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Abstract. One considers the recurrence relation of orthogonal polynomials related to weights |t|A(1 + t2r/c2r)−B on the
whole real line, for various integer exponents 2r.

1. Introduction.

We consider a set of polynomials pk of degree k for each k = 0, 1, . . . and all of which are mutually orthogonal over the
weight function w:

∫ b

a

w(x)pk(x)pm(x)dx = 0 if k 6= m. (1)

Monic orthogonal polynomials can be generated from the general recurrence relation

p−1(x) = 0

p0(x) = 1 (2)

pk+1(x) = (x− αk)pk(x) − βkpk−1(x) k = 0, 1, ... (3)

where αk and βk are inductively given by:

αk =

∫ b

a xp
2
k(x)w(x)dx

∫ b

a
p2

k(x)w(x)dx
k = 0, 1, ... (4)

βk =

∫ b

a p
2
k(x)w(x)dx

∫ b

a
p2

k−1(x)w(x)dx
k = 1, 2, ... (5)

A Lorentz weight

w(t) = |t|A(1 + t2/C)−B (6)

has simple known recurrence coefficients (see further on) if the weight is considered on the whole real line. Remark also

that, if B = C is large, we are close to the Hermite weight |t|Ae−t2 .
However, many applications ask for Gaussian integration formulas associated to particular weight functions only on the

positive half of the real line. A typical example is the Maxwell distribution x2e−x2

needed on x > 0. Some authors [15,16,18]
work with ‘kappa’ distributions x2(1 + x2/κ)−κ−1 which look like the Maxwell’s distribution for small x, but decay much
slower for large x.

2. Recurrence coefficients.

We proceed with general identities which will be needed here, and which can be found in any general textbook on orthogonal
polynomials, such as [5, 9, 21], also books on formal orthogonal polynomials [4]

We only consider even weight functions on symmetric intervals (−a, a), so that αk = 0. Then, p2k(
√
x) are the orthogonal

polynomials related to w(
√
x)/

√
x on (0, a2) [5, ].

So, the weight functions x2e−x2

and x2(1+x2/κ)−κ−1 on the positive half-line are related to |t|5e−t4 and |t|2(1+t4/κ)−κ−1

on t ∈ R.
We consider here the Lorentz-like weight

w(t) = |t|A(1 + t2r/c2r)−B (7)

on the whole real line −∞ < t <∞.
With these definitions, the first coefficients can be calculated analytically: the moments of (7) are

1
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m2n =

∫

∞

−∞

|t|A+2n(1 + t2r/c2r)−Bdt

=
cA+2n+1

r

∫ 1

0

uB−1−(A+2n+1)/(2r)(1 − u)(A+2n+1)/(2r)−1du

=
cA+2n+1

r

Γ

(

B − A+ 2n+ 1

2r

)

Γ

(

A+ 2n+ 1

2r

)

Γ(B)
,

using u = 1/[1 + t2r/c2r]. Of course, these moments are finite only while n < (2rB −A− 1)/2.
Then,

β1 =
m2

m0
= c2

Γ

(

B − A+ 3

2r

)

Γ

(

A+ 3

2r

)

Γ

(

B − A+ 1

2r

)

Γ

(

A+ 1

2r

) , β2 =
m4

m2
− m2

m0
,

etc. Further recurrence coefficients may be computed through the qd scheme (rhombus rules, see [10, p. 527], see also
Brezinski [4, p. 166] for a relation with the ε−algorithm), as shown in the following small matlab/octave program [17]:

% lor2006.m: moments and recurrence coeff for

%

% |t|^A (1+(t/c)^(2r))^(-B) on -infty, +infty

%

clear;rABc=input(’ enter r A B c between [ ] ’);

r=rABc(1);A=rABc(2);B=rABc(3);c=rABc(4);

nmx=floor(r*B-(A+1)/2);if nmx>=r*B-(A+1)/2, nmx=nmx-1;end;n=0:nmx;

% moments

mom=beta(B-(A+2*n+1)/(2*r),(A+2*n+1)/(2*r));

