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Abstract

In this article it is presented a general method to construct an
orthonormal basis of the space L2 (a,b), where w represents a con-
tinuous, nonnegative and integrable weight function. This method is
firstly described through an example: we present an orthonormal ba-
sis of L2 (R), where w (z) =27~ (1+ :1:2)_1. This basis is formed by
pole-free rational functions whose behaviour over R is very close to
that of the basis trigonometric functions over (—1,1). The concrete
behaviour of these functions and their main properties are described
and some applications are given; also, a connection with the Sturm-
Liouville theory is presented. Normally it’s very difficult, when not
impossible, to calculate the explicit Fourier coefficients with respect
to this basis; however, in some cases it’s possible to find them by using
technics of complex analysis; in order to illustrate this idea some con-
crete expansions are presented. The last part of the work is devoted
to the study of the general method.



1 Introduction.

It’s a very well known fact that the functions

1
—,cos7h,sin7h, ..., cosnmh,sinnwd, ... 1
{\/5 } g

form an orthonormal basis of the space L% (—1, 1), if we consider the change
of variable given by the expression

0
e (-1,1)—x(0) = tan7r§ € R, (2)
we find the also well known equalities
1— 22 2 do 2
0 i —— 1 0 i —— B = —_— .
cosf () 1+ 2%’ sinf (z) 1+ 2%’ dzx () 7 (14 z2)
These relations allow us to show immediately that if we define
1—2? 2x 2
¢y () = 152 Yy (z) == 1+ a2 w(z) = (1t 2 3)

then we will have

[#@o@de= [ h@w@di= [ 6@ @) =0
/Rﬁ(x)w(x)dm:/Rzﬁ(x)w(m)dx:1, /Rw(m)dx:2;

in other words, the set
1 by b = 1 1—-22 2z
\/57 1) %1 - \/5,1+$2’1+.’I}2
is an orthonormal system of the Hilbert space L2 (R), where the inner product
is defined by

(f,9)., I=Af(m)g(x)w(m)dm.

By extending this idea it’s easy to show that if we define, for n > 2,

¢, () := cosnmf (x) = cosnm <g arctan x)
7

2
Y, (z) :=sinnnf (z) = sinnw <— arctan m) ,
s
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then the sequence

1
{Ea¢la¢la---a¢na¢na"'} (4)

is an orthonormal basis of L2 (R); in fact it’s just the usual trigonometric
basis of L2 (—1, 1) transformed by the diffeomorphism defined in (2).

In this work this basis is presented and studied, and explicit expressions
for these functions are found. The article is organized as follows: in section
two we find these explicit expressions by generalizing a fundamental trigono-
metric identity; these expressions allow us to describe some basic properties
of these functions and some of their applications, a connection with the
Sturm-Liouville theory is also presented. Section three is devoted to the con-
struction of some Fourier series with respect to this basis, including those
of the trigonometric functions sinz and cosz and also that of Heaviside’s
function; a simple proof of the density of rational functions in L? (R) is also
presented in this section. Finally, a more general version of this theorem is
given in section four, which is devoted to generalize the previous ideas; this
generalization allows us to construct a kind of trigonometric series which
might be called, with the biggest caution, “weighted trigonometric series”.

2 The basis of L? (R).

2.1 Construction via a recursion formula.

We begin by considering the orthonormal system {%, ?1, le} described in
the introduction; we saw there that ¢, “plays the role” of the function cos @
and 1, “plays the role” of the function sin § in the usual trigonometric basis
of L? (—1,1); roughly speaking, what we are going to do is to “extend” this
orthonormal system to a basis by finding the corresponding functions which
will “play the role” of the trigonometric functions cos 26, sin 26, ... etc. In
order to achieve this, and taking into account the identities

cos (n + 1) w6 = cos nmf cos w6 — sin nw6 sin w0,

sin (n + 1) 70 = sin nwd cos 7§ + cos nmwl sin w0,



it seems natural to define, for n > 1 and = € R:
Oni1 (2) = by (2) $1 (2) — ¥ (2) ¥4 ()

