]and S(x) = Q0(x) =
µ0

x− b0 −
a2

1

x− b1 −
. . .

Qn+1(x)

Qn(x)

. For bounded [a, b], the continued

fraction converges for all x /∈ [a, b] [39,72].
Some examples, which will be inspiring later on, are

S(x) =
1

2

∫ 1

−1

dt

x− t
=

1

2
log

x+ 1

x− 1
=

1

x
+

1

3x3
+

1

5x5
+ · · · (4)

S(x) =

∫ 1

−1

|t|dt
x− t

=

∫ 1

0

2txdt

x2 − t2
= x log

x2

x2 − 1
=

1

x
+

1

2x3
+

1

3x5
+ · · · (5)

This shows how logarithmic singularities are often seen in Stieltjes functions.
Here is a case with an explicit logarithmic singularity in the weight function

S(x) = −
∫ 1

0

log t dt

x− t
= Li2(x

−1) =

∞
∑

1

1

n2 xn
, (6)

where Li2 is the dilogarithm function [60, §25.12].
A last example with Euler’s Beta function:

S(x) =

∫ 1

0

tq−1(1 − t)p−q dt

x− t
=
µ0

x
+
µ1

x2
+
µ2

x3
+ · · · ,

µn = B(n+ q, p− q + 1) =
Γ(n+ q)Γ(p− q + 1)

Γ(n+ p+ 1)
(7)

The recurrence relation (2) is needed in various applications, whence the importance of getting
the recurrence coefficients (Lanczos constants) from the moments µn (Schwarz constants, see [14]
for these names). Some of our examples have been solved in the past, see the results in Table 1.
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(4) (5) (7)
Legendre mod. Jacobi Jacobi on (0, 1)

Chihara Abramowitz
[13, chap. 5, § 2 (G)] [1, § 22.2.2, § 22.7.2]

a2
n

n2

4n2 − 1

2n+ 1 − (−1)n

4(2n+ 1 + (1)n)

n(n+ p− 1)(n+ q − 1)(n+ p− q)

(2n+ p− 2)(2n+ p− 1)2(2n+ p)

bn 0 0
2n(n+ p) + q(p− 1)

(2n+ p+ 1)(2n+ p− 1)
Table 1. Some known recurrence coefficients formulas.

General formulas for the recurrence coefficients from the power moments follow from the set

of linear equations
∑n−1

0 µi+jc
(n)
j = −µi+n, i = 0, . . . , n − 1 for the coefficients c

(n)
j of Pn(x) =

xn +
∑n−1

0 c
(n)
j xj , yielding b0 + · · · + bn−1 = −c(n)

n−1 and µ0a
2
1 · · · a2

n = Dn+1/Dn, where Dn is the

determinant of the stated set of equations (Hankel determinant). Various algorithms organize
the progressive construction of the recurrence coefficients from the power moments but have
an enormous condition number for large degree, whence the importance of alternate numerical
methods [27], which will be considered in next section.

In some serendipitous cases, as seen in Table 1, closed-form formulas have been found [13,
chapters 5 and 6] [60, § 18.3-18.37].

No formula is known for the dilogarithm case (6), and nothing simple must be expected, as the
algorithm that follows produces the first a2

ns which are 7/144, 647/11025, . . . and the first bns are
1/4, 13/28, 8795/18116, . . . [55].

2.2. Asymptotic behaviour.

Asymptotic behaviour of an and bn has been enormously investigated. The simplest, and most
meaningful, result is that, if the derivative w = µ′ of the absolutely continuous1 part is positive
a.e. on (a, b), then

an → a∞ =
b− a

4
, bn → b∞ =

a+ b

2
, n→ ∞. (8)

This seemingly simple result took decades to receive a complete proof, see the surveys by D.S. Lu-
binsky [48, §3.2], P. Nevai [57, §4.5], [58], and Van Assche’s book [69, §2.6] for accurate statements
and story.

A closer look to the Jacobi recurrence coefficients (7), Table 1 gives

an =
1

4
− (q − 1)2 + (p− q)2 − 1/2

16n2
+ o(n−2), bn =

1

2
+

(q − 1)2 − (p− q)2

8n2
+ o(n−2).

For a general interval (a, b), the Jacobi weight is (b− x)α(x− a)β, and the relevant asymptotic
behaviour is

an =
b− a

4

(

1 − α2 + β2 − 1/2

4n2
+ o(n−2)

)

, bn =
a+ b

2
+

(b− a)(α2 − β2)

8n2
+ o(n−2). (9)

This behaviour is thought to be present for all weights behaving like powers near the support’s
endpoints. Interior singularities create wilder oscillating perturbations, as it will be recalled later
on. Lambin and Gaspard [43, Appendix] made interesting numerical tests on problems of solid-
state physics by reducing the oscillating terms through sums and products, their formulas are:

1dµ = dµabsolutely continuous + dµsingular.
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a1 · · · an = const.

(

b− a

4

)n (

1 +
α2 + β2 − 1/2

4n
+ o(1/n)

)

,

b0 + · · · + bn = n
a+ b

2
+ const. − (b− a)(α2 − β2)

8n
+ o(1/n). I know no proof of the validity of

these strong asymptotic estimates. Perturbation of a Jacobi weight is considered by Nevai and
Van Assche [59, § 5.2]. See also L.Lefevre et al. [45] for more applications with Jacobi polynomials.

Other cases will be studied in §4.

3. Modified moments.

A very efficient technique for computing large numbers of recurrence coefficients is described
here.

3.1. Main properties and numerical stability.

We consider a sequence of polynomials {R0, R1, . . . } with Rn of degree n. Here, Rn need not
be monic. The related modified moment of degree n is then

νn =

∫ b

a
Rn(t) dµ(t). (10)

We want to compute the recurrence relation coefficients (2) from the modified moments of dµ.
The algebraic contents of the problem is the same as before, as each modified moment is a finite
linear combination of the power moments, but the numerical accuracy in finite precision can be

strongly enhanced: with the notation (f, g) for the scalar product
∫ b
a f(x)g(x) dµ(x), we again

compute the values (Pn, Rj), n, j = 0, 1, . . . , N − 1 by

GN =

2

6

4

(R0, R0) · · · (R0, RN−1)
...

...
...

(RN−1, R0) · · · (RN−1, RN−1)

3

7

5

=

2

6

6

6

4

(R0, P0) 0 · · · 0
(R1, P0) (R1, P1) · · · 0

...
. . .

(RN−1, P0) (RN−1, P1) · · · (RN−1, PN−1)

3

7

7

7

5

2

6

6

6

4

1/‖P0‖
2

1/‖P1‖
2

. . .

1/‖PN=1‖
2

3

7

7

7

5

2

6

6

6

4

(P0, R0) (P0, R1) · · · (P0, RN−1)
0 (P1, R1) · · · (P1, RN−1)

. . .
...

0 0 · · · (PN−1, RN−1)

3

7

7

7

5

(11)

In (11), the left-hand side is the Gram matrix of the basis {R0, . . . , RN−1}, which is factored as a
lower triangular matrix times a diagonal matrix times an upper triangular matrix which happens
to be the transposed of the first factor. The equation (11) is the matrix writing of the Gaussian
(!) elimination method, also known for a positive definite matrix as Cholesky’s method [8, 9].
See also Bultheel & Van Barel [11, § 4.2] for this connection of the Gram-Schmidt method with
modified moments.

The numerical stability of the computation of the factors of the right-hand side of (11) is
measured by the condition number of the matrix GN , which is the ratio of the extreme eigenvalues
of the matrix (for a general nonsymmetric matrix, singular values must be considered [31,74]), after
a convenient scaling replacing Rn(x) by Rn(x)/ρn. The extreme eigenvalues are easily seen as the

inf and sup on real vectors [c0, . . . , cN−1] of the ratio

∑

j

∑

k cjck(Rj/ρj , Rk/ρk) =
∫ b
a p

2(x) dµ(x)
∑

j c
2
j

,

where p(x) =
∑

j cjRj(x)/ρj (Rayleigh quotient [74, §54]). Now, in the important special case
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where the Rn/ρns are the orthonormal polynomials with respect to a measure dµR with the same
support as dµ, the extreme eigenvalues are the inf and sup on the real polynomials p of degree

< N of

∫

p2(x)dµ(x)
∫ b
a p

2(x)dµR(x)
so that these eigenvalues remain bounded and bounded from below if

dµ(x)/dµR(x) is similarly bounded.

3.2. The algorithm.

Stable and efficient computation of the recurrence coefficients of (2) from the modified moments
(10) has been first published by Sack and Donovan in 1969 [64, 65], immediately enthusiastically
commented and expanded by W. Gautschi [25] whose exposition is summarized here.

One does not compute the matrix of the left-hand side of (11) to get the orthogonal polynomials
Pn. Instead, we use polynomials Rn satisfying themselves a known recurrence formula

xRk(x) = AkRk+1(x) +BkRk(x) + · · · + ZkRk−s(x), (12)

containing the ordinary moments case when s = 0, some other (possibly formal) orthogonal
polynomials when s = 1, and we shall even try an example where s = 2!

We make vectors vn = [
∫ b
a Pn(t)R0(t)dµ(t),

∫ b
a Pn(t)R1(t)dµ(t), . . . ,

∫ b
a Pn(t)R2N(t)dµ(t)], looking

like the rows of the last factor of (11), for n = 0, 1, . . . , N −1, starting of course with the modified
moments at n = 0. We also define v−1 to be the null vector. Then, by (2) and (12),

vn+1,k =

∫ b

a
Pn+1(t)Rk(t)dµ(t) =

∫ b

a
(t− bn)Pn(t)Rk(t)dµ(t)

− a2
n

∫ b

a
Pn−1(t)Rk(t)dµ(t) =

∫ b

a
[AkRk+1(t) + (Bk − bn)Rk(t) + · · · + zkRk−s(t)]Pn(t)dµ(t)

− a2
n

∫ b

a
Pn−1(t)Rk(t)dµ(t)

using therefore elements of vn and vn−1.
As one must have vn+1,n−1 = 0, a2

n = An−1vn,n/vn−1,n−1 if n > 0 follows, and vn+1,n = 0 ⇒
bn = Bn + Anvn,n+1 − a2

nvn−1,n.
There will be much ado later on about the Chebyshev polynomials on [a, b] : R0(t) ≡ 1, R1(t) =

T1((2t − a − b)/(b − a)) = (2t − a − b)/(b − a), R2(t) = T2((2t − a − b)/(b − a)) = 2((2t − a −
b)/(b − a))2 − 1, . . . satisfying tRn(t) = (b − a)Rn−1(t)/4 + (a + b)Rn(t)/2 + (b − a)Rn+1(t)/4.
If we have a software allowing fast shift vector operations shiftleft([a1, . . . , aN ]) = [a2, . . . , aN , 0],
shiftright([a1, . . . , aN ]) = [0, a1, . . . , aN−1], then
vn+1 = (b− a)[shiftleft(vn) + shiftright(vn)]/4 + (a+ b)vn/2 − a2

nvn−1 − bnvn.