% qd

e=zeros(1,nmx);

q=c^2*mom(2:nmx+1)./mom(1:nmx);[1,q(1:min(nmx,5))],

for k=2:2:nmx,

eaux=q(2:nmx-k+2)-q(1:nmx-k+1)+e(2:nmx-k+2);[k,eaux(1:min(nmx-k+1,5))],

if k<nmx,q=(eaux(2:nmx-k+1)./eaux(1:nmx-k)).*q(2:nmx-k+1);

[k+1,q(1:min(nmx-k,5))], end;

e(1:nmx-k+1)=eaux(1:nmx-k+1);

end;

The first column of the output is made of the recurrence coefficients β1, β2, . . . related to the weight w(t); the second,
third,etc. columns are related to the weigths t2w(t), t4w(t),etc.

Elegant as it may be, this algorithm is unsatisfactory in finite precision.

We will often need expansions of products tspk(t) in the basis {p0, p1, . . .}. We only have to iterate (3) in the form
tpk(t) = pk+1(t) + βkpk−1(t):

tp(t) = M p(t) : t











p0(t)
p1(t)
p2(t)

...











=











0 1
β1 0 1

β2 0 1
. . .

. . .
. . .





















p0(t)
p1(t)
p2(t)

...











(8)

then, tsp(t) = M
sp(t), so that M

s
i,j is the coefficient of pj(t) in the expansion of tspi(t) (the indexes start at 0).
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First instances:

pi−3(t) pi−2(t) pi−1(t) pi(t) pi+1(t) pi+2(t) pi+3(t)
tpi(t) βi 0 1
t2pi(t) βiβi−1 0 βi + βi+1 0 1
t3pi(t) βiβi−1βi−2 0 βi(βi−1 + βi + βi+1) 0 βi + βi+1 + βi+2 0 1

(9)

For t4, t4pi(t) = βiβi−1βi−2βi−3pi−4(t) + βiβi−1(βi−2 + βi−1 + βi + βi+1)pi−2(t) + +(βiβi−1 + β2
i + 2βiβi+1 + β2

i+1 +
βi+1βi+2)pi(t) + (βi + βi+1 + βi+2 + βi+3)pi+2(t) + pi+4(t)

3. Differential relations.

3.1. Orthogonal polynomials satisfying differential relations and equations.

We now come to a special class of weight functions allowing remarkable relations for the recurrence coefficients:
Lemma.If the logarithmic derivative w′/w is a rational function, the recurrence coefficients satisfy exactly computable

equations

Fk(α0, β1, . . . , αk+d−1, βk+d) = 0, Gk(α0, β1, . . . , αk+d−1, βk+d, αk+d) = 0,

for k = 1, 2, . . . , where d depends on the degree of the rational function w′/w. Moreover, the orthogonal polynomials satisfy

differential relations and equations of the form

Pp′k = Qkpk +Rkpk−1, PRkp
′′

k + Ukp
′

k + Vkpk = 0,

where P,Qk, Rk, Uk, and Vk are polynomials of fixed degree.

This statement has been discovered and rediscovered in various forms, see [14, 20]. Most authors are interested in the
differential formulas for pk, but the computationnaly interesting items are the Fk and Gk’s.

3.2. The making of the equations.

We give here only a part of the proof for an even weight w on |u| < a, then Gk = 0. Suppose we have w′(t)/w(t) = q(t)/p(t),
where we also manage to have lim p(t)w(t) = 0 when t→ ±a. Then, by integration by parts,

∫ a

−a

p(t)pk−1(t) p
′

k(t)w(t) dt = −
∫ a

−a

pk(t) [p(t)pk−1(t)w(t)]′ dt

= −
∫ a

−a

pk(t) p′(t)pk−1(t)w(t) dt

−
∫ a

−a

pk(t) p(t)p′k−1(t)w(t) dt

−
∫ a

−a

pk(t) pk−1(t) p(t)w
′(t) dt

(10)

The first and the third of these three latter integrals involve the product of pk and the polynomial of fixed degree p′ + q
(after replacement of pw′ by qw). By the rules of (9), the product is a linear combination of, say, pk+d, pk+d−1, . . . with
coefficients [(p′ + q)(M )]k,j , j = k+ d, k+ d− 1, . . . which are simple polynomials in βk+d, . . . , βk−d. Then, by orthogonality
of the pks with respect to w, the value of the two integrals comes out as the coefficient of pk−1 times ‖pk−1‖2.