Vi1 (2) =y, (2) ¢y (2) + ¢, (2) Yy (),

with . ) )
—x x
o (m)zm, (0 (m)zm-
According to our previous discussion, this sequence completes the initial
orthonormal system to an orthonormal basis of L2 (R): since (1) is an or-
thonormal basis of L? (—1,1), this is just an immediate consequence of the
equalities

¢, () = cosnml (z), ¥, () = sinnnb (), n>1,
and
df (z) = w (z) dz,

all of them being clear.
Relations (5) give us a first idea of how to find the functions of the basis
of L2 (R): we have, for instance,

b, (z) = 41 (z) — 7 (2)
(1-2a? 2 2z 2_1—6x2+m4
_<1+m2> _(1+x2> N (1+:102)2 ’

Yy (T) = 2¢; (7)Y, ()
1=z 2z Az —4d?

1+$21+$2_(1+$2)2

and

The necessary calculations to construct ¢,, and v,, become much more com-
plicated as n grows; direct application of this idea becomes impractical and
an alternative way to find the basis functions is then necessary. In the next
sections we give closed expressions for the basis functions which are based
on the generating functions.



2.2 A fundamental equality.

This equality will allow us to construct the generating functions, which will
be a key for finding easy expressions for the basis functions. It comes directly
from (5), and can be stated as follows: if we define, for n > 1 and z € R,

Vo (%) 7= ¢ (2) + ity (2),

then we have
Yo =75
in other words,
b + i, = (P1 +i01)" . (6)
The proof goes as follows: the property being true for n = 1, let’s suppose
that it’s true up to the index n; we have, by (5),

¢n+1 + i¢n+1 = ¢n¢1 - ¢n¢1 +1 (¢n¢1 + ¢n¢1)

= (¢, +11,) (¢1 +ithy) = (¢1 +i0)" (&1 + ithy)
= (¢y +ithy)"* .

2.3 Extension of the sequence of basis functions to Z.
By considering again the equalities
¢, (x) = cosnm (z), ¥, () = sinnnl (z),

one finds
¢72z + ?ﬁi = 1a
and this yields
(b + it00) ™" = by + i, = ¢y, — 1),

This simple relation, together with (6), will allow us to define functions
¢, and 1, not only for the positive integers but for all the integers k € Z:
let’s consider a natural number n > 1 and let’s suppose that (6) is to be valid
also for the negative integers, we will have

¢—n + i¢—n = (¢1 + “ﬁl)_n
= (¢ +ivy) )" = (6, +i9,)"
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(¢1 + i¢1)n = (¢n + Wn)
= ¢n - upn:

this forces, for n > 1, the definition

¢_,(x) : =¢,(x), z€ER,
Y, () : ==, (z), zeR

According to the last equality we are obliged to define

Yo () =0, zeR;
taking this into account, and if the relation

$o (2) + ithg (z) = [y () + ithy (2)]° = 1

is also to be valid, we must define

$(z)=1, zER
also, with these definitions it turns out that

Von (2) = ¢y () + i, () = &y () — Wy, (2).

This is the unique coherent extension of the sequence of basis functions
to Z which ensures that (6) is preserved. Of course, we find an obvious
parallelism with the relations

cos (—0) = cosf, sin(—60) = —sinf, cos0=1, sin0=0,

and
exp (—if) = cosf — isin 6.

More similarities with the trigonometric system are now found: according to
this extension, the equalities

Pprq = PpPg = Vp¥or  Uprg = pbq + Gpiby;

make now sense for any p, q € Z, and it follows that

(¢p+q + ¢p_¢1) )

1 1 1
PpPq = 9 (¢p—q + ¢p+q) o Yply = 9 (¢p—q - ¢p+q) o Ypby = 9
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Also, taking into account (6) and the equalities
¢,1 = _ﬂ-wwla Wl = ﬂ-wéla
which come directly from (3), one finds
Vo = INTWYy,
in other words,
¢, = —nmwwi,, P = nrwe,,.
2.4 Construction of the generating functions and
applications.

