[INVERSE SYMBOLIC CALCULATOR] BASE TABLE OF CONSTANTS %0 C0000 %0 C0000 TABLE OF CONSTANTS %0 C0000 by %0 C0000 Simon Plouffe %0 C0000 CECM %0 C0000 Centre for Experimental & Constructive Mathematics %0 C0000 Simon Fraser University, Burnaby BC CANADA %0 C0000 Here is a set of known constants to a precision of 1024 digits. %0 C0000 That is, 16 lines of 64 digits each. You may COPY this file as %0 C0000 long as you mention the source. This is a file used in the ISC %0 C0000 Project : The Inverse Symbolic Calculator %0 C0000 URL : http://www.cecm.sfu.ca/projects/ISC.html %0 C0000 Version 1.3 July 29 1995 %0 C0000 If a constant appears with less than 1024 digits it means that only %0 C0000 those digits are known or have been calcultated so far. %0 C0000 THE CONSTANTS ARE ALWAYS TRUNCATED NOT ROUNDED. %0 C0000 This table (in long format) is part of a set of tables in the ISC %0 C0000 project. There are more than 315 other tables to a total of 8 %0 C0000 million constants at this present date. %0 C0000 All these tables are available with the ISC at the CECM for queries. %0 C0000 Each constant in this table is numbered Cnnnn. Each constant has %0 C0000 (if possible) 1024 digits, numbered by rows from %0 to %F. %0 C0000 If you know MORE digits to some of them or if you know an interesting %0 C0000 constant you may send a mail to isc@cecm.sfu.ca OR plouffe@cecm.sfu.ca %0 C0000 We will include it in this table with references and email address. %N C0000 Name of the constant (if applicable). %O C0000 Stands for the offset, the decimal point. %R C0000 References. Journal, page, year. %I C0000 Refers to sequences in the Encyclopedia of Integer Sequences %I C0000 by Neil J.A. Sloane and Simon Plouffe, Academic Press, 1995. %P C0000 stands for a program to generate the constant, usually MapleV code. %Z C0000 stands for the class in which the constant falls. %Z C0000 AL : Algebraic Number. %Z C0000 HY : Generalized Hypergeometric number (rational arguments). %Z C0000 TR : Proven to be transcendental. %Z C0000 GA : Gamma Model, the number can be represented by rational values of %Z C0000 the GAMMA function and it's derivative. Example, Pi=GAMMA(1/2)^2. %Z C0000 IR : Proved to be irrational. %K C0000 Comment of the author and source. %0 C0000 For further explanations of the some of the following constants, try: %0 COOOO http://www.mathsoft.com/asolve/constant/constant.html 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0001 3141592653589793238462643383279502884197169399375105820974944592 %1 C0001 3078164062862089986280348253421170679821480865132823066470938446 %2 C0001 0955058223172535940812848111745028410270193852110555964462294895 %3 C0001 4930381964428810975665933446128475648233786783165271201909145648 %4 C0001 5669234603486104543266482133936072602491412737245870066063155881 %5 C0001 7488152092096282925409171536436789259036001133053054882046652138 %6 C0001 4146951941511609433057270365759591953092186117381932611793105118 %7 C0001 5480744623799627495673518857527248912279381830119491298336733624 %8 C0001 4065664308602139494639522473719070217986094370277053921717629317 %9 C0001 6752384674818467669405132000568127145263560827785771342757789609 %A C0001 1736371787214684409012249534301465495853710507922796892589235420 %B C0001 1995611212902196086403441815981362977477130996051870721134999999 %C C0001 8372978049951059731732816096318595024459455346908302642522308253 %D C0001 3446850352619311881710100031378387528865875332083814206171776691 %E C0001 4730359825349042875546873115956286388235378759375195778185778053 %F C0001 2171226806613001927876611195909216420198938095257201065485863278 %N C0001 Pi %O C0001 1 %I C0001 A0796 M2218 N0880 %R C0001 MOC 16 80 62. %Z C0001 TR HY GA IR. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0002 2718281828459045235360287471352662497757247093699959574966967627 %1 C0002 7240766303535475945713821785251664274274663919320030599218174135 %2 C0002 9662904357290033429526059563073813232862794349076323382988075319 %3 C0002 5251019011573834187930702154089149934884167509244761460668082264 %4 C0002 8001684774118537423454424371075390777449920695517027618386062613 %5 C0002 3138458300075204493382656029760673711320070932870912744374704723 %6 C0002 0696977209310141692836819025515108657463772111252389784425056953 %7 C0002 6967707854499699679468644549059879316368892300987931277361782154 %8 C0002 2499922957635148220826989519366803318252886939849646510582093923 %9 C0002 9829488793320362509443117301238197068416140397019837679320683282 %A C0002 3764648042953118023287825098194558153017567173613320698112509961 %B C0002 8188159304169035159888851934580727386673858942287922849989208680 %C C0002 5825749279610484198444363463244968487560233624827041978623209002 %D C0002 1609902353043699418491463140934317381436405462531520961836908887 %E C0002 0701676839642437814059271456354906130310720851038375051011574770 %F C0002 4171898610687396965521267154688957035035402123407849819334321068 %N C0002 exp(1) or E %O C0002 1 %R C0002 MOC 4 14 50; 23 679 69. %I C0002 A1113 M1727 N0684 %P C0002 sum(1/n!,n=1..infinity); %Z C0002 TR HY IR 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0003 5772156649015328606065120900824024310421593359399235988057672348 %1 C0003 8486772677766467093694706329174674951463144724980708248096050401 %2 C0003 4486542836224173997644923536253500333742937337737673942792595258 %3 C0003 2470949160087352039481656708532331517766115286211995015079847937 %4 C0003 4508570574002992135478614669402960432542151905877553526733139925 %5 C0003 4012967420513754139549111685102807984234877587205038431093997361 %6 C0003 3725530608893312676001724795378367592713515772261027349291394079 %7 C0003 8430103417771778088154957066107501016191663340152278935867965497 %8 C0003 2520362128792265559536696281763887927268013243101047650596370394 %9 C0003 7394957638906572967929601009015125195950922243501409349871228247 %A C0003 9497471956469763185066761290638110518241974448678363808617494551 %B C0003 6989279230187739107294578155431600500218284409605377243420328547 %C C0003 8367015177394398700302370339518328690001558193988042707411542227 %D C0003 8197165230110735658339673487176504919418123000406546931429992977 %E C0003 7956930310050308630341856980323108369164002589297089098548682577 %F C0003 7364288253954925873629596133298574739302373438847070370284412920 %N C0003 gamma or Euler-Mascheroni Constant. %O C0003 0 %R C0003 MOC 17 175 63. %I C0003 A1620 M3755 N1532 %P C0003 -Psi(1); %Z C0003 GA 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0004 1202056903159594285399738161511449990764986292340498881792271555 %1 C0004 3418382057863130901864558736093352581461991577952607194184919959 %2 C0004 9867328321377639683720790016145394178294936006671919157552224249 %3 C0004 4243961563909664103291159095780965514651279918405105715255988015 %4 C0004 4371097811020398275325667876035223369849416618110570147157786394 %5 C0004 9973752378527793703095602570185318279000307654710756304884332086 %6 C0004 9711573742380793445031607625317714535444411831178182249718526357 %7 C0004 0918244899879620350833575617202260339378587032813126780799005417 %8 C0004 7348691152537065623705744096622171290262732073236149224291304052 %9 C0004 8555372341033077577798064242024304882815210009146026538220696271 %A C0004 5520208227433500101529480119869011762595167636699817183557523488 %B C0004 0703719555742347294083595208861666202572853755813079282586487282 %C C0004 1737055661968989526620187768106292008177923381358768284264124324 %D C0004 3148028217367450672069350762689530434593937503296636377575062473 %E C0004 3239923482883107733905276802007579843567937115050900502736604711 %F C0004 4008533503436467224856531518117766181092227919102248839680026660 %N C0004 Zeta(3) %O C0004 1 %R C0004 FMR 1 1984. %I C0004 A2117 M0020 %P C0004 sum(1/n**3,n=1..infinity);5/4*hypergeom([1,1,1,1],[2,2,3/2],-1/4); %Z C0004 IR GA HY %K C0004 The hypergeometric form is due to Roger Apery and converges fast. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0005 1030345524216210832441552437544142391331167453542635047752060376 %1 C0005 9436858333367078466536634299653186541372113411215861485309267528 %2 C0005 3067081781414311482173774344644914735353057912170645851719523783 %3 C0005 1251578954850994662339748870541578739659891412895669534755375251 %4 C0005 2638550318082771091427083769596910701526504657102657014692869502 %5 C0005 5106238384920549605129977714725591534851840373284769994711311024 %6 C0005 8217510876670540535755064107567353620906507006561208337154879605 %7 C0005 1824396699408865713070119453591522563130261505375573780321442206 %8 C0005 3151184126337018282053921085257824131953301272956066719974271080 %9 C0005 9759117986008344424492744350441647357045771674102736194479027628 %A C0005 5858904376391561055460513844056484484786473059281875288705999618 %B C0005 2421185163442066374868890733356727848076408196597936622679473018 %C C0005 2609417828662855629871829318164087101879488710721512037835804790 %D C0005 2368736163774600113536888571530806116406546769959374670822838831 %E C0005 5919952467393977608255192190445812091895632997411633339012852779 %F C0005 2492014925425015593027672115823511862194206033829935436560774339 %N C0005 exp(Pi)/Pi^exp(1). %O C0005 1 %R C0005 %I C0005 %P C0005 %Z C0005 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0006 1082323233711138191516003696541167902774750951918726907682976215 %1 C0006 4441206161869688465569096359416999172329908139080427424145840715 %2 C0006 7457004534928200351471621920708778348091083702932618873482617527 %3 C0006 3604235506219373750617111745349296867750733076066869341189058628 %4 C0006 3379527951203344958904688626269482208350329836321490205321239557 %5 C0006 2484664622550115666045588268678765350449543513719749514886313289 %6 C0006 7472588575145532476189232474908834318321655996289964805402049885 %7 C0006 5660906710813145472438251775250469502552514132207698095596477686 %8 C0006 2775292974003624688336335312277586680983323377402081498071424109 %9 C0006 5754573232796882922763249422259676821487316421013008338304857888 %A C0006 0296049867785925835977212171325665188800281027638581269931387545 %B C0006 5237781371336354626568505102998892870239516920860703396160882591 %C C0006 6990154658882958945601483845254593115070173827990207156919534095 %D C0006 1585273588301542879433793746390084034611646372042627028266824368 %E C0006 9927923024616511114411026865608990692542349169638906352755302952 %F C0006 6549029455842027676257024110188678074085579452005253761923369997 %N C0006 Zeta(4) or Pi^4/90. %O C0006 1 %R C0006 %I C0006 %P C0006 Pi^4/90. %Z C0006 IR HY GA 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0007 1098612288668109691395245236922525704647490557822749451734694333 %1 C0007 6374942932186089668736157548137320887879700290659578657423680042 %2 C0007 2593051982105280187076727741060316276918338136717937369884436095 %3 C0007 9903742570316795911521145591917750671347054940166775580222203170 %4 C0007 2529468975606901065215056428681380363173732985777823669916547921 %5 C0007 3181814902003010382363012224865274819822599109745249089645805346 %6 C0007 7008845965085748444119018857087647494867079613085829411602166121 %7 C0007 1840014098255143919487688936798494302255731535329685345295251459 %8 C0007 2138764946859325627944165569415782723103551688661021184698904399 %9 C0007 4306313825528573646688282498813682280063414391078689325145643751 %A C0007 0204451627561934973982116941585740535361758900975122233797736969 %B C0007 6877543547951357129821770175812421223514058101632724655889372495 %C C0007 6491918524296079668423464706937723725265508203207833392805589285 %D C0007 3146873095132606458309184397496822230325765467533311823019649275 %E C0007 2575991322178513533902374829643395025460742458249346668661218814 %F C0007 3652656542954276761050547779542293397332340117374319397457984701 %N C0007 log(3). %O C0007 1 %R C0007 RS8 2. %I C0007 A2391 M4595 N1960 %P C0007 %Z C0007 IR TR HY GA 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0008 1144729885849400174143427351353058711647294812915311571513623071 %1 C0008 4721377698848260797836232702754897077020098122286979891590482055 %2 C0008 2792345658727908107881028682527639391426634590290248477335886993 %3 C0008 7789203119630824756794011916028217227379888126563178049823697313 %4 C0008 3106950036000644054872638802232700964335049595118150662372524683 %5 C0008 4339126989657975140477703857799539982584256602284850148136217915 %6 C0008 9252505670763868602807634568897505123343607814399141442642959671 %7 C0008 2897781136526452345041059007160818570824981188183186897672845928 %8 C0008 1102576568751724223383371892730432882173486510427615323751610283 %9 C0008 9222134014369671758561644247371878050604669205628337731013362162 %A C0008 7451589875201512996545465739691528252391695852453793594601400379 %B C0008 9565196660365380001126598585001297656990607446674554726710450849 %C C0008 5066855874339077425134159241265231777178491779958809576788051029 %D C0008 6444750901508911403278080768337337938949488075152890091875363766 %E C0008 0867074358333451081392325355740676843274311980496339997618030462 %F C0008 2128636159585983640475800986179993826462927764627594848489641410 %N C0008 log(Pi). %O C0008 1 %R C0008 %I C0008 %P C0008 %Z C0008 IR TR 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0009 1189207115002721066717499970560475915292972092463817413019002224 %1 C0009 7194666682269171598707813445381376737160373947747692131860637263 %2 C0009 6178984775678536086253801777507015151140355709227316234286888992 %3 C0009 4175446071908710503849972559105009837104492015484573567458090483 %4 C0009 9940930900034977959080384896588430050411987170093790798209846252 %5 C0009 3537398128174081811378082855201484221006095893241244593103505751 %6 C0009 9196302941383263474280279824408022800821729272058615366639370400 %7 C0009 2382073085456530674477148598887334576271867838116547045872761271 %8 C0009 1126998867843493017586142497017005413145514389199874376676217851 %9 C0009 6178317798730704823631873473484218053715698684263648276105622847 %A C0009 7995862896332939281687874758656034737919964594007561544437157418 %B C0009 9030398697129430624862535173412915359753112154467461590864776065 %C C0009 1744595705593097911946575639891768697217026249747533362991860653 %D C0009 1157083493680769804948170607437684746785586528255014184649792489 %E C0009 0995156337829985950876435323966214778965479104541869346618613961 %F C0009 4521856391702634160435422985610854932687086815171745404554548531 %N C0009 (2^(1/2))^(1/2). %O C0009 1 %R C0009 %I C0009 %P C0009 sqrt(sqrt(2)); %Z C0009 IR GA HY AL 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0010 1225416702465177645129098303362890526851239248108070611230118938 %1 C0010 2898228884267983572371723762149150665821733802375880331630166590 %2 C0010 3296103947930471025505998382277791927689007765101690145533165791 %3 C0010 5948759445277305159342900375786380960492388345759811873070193570 %4 C0010 %5 C0010 %6 C0010 %7 C0010 %8 C0010 %9 C0010 %A C0010 %B C0010 %C C0010 %D C0010 %E C0010 %F C0010 %N C0010 GAMMA(3/4). %O C0010 1 %R C0010 %I C0010 %P C0010 %Z C0010 GA 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0011 1234567891011121314151617181920212223242526272829303132333435363 %1 C0011 7383940414243444546474849505152535455565758596061626364656667686 %2 C0011 9707172737475767778798081828384858687888990919293949596979899100 %3 