The left-hand side and the second of the three latter integrals are estimated in a similar way, after having written the
derivative of a p polynomial in its own basis:

p′k(t) = kpk−1(t) + δkpk−3(t) + ǫkpk−5(t) + · · · , (11)

so that the left-hand side of (10) is

k[p(M)]k−1,k−1‖pk−1‖2 + δk[p(M )]k−3,k−1‖pk−1‖2 + ǫk[p(M )]k−5,k−1‖pk−1‖2 + · · ·
and the right-hand side is

−(k − 1)[p(M)]k−2,k‖pk‖2 − δk−1[p(M)]k−4,k‖pk‖2 − ǫk−1[p(M)]k−6,k‖pk‖2 + · · · − [(p′ + q)(M)]k,k−1‖pk−1‖2,
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and the final equation is found after dividing by ‖pk−1‖2, reminding that ‖pk‖2/‖pk−1‖2 = βk,

Fk(β1, . . . , βk+d) = −[(p′ + q)(M )]k,k−1 − k[p(M )]k−1,k−1 − δk[p(M )]k−3,k−1 − ǫk[p(M )]k−5,k−1 − · · ·
− βk{(k − 1)[p(M)]k−2,k + δk−1[p(M)]k−4,k + · · · } = 0,

(12)

for k = 1, 2, . . . One needs a number of terms of the expansion in δ, ǫ, . . . which depends on the width of the bandmatrix
p(M).

The coefficients δk, ǫk, . . . in (11) are polynomials in the β’s too [2]: from
pk(t)

pk−1(t)
= t− βk−1

t− βk−2

t− · · ·

= t − βk−1t
−1 −

βk−1βk−2t
−3 +O(t−5),

p′k(t)

pk(t)
−
p′k−1(t)

pk−1(t)
=

d

dt
log

(

pk(t)

pk−1(t)

)

= t−1 + 2βk−1t
−3 + [2β2

k−1 + 4βk−1βk−2]t
−5 +O(t−7)

whence, by summing,

p′k(t)

pk(t)
= k

pk−1

pk
+ δk

pk−3

pk
+ ǫk

pk−5

pk
+O(t−7) = kt−1 + 2

k−1
∑

1

βit
−3 +

k−1
∑

1

[2β2
i + 4βiβi−1]t

−5 +O(t−7) (13)

Comparing the coefficients of t−3 and t−5 in the expansions:

δk = 2

k−1
∑

1

βi − kβk−1 ǫk = 2

k−1
∑

1

[β2
i + 2βiβi−1] − k[β2

k−1 + βk−1βk−2] − δk[βk−1 + βk−2 + βk−3] (14)

3.3. Exercise 1: Laguerre and Hermite polynomials.

w(t) = |t|A exp(−t2) on (−∞,∞) :
w′(t)

w(t)
=
A

t
− 2t,

corresponds to the Laguerre weight x(A−1)/2 exp(−x) on (0,∞.
The sensible choice seems to be p(u) = t2 (p must be an even polynomial), and q(u) = At− 2t3. As M

2 is a five-diagonal
matrix, the nonzero terms of (12) are

−(A+ 2)[M ]k,k−1 + 2[M3]k,k−1 − k[M 2]k−1,k−1 − δk[M 2]k−3,k−1 − (k − 1)βk[M2]k−2,k = 0,

or

−(2A+3)βk+2βk(βk−1+βk+βk+1)−k(βk−1+βk)−δk−(k−1)βk = −(2A+3)βk+2βk(βk−1+βk+βk+1)−(2k−1)βk−2

k−1
∑

βi = 0

We keep the degree of p as low as possible, so to avoid big bandmatrices in (12): with p = 1, q is not a polynomial, but a
polynomial divided by t, and (12) has a strange term with M

−1:

−A[M−1]k,k−1 + 2[M ]k,k−1 − k = 0.

But [f(M)]i,j is a shorthand for the integral of f(u)pi(u)pj(u)w(u) divided by ‖pj‖2. There is nothing wrong with of
u−1pk(u)pk−1(u), as pkpk−1 is an odd polynomial! The result is 0 if k is even, and 1 if k is odd. One then gets immediately

βk =
k +A[1 − (−1)k]/2

2
.