We begin by stating the following property, which is an immediate conse-
quence of (5): given a natural number n > 0, a polynomial p, of degree 2n
and a polynomial ¢, of degree 2n — 1 exist in such a way that

_ pn() _ u(T)
¢, (z) = A+ 22" Y, (z) = Ata2) (7)

The problem of finding ¢,, and 1, is then equivalent to that of finding p,
and g,. On the other hand, equation (6) allows us to construct immediately
the generating functions of ¢,, and v,,; if we define formally, for z,r € R,

b (z,7r) : Z¢ k
U(z,7) lek (z) k’

then we have

Z ¢y () +ubk (z) ok

k=0

®(z,7)+ iV (z,7) =

Bk — exp (3 () )
)

= exp (i9hy () ) exp (¢4 () 7)

7

I
Mg

_ Z ’Ykk('x) rk

k=0

ol
[=]



= cos (¢; () r) exp (¢ (2) ) + isin Py (2) ) exp (¢ (2) ),

this yields
® (z,7) = cos (¢ (z) ) exp (¢ (z) )

U (z,2) = sin (¢ (z) 7) exp (¢, (z) 1),

or, in other words,

2 by () 4 _ 2xr 1— 22
kz:; LT = cos 2 exp r-1+m2 ,
(@) o 2zr 1—x?
kz:% LT = sin 2 exp r-1+m2 i
Taking into account the equalities

¢y (x) = cos kb (z) Y (x) = sinkf (z),

one finds
kl* = 185 + ithi|* = d5 + 3 =1,

and this proves convergence everywhere of the series defined above.
Now, by differentiating the preceding expressions with respect to » and
evaluating at r = 0 one finds

] 2r o\ k—2r
(o) o (77%) (53)
k]

o = B A () (5

r=0

—
[N

(]

b (z) =

ﬂ
Il
Lo

—
E

where [z] stands for the largest integer smaller or equal to x; these expressions
can also be written as

o) = ()Y () (ot -t

2r

k

o + 1) (_1)T (2x)2r+1 (1 _ :1}2)k_2r_1 ,

Y@ = (14277 (



since these formulae are not recursive, they can be shown as a first improve-
ment of (5). However, a much easier expression can be found as follows: from
the last equalities, and taking into account (7) we deduce

pe(@) = ](2’“) (-1) 22 (1-27)"7",

r=
k—l]
2

w@ = 3 (5, ) @ -

which can be also written as

—
(NI

—

pe (@) +ige (@) = ) @) (2iz)> (1— %)

= Z ( ) (2iz)" (1 — 22"

=(1-2>+ Zim) = (1 +iz)™

binomial formula applied here yields

2k
(1 + 'l$)2k _ Z <2Tk> Z-'rm’l‘
r=0

k k—1
_ 2k 2r 27 2k 2r+1 _2r+1
—Z<2r)z o +;(2r+1>l v
b9k
. ’f' 21' r _2r+1
-3 () e i () e



and we can then conclude

=S (E)er

r=0

k—1
% .
g (z) = (%+ 1) (—1)7 221,

r=0

(8)

iing

These are the easiest expressions we have found for the polynomials py
and g. Of course, we have the corresponding expressions for ¢, and );:

bu(@) = (1429 g (5r) -2,

Vi @) = (1+2%) - Z (575 1) COram,

In order to illustrate the behaviour of the basis functions we give the graphic
representation of ¢ and 1)5:

-6 - -2 ol 2 6
| X
-0.51

Fig. 1: The function ¢;.
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Fig. 2: The function 5.