4. Weights with logarithmic singularities.

4.1. Endpoint singularity.

B. Danloy [16] considered the generation of orthogonal polynomials of degrees up to N related
to dµ(x) = − log x on (0, 1) through the exact and stable computation of integrals J(F ) =

−
∫ 1
0 F (x) logx dx of some polynomials F of degree 6 2N − 1 by J(F ) =

∫ 1
0 x

−1G(x)dx, where G
is the integral of F vanishing at 0. If G is numerically available everywhere on [0, 1], an N−point

Legendre integration formula will do. As G(x) =
∫ x
0 F (t)dt = x

∫ 1
0 F (xu)du, another Legendre

formula, x being now a known value, may be used for G(x) itself.
This technique is probably close to using Legendre modified moments, with Rn(x) = the Le-

gendre polynomial of argument 2x− 1. From tables and formulas of Legendre polynomials [1,60]
etc., one has R0 = 1, R1(x) = 2x−1, Rn+1(x) = [(2n+1)(2x−1)Rn(x)−nRn−1(x)]/(n+1), Rn(0) =
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(−1)n, Rn(1) = 1, ‖Rn‖2
R =

∫ 1
0 R

2
n(x)dx = 1/(2n + 1). The integral of Rn is of special inter-

est, it is
∫ x
0 Rn(t)dt = (Rn+1(x) − Rn−1(x))/(2(2n + 1)) [21, p.157], whence the modified mo-

ments ν0 = 1, νn = −
∫ 1

0
Rn(t) log t dt =

∫ 1

0

Rn+1(t) − Rn−1(t)

2(2n+ 1)t
dt = −

∫ 1

0

Rn(t) +Rn−1(t)

2(n+ 1)t
dt =

(−1)n

n(n+ 1)
, n = 1, 2, . . . [60, 14.18.6 Christoffel Darboux ], also a special case of Jacobi polynomials

formulas by Gautschi [28, eq. (16)]. It is then possible to compute safely thousands of recurrence
coefficients:

n an n^2(1-4an) bn 4n^2(1/2-bn)

1 0.220479275922 0.118082896312 0.464285714286 0.142857142857

2 0.242249473180 0.124008429112 0.485482446456 0.232280856701

3 0.246431702341 0.128458715707 0.492103081871 0.284289052631

4 0.247955681921 0.130836357052 0.495028498758 0.318176079465

8 0.249477328973 0.133803782828 0.498497801978 0.384562693567

16 0.249869046950 0.134095923477 0.499581244730 0.428805396441

32 0.249967482083 0.133193386867 0.499888698236 0.455892025643

64 0.249991945708 0.131961522042 0.499971199715 0.471863875255

128 0.249998004462 0.130779600850 0.499992656970 0.481232839609

256 0.249999504958 0.129772274044 0.499998142922 0.486821840702

512 0.249999877019 0.128954887187 0.499999532447 0.490264501879

1024 0.249999969410 0.128304217065 0.499999882584 0.492475910736

2048 0.249999992383 0.127788397553 0.499999970557 0.493964461229

4096 0.249999998102 0.127377905267 0.499999992624 0.495014502472

8192 0.249999999527 0.127048597789 0.499999998153 0.495787847453

16384 0.249999999882 0.126781755127 0.499999999538 0.496378968725

32768 0.249999999970 0.126563194895 0.499999999884 0.496844833204

65536 0.249999999993 0.126382258152 0.499999999971 0.497221088618

Table 2. Recurrence coefficients values and behaviour for logarithmic weight on
(0, 1).

As the weight function − log x vanishes at the upper endpoint, we certainly have α = 1 in
a comparison with the Jacobi weight (1 − x)αxβ . With β = 0, one should have limit values

(α2 +β2−1/2)/4 = 1/8 and (α2−β2)/2 = 1/2, so 4an = 1− 1/2

4n2
+o(n−2), bn =

1

2
+

1

8n2
+o(n−2),

from (9) when a = 0, b = 1.
If convergence towards 1/8 and 1/2 holds in table 2, it must be extremely slow, values have

been listed at powers of 2, in the hope of exhibiting a logarithmic behaviour. To be sure of the
accuracy, computations were made with precision of 28 digits, and checked with a precision of 55
digits. The question will not be examined further here.

Quite another trend is given by known formulas for some multiple orthogonal polynomials,
summarized here: the polynomial Rn = R{n1,...,np} of degree n = n1 + · · ·np is a multiple orthog-
onal polynomial with respect to the measures dµ1, . . . , dµp if Rn is orthogonal to polynomials of
degree < n1 with respect to dµ1, of degree < n2 w.r.t. dµ2, . . . , of degree < np w.r.t. to dµp.
This goes back to Hermite and Padé, and even to Jacobi (Jacobi-Perron algorithm), see [10]. An
interesting recurrence relation (12) with s = p occurs when2 nj = 1 + ⌊(n− j)/p⌋, j = 1, . . . , p.

Let p = 2, dµ1(x) = xα1dx and dµ2(x) = xα2dx on (0, 1). The corresponding polynomials
Rn are explicitly known [2]. As they are orthogonal to polynomials of degree < min(n1, n2)
with respect to any linear combination with constant coefficients of dµ1 and dµ2, let us take α1

2The floor ⌊x⌋ = the largest integer 6 x.
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and α2 → 0, then the orthogonality holds with respect to the constant weight and the limit of
xα2 − xα1

α2 − α1
which is log x, there we are: Rn does the half of the job, as it is orthogonal with respect

to the logarithmic weight to polynomials of degree < n/2 if n is even, of degree < (n − 1)/2 if

n is odd. We have Rn(x) =
1

n1!n2!

dn2

dxn2

[

xn2
dn1

dxn1
xn1(x− 1)n

]

[2, §3.3], symmetric in n1 and

n2, Rn(0) = (−1)n, Rn(1) =
n!

n1!n2!
, R0 = 1, R1(x) = 2x − 1, R2(x) = 9x2 − 8x + 1, R3(x) =

40x3 − 54x2 + 18x− 1, R4(x) = 225x4 − 400x3 + 216x2 − 36x+ 1, and the recurrence relation

xRn(x) =
4(n+ 1)2(n+ 2)

(3n+ 2)2(3n+ 4)
Rn+1(x) +

4(n2 + 19n/9 + 1)

(3n+ 2)(3n+ 4)
Rn(x)

+
4n(27n2 − 16)

9(3n− 2)(3n+ 2)2
Rn−1(x) +

4n(n− 1)

3(3n− 2)(3n+ 2)
Rn−2(x) if n is even,

=
4(n+ 1)

9(3n+ 1)
Rn+1(x) +

4(9n2 − n− 1)

9(3n− 1)(3n+ 1)
Rn(x) +

4n2

3(n+ 1)(3n+ 1)
Rn−1(x)

+
4n(n− 1)2

3(3n− 1)(3n+ 1)(n+ 1)
Rn−2(x) if n is odd. (13)

The vectors of scalar products vn = [(R0, Pn), (R1, Pn), . . . ] have only a finite number of nonzero
elements from (Rn, Pn) to (R2n+1, Pn).

v0 = [ 1 -1/2 0 0 0 0 0 ... ]

v1 = [ 0 7/72 -11/144 -1/40 0 0 0 0 ... ]

v2 = [ 0 0 647/25200 -3/175 -89/4900 -1/504 0 0 ... ]

Unfortunately, numerical stability for large n is poor, the amplification of the effects of rounding
errors is about 2n/2 after n steps. This may be related to the behaviour of |Rn(x)| on [0, 1],
increasing from 1 to about 2n instead of keeping an approximately equal ripple, as orthogonal
polynomials do.

4.2. Interior singularity: the Szegő asymptotic formula.

The influence of an algebraic singularity at c ∈ (a, b) on the recurrence coefficients has been
discussed in [22,49,50], it has been observed, and sometimes proved, that

an − a∞ = fn cos(2nθc + ϕc) + o(fn), bn − b∞ = 2fn cos((2n+ 1)θc + ϕc) + o(fn), (14)

where c =
a+ b

2
+
b− a

2
cos θc, with 0 < θc < π, a∞ =

b− a

4
, b∞ =

a+ b

2
from (8), and where fn

and ϕ depend on the kind of singularity.
For weak singularities when the weight function remains bounded and bounded from below by

a positive number in a neighbourhood of the singular point,

w(x) ≈ w(c) + const.|x− c|α, α > 0, 0 < w(c) <∞ ⇒ fn = const.n−α−1, (15)

see [49, p.156], first part of [50].
When w(c) = 0 or ∞, the power of n in fn does not depend on α, but we know

w(x) ∼ const.|x− c|α, α > −1 ⇒ fn = −(b− a)|α|/(8n), (16)

[22,50].
The discussion of these formulas depends on our knowledge of the asymptotic behaviour of the

orthogonal polynomials of large degree. This description has been achieved by G. Szegő long ago,
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and is available of course in his book [67, chap. 12], also in the surveys by Lubinsky [48] and
Nevai [57], and in Van Assche’s book [69, §1.3.1] the formula for the orthonormal polynomial is

pn(x) ≈ (2π)−1/2[zn exp(λ(z−1)) + z−n exp(λ(z))], (17a)

where x = b∞ +2a∞ cos θ, z = eiθ, and λ(z) = λ0/2+λ1z+λ2z
2 + · · · is a part of the Laurent-

Fourier expansion log[w(x)
√

(x− a)(b− x)] = log[2a∞w(b∞+2a∞ cos θ)| sin θ|] = −∑∞
−∞ λkz

k =

−λ(z) − λ(z−1) on |z = eiθ| = 1. The condition of validity is the minimal condition

log[w(x))
√

(x− a)(b− x)] ∈ L1 (Szegő class). The function D(z) = exp(−λ(z)) is the Szegő

function associated to the weight w, it is analytic without zero in the unit disk, and satisfies
|D(z)|2 → w(x)

√

(x− a)(b− x) when |z| → 1. Remark that the λ−n = λns are real. When
exp(λ(z)) is a polynomial of degree, say d, the formula (17a) is exact for n > d/2 (Bernstein-Szegő

class). In the simplest case w(x) = 1/
√

(x− a)(b− x), pn(x) =
√

2/π cosnθ =
√

2/πTn((x −
b∞)/(2a∞)), λ(z) ≡ 0. For Chebyshev polynomials of the second kind, w(x) =

√

(x− a)(b− x),

pn(x) =
sin(n+ 1)θ

a∞
√

2π sin θ
= (1/

√
2π)Un((x − b∞)/(2a∞)), w(x)

√

(x− a)(b− x) = (x − a)(b − x) =

4a2
∞ sin2 θ = −a2

∞(z − z−1)2 = a2
∞(1− z2)(1 − z−2), eλ(z) = 1/[a∞(1 − z2)].