3.4. Exercise 2: Maxwellian weight.

x(A−1)/2 exp(−x2) dx = 2w(t) dt = 2|t|A exp(−t4) dt :
w′(t)

w(t)
=
A

t
− 4t3 (15)

on the whole real line for t.

Fk = −A[M−1]k,k−1 + 4[M3]k,k−1 − k = 0.

the sought relation is

Fk = −A[1 − (−1)k]/2 + 4βk(βk+1 + βk + βk−1) − k = 0, k = 1, 2, . . . (16)
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established by various authors through history [3, 8, 12, 14, 20, ,...]!

This remarkably simple relation seems to allow the computation of any sequence {β1, . . . , βN} from the knowledge of the
single β1! However, the obvious repetition of βi+1 = [i + A(1 − (1)i)/2 − βi − βi−1]/(4Bβi) soon turns into a numerical
nightmare. Any numerical error in β1 is strongly amplified in the subsequent βi’s. This is a consequence of unicity of positive
solution [22].

Instead of considering (16) as an initial value problem, we have to consider it as a nonlinear boundary value problem for
β1, . . . ,, given β0 = 0, and knowing that βi > 0 for i = 1, 2, . . .. A numerically valuable use of (16) consists in correcting a
whole positive sequence β1,old, . . . , by seeing each instance of (16) as an algebraic equation for βi:

βi,new = −βi+1,old + βi−1,old

2
+

√

(

βi+1,old + βi−1,old

2

)2

+
i+ (2A+ 1)(1 − (−1)i)/2

4B
, i = 1, 2, . . . (17)

which sends positive sequences on positive sequences, may be shown to be contractive, and has interesting by-products, such
as to allow a formal proof of the asymptotic behaviour

βi =

√

i

12B
+ o(i1/2)) (18)

when i → ∞, [8, 14]. One sees then how to build a satisfactory finite sequence β1, . . . , βN by putting the boundary value

βN+1 =
√

(N + 1)/(12B) for a large N . Asymptotic behaviour is also used by Kolb [11], and by Clarke & Shizgal [6].
Much more efficient Newton-Raphson iteration: see [12]

4. Lorentzian weight.

4.1. General power r.

Now, from (7), one has

w′(t

w(u)
=
A

t
− 2Brt2r−1

c2r + t2r
(19)

on the whole real line for t.
So,

p(t) = c2r + t2r, q(t) =
Ac2r

t
+ (A− 2Br)t2r−1, p′(t) + q(t) =

Ac2r

t
+ (A− 2(B − 1)r)t2r−1.

There is nothing wrong in considering the Lorentzian weight w(t) = |t|A (1+t2r/c2r)−B , A > −1, B > 0, on (−∞,∞), as
long as the integrals in (??) only involve functions decreasing faster than |t|−1 when |t| → ∞. So, βk still exists if ‖pk‖ <∞,
i.e., 2k +A− 2Br < −1, or

k < Br − (A+ 1)/2. (20)

Equation (12) is now

Fk = −Ac2r[1 − (−1)k]/2 + (2(B − 1)r −A)[M 2r−1]k,k−1 − kc2r − k[M2r]k−1,k−1 − δk[M2r]k−3,k−1 − ǫk[M2r]k−5,k−1 − · · ·
− βk{(k − 1)[M2r]k−2,k + δk−1[M

2r]k−4,k + · · · } = 0,

(21)

which is practically untractable, unless if r = 1 or r = 2, this latter one being our example of interest anyhow. The first
case is taken as exercise:

4.2. Exercise r = 1: Romanovski, Lesky.

Fk(β1, . . . , βk) = −Ac2[1 − (−1)k]/2 + (2B − 2 −A)[M ]k,k−1 − kc2 − k[M2]k−1,k−1 − δk[M2]k−3,k−1 − βk(k − 1)[M2]k−2,k

= −Ac2[1 − (−1)k]/2 + (2B −A− 1 − 2k)βk − kc2 − 2

k−1
∑

1

βi = 0,
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which receives the explicit solution

βk = c2
(k +A[1 − (−1)k]/2)(2B − k −A[1 − (−1)k]/2)

(2B −A− 2k − 1)(2B −A− 2k + 1)
, β1 +β2 + · · ·+βk = c2

(k +A[1 − (−1)k]/2)(A+ k + [1 − (−1)k]/2)

2B −A− 2k − 1
,

(22)
a special case of pseudo-Jacobi polynomials [13].