2.5 Extension of the basis functions to C.

If we define ¢, (2), ¥,, (2) and 7,, (2) to be the respective extensions of ¢,, (z),
¥, (z) and 7,, () to the whole complex plane C, we immediately find

. i—z\"
1@ =) i () = (52
in other words, ,, is the n-th power of the unique Mobius transformation f
satisfying
flo)==1,  f()=¢,  f(0)=1L

it’s known that such a transformation applies the upper half plane onto the
unit disk D (0,1) and the real line into the edge of this disk. It’s also an easy
matter to show that

. i+2z\"
602 =it () = (122

and this yields
n(z 9"

(z—d)""
this equality is going to be useful later, for the computation of the Fourier
coefficients of the functions of L2 (R) with respect to the basis we have just
found.

b (2) — i, (2)
1+ 22

- (-1)

11



2.6 An application to differential equations.

Let’s choose an integer n € Z— {0} ; it’s known that the unique solution of
the Cauchy problem
u” (0) + n?m%u (0) = 0, 0 eR,

(9)
u (O) = Uo, ' (O) = ué)a

is given by
u (0) = ug cosnml + 0 in nmd, 6 €R,
nw
if we take now (2) into account we find
dr w 5 0 m 9

and

d’z  n? 0 0 2
W = Etanﬂ'g <1+tan2ﬂ'§> = ?m (1+$2) s

these relations transform the differential equation in problem (9) into
(1+ x2)2 v’ (z) + 2z (1 +2°) ' (z) + 4nu (z) = 0. (10)

Now, if we consider the equalities ¢, (0) = 1, v, (0) = 0, ¢, (0) = 0 and
! (0) = 2n, we deduce that the unique solution of (10) satisfying the initial

n
conditions

u(0) =up, v (0)=1ug
is given by the expression
ul
n (2) = 06y (0) + 520, (2), TER
according to (7) and (8) this is

k=0

solution that can be written in a more compact way as
—n n 2n k
up (z) = (1 + 22 . —1)* ¢z®
v = (a3 () (et

12



where
o = { uf), k even,
up/2n, k odd.
Equation (10) can be presented in the following alternative way: multi-
plying (10) by (14 22) " we find

4n?

(14 2*) v (z) + 2zv' (z) + )

——u(z) =0,

this can also be written as

dci ((1 +12%) di“(@) + 2mn’w (z) u (z) = 0,

s . .
since (1 + 22) = 5 a more elegant and compact way to write this equa-

w ()’
tion is
(wu ') + mnwu = 0,
and this is just a very particular case of a Sturm-Liouville equation. Accord-
ing to 2.3 we have

¢;’L = —7Tu)¢n, qp/n = TWPy,

it follows that if we define the spaces

|z[—00

-{ra-esmo(l).r-o(2).

then we can regard the functions {@, },-, as the set of orthonormal solutions
of the Sturm-Liouville problem

= {f:R—)R:limsup|f(:E)| <OO,f,=O(%>};

(w ) + Awu=0, z€R

uevV

and the functions {1, } >, as the orthonormal solutions of the analogous
problem

(W) + Awu =0, z€R

veW

13



The relations u € V, u € W contain asimptotic behaviours corresponding to
the “boundary conditions”, and in both cases {\, = 7®>n?} ", is the corre-
sponding sequence of eingenvalues.

3 Some examples of Fourier series.

Let’s consider a function f € L2 (R), according to the previous sections
and to the elementary theory of Hilbert spaces, we know that f admits an
expansion of the type

frogt g(ancpﬁwn),
where
o = (b= [ F@)0.@w@)ds, 020
b = (b= [ F@) b @)w(@)ds, n21

Some concrete expansions of this kind can be found in a direct way: for
instance, the series
2 < (—1)"H!

ﬂ-nzl n

sin nmd

0 —
in L? (—1,1) gives immediately, via (2),
(_1 n+1

(o]
arctanz = Z szn (z)
n=1

in L2 (R); the next figure shows this expansion with five terms:

14



Fig. 3: Approximation with five terms.

A more interesting example can be found by considering the function

0, -1<6<0

ﬂm:{l 0<6<1

3

which has the trigonometric expansion

~ 1 2 1
~=-+Z in(2n + 1 11
f(0) 2+ﬁzﬂmH4§m(n+)ﬂ9 (11)

in L2 (—1,1), we deduce that if we define f to be the Heaviside’s function

ro={ 250

then f will admit the expansion
1 2 1
f(z) ~ st nz:% m¢2n+l (z)

in L2 (R) ; the following figure corresponds to this series taken up to the term
n=2:

15



N . —

Fig. 4: Approximation up to n = 2.