For the function of second kind qn(x) =

∫ b

a

pn(t) dt

x− t
,

qn(x) ≈ (2π)1/2 4

b− a

exp(−λ(z−1))

zn(z − z−1)
, (17b)

see Barrett [3], also Van Assche [69, §5.4 ].

We also have z = cos θ + i sin θ = (b − a)−1[2x − a − b + 2
√

(x− a)(x− b)], with the square
root such that |z| > 1 if x /∈ [a, b], in which case only the term containing zn has to be considered
in (17a). Remark that x = b∞ + a∞(z + 1/z) ⇒ z = (x − b∞)/a∞ + O(1/x) when x is large,

allowing to estimate the coefficients of xn and xn−1: let p
(0)
n (x) and q

(0)
n (x) be the right-hand sides

of (17a)-(17b), then pn(x) ≈ p
(0)
n (x) = κ

(0)
n xn + κ

′(0)
n xn−1 + · · · , and

κ(0)
n =

exp(λ0/2)√
2π (a∞)n

,
κ
′(0)
n

κ
(0)
n

= −nb∞ + a∞λ1. (18)

Indeed, p
(0)
n (x) == (2π)−1/2zn exp(λ0/2+λ1z

−1 +λ2z
−2 + · · · ) and z = x/a∞−b∞/a∞−a∞/x+

O(x−2), so, the coefficient of xn, κ
(0)
n = (2π)−1/2 exp(λ0/2)/a

n
∞, and z = x/a∞−b∞/a∞−a∞/x+

O(x−2) ⇒ p
(0)
n (x)/κ

(0)
n = (a∞z)

n exp(λ1z
−1+λ2z

−2+· · · ) = (a∞z)
n+a∞λ1(a∞z)

n−1+a2
∞(λ2

1/2+
λ2)(a∞z)

n−2 + · · · = xn − (nb∞ − a∞λ1)x
n−1 + · · · .

For the pn(x) = κnx
n+κ′nx

n−1+· · · itself, from the recurrence relation (2) Pn(x) = pn(x)/κn =
(x− bn−1)Pn−1(x) − a2

n−1Pn−2(x), and ‖Pn‖2 = µ0a
2
1 · · · a2

n:

κn =
1√

µ0 a1 · · · an
,
κ′n
κn

= −b0 − · · · − bn−1. (19)

Each term of (19) behaves like the corresponding term of (18) when n→ ∞.
In terms of z such that x = a∞z + b∞ + a∞/z:

pn(x)/κn = an
∞z

n + an−1
∞ (nb∞ − b0 − · · · − bn−1)z

n−1 + · · · (20)

Quick and dirty check of (17a):

∫ b

a
pn(x)pm(x)w(x)dx ≈

∫ b

a
p(0)

n (x)p!0)
m (x)w(x)dx

=
1

2π

∫ b

a
[zn exp(λ(z−1))+z−n exp(λ(z))][zm exp(λ(z−1))+z−m exp(λ(z))]

exp(−λ(z) − λ(z−1))dx

a∞|z − z−1| .
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With x = b∞ + a∞(z + z−1), dx = a∞(z − z−1)
dz

z
, we have the integral on the unit circle

1

4πi

∮

[zn+m exp(λ(z−1) − λ(z)) + zn−m + zm−n + z−n−m exp(λ(z) − λ(z−1))]
dz

z
. The central

terms leave no residue if m 6= n. When m = n, the result is unity, together with perturbations
involving high index Fourier coefficients of exp(λ(z) − λ(z−1)).

These high index coefficients enter the following estimate of recurrence coefficients finer asymp-
totics:

an − a∞ ≈ a∞
2

(ψ−2n+2 − ψ−2n), bn − b∞ ≈ a∞(ψ−2n+1 − ψ−2n−1), (21)

where the ψs are the Fourier coefficients of ψ(eiθ) = exp(λ(e−iθ) − λ(eiθ)) =
∑∞

−∞ ψke
ikθ. This

formula has been established by a long and painful proof through Toeplitz determinants in [49, p.
153, 158, 167] for weak singularities (the weight function w being continuous and bounded from
below by a positive number at the singular point).

Remark that
∑

2(an − a∞)z−2n + (bn − b∞)z−2n−1 ∼ a∞
∑

[ψ−k+2z
−k − ψ−kz

−k] = sum of
negative exponents of z in (z−2 − 1)ψ(z).

Remark also that exp(λ(z−1)−λ(z)) = D(z)/D(z−1) in Szegő’s notation, is an inner function,
i.e., of modulus unity when |z| = 1, so

∑

ψnψn+k = δk,0.
An even stronger estimate follows from a refinement of the asymptotic matching of (18) and

(19):
√

µ0e
λ0

2π

a1 · · · an

an
∞

− 1 ∼ −ψ−2n

2
, b0 + · · · + bn−1 − nb∞ + a∞λ1 ∼ −a∞ψ−2n+1. (22)

Can we find a quick and dirty argument for (21) and (22)?
Consider the square of the norm of the monic orthogonal polynomial µ0a

2
1 · · · a2

n = ‖Pn‖2 ≈
‖P (0)

n ‖2 =
∫ b
a (p

0)
n (t))2w(t)dt/(κ

(0)
n )2 with p

(0)
n being the right-hand side of (17a). We take a better

look at the integral

∫ b

a
(p(0)

n (t))2w(t)dt =
1

4πi

∮

[z2n exp(λ(z−1) − λ(z)) + 2 + z−2n exp(λ(z) −

λ(z−1))]
dz

z
= 1 + ψ−2n/2+ the half of the coefficient of exp 2niθ of the complex conjugate ψ(eiθ)

which is ψ−2n/2 again. We now need κ
(0)
n , already estimated in (18), but we need again a refined

estimation. The coefficient of xn of p
(0)
n is estimated through the projection on the nth degree

element of an orthonormal basis of polynomials,so, by pn(x) times the scalar product of p
(0)
n and

the unknown pn, which we replace by. . . p
(0)
n (this part of the argument is very weak), and we

get refined κ
(0)
n = the κ

(0)
n of (18) times the square of the norm of p

(0)
n , which is 1 + ψ−2n as

seen above, and µ0a
2
1 · · · a2

n ≈ 2π exp(−λ0)(a∞)2n

1 + ψ−2n
follows, leading to the first part of (22). For

the second part, see that −b0 − · · · − bn−1 is the coefficient of xn−1 of pn(x)/κn ≈ p
(0)
n (x)/κ

(0)
n

estimated by its projections on pn and pn−1 again replaced (same caution) by p
(0)
n and p

(0)
n−1.

Result is −b0 − · · · − bn−1 ≈ κ
′(0)
n /κ

(0)
n + (κ

(0)
n−1/κ

(0)
n ) times the scalar product of p

(0)
n and p

(0)
n−1 =

1

4πi

∮

[z2n−1 exp(λ(z−1)−λ(z))+z+1/z+z−2n+1 exp(λ(z)−λ(z−1))]
dz

z
= ψ−2n+1 as seen before

in similar situations, and the second part of (22) follows.

This ”proof” of (22) is terrible! It repeatedly confuses pn and p
(0)
n , ignoring that p

(0)
n is normally

NOT a polynomial, so that various ways of estimating coefficients yield various results, of which
the most convenient ones are kept. I even turned to some numerical tests to be sure, see the end
of the present subsection.
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An alternate source of knowledge is therefore most welcome: Van Assche gave in [70] a
survey on how Case, Geronimo, and Nevai (and himself too, see [59]) investigated the rela-
tion between recurrence coefficients and weight function modification, by introducing a function

φ(x) = lim
n→∞

(z − z−1)Pn(x)

an
∞z

n+1
outside [a, b] for x, i.e., when |z| > 1, and where Pn(x) is the monic

polynomial pn(x)/κn ∼
√

2π an
∞e

−λ0/2pn(x), so that φ(x) = (1 − z−2) exp(λ(z−1) − λ0/2) =
1 + λ1/z + (λ2

1/2 + λ2 − 1)/z2 + · · · , and it is shown in [70] that

φ(x) = 1 −
∞

∑

0

[

bn − b∞
a∞zn+1

+
a2

n+1 − a2
∞

a2
∞z

n+2

]

Pn(x)

an
∞

(23)

valid for x up to the sides of the cut [a, b] in the trace-class case (
∑∞

1 |an −a∞|+ |bn − b∞| <∞).
Check Chebyshev polynomials of the first kind: λ(z−1) ≡ 0, φ(x) = lim(z − z−1)[2Tn(x) =

zn + z−n]/zn+1 = 1 − z−2, OK, as only a2
1 = 2a2

∞ is different from a2
∞; Chebyshev polynomials

of second kind: λ(z) + λ(z−1) = − log(1 − (z + z−1)2/4), λ(z) = log 2 − log(1 − z2), φ(x) =
lim(z − z−1)[Un(x) = (zn+1 − z−n−1)/(z − z−1)]/zn+1 = 1.

Can we extract from (23) information on F (z) =
∑∞

0

[

bn − b∞
a∞z2n+1

+
a2

n+1 − a2
∞

a2
∞z

2n+2

]

?