4.3. Lorentz case, r = 2.

Now,

Fk(β1, . . . , βk, βk+1) = 2(2β −A− 2 − k)βkβk+1 + ρk = 0, (23)

where ρk is the sum of terms in Fk not involving βk+1:

ρk = −(A+ 1/2)[1 − (−1)k] + (4β − 2A− 2)βk(βk−1 + βk)

− k[1 + βk−1βk−2 + β2
k−1 + 2βk−1βk + β2

k] − δk(βk−3 + βk−2 + βk−1 + βk) − ǫk

− (k − 1)βk(βk−2 + βk−1 + βk) − δk−1βk

= −(A+ 1/2)[1 − (−1)k] + 2(2β −A− 2 − k)βk(βk−1 + βk)

− k − 4βk

k−2
∑

βi − 2βkβk−1 − 2

k−1
∑

[β2
i + 2βiβi−1],

(24)

which we may as well compute, while k < 2B −A− 2 , directly for βk+1, although in high precision:

βk+1 = − ρk

4B −A− 2k − 3)βk
,

as in the following matlab/octave program [17]:

%

% lor2005.m Lorentz

% w(x) = x^(A-1/2) (1+x^2/c)^(-B) on (0,infty)

%

% monic pol. : Q_{n+1}(x) = (x-\alpha_n)Q_n(x) - \beta_n Q_{n-1}(x)

%

% intermediate orthog. pol. R_n w.r.t.

% |t|^A (1+t^4/c)^(-B) on (-\infty, \infty)

%

% R_{2n}(t)=Q_n(t^2) let R_{n+1}(t)=tR_n(y)-\gamma_n R_{n-1}(t)

%

% then \alpha_n = \gamma_{2n}+\gamma_{2n+1}

% \beta_n = \gamma_{2n} \gamma_{2n-1}

%

%

clear;ABc=input(’ enter A B c between [ ] ’);

A=ABc(1);B=ABc(2);c=ABc(3);

nmx=floor(2*B-(A+1)/2);if nmx>=2*B-(A+1)/2, nmx=nmx-1;end;

norm0=c^((A+1)/4)* gamma(B-(A+1)/4)*gamma((A+1)/4) /(2*gamma(B));

norm1=c^((A+3)/4)* gamma(B-(A+3)/4)*gamma((A+3)/4) /(2*gamma(B));

d=norm1/norm0; d1=0;

ioddn=1;

[1,d], % gamma1

sum1=0;sum2=0;

for n=1:nmx-1,

% relation gam(1) ... gam(n+1)

coefn=2*B-(A+3)/2;

coefdp1=2*(coefn-n)*d ;

rho= -A*c*ioddn+2*(coefn-n)*(d+d1)*d -n*c -2*d*sum1-2*sum2;
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if abs(coefdp1)<0.00001 , fprintf(1," ! \n ");coefdp1=d ;end;

dp1=-rho/coefdp1;

norm1=norm1*dp1;

sum1=sum1+d+d1 ; sum2=sum2+d*(d+2*d1);

[n+1,dp1,sum1,sum2],

ioddn=1-ioddn;

d1=d ;d=dp1 ;

end;

but numerical instability soon settles in if β is large.

Sensible way is again to compute the βn’s from the two boundary values β0 = 0, and some βN with N not far from rB−A,
should such a value be available. . .