In general, from a Fourier series

oo

Qo .
f(0) ~ 5 1 Z (a,, cosnml + by, sinnmd)

n=1

in L2 (—1,1) one obtains directly the expansion
2 [e 0]
f <; arctan m) ~ % + ; (and,, () + bptb,, (x))

in L2 (R).

For arbitrary functions, the Fourier coefficients are normally impossible
to be found; however, in certain cases the real integrals can be transformed
into complex integrals and these coefficients can be computed by means of
the residue theorem. The following series were found by making use of this
method.

_ 1
24 g2

Let’s fix a real number ¢ # 0, |c| # 1; we need to calculate the coefficients

3.1 Expansion of the function f ()

an=4f(m>¢n(m>w(x>dm, n>0;

16



1
in order to achieve this, we begin by defining z — f(2) = e the

extension of f to the whole complex plane; we can then write

1 1 1 1

f(z)IQ_c.z%—ic_Q_c.z—ic
or, in other words,
1, 1 (-1)F K
Z) = — 7 + zZ—1) .
f( ) 2 kz:; (C + 1)k+1 (C _ 1)k+1 ( )

On the other hand, according to section 2.5 we have
¢n (Z) B an (Z) _ 1 n (Z + i)n_l
2 - (_ ) S Ant1
1+2 (z —1)
combining this with our previous expression we find
¢n (Z) _Z¢n (Z) . } _ Z(_l)n (C"|— ]')n_l
1+ 22 ’ 2 (c—1)"

Now, let n be a natural number, n > 1, the equality

Res {f(z) :

n—1

(z+)" " =(z—i+20)"" =) (’” ; 1) (2)" (2 — i)

k=0

yields

n—1
¢n (Z) — upn (Z) n (n - 1> Nk 1
= (-1 E 2)" ——,
1 + 22 ( ) P k ( ) (Z _ i)k+2
taking into account these expansions we find

Res {f(z) O (2) — i, (Z).Z.}

1+ 22 ’
(DM (=1, 1 (-
T 2 kzzo( k >( 2 ((c+1)’c+2 (c—1)’“+2)'

Let r be a real number, r > 1, and let’s define the path ~, : [0,1] — C
by

() = { rexp (2mit), 0<t<1/2 12)

(4t — 3) r, 1/2<t<1

17



After applying the residue theorem and after simplifications one finds, for

n > 1:
- [ 1@ @) (@) ds
_ (=) <<c+1>"—1 RAC ) |

e (c=1)"" " (2-1)

where we have defined

=S (" . 1) (o L= = O+

pard (1-¢?)

On the other hand we have

/f / 1 1 d T
. z:
1+22 y, €22 1422 c(l1+¢)’

combining this with the equality

0= [ f@w()do=> hm/ f(2)-

1+2

we find
2
ag = ———;
" c(1+c)’

we can then deduce

f@) = +§Z<—1)"“<(°’“)n_ . _(1))) 6, @),

c(l+¢) — (=" (2

which can also be written as

c - et c+1)"! sn (€)
2+ 1+c Z ( 1)n+1+(02_1)2) ¢ (7).

=1

The following figures show, in red, the expansions of x — %51 2 with
x

five and ten terms respectively:

18



Fig. 5: Approximation with five terms.

Fig. 10: Approximation with ten terms.