From (17a) and (18), Pn(x)/(a∞z)
n = pn(x)/(κna

n
∞z

n) contains a part with strongly negative
powers of z which tend to be close to the corresponding part of exp(λ(z) − λ0/2)z

−2n, and the

corresponding part of
∑∞

0

[

bn − b∞
a∞z

+
a2

n+1 − a2
∞

a2
∞z

2

]

Pn(x)

an
∞z

n
, so, (1 − z−2) exp(λ(z−1) − λ0/2)

≈ 1− e−λ0/2
∑∞

0

[

bn − b∞
a∞

z−n−1 +
a2

n+1 − a2
∞

a2
∞

z−n−2

]

[zn exp(λ(z−1)) + z−n exp(λ(z))], or, after

division by eλ(z)−λ0/2, (1 − z−2)ψ(z) ≈ eλ0/2−λ(z) − ∑∞
0

[

bn − b∞
a∞

z−1 +
a2

n+1 − a2
∞

a2
∞

z−2

]

ψ(z) −
∑∞

0

[

bn − b∞
a∞

z−2n−1 +
a2

n+1 − a2
∞

a2
∞

z−2n−2

]

. This confirms that the latter series is related to the

negative powers part of ψ(z) precisely as stated in (21) .
An interesting exercise is also to recover (17a-17b) from (21) by working a linearization of a

product of 2 × 2 matrices containing the recurrence coefficients:

[

pN−1(x) qN−1(x)
pN (x) qN(x)

]

=

N−1
∏

n=0

[

0 1
−aN−1−n/aN−n (x− bN−1−n)/aN−n

]

times

[

0
√
µ0/a0

1/
√
µ0 S(x)/

√
µ0

]

( [54]), and we use

(A+EN−1)(A+EN−2) · · · (A+E0) ≈ AN+

N−1
∑

n=0

AN−1−nEnA
n, seeing thatA =

[

0 1
−1 (x− b∞)/a∞

]

=

[

1 1
z z−1

] [

z 0
0 z−1

] [

1 1
z z−1

]−1

= U diag(z, z−1)U−1, where z + z−1 = (x − b∞)/a∞, so that

AN−1−nEnA
n = U diag(zN−1−n, z−N+1+n)U−1EnU diag(zn, z−n)U−1 and we find U−1EnU ≈

(z−1 − z)−1

[

en(z) en(z−1)
−en(z) −en(z−1)

]

, where en(z) = [(an+1 − a∞)z2 + (bn − b∞)z + an − a∞]/a∞,

so that off-diagonal elements of the sum are z±(N−1)
∑

z∓2nen(z∓1) containing again the sum
∑

2(an − a∞)z∓2n + (bn − b∞)z∓(2n+1).
It seems here that much energy has been spent on incomplete proofs, and that somebody should

achieve a decent one!
Here is a test of the numerical credibility of (21), actually of the first part of (22): with w(x) =

(1 − x2)−1/2 exp(|x|) on (−1, 1), λ(eiθ) + λ(e−iθ) = −| cos θ|, λ2n = 2(−1)n/((4n2 − 1)π), λ(z) =
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(2/π)(−1/2− z2/3+ z4/15− · · · ) = −(1+ z2)
1

2πiz
log

1 + iz

1 − iz
= iπ−1 cos θ log[i cot(π/4 + θ/2)] on

|z = eiθ| = 1, actually cos θ[−1/2 + iπ−1 log cot(π/4 + θ/2)] when −π/2 6 θ 6 π/2, cos θ[1/2 +
iπ−1 log cot(−π/4+θ/2)] when π/2 6 θ 6 3π/2 : λ(e−iθ)−λ(eiθ) = 2iπ−1 cos θ log cot(±π/4+θ/2).
Check that λ(e−iθ) + λ(eiθ) = −| cos θ|.

WithM0 =
√

µ0 exp(λ0)/(2π), the productMn = M0a1 · · · an/a
n
∞ → 1. Here, µ0 =

∫ 1
−1w(t)dt =

6.2088, λ0 = −0.63662,M0 = 0.72306, some an, λn, ψn are shown, and 2Mn − 2 shows how Mn is
close to 1 − ψ−2n/2 according to (22).

n 0 1 2 3 4 5 6 7 8 9 10

an 0.77414 0.43434 0.52081 0.49034 0.50548 0.49649 0.50243 0.49822 0.50136 0.49893

λ2n -0.63662 -0.21221 0.042441 -0.01819 0.01011 -0.00643 0.00445 -0.00327 0.00250 -0.00197 0.00160

ψ2n 0.95317 0.21745 -0.022831 0.01252 -0.00738 0.00489 -0.00349 0.00262 -0.00204 0.00163 -0.00134

ψ−2n 0.95317 -0.19755 0.058329 -0.02507 0.01353 -0.00838 0.00566 -0.00407 0.00306 -0.00238 0.00191

2Mn − 2 0.23899 -0.055036 0.02590 -0.01325 0.00851 -0.00559 0.00411 -0.00304 0.00240 -0.00189

Table 3. Results for e|t|/
√

1 − t2.

4.3. Relation with Fourier coefficients asymptotics.

The main influence of a singularity at θ = θc on the Fourier coefficient
∫ π
−π f(θ) exp(inθ)dθ of

a function f is exp(inθc)f̂(n/(2π)), see Lighthill [46, p.43, p.72], where f̂ is the Fourier transform
of f . An algebraic singularity of the form |θ−θc|α is shown to correspond to an n−α−1 behaviour.
This case is also given with much detail by A. Erdélyi [20, §2.8], and Zygmund [78, chap. 5, §2.24].
The nature of a weak singularity w(c) + cont. |x− c|α with 0 < w(c) < ∞, is left unchanged by
taking logarithms or exponentials, also in conjugate functions [78, chap.5, §2.6 and 2.24], so, the
1/nα+1 is kept unchanged up to the ψns and (15) is confirmed.

Stretching the argument for weak singularity to a strong singularity such as w(t) ∼ const. |t−c|α
near c, the logarithm of w behaves like α log | cos θ − cos θc| = const. +α Re log(1 − eiθ/zc)(1 −
e−iθ/zc) whence λn ∼ −α Re z−n

c /n = −α cos(nθc)/n, λ(z) ∼ (α/2) log((1− zeiθc)(1 − ze−iθc)) =
(α/2) log(2eiθ(cos θ − cos θc)) on the circle. Keeping logarithms of positive numbers to be real,
λ(eiθ) ∼ (α/2)[log 2+iθ+log(cos θ−cos θc)] when −θc < θ < θc, (α/2)[log 2+iθ−iπ+log(cos θc−
cos θ)] otherwise. Then, λ(e−iθ)−λ(eiθ) ∼ −iαθ on the first arc, iα(π− θ) on the second arc, and

its exponential has ψn = (2π)−1[
∫ θc

−θc
exp(−i(n+ α)θ)dθ + exp(iαπ)

∫ 2π−θc

θc
exp(−i(n+ α)θ)dθ] =

2

π

sin(απ/2) cos(nθc + α(θc − π/2))

α+ n
showing an 1/n asymptotic behaviour, but the amplitude is

not right, it should have been −a∞|α|/2 from (16).

And what about a logarithmic singularity, as encountered with 2−dimensional crystals?
Let w(x) − A log |x− c| be continuous in a neighbourhood of c ∈ (a, b).

4.4. Conjecture. If the weight function has one or several logarithmic singularities of the form

w(x) ∼ const. log |x− c| near one or several values of c ∈ (a, b), the main asymptotic behaviour

of the related amplitude in (14) is

fn =
(b− a) sin θc

8n log n
, (24)

where c = (a+ b+ (b− a) cos θc)/2.

One has also (b− a) sin θc = 2
√

(c− a)(b− c).
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Now, logw(t) has a log log singularity! There is probably not much literature on Fourier
coefficients of a log(log |t− c|) singularity, but Zygmund [78, chap. 5, §2.31], and Wong & Lin [75]
show how to arrive at a n−m−1(log n)β−1 from a |t − c|m(log |t − c|)β singularity, when m is an
integer. Take m = 0 and β → 0, as log(log |t−c|) is the limit when β → 0 of β−1[(log |t−c|)β −1],
we may expect the 1/n log n of the conjecture. Two meaningful examples will be considered in
§ 7.

4.5. Relation between jumps and logarithmic singularities.

The Fourier series conjugate to the real part of
∑

cke
ikθ is the imaginary part of the same

expansion [78, § 1]. Jumps and logarithmic singularities are conjugate phenomena. A simple

demonstration is given by the real part of log(1−z/eiθc) = −∑∞
1 eik(θ−θc)/k when z = eiθ. When

|z| < 1 and z close to eiθ, 1−z/eiθc is almost pure imaginary, and the complex logarithm is about
iπ/2+ log |θ− θc| when θ < θc, and −iπ/2+ log |θ− θc| otherwise, so, a logarithm in the real part
corresponds to a jump in the imaginary part, and these two kind of singularities create similar
asymptotic behaviours in the Fourier coefficients, maybe the work done for a jump [23] can be
the basis for a proof of the conjecture 4.4.

Unfortunately, the loose considerations of the preceding subsection suggest to look at the
logarithm of the weight function. If the logarithm of a jump (between two positive values) is still
a jump, log(log) is something new.

5. Expansions in functions of the second kind.

We proceed with modified moments and related expansions. The weight function w is not
always given in such an explicit form allowing a fast way to compute the modified moments. It
is often better to use the generating function S(x) of the power moments, but how is S(x) an
expansion involving modified moments?

From now on, we choose Rn to be an orthogonal polynomial of degree n with respect to a
weight function wR on [a, b], and the searched Pn orthogonal with respect to the weight function
w so that dµ(x) = w(x)dx. We will often need the ratio w/wR, a writing more realistic than the
Radon-Nykodim derivative dµ/dµR in most cases.