This can be done for special values of A and B. Here is a formula when A = 0:

4.4. Particular values.

Proposition.When r and B are positive integers, and when A = 0,

βrB−1 = c2
[

sin(π/(2r))

3 sin(3π/(2r))
+

B2

3 sin2(π/(2r))

]

(25)

Indeed, we have to consider orthogonal polynomials with respect to w(t) = (1 + t2r/c2r)−B on (−∞,∞). The two last
ones are

prB−1(t) =
R(t)B − (−1)rBR(−t)B

2iBc/ sin(π/(2r))
, prB(t) =

R(t)B + (−1)rBR(−t)B

2
,

where R(t)R(−t) = (−1)r(t2r + c2r) is the factorization of (−1)r(t2r + c2r), where R is a monic polynomial of degree r with
zeros of negative imaginary part:

R(t) =

r
∏

k=1

[t+ ic exp(iπ(2k − r − 1)/(2r))]

= tr +
ictr−1

sin(π/(2r))
+
c2tr−2

2

[

δr,1 −
1

sin2(π/(2r))

]

+ ic3tr−3

[

δr,1
2 sin(π/(2r))

+
1

3 sin(3π/(2r))
− 1

6 sin3(π/(2r))

]

+ · · ·

R(t)B = trB +
icBtrB−1

sin(π/(2r))
+
c2trB−2

2

[

Bδr,1 −
B2

sin2(π/(2r))

]

+ ic3trB−3

[

B2δr,1
2 sin(π/(2r))

+
B

3 sin(3π/(2r))
− B3

6 sin3(π/(2r))

]

+ · · ·
(26)

Remark that the polynomial prB has a meaning despite its infinite norm, as we only have to check orthogonality with powers
of same evenness up to trB−2. To prove this orthogonality, as (−1)r(c2r + t2r)B is the product of R(t)B and R(−t)B, we
must check that the integrals of tk/R(±t)B on (−∞,∞) all vanish for k = 0, 1, . . . , rB − 2. And that appears by making a
contour integral by adding a big semicircle in the upper or the lower half complex plane, so as to avoid the poles (which have
imaginary part of the same sign).

We then find βrB−1, βrB−2, . . . from the continued fraction expansion about ∞

prB(t)

prB−1(t)
=

trB +
c2trB−2

2

[

Bδr,1 −
B2

sin2(π/(2r))

]

+ · · ·

trB−1 + c2tr−3

[

Bδr,1
2

+
sin(π/(2r))

3 sin(3π/(2r))
− B2

6 sin2(π/(2r))

]

+ · · ·
= t− βrB−1

t− βrB−2

t− · · ·
whence (25) follows. �

Remark also that β1 + · · · + βrB−1 =
c2

2

[

−Bδr,1 +
B2

sin2(π/(2r))

]

, opposite to the coefficient of trB−2 in prB(t).

The other β’s are more complicated. To consider only βrB−2, oneshouldexpandβrB−1prB−2(t) = tprB−1(t) − prB(t),
showing that prB−2(t) is a constant times a sum or a difference of (t − ϕ)R(t)B and (t + ϕ)R(−t)B, so as to ensure the
vanishing of the trB+1, trB, and trB−1 terms. This leads to ϕ = icB/ sin(π/(2r)).

Actually, simpler formulas for βn are found in the forbidden region n > rB − 1. . . Now, prB+1(t) is again a constant times
a sum or a difference of (t−ψ)R(t)B and (t+ψ)R(−t)B, but where ψ is such that the result is orthogonal to trB−1, trB−3 . . .
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and lower powers of the same evenness. To this end, one extends the scalar product of f(t) and R(±t)B to a contour integral
of f(t)/R(∓t)B avoiding the zeros of R(∓t). The value of the integral reduces then to 2πi times the residue at ∞, i.e.,
the coefficient of t−1 in the Laurent expansion about ∞. With trB−1(t ± ψ)/R(±t)B, the orthogonality condition is again
ψ = icB/ sin(π/(2r))! The coefficient of trB−1 in prB+1(t) is then the coefficient of trB−2 in prB(t) minus ψ2, whence finally
βrB = −c2B2/ sin2(π/(2r)).

Larger even integer A could also be studied through orthogonal polynomials with respect to wA(t) = tA(1 + t2r/c2r)−B =
tAw0(t) on (−∞,∞). The orthogonal polynomials pn with respect to this weight is a kernel polynomial built with orthogonal
polynomials relative to the weight wA−2(t) = wA(t)/t2. The formula relating the two families of orthogonal polynomials is

pn(t))t2w(t) =
(pn+2(t))w(t) − cn(pn(t))w(t)

t2
,

where cn is such that the numerator is a multiple of t2.
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