3.2 Expansions of the trigonometric functions cosax
and sin azx.

Let a be a real number, a # 0; to find the expansion of the function cos ax
we need to compute

an = /Rcos (az) ¢, (z)w (z)dz, n >0

19



in order to achieve this we call p, (2) the extension of p, () to the whole
complex plane C; the expression (8) allows us to form the power series

(=3 (o) (Cuf

k=0

o[ @E)er

j=0 k:[m]

this can be written as

pn (2) = 2;) (=3) s (2 — 1),
where .
we 5 ()0

on the other hand,

(2 +1z')”+1 - (2i)1"+1 g (n ;L l) <%)l (=4,

after simplifications one finds

P (2) 1 - ke N
T = "ok (2 —1)",
(z+9)" (2" kZ:O

n+ 0\ (—1) sp;
Onk = Z ( I ) ol ]7

=k

where

and this yields, finally,

pa(z) 1 i P* ok
(1+z2)n+1 - (2i)n+1 —

20



We will also take into account the following expansion:

o kok
exp (iaz) = exp (—a) Z (z —19)F.
k=0

Let r be a real number, r > 1; if we consider again the path (12) we find

anz/Rcos (az) ¢, (z)w (z) dx
_2 cosaxp"—(x)x zz sinampn—(m)x
_7r/R ( )(1+x2)"+1d + 7T/R ( )(1+$2)"+1d

2 . Pn (2)
=— ——d
- /Rexp (iax) @122 x

2
== lim | exp(iaz) Pn (2)

mroe ), (+22)™

= 4iRes {exp (1az) #(QZ))M; z} ,

but, following the preceding expansions,

Res {exp (iaz) #(j))m; z}

exp kg k

_ —io"exp (—a) Z Onk
B ot ok (n — k)’

this yields

_a”exp —a)

and then we can deduce, finally,

cos (ax) = e ® + ae™® i [(%)n_l kizo ﬁ] ¢, (x) .



As a particular case we find the formula

| e 1 & n
cosT = — + g nz:; <2n_1 Z (ng—kk)!> b ().

k=0

The following figures show this expansion with ten and twenty terms respec-
tively:

~ _—
-6 6
Fig. 6: Approximation with ten terms.
— N\ N /S
6 -4 2 2 % 4 y 6
[ /
\\\ -0.5] //
\ J [ \ %
AN -1t 2

Fig. 7: Approximation with twenty terms.
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The expansion of the function sinaz can be found exactly in the same
way: we have to compute

b, = /Rsin (az) ¢, (z)w(z)dz, n>1;

now we have
2n—1

0 () =Yty (=i (2= ).

n—1
2n 2k +1
w3 () (7))

=r

where

this yields
k

m(z) Tk
(1 + 22)n+1 (2'i)n+1 kZ:O (Z _ i)n+1_k,

. n 41\ (=1) t,;
T”'“':Z( l ) k=i

jH=k

with

By applying the same arguments as before one finds

b, = /Rsin (az) Y, (v)w(x)dz

—21 ) qn (T
= — [ exp (iax) 7(2 )n =1
T Jr (1+22?)

| _dn\®
Jlim . exp (iaz) 1+ 22y

— 4Res {exp (iaz) —In2)__ z} :

(1 + Zg)n-}-l’

in this case the residue is found to be

Res {exp fiaz) T (D) } _ a"exp(—a) Z

(14 22)"0 o 2ok (n— k)’

23



from this we deduce
a™exp (—a) - Tk
bn == 3
2n—1 kz:; ak (n —k)!

and from here we can finally conclude

sin (az) = aexp (—a) f: [(%)n_l kzi% m] Y, (z) .

n=1

As a particular case we have the corresponding formula for the function sin z:

: Ien| 1 &~ Ta
sinx = - Z <2n_1 Z (nT_kk)!> Yy, (2) -
n=1 k=0

The following figure shows this expansion with twenty terms:

Fig. 8: Approximation with twenty terms.

3.3 A density theorem

In this section we present a proof of the density of rational functions in
L? (R) ; we begin by a simple result:

Proposition 1 Let f € L2 (R); for each real number € > 0, it exists n
n () € N and a polynomial v, (x) of degree m < 2n such that

/ rm (z) |”

Tt w(z)dz <e.

f(z) =

24



Proof. Since (4) is an basis of L2 (R), this is an immediate consequence of

(7).

Remark 1 This property being true for any f € L2 (R), it’s remains true
for any f € L? (R) since we clearly have L* (R) C L? (R).