We saw that the Laurent expansion of the Stieltjes function of w with the power moments

is S(x) =
∫ b
a w(t)(x − t)−1dt =

∑∞
0 µk x

−k−1. See here the expansion involving the modified

moments νn =
∫ b
a Rn(t)w(t) dt:

5.1. Theorem. Let Rn, n = 0, 1, . . . be orthogonal polynomials related to a weight wR on [a, b],

with ‖Rn‖2
R =

∫ b
a R

2
n(t)wR(t) dt, and S(x) =

∫ b
a (x − t)−1w(t)dt be the Stieltjes function of the

weight function w. Then,

S(x) =

∞
∑

0

νn

‖Rn‖2
R

Qn(x), (25)

for x /∈ [a, b], where νn is the modified moment
∫ b
a Rn(t)w(t) dt, and where Qn(x) =

∫ b
a (x −

t)−1Rn(t)wR(t) dt is the nth function of the second kind related to the weight wR.

Indeed, asRn is a finite linear combination of powers, which may be inverted as tk =
∑k

n=0 cn,kRn(t),

we have S(x) =
∑∞

k=0

∫ b
a t

k w(t) dt x−k−1 =
∑∞

k=0

∫ b
a [

∑k
n=0 cn,kRn(t)]w(t) dt x−k−1

=
∑∞

n=0 νn[
∑∞

k=n cn,kx
−k−1].

Remark now the Laurent expansionQn(x) =
∑∞

k=n

∫ b
a t

kRn(t)wR(t) dt x−k−1 =
∑∞

k=n cn,k‖Rn‖2
R x−k−1.

�

There is no convergence problem, at least if a and b are finite, as the Laurent expansions
converges exponentially fast when |x| > max(|a|, |b|).
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My first idea was to expand the ratio w/wR in the {Rn} basis, by w(t)/wR(t)

=
∑∞

n=0[
∫ b
a (w(u)/wR(u))wR(u)Rn(u)dt = νn]Rn(t)/‖Rn‖2

R for t almost everywhere in [a, b], but
we do not need to discuss the validity of this expansion. It seems however strange that the theorem
seems to be true in some eerie situations where w and wR have different supports. The price is
that the modified moments are unusually large, which make them completely useless. This is
obvious if the support of w is bigger than the support of wR, as the Rns are free to become large
outside the support of wR. But things are not better if the support of w is too small! Recall that
the condition number of the Gram matrix GN in (11) depends also on the smallest eigenvalue,

which is the infimum on polynomials p of degree < N of the Rayleigh ratio
∫ b
a p

2w dx/
∫ b
a p

2wR dx,
and we may choose p to be very small on the part of (a, b) which is the support of w. See also
Beckermann & Bourreau [4].

Expansions with functions of the second kind share properties of Laurent expansions, such as
exponential speed of convergence outside [a, b], and orthogonal expansions, such as the use of
recurrence relations, see Barrett [3], Gautschi [26].

For Legendre functions, the connection between Laurent expansions and expansions in functions
of the second kind is given by Heine’s formula (x − t)−1 =

∑∞
0 (2m + 1)Pm(t)Qm(x),−1 < t <

1, x /∈ [−1, 1] (NIST [60, § 14.28.2], etc.), so that, gathering the tn terms,

1

xn+1
=

n
∑

0

dnPm(0)/dtn

n!
Qm(x), showing how the Qn expansion is a rearrangement of the Laurent

expansion.
As a matter of fact, the Heine’s series is valid for any choice of orthogonal polynomials: expand

(x− t)−1 in orthogonal expansion of the Rns:

1

x− t
=

∞
∑

m=0

∫ b

a

Rm(u)wR(u)du

x− u
= Qm(x)

‖Rn‖2
R

Rm(t)

The subject matter will now be strongly simplified by turning to the Chebyshev case:

5.2. Chebyshev functions of the second kind. The functions of second kind related to the

Chebyshev polynomials Rn(x) = Tn((2x− a− b)/(b− a)) are

Qn(x) =

∫ b

a

Tn((2t− a− b)/(b− a)) dt

(x− t)
√

(t− a)(b− t)
=

π

a∞ zn(z − 1/z)
, (26)

[17, § 1.13], where z = [2x− a− b+2
√

(x− a)(x− b)]/(b− a) ∼ 4x/(b− a) = x/a∞ for large |x|.
Indeed, we recalled in section 2.1 that the recurrence relations (2) are valid for the Qns. So,

Qn+1(x) = 2(2x − a − b)Qn(x)/(b− a) − Qn−1(x) = (z + 1/z)Qn(x) − Qn−1(x) for n = 1, 2, . . .
meaning that Qn(x) is a combination of z−n and zn, but boundedness for large x allows only z−n.
Finally, with t = (a+b)/2+((b−a)/2) cos θ = b∞+2a∞ cos θ, Q0(x) =

∫ π
0 dθ/(x−b∞−2a∞ cos θ) =

∫ π
0 dθ/(a∞(z + z−1 − 2 cos θ)) =

1

2i

∮

deiθ

a∞(z − eiθ)(eiθ − z−1)
=

π/a∞
z − z−1

, as only the residue at

eiθ = z−1 is to be considered, as |z| > 1.
When x = b∞ + 2a∞ cos θ ± iε is close to [a, b], the formula (26) turns to a finite part (Hilbert

transform) added to ±πiTn(cos θ)/
√

(x− a)(b− x) (Sokhotskyi-Plemelj [39, §14.1]). The finite
part is known to be −(π/(2a∞))Un−1(cos θ) [1, 22.13.3], [52, eq. 9.22a], also used by Weisse &
al. [73, eq. (14)]. It is also recalled that the asymptotic formula (17b) is exact in the Bernstein-

Szegő case (when
√

(t− a)(b− t)/w(t) is a polynomial, and when n > half the degree of this
polynomial). Henrici gives (26) in [39, § 14.6, Problem 2] with the symbol ”Un” for our Qn.
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5.3. Corollary. Chebyshev modified moments are the coefficients of the expansion of the Stielt-

jes function in negative powers of z

(b− a)(z − z−1)

2
S

(

x =
a+ b

2
+

(b− a)(z + z−1)

4

)

= 2ν0 +

∞
∑

1

4νn

zn
. (27)

Indeed, put (26) in (25)

S(x) =
∑∞

0

νn

‖Rn‖2
R

Qn(x) =
ν0

‖R0‖2
R = π

π/a∞
z − z−1

+
∑∞

1

νn

‖Rn‖2
R = π/2

π/a∞
zn(z − z−1)

. �

6. About matrices in solid-state physics.

6.1. Matrix approximation of the Hamiltonian operator.

A solid-state system is a stable arrangement of atoms (whose positions are the sites) which
may create, or at least amplify, interesting physical phenomena, such as electrical conductivity
or magnetic field intensity. The relevant Hamiltonian is an operator acting on functions (the
states) of three space variables, i.e. of a subset of L2(R3). This formidable set of functions3

is approximated by linear combinations of a finite set of simple functions with a small support
around each site, quite similar to finite elements constructions.

The kinetic part of the Hamiltonian involves the Laplace operator whose discretization about a
site is the site value subtracted from the average of the values on neighbouring sites (a harmonic
function at a point is the average on a surface about the point; after discretization, this integral
average turns as a simple arithmetic mean of values at neighbouring points, this suggests why the
discretized Laplacian involves an arithmetical mean); the potential part is also represented by a
combination of nearby values (closest neighbour approximation, or tight-binding approximation
see Economou’s book [19, §5.2]) also the first pages of Giannozzi & al. [30] and Haydock [35,36]).
Consider for instance a one-dimensional chain of sites {. . . , xn−1, xn, xn+1, . . . } at distance xn+1−
xn = ℓ from each neighbour. The Laplace operator at xn is the discretized second derivative = the
divided second difference ∆2xn/ℓ

2 = (xn+1 − 2xn + xn−1)/ℓ
2. Multiply by appropriate physical

parameters, and add the potential of simple interactions between close neighbours and we have

H =















. . .
. . .

. . .

α β α
α β α

α β α
. . .

. . .
. . .















(28)

The Hamiltonian operator is therefore represented by a huge sparse symmetric matrix where
each row is associated to a site and contains a small number of nonzero elements correspond-
ing to neighbouring sites (tight-binding approximation). A simple substance made of identical
elements (pure crystal) will show the repetition of the same pattern in the matrix (Toeplitz ma-
trix, in mathematicians lingo). Random modifications (doping) may of course be considered too.
The study of these various configurations is of enormous interest in physical and technological
applications [12,18,42,44].

6.2. Density of states.

Let u be an initial state vector describing an electron on some site, i.e. only one element of u

is nonzero. The time dependence of such a state vector shows how the electron diffuses on the
other sites, starting with the close neighbours as expected [35, p. 217]. The equation is ∂u/∂t =

3And this is only for a single-electron operator, or we should have to consider a power of L2(R3).
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(i/~)Hu [35, §34], so u(t) = exp((it/~)H)u(0), and we use eigenvalues and eigenstates (Ep,v
(p))

of the simplified Hamiltonian operator. We now have u(t) =
∑

p exp(itEp/~)(v(p),u(0))v(p) We

consider the projection on the mth site starting from the nth site, and rearrange the sum as
∫ b
a exp(itE/~)dNm,n(E), where Nm,n(E) is a staircase function discontinuous at each eigenvalue.

When n = m, dNn,n(E) is the sum of the positive terms |(v(p),u(0)|2 for the eigenvalues Ep in an
interval of length dE around E (sorry for such a sloppy, pre-modern, use of infinitesimals). The
result nn,n(E)dE, where nn,n(E) is called the (local) density of states. In the example (28), the
eigenvalues are β + 2α cos(kπ/N) if the matrix has N rows & columns; normalized eigenvectors

are
√

2/N sin(mkπ/N) (average value of the sine squares is 1/2), see [32, chap. 7], [35, §12] . If
a = β − 2α < E < b = β + 2α, let E = β + 2α cos θE, then, between E and E + dE, there are
(N/π)|θE+dE − θE | eigenvalues, to multiply by the average of the squares of eigenvector elements,

what remains is π−1

∣

∣

∣

∣

arccos

(

E + dE − β

2α

)

− arccos

(

E − β

2α

)∣

∣

∣

∣

≈ dE

π
√

4α2 − (E − β)2
.

Nobody indulges in such awkward ways! Instead, one considers the Green functions [19, 30,

34–36] Gm,n(x) =

∫ b

a

nm,n(t) dt

x− t
= ((xI − H)−1)m,n, which, if m = n, have the properties of the

Stieltjes functions of the first section!