We also need the following

Lemma 2 With the usual notation, we have L2 (R) C L2, (R); moreover,
L2 (R) is a dense vector subspace of the Hilbert space L2, (R).

Proof. The first assertion comes directly from 0 < w < 1; in fact one has
1z, <Ifllpz  Vf € L2 (R). (13)

The second affirmation is an immediate consequence of the inclusion C.. (R) C
L% (R), where C, (R) stands for the set of continuous functions with compact
support.

Now we can prove the main result in this section.

Theorem 3 Let f € L? (R); for each real number e > 0, it evistsn =n (g) €
N and a polynomial r,, of degree m < 2n such that

I

Proof. Since f € L?(R), it’s clear that w™'f € L2, (R); according to the
preceding lemma, a function f € L2 (R) can be found such that

o7

2
dzr < e.

Tm (2)
f("I’-) - (1_’_1_2)7;—}—1

< £,
a)
2, 2

on the other hand, applying the result in proposition 1 to f, it exists n =
n (e) € N and a polynomial 7, of degree m < 2n such that

<

-ty

)
a7
L2 2
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now, if we define r,, := 27717, we find, after applying the triangle inequality
and (13) :

(@) |||y (@)
Hf_ 122", ‘H -y 2,
Fm (T)
< Hf‘mm—
€ = P (2) -
Si*"f‘mm%*i—&

4 Weighted trigonometric series.

This section is devoted to generalize the preceding methods and ideas; we
will find here some expansions that could be called “weighted trigonometric
series”, they lie on the following

Theorem 4 Let’s consider an interval (a,b) C R. Let & : (a,b) — R a
continuous and nonnegative function such that:

(i) mes{z : @ (z) =0} =0,
(i) ¢ := fabcb (t) dt < 0.
Let’s define w := 2¢'@ and

0:r€(ab)»—>/ t)ydt—1e (-1,1),

¢q (z) := cos7l (z), ¥y (z) :=sin7l (z) ;

then, the sequence of functions {%a%ﬂﬁp ey Py Uy - - } defined by (5)
or, equivalently, by the expressions

E
2

B

_ n—2r—1 27'+1
<2r+1) 1) ¢} ’
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is an orthonormal basis of L2 (a,b), where the inner product is given by

/ f(z w(z) dz.

Proof. First, we prove the equivalence between (5) and the preceding for-
mulae: we have

1
butitn = (o) (1)t o
r=0

22
. n n—2r—1 21" 1
i z:; <2r+1> —1) '
2 ! n 2r+1 yn—2r—1
-2r n T 2r+1,,2r+1 n—2r—
(> ¢ +§<2T+1>Z 1 #
= Z <:> TPLTTT = (¢ +ithy)",
r=0

and from here we deduce (5); the other implication was shown in section 2.4.
In order to prove orthonormality, let’s choose n,m € N, we need to compute

/ o ( w(z) dz,

if we define the change of variable 0 (z) := [ w(t)dt — 1 then we have
¢, (x) = cosnm, ¥, () = sinmnf and, of course, df = w (z) dzx; this yields

[

N3

]

r=0

b 1
/ O () Yy, () w (z) dz = / cos nmf sin mmhdf = 0,

1

and the rest of the proof clearly follows. B
As a first consequence, we have a generalization of theorem 3 concerning
rational approximation:

Corollary 5 Let o be a polynomial of degree v > 1 such that o’ > 0, and
let’s consider a function f € L?(R). For each € > 0, a natural number
n =n(e) and polynomial rp, of degree m < 2un can be found such that

2

.
dr < e.

(1o

27



Proof. Define

20’
Ww=——=
T(1+02)’
this yields
= tanT—
o an7r2,
and L2 )
— 0 o
NI NI

the rest of the proof comes from 2.4 and, with very little change, from that
of theorem 3.

Now, let’s present some concrete expansions found by using this method.
First, consider the weight function

@:te(—-1,1) — @ (t) =expt;

since ¢ = [1 @ (t)dt = e — e, we define w = ———— and

1
0:12¢ (—1,1)He(x):/ W) dt—1€ (=1,1),
-1
in this case an explicit expression can be given:

2T — _ 1
0(x) = ==

e—el

let’s plot the functions ¢; = cos7l, ¢, = sinnld, ¢35 = cos3w0 and 3 =
sin 376:
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Fig 11: The function ¢s.

Fig 12: The function 5.

These figures reveal how the basis functions are affected by the weight
function. Now, we define the function z € R—f (z) = z € R; in order to
illustrate how w affects its expansion we plot the corresponding Fourier series

with five and ten terms respectively:
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Fig 13: Approximation with five terms.

Fig 14: Approximation with ten terms.
The effect of the weight function is clear again; it’s found that the general
aspect of the approximations is very similar to that of trigonometric series,
but we obtain more accurate approximations, as one might expect, in the
areas where a higher weight is assigned.
The preceding theorem can be partially generalized to the following situ-
ation: mes{z : @ () = 0} > 0, but a subinterval (o, 5) C (a,b) exits in such
a way that:

i) W=7 satisfy the hypothesis of the theorem in (a, 3) and
[(,8)
(11) L:)lmc =0.

In this case, w does not define an inner product and the resulting sequence
can be shown not to be an orthonormal basis of L? (a, b) but of the subspace

{fELi(a,b):flmcEO}.

By making use of this fact, we can find out more about the effect of the
weight function by “taking the things to the extreme”: let’s define

0 -1<z<-1/2
pite(-L,)— o) ={ 1 —1/2<z<1/2
0 1/2<z<1
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since ¢ = f_llcb (t)dt = 1, we set w = 2@, and define 0, ¢, and 1), as in the
theorem. The next figures show the graphic representation of the functions

¢, and 9;:
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Fig. 15: The function ¢;. Fig. 16: The function ;.

Now, let’s plot the expansions corresponding to the same function as
before calculated with two and five terms respectively:
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Fig 17: Approximation with two terms.  Fig 18: Approximation with five terms.
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Basically, what we get is an approximation of f by means of a weighted
trigonometric series exactly in the “window” prescribed by the weight func-
tion w and out of this window the approximating function is constant; this
corresponds to the “extremal” behaviour we could have expected.

We cannot evaluate in what measure this is an interesting method. The
problem is clear: even in very simple cases we don’t dispose of analytic
expressions for the basis functions; however, given both the recursive relations
(5) and the analytic expressions of the preceding theorem, it should be easy
to design and develop programs to make this method useful at least from a
computational and numerical point of view.

5 Conclusions.

We have presented a basis of L2 (R) D L2 (R) , where w (z) = 27~ (1 + 22) ",
it comes directly from the trigonometric basis of L? (—1,1) via a change of
variable; in fact, given its properties, this basis could be regarded in some
sense as the “trigonometric” basis of L2 (R) . We have found some expansions
with respect to this basis that allowed us to give some beautiful formulae,

such as
1 1S 1 < o
COST = — + EZ <2n_1 Z (n—k)!) o, (2),
n=1 k=0
, 1 1 < Tk
ST = EZ <2n—1 Z (n_ k)') ¢n (IL’),
n=1 k=0 ’
and

1 2 1
H(z) ~ = _27 .
(CE) 2 + 2 2n+1¢2n+1 (LU)

As an application of our results, we have given a proof of the density of
rational functions in L? (R) ; also an application in ordinary differential equa-
tions has been described and a connection with the Sturm-Liouville theory
has been presented. In the last part of the article a generalization of this ideas
has been discussed; a general application of the trigonometric recursions

cos (n+ 1) 0 = cosnb cos ) — sinnfsin b,

sin (n + 1) @ = sinnf cos 6 + cosnfsin ¥,
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has allowed us to present what could be called (still with the biggest caution!)
“weighted trigonometric series”; a kind of approximation that might offer an
alternative to orthogonal polynomials for weighted approximation in some
contexts. To our knowledge, all the ideas presented here seem to be original,
and it will correspond to the experts in Approximation Theory to decide in
what measure they may be of some interest in the future.
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