6.3. The recursion (Lanczos) method.

Let u0 be a state represented by a vector of R
N , and µn = (u0,H

n
u0), where ( , ) is the usual

scalar product of R
N . From the expansion of u0 in the orthonormal set of eigenstates {v(p)} as seen

above, µn =
∑

pE
n
p |(u0,v

(p))|2 =
∫ b
a t

ndµ(t), where dµ(t) is the relevant density of states times dt.

As H is a very sparse matrix, the vectors H
n
u0 are easy to compute and they may be rearranged

in an orthonormal sequence un = pn(H)u0) by linear algebra constructions. Of course, this means
that δm,n = (um,un) = (pm(Hu0), pn(H)u0) = (u0, pm(H)pn(H)u0) (from symmetry of H) =
∫ b
a pm(t)pn(t)dµ(t), so pn = κnPn is the orthonormal polynomial of degree n with respect to dµ.

Therefore, from the recurrence relation tpn(t) = anpn−1(t) + bnpn(t) + an+1pn+1(t),Hpn(H) =
anpn−1(H) + bnpn(H) + an+1pn+1(H), or Hun = anun−1 + bnun + an+1un+1:

H[u0 | u1 | u2 | · · · ] = [u0 | u1 | u2 | · · · ]











b0 a1

a1 b1 a2

a2 b2 a3

. . .
. . .

. . .











, (29)

so that the Hamiltonian matrix and the tridiagonal matrix of the recurrence coefficients have the
same spectrum (should we be able to build N vectors uns). From un−1 (if n > 0) and un, one
gets an and bn by an = (un−1,Hun), bn = (un,Hun) [27, § 3.1.7.1] [31, chap. 9].

The recursion method has been, and still is, quite an inspiration in solid-state physics! [24,30,
35–37]. The Hamiltonian operator of a given physical system is approximated by a matrix H as
above, and a set of recurrence coefficients is produced by the Lanczos method. The features of the
weight function are then ”read” from the asymptotic behaviour of these recurrence coefficients.

The reverse procedure is used here: from the known densities of states of model systems, the
recurrence coefficients are produced through modified moments, and asymptotic properties are
investigated.

6.4. Pure crystals.

The simplest pure crystal is a d−dimensional set of identical atoms related in the same way to
their neighbours. If there is a large but finite number of atomic positions (sites), the Hamiltonian
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operator is a large matrix acting on a vector v(x1, . . . , xd) asHv at the available site (x1, . . . , xd) =
∑

m hmv(x + δm), where each δm is a vector relating x to one of its neighbours. See the next
subsections for two examples.

Let us try a vector exp(ik · x) = exp(i(k1x1 + · · · + kdxd)). The product by H reproduces
the same vector times the scalar function h(k) =

∑

m hm exp(ik · δm) which are therefore the
eigenvalues of H , for various real nonequivalent vectors k (Brillouin zone [30, §4]), i.e., such that
each k · δm ∈ [0, 2π) or [−π, π). In mathematician’s lingo, h(k) is the symbol of the Toeplitz
matrix H (Grenander & Szegő [33, chap. 5,6, and notes of chap. 5])!

Assuming the eigenvalues to be distributed like the k−vectors (recall the simple 1D case where
each k such that sin(kNℓ) = 0 produces an eigenvalue), the number of eigenvalues less than
some E is N times the volume N (E) in the Brillouin zone of the k−vectors such that h(k) 6 E,

and the Green function of the (global) density of states is trace((xI − H)−1 =
∑ 1

x− λm
=

N

∫

λ=h(k)=t

dN (t)

x− t
= N

∫

k∈B

|dk|
x− h(k)

.

So, there is no need to estimate numerically the density of states of a pure crystal, as the job
has been done long ago. But recurrence coefficients found in this ideal case may be useful in later
investigations of realistic models of true physical systems.

7. Two famous 2-dimensional lattices.

7.1. The square lattice.

The four vectors relating a site to its neighbours are (±ℓ, 0), (0,±ℓ), see fig. 1, so that h(k1, k2) =
2 cos(k1ℓ) + 2 cos(k2ℓ) (multiplied by the relevant physical energy constant, and we also ignore
the multiplications by 2 and ℓ).

b b

b

b

b

x

−2 −1 0 1 2

Figure 1. Square lattice: nearest neighbours and density of states.

Then (Economou [19, §5.3.2]),

S(x) = G0,0(x) = (π)−2

∫ π

0

∫ π

0

dk1 dk2

x− cos k1 − cos k2
=

2

πx
K(2x−1), (30)

where K(u) =

∫ π/2

0

dθ
√

1 − u2 sin2 θ
=

∫ 1

0

dr
√

(1 − r2)(1 − u2r2)
is the complete elliptic integral of

the first kind of modulus u (the (π)−2 factor is for convenience).
Indeed, we integrate in k2 for a given k1, seeing that the integral from 0 to π is the half of the

integral on the circle of
dζ/(iζ)

x− cos k1 − (ζ + 1/ζ)/2
, where ζ = exp(ik2), so π times the residue of
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−2/[ζ2−2(x−cos k1)ζ+1] at the pole in the unit disk, and this residue is
1

√

(x− cos k1)2 − 1
, and

dk1
√

(x− cos k1)2 − 1
=

√
1 − α2 dξ

√

(1 − ξ2)[x+ 1 − α+ ((x+ 1)α− 1)ξ][x− 1 − α+ ((x− 1)α− 1)ξ]
if cos k1 =

ξ + α

1 + αξ
. If α is such that

(x+ 1)α− 1

x+ 1 − α
= −(x− 1)α− 1

x− 1 − α
, we find

dk1
√

(x− cos k1)2 − 1
=

αdξ
√

(1 − ξ2)(1 − α4ξ2)

when α+α−1 = x, so the result is 2απ−1K(α2) =
2α

π(1 + α2)
K

(

2α

1 + α2

)

, from the Gauss-Landen

transformation formula (Jahnke & Emde [41, chap. V, §2.2], NIST [60, §19.8]), whence the result
(30).

1 1.000000000

2 1.118033989 0.1203081542

3 0.9746794345 -0.1292279653

4 1.037456404 0.1643807059

5 0.9839628997 -0.1692895338

6 1.020931612 0.1876981566

7 0.9885010320 -0.1913801051

8 1.014170249 0.2032383673

9 0.9911165775 -0.2061868767

10 1.010573403 0.2146792890

16 1.005830221 0.2369760223 0.3381889872 (-0.2806219250) 0.3954242842

32 1.002516216 0.2655192494 0.3796921578 (-0.3956931479) 0.4419469138

64 1.001117839 0.2894108176 0.4088686585 (-0.4968111936) 0.4672216597

128 1.000505800 0.3093937275 0.4292911869 (-0.5817461016) 0.4803475080

256 1.000231686 0.3261864584 0.4437355750 (-0.6518307097) 0.4870687392

512 1.000107052 0.3404045226 0.4541490357 (-0.7095751974) 0.4905961484

1024 1.000049789 0.3525479246 0.4618385431 (-0.7575448404) 0.4925965724

2048 1.000023277 0.3630130761 0.4676645905 (-0.7979279240) 0.4938818040

4096 1.000010930 0.3721112300 0.4721909234 (-0.8324394877) 0.4948225878

8192 1.000005151 0.3800864351 0.4757888967 (-0.8623665884) 0.4955777499

16384 1.000002435 0.3871307257 0.4787065033 (-0.8886568890) 0.4962121432

32768 1.000001155 0.3933961897 0.4811126848 (-0.9120066192) 0.4967528640

Table 4. Square lattice: values of an, n log n[an − 1 − 1/(8n2)], limit after 1st

degree extrapolation, slope, and limit through 2nd degree extrapolation.

The power moments are the coefficients of the expansion of S(x) = µ0/x + µ1/x
2 + · · · .

From the known expansion of K [60, §19.5.1] etc., µ2n+1 = 0, µ2n =

(

1 × 3 × · · · (2n− 1)

n!

)2

=

1

π

(

2n Γ(n+ 1/2)

Γ(n+ 1)

)2

= 1, 1, 9/4, 25/4, 1225/64, . . .

As the spectrum is [−2, 2] (the extreme values of cos k1 + cos k2), the Chebyshev moments are
here the moments of Tn(x/2) = 1, x/2, (x2−2)/2, (x3−3x)/2, (x4−4x2 +2)/2, . . . , so ν0 = 1, ν2 =
−1/2, ν4 = 1/8, ν6 = −1/8, . . . which must of course be computed in a sensible way, as they seem
fortunately to be much smaller than the µns. We need an expansion of S(x) in negative powers of

z = x/2+
√

x2/4 − 1, from (27). By a stroke of luck, z = 1/α used in the proof of (30), so we return

to an intermediate result S(x) = 2/(πz)K(z−2) and apply (27) ν0+

∞
∑

1

2νn

zn
=

2(z − z−1)

πz
K(z−2),

whence ν0 = 1, ν2 = −1/2, and ν4n = −ν4n+2 =
1

22n+1

(

1 × 3 × · · · (2n− 1)

n!

)2

, n = 1, 2, . . .
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It is then possible to compute tens of thousands recurrence coefficients with the algorithm of
§ 3.2. Some of them are given in Table 4. As θc = π/2, we expect an − a∞ ≈ fn cos(nπ + ϕc) =
(−1)nfn cosϕc. There is also a 1/(8n2) Legendre-Jacobi contribution from the endpoints. After
subtraction of this 1/(8n2), the (−1)n behaviour is clear on the 10 first items of the table. The
amplitude fn of (14) being thought to decrease like 1/(n log n) from conjecture 4.4, we consider
ρn = n log n(an−1−1/(8n2)), the limit is reached so slowly that values of ρn are shown on powers
of 2. Assuming a A+B/ log n behaviour, the slope B is estimated from two successive values, and
the limit A by ρn − B/ log n (Neville extrapolation). With {a, b, c} = {−2, 2, 0}, the conjecture
4.4 expects the limit 1/2. A second degree extrapolation makes this guess even more credible.

The graph of the weight function in Fig. 1 is established from ∓πw(x) = imaginary part of
the limit of S(x ± εi) (Sokhotskyi-Plemelj [39, §14.1]) for x in the spectrum. S(x) is computed

as
1

x− b0 −
a2

1

x− b1 −
. . .

which diverges on the spectrum. This problem is solved by replacing

a2
N

x− bN − a2
N+1

. . .

by
a2
∞

x− b∞ − a2
∞

. . .

= a∞/z = [x − b∞ −
√

(x− a)(x− b)]/2 which has a well-

definite imaginary part on the two sides of the spectrum [a, b]. This is the termination method of
Haydock & Nex [37], and Lorentzen, Thron, and Waadeland [15,47,68] going back to Wynn [76,77].
Máté, Nevai, and Totik [53,58] introduced the use of Turán determinants p2

n(x)− pn−1(x)pn+1(x)
as a way to recover the weight function when n is large. Indeed, when (17a) applies,

[

pn(x) pn+1(x)
pn−1(x) pn(x)

]

≈ 1√
2π

[

−1 1
−z−1 z

] [

zn exp(λ(z−1)) 0
0 z−n exp(λ(z))

] [

−1 −z
1 z−1

]

,

so that the determinant ≈ −(2π)−1(z−z−1)2 exp(λ(z−1)+λ(z)) = (2a2
∞π)−1

√

(x− a)(b− x)/w(x).
The termination formula, and the Turán determinants formula are extended to spectra of several
intervals = formulas for limit p−periodic continued fractions with p > 1 [15,47,71].

Of course, the formula (30) is considered too.

7.2. Hexagonal lattice: graphene.

One half of the sites (the ”A” sites) of the hexagonal arrangement of fig. 2 are related to

their neighbours through the three vectors (1/2±
√

3/2), (−1, 0), and these neighbours make the
other half (the ”B” sites) with (−1/2 ±

√
3/2), (1, 0) Horiguchi [40, §3], Katsnelson [42, §1.2],

hA→B(k1, k2) = 2eik1/2 cos(k2

√
3/2) + e−ik1 , hB→A(k1, k2) = 2e−ik1/2 cos(k2

√
3/2) + eik1 .

b

b

b

bbc

bc

bc

bcA B

x

−3 −2 −1 0 1 2 3

Figure 2. Graphene: nearest neighbors and density of states.
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Using a matrix symbol for a short while, we see that the Hamiltonian operator acts on a vector

exp(ik·x) where the A−sites and the B−sites are considered separately, as

[

0 hA→B(k)
hB→A(k) 0

]

,

so that the eigenvalues are E(ξ) = ±
√

hA→B(k)hB→A(k) = ±
√

4 cos2 ξ2 + 4cos ξ1 cos ξ2 + 1,

where ξ1 = 3k1/2, ξ2 = k2

√
3/2), and the relevant Green function is

S(x) = G0,0(x) =
1

2π2

∫ π

0

∫ π

0

[

1

x−E(ξ)
+

1

x+E(ξ)

]

dξ1dξ2

=
x

π2

∫ π

0

∫ π

0

dξ1dξ2
x2 − 4 cos2 ξ2 − 4 cos ξ1 cos ξ2 − 1

=

√
ux

π
K(u), where u =

x4 − 6x2 − 3 −
√

(x2 − 1)3(x2 − 9)

8x
.

(31)

The last formula [40] is established by a first integral in ξ1 = −i log ζ so that we integrate
−idζ/[(x2−4 cos2 ξ2−1)ζ−2(ζ2+1) cos ξ2] on the unit circle, and we integrate the residue on ξ2 as

x

π

∫ π

0

dξ2
√

(x2 − 1 − 4 cos2 ξ2)2 − 16 cos2 ξ2
=

2x

π

∫ π/2

0

dξ2
√

x4 − 6x2 + 1 − 4(x2 − 1) cos(2ξ2) + 4 cos2(2ξ)

=
x

π

∫ 1

−1

d cos(2ξ2)
√

[1 − cos2(2ξ2)][x4 − 6x2 + 1 − 4(x2 − 1) cos(2ξ2) + 4 cos2(2ξ2)]
. As before, we change

the variable cos(2ξ2) =
η + α

1 + αη
, resulting in

x

π

∫ 1

−1

√
1 − α2 dη

√

[1 − η2][(x4 − 6x2 + 1)(1 + αη)2 − 4(x2 − 1)(1 + αη)(η + α) + 4(η + α)2)]
. We keep only

even powers of η if α+ α−1 = (x2 − 5)/2, and we have then
αx

π
√

1 + 2α

∫ 1

−1

dη
√

[1 − η2][1 − u2η2)]
,

with u2 = α3 2 + α

1 + 2α
=

(

α(2 + α)

x

)2

=

(

α2x

1 + 2α

)2

. Note that α = (
√
x2 − 1 −

√
x2 − 9)2/8 ∼

2/x2 and u = (α + 2α2)/x = [x4 − 6x2 − 3 −
√

(x2 − 1)3(x2 − 9)]/(8x) = 8x/[x4 − 6x2 − 3 +
√

(x2 − 1)3(x2 − 9)] ∼ 4/x3 when x is large.
The properties of the density of states in fig. 2 follow from the last line of (31) as we follow

the imaginary part of S(x − iε): u is nonreal when x ∈ (1, 3) and (−3,−1). For x between

−1 and 1, u is real but outside (−1, 1), see table 5. Near x = 1, u = −1 + i(x − 1)3/2 + · · · ,
K(u) ∼ log(4/

√
1 − u2) ∼ (−3/4) log |x − 1|+ const., [1, 17.3.26] [41, chap. V, §C.1 and 3],

S(x) ∼ −(3i)/(4π) log |x − 1|+ const. Near x = 3, the limit imaginary part of K is π/4, so√
3/4 = 0.433013... for S. Near x = 0, u ∼ −3/(4x), K(u) ∼ π/(2u) (from the Gauss-Landen

formula seen above), and Im(S(x)) ∼ |x|/
√

3. The complete elliptic integral K is computed in
table 5 by the AGM method [1,6,60].

Check of first power moments: µn is the constant Fourier coefficient of the power (4 cos2 ξ2 +

4cos ξ1 cos ξ2+1)n, S(x) =
1

x
+

3

x3
+

15

x5
+

93

x7
+

639

x9
+. . . =

1
x

− 3
x

− 2
x

− 3
x

− 5/3
x

− 44/15
x

−
393/220

x
−· · · The Chebyshev moments are the moments of Tn(x/3) = 1, x/3, 2x2/9−1, 4x3/27−

x, 8x4/81 − 8x2/9 + 1, . . . as the spectrum is [−3, 3] (extreme real values of ± the square root of
4 cos2 ξ2 + 4cos ξ1 cos ξ2 + 1 = (cos ξ1 + 2cos ξ2)

2 + sin2 ξ1), so ν0 = 1, ν2 = −1/3, ν4 = −5/27, . . .
More instances are ν6 = 47/243, ν8 = −167/729, ν10 = 1013/6561.
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x u S(x)

10.000 - 0.01i 0.004257 + 0.00001332i 0.103160 + 0.000109821i

5.000 - 0.01i 0.042448 + 0.00031193i 0.230453 + 0.000617812i

3.200 - 0.01i 0.356839 + 0.00913118i 0.552670 + 0.00722059i

3.100 - 0.01i 0.481506 + 0.0174922i 0.651771 + 0.0142386i

3.000 - 0.01i 0.838022 + 0.138058i 0.976877 + 0.217790i

2.900 - 0.01i 0.716970 + 0.644469i 0.666148 + 0.427229i

...

2.000 - 0.01i -0.679582 + 0.717773i 0.367256 + 0.532098i

...

1.200 - 0.01i -0.990512 + 0.0830288i 0.264783 + 0.793926i

1.100 - 0.01i -0.995069 + 0.0302862i 0.242050 + 0.927258i

1.000 - 0.01i -1.00071 + 0.000704934i 0.382753 + 1.42850i

0.900 - 0.01i -1.03330 - 0.00524755i -0.446485 + 0.830781i

0.800 - 0.01i -1.10216 - 0.00857685i -0.431632 + 0.629673i

...

0.200 - 0.01i -3.77435 - 0.185309i -0.195181 + 0.123569i

0.100 - 0.01i -7.44245 - 0.740894i -0.119693 + 0.0668312i

- 0.01i - 74.9983i 0.0209638i

-0.100 - 0.01i 7.44245 - 0.740894i 0.119693 + 0.0668312i

Table 5. Graphene: values of x, u, and the Stieltjes, or Green, function S(x)
near the spectrum [−3, 3].

From (27), ν0/2 and νn, n > 0,= the coefficients of z−n of
3(z − z−1)

4
S

(

x =
3(z + z−1)

2

)

=

3(z − z−1)

4

[

2

3(z + z−1)
+ 3

(

2

3(z + z−1)

)3

+ · · ·
]

=
1

2
− 1

3z
+ · · ·

How to compute accurately a very large set of these coefficients? A recurrence relation is an
invaluable tool for efficient and economical computation of a sequence. Of course, one must be
lucky, or clever, enough to find such a relation. For instance, Piessens & al. [61,62] find recurrence
relations for examples of Chebyshev modified moments.

An important family of recurrence relations is found for sequences of Taylor (or Laurent,
or Frobenius) coefficients of solutions of linear differential equations with rational coefficients
(Laplace method, see Milne-Thomson [56, chap. 15], Bender & Orszag [5, § 3.2, 3.3]). Let F (x) =
∑∞

0 cnx
n be a solution of the differential equation

∑δ
m=0Xm(x)dmF (x)/dxm =

∑∞
0 αnx

n, where

Xm(x) is the polynomial
∑d

p=0 χm,px
p, and where the right-hand side is a known expansion.

Then, substituting the unknown expansion
∑

crx
r of F (x) into the differential equation,

∑δ
m=0Xm(x)[

∑∞
r=m r(r − 1) · · · (r −m + 1)crx

r−m] =
∑∞

0 αnx
n, and we gather the terms con-

tributing to the xn power:
∑δ

m=0

∑d
p=0 χm,p(n+m− p)(n+m− p− 1) · · · (n− p− 1)cn+m−p = αn,

n = 0, 1, . . . , which is the sought recurrence relation involving cn+δ, . . . , cn−d.

We apply this programme to the coefficients of the expansion

3(z − z−1)S(x)/4 = 3(z − z−1)
√
uxK(u)/(4π) =

ν0

2
+

∞
∑

n=1

ν2n

z2n
(32)

where u is the algebraic function
x4 − 6x2 − 3 −

√

(x2 − 1)3(x2 − 9))

8x
, and where x = 3(z+1/z)/2.
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First, u(1−u2)d2K/du2+(1−3u2)dK/du−uK = 0 [60, § 19.4.8] turns into the more beautiful
d2(

√
uK)

du2
− 2

u

1 − u2

d(
√
uK)

du
+

√
uK

4u2
= 0.

Next, u is the root of u+ 1/u = (x4 − 6x2 − 3)/(4x) behaving as 4/x3 for large x, we translate
in z from x = 3(z + 1/z)/2, leading to the rather formidable

u,
1

u
=

27z4 + 36z2 + 2 + 36z−2 + 27z−4 ∓ (z − z−1)(9z2 + 14 + 9z−2)3/2

64(z + z−1)
(33)

So, we differentiate u+ u−1 =
27z4 + 36z2 + 2 + 36z−2 + 27z−4

32(z + z−1)
as

(1 − u−2)du =
81z5 + 171z3 + 106z − 106z−1 − 171z−3 − 81z−5

32z(z + z−1)2
dz, or

du

udz
=

(z2 − 1)(9z2 + 14 + 9/z2)2

32(z2 + 1)2(u− u−1)
= −(9z2 + 14 + 9/z2)1/2

z2 + 1
, (34)

which is already better looking than before, and we build the differential equation for
√
uK in

the slightly modified form u
d

du

[

u
d
√
uK(u)

du

]

− u+ u−1

u− u−1
u
d
√
uK(u)

du
+

√
uK(u)

4
= 0 with respect

to the variable z:

z2 + 1

(9z2 + 14 + 9/z2)1/2

d

dz

[

z2 + 1

(9z2 + 14 + 9/z2)1/2

d
√
uK

dz

]

+
27z4 + 36z2 + 2 + 36z−2 + 27z−4

(z − z−1)(9z2 + 14 + 9/z2)3/2

z2 + 1

(9z2 + 14 + 9/z2)1/2

d
√
uK

dz
+

√
uK

4
= 0.

Finally, we turn to the full function of (27) and (31), say F (z) = (z − z−1)S(x) = constant

times (z − z−1)
√
uxK(u) by substituting

√
uK(u) into const. (z − z−1)−1(z + z−1)−1/2S

z2 + 1

(9z2 + 14 + 9/z2)1/2

d

dz

[

z2 + 1

(9z2 + 14 + 9/z2)1/2

d(z − z−1)−1(z + z−1)−1/2F

dz

]

+
(z2 + 1)(27z4 + 36z2 + 2 + 36z−2 + 27z−4)

(z − z−1)(9z2 + 14 + 9/z2)2
d(z − z−1)−1(z + z−1)−1/2F

dz

+
(z − z−1)−1(z + z−1)−1/2F

4
= 0, so

(z2+1)2(9z2+14+9z−2)(z−z−1)2d2F/dz2+(z2+1)(9z4−14z2−72−42z−2−9z−4)(z−z−1)dF/dz

+ 8(3z4 + 18z2 + 22 + 18z−2 + 3z−4)F = 0

Now, put Fz = ν0/2+
∑∞

1

ν2n

z2n
in the differential equation (9z8+14z6−9z4−28z2−9+14z−2+

9z−4)
∑

2n(2n+1)ν2nz
−2n−2−(9z7−14z5−81z3−28z+63z−1 +42z−3 +9z−5)

∑

2nν2nz
−2n−1 +

8(3z4 + 18z2 + 22 + 18z−2 + 3z−4)[ν0/2 +
∑

ν2nz
−2n] = 0, and consider the contributions to z−2n

9(n+ 3)2ν2n+6 + 2(7n2 + 35n+ 45)ν2n+4 − 9(n2 − 2n − 7)ν2n+2 − 4(7n2 − 11)ν2n

− 9(n2 + 2n− 7)ν2n−2 + 2(7n2 − 35n + 45)ν2n−4 + 9(n− 3)2ν2n−6 = 0, n = 0, 1, . . . (35)
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starting at n = −2 with ν0 = 1/2 (which is actually ν0/2) and νn = 0 for n < 0 (the ν0/2 anomaly
can be relieved if we define ν−n = νn, remark indeed that the coefficient of ν2n+k is the coefficient of
ν2n−k with n→ −n). The next items are −1/3,−5/27, 47/243,−167/729, 1013/6561,−15653/177147, . . .
as already seen before, but the recurrence relation (35) allows now to compute incredibly easily
any number of these coefficients, one could get one million of them if needed!

The main asymptotic behaviour of νn follows from S(x) ∼ −(3i)/(4π) log |x − 1|+ const.
near x = ±1, seen above, so, near z = ±z±1

0 = ± exp(±iθ0), where cos θ0 = 1/3, z0 =

(1 + 2i
√

2)/3, from (27): (6/8)(z − 1/z)S(x) ∼ ±(3
√

2/4π) log(z ± z±1
0 ) whence νn = 0 when

n is odd, νn ∼ 2
3
√

2

4π

zn
0 + z−n

0

n
=

3
√

2 cos(nθ0)

πn
when n is even. For instance, ν1000000 =

−0.2197681875531559 10−6 and (3
√

2/π) cos(106θ0) = −0.2197654658865520.
Do we really need the recursion method?? The plain Chebyshev, or Fourier, coefficients are

already so efficient that they can be preferred, as discussed by Weisse & al. [73, §V.B.2, Table II].
See also Prevost [63] on weight reconstruction with Chebyshev moments.
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Figure 3. Graphene: 100 first ρn = n log n[an − 3/2 + (3/4)(−1)n/n− (3/16)/n2] .

Anyhow, computing recurrence coefficients from modified moments yields the main behaviour
an → a∞ = (b−a)/4 = 1.5 as expected from (8). The next correction is given by the |x|α behaviour
near x = 0, with α = 1, and is an ∼ a∞ − ((b − a) cos(nπ)|α|)/(8n) = 1.5 − 0.75(−1)n/n. The
Jacobi-Legendre effect of the endpoints ±3 is (b−a)/(32n2) = 3/(16n2). The remaining behaviour
times n log n believed to be the right factor ρn = n log n[an − 1.5 + 0.75(−1)n/n − 0.1875/n2] is
shown in table 6, and is expected to behave like const. times cos(2nθc + ϕc). Starting with a
large index (here, 135), only crest values are retained, i.e., such that 2nθc + ϕc happens to be
very close to an integer multiple of π. The neighbouring values ρn−1 and ρn+1 are then very
close together, that’s how the interesting values of n are selected. Moreover, the almost common
value of ρn−1/ρn and ρn+1/ρn must then be almost cos(2θc) = −7/9 = −0.7777 . . . , checked in
the last column of table 6 (the first approximated crest is at n = 10, see also Fig. 3), whereas
ϕ/π is estimated through the fractional part of 2nθc/π for these very particular values of n, of
which only those in approximate geometric progression have been selected, in the hope to have a
better view of the limit of |ρn|. Although the phase ϕ is very stable, the evolution of |ρn| towards
its limit is again excruciatingly slow. An approximate law A + B/ log n is again assumed with
the slope B estimated from two successive values, and A as |ρn| − B/ log n (extrapolated value).
With two contributions at ±1 in the spectrum [−3, 3], the formula from 4.4 amounts to expecting√

2 = 1.414 . . . which is neither close nor far from the numerical estimate 1.405 . . .
The first 69999 recurrence coefficients a1 −−a69999 are given in the file
http://perso.uclouvain.be/alphonse.magnus/graphene69999.txt

of size about 2M, with a precision of 25 digits, in the following format:

http://perso.uclouvain.be/alphonse.magnus/graphene69999.txt
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1.7320508075688772935274463,

1.4142135623730950488016887,

1.7320508075688772935274463,

1.2909944487358056283930885,

1.7126976771553505360155865,

...

1.4999899549568860858094207,

1.5000093070617496121273346,

n an rhon slope extrap. phi/pi rho(n-1)/rhon

1 1.732050807568877 0

2 1.414213562373095 0.33595

3 1.732050807568877 -0.12782

4 1.290994448735806 -0.18423

5 1.712697677155351 0.44419

6 1.336549152243806 -0.46936

7 1.628436152438179 0.23792

8 1.419330149577324 0.16886

9 1.556750628851699 -0.57145

10 1.460678158360451 0.77835

11 1.544107839921112 -0.67587

12 1.448901939699682 0.30117

13 1.564500085917823 0.19001

14 1.431783794658055 -0.57642

15 1.567701045607340 0.68518

135 1.507049663059332 0.98260 ,(0) 0.98260 0.7932 -0.7722

1383 1.500654249446685 1.11873 ,(-2.07548) 1.40571 0.7922 -0.7751

2007 1.500299317783996 -1.13581 ,(-2.11734) 1.41425 0.7918 -0.7767

4087 1.500149457578103 -1.15763 ,(-2.09351) 1.40939 0.7902 -0.7795

8210 1.499924544322330 1.17608 ,(-2.08240) 1.40713 0.7920 -0.7760

16077 1.500038998496210 -1.19159 ,(-2.07718) 1.40606 0.7910 -0.7780

34062 1.499974587460581 -1.20647 ,(-2.07210) 1.40503 0.7920 -0.7757

61370 1.499985980208882 -1.21710 ,(-2.07231) 1.40507 0.7910 -0.7778

Table 6. Graphene: values of n, an, ρn = n log n[an − 3/2 + (3/4)(−1)n/n −
(3/16)/n2], (slope), extrap., ϕ/π, ρn−1/ρn
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[8] C. Brezinski, The life and work of André Cholesky. Numer. Algorithms 43 (2006), no. 3, 279-288 (2007).
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Journal d’Analyse Mathématique 73(1997) 267-297.

[30] P. Giannozzi, G. Grosso and G. Pastori Parravicini, Theory of electronic states in lattices and superlattices,
Riv. Nuovo Cimento 13 nr 3 (1990), 1–80.

[31] G.H. Golub, C.F. Van Loan, Matrix computations Fourth edition. Johns Hopkins Studies in the Mathematical
Sciences. Johns Hopkins University Press, Baltimore, MD, third edition, 1996; fourth edition 2013.

[32] R.T. Gregory, D.L. Karney, A Collection of Matrices for Testing Compurtational Algorithms, Wiley, 1969.
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