C0011 1011021031041051061071081091101111121131141151161171181191201211 %4 C0011 2212312412512612712812913013113213313413513613713813914014114214 %5 C0011 3144145146147148149150151152153154155156157158159160161162163164 %6 C0011 1651661671681691701711721731741751761771781791801811821831841851 %7 C0011 8618718818919019119219319419519619719819920020120220320420520620 %8 C0011 7208209210211212213214215216217218219220221222223224225226227228 %9 C0011 2292302312322332342352362372382392402412422432442452462472482492 %A C0011 5025125225325425525625725825926026126226326426526626726826927027 %B C0011 1272273274275276277278279280281282283284285286287288289290291292 %C C0011 2932942952962972982993003013023033043053063073083093103113123133 %D C0011 1431531631731831932032132232332432532632732832933033133233333433 %E C0011 5336337338339340341342343344345346347348349350351352353354355356 %F C0011 3573583593603613623633643653663673683693703713723733743753763773 %N C0011 Champernowne Number. %O C0011 0 %R C0011 %I C0011 %P C0011 cc:=``;for i from 1 to 378 do:cc:=cat(cc,convert(i,string));od; %Z C0011 IR 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0012 1259921049894873164767210607278228350570251464701507980081975112 %1 C0012 1552996765139594837293965624362550941543102560356156652593990240 %2 C0012 4061373722845911030426935524696064261662500097747452656548030686 %3 C0012 7185405518689245872516764199373709695098382783161399155129313695 %4 C0012 3661839474634485765703031190958959847411059811629070535908164780 %5 C0012 1147352132548477129788024220858205325797252666220266900566560819 %6 C0012 9471562817640506066482677357267041948620762144296569420507931917 %7 C0012 2441480920448232840127470321964282081201905714188996459998317503 %8 C0012 8018886895942020559220211547299738488026073636974178877921579846 %9 C0012 7509953963007826095962420348323866013985736343390973712652799599 %A C0012 1969968377913168168154428850279651529278107679714002040605674803 %B C0012 9385612517183570069079849963419762914740448345402697154762285131 %C C0012 7802064387804764932257905289846708580528625813000542938856072060 %D C0012 9747223040631357234936458406575916916916727060124402896700001069 %E C0012 0810353138529027004150842323362398893864967821941498380270729571 %F C0012 7681287900144574622714770234835715190550672208481848500928723920 %N C0012 2^(1/3). %O C0012 1 %R C0012 %I C0012 A2580 M1354 N0521 %P C0012 SMA 18 175 1952 %Z C0012 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0013 1261859507142914874199054228685521708599171280263760855741309887 %1 C0013 6773704027618296101223453770989034911227080318766274303898468982 %2 C0013 9387295082737239278669990007193328116948662335490443122519239970 %3 C0013 3737345585708681699062162417683875218580368371918764437406164057 %4 C0013 9715851375818026262655154375649795097952287600939872473230715403 %5 C0013 0315916516440623843217053849721569771188440190832728848789418818 %6 C0013 4430791934599025894063232803598326330111321565389398215678672433 %7 C0013 9409664856033938681661787242581989937448641376211170665290364479 %8 C0013 3935024340229160273827204727523748089656848936186943618143464656 %9 C0013 8385408203359699524040120901630615882784740549926108297267510926 %A C0013 1175005020650983049155299442886378651470617671771509903573992209 %B C0013 2776801731917910434137952374349227314573931305525958361445082367 %C C0013 8059350477240545136142088987088352071464883689157702031008619538 %D C0013 8598795555979960374899465159159118712371167108503708699743976431 %E C0013 7536855545126784908168262808505705700902946342076959266085006235 %F C0013 8146517634491364184406318527205090934888928772457961719746496097 %N C0013 log(4)/log(3). %O C0013 1 %R C0013 %I C0013 %P C0013 %Z C0013 %K C0013 Von Koch dimension. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0014 1291285997062663540407282590595600541498619368274522317310002445 %1 C0014 1369445387652344555588170411294297089849950709248154305484104874 %2 C0014 1928486419757916355594791369649697415687802079972917794827300902 %3 C0014 5649230550720966638128467012053685745978703001277894129288253551 %4 C0014 7702223833753193457492599677796483008495491110669649755010519757 %5 C0014 4291162109702156166953289768924278900580939081478809403679930558 %6 C0014 9535200633716110465094638606808864998606531021853412479159737305 %7 C0014 2710686824652246770336860469870234201965831431339687388172956893 %8 C0014 5536851798521420666264165438061224569940966356043885239969381304 %9 C0014 4840101532338556989547899226146597068180753342912289091004995136 %A C0014 4103584723741679660994037428872280908239472403012423375069665874 %B C0014 3147683502983470096596930198071220594154742391888495488920431478 %C C0014 4037389693592832744937301860181757952468190913559650620576842700 %D C0014 8907326547137233834847185623248044173423385652705113744822086069 %E C0014 8381169706447896315548031108686846807807010570342300009547766282 %F C0014 9927022264266182213029160934485049255679995121281765081062180734 %N C0014 sum(1/n^n,n=1..infinity); %O C0014 1 %R C0014 %I C0014 %P C0014 %Z C0014 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0015 1354117939426400416945288028154513785519327266056793698394022467 %1 C0015 9637829654017425416758341479529729111064348236100330588541422615 %2 C0015 5258621182660719114811432283343415591562091750568259236652338521 %3 C0015 1910858011501770153617023853945368317754599736504155930691384228 %4 C0015 %5 C0015 %6 C0015 %7 C0015 %8 C0015 %9 C0015 %A C0015 %B C0015 %C C0015 %D C0015 %E C0015 %F C0015 %N C0015 GAMMA(2/3). %O C0015 1 %R C0015 %I C0015 %P C0015 %Z C0015 GA 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0016 1414213562373095048801688724209698078569671875376948073176679737 %1 C0016 9907324784621070388503875343276415727350138462309122970249248360 %2 C0016 5585073721264412149709993583141322266592750559275579995050115278 %3 C0016 2060571470109559971605970274534596862014728517418640889198609552 %4 C0016 3292304843087143214508397626036279952514079896872533965463318088 %5 C0016 2964062061525835239505474575028775996172983557522033753185701135 %6 C0016 4374603408498847160386899970699004815030544027790316454247823068 %7 C0016 4929369186215805784631115966687130130156185689872372352885092648 %8 C0016 6124949771542183342042856860601468247207714358548741556570696776 %9 C0016 5372022648544701585880162075847492265722600208558446652145839889 %A C0016 3944370926591800311388246468157082630100594858704003186480342194 %B C0016 8972782906410450726368813137398552561173220402450912277002269411 %C C0016 2757362728049573810896750401836986836845072579936472906076299694 %D C0016 1380475654823728997180326802474420629269124859052181004459842150 %E C0016 5911202494413417285314781058036033710773091828693147101711116839 %F C0016 1658172688941975871658215212822951848847208969463386289156288276 %N C0016 sqrt(2). %O C0016 1 %R C0016 PNAS 37 65 51. MOC 22 899 68. %I C0016 A2193 M3195 N1291 %P C0016 %Z C0016 GA HY IR. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0017 1442249570307408382321638310780109588391869253499350577546416194 %1 C0017 5416875968299973398547554797056452566868350808544895499664254239 %2 C0017 4611025971486895015718523722709033202384759844506108554002726008 %3 C0017 8145498872751367355352467866074715688439223318918201703899823822 %4 C0017 3321296166355085262673491335016654548957881758552741755933631318 %5 C0017 7414672006046384666475693743641975557494249068208109426712359062 %6 C0017 6576368964637361617821655842587482385659523587190319610407139530 %7 C0017 6028102853508443638035194550133809152223907849897509193948036531 %8 C0017 1967434570623381194111835565769248320012310701591533293004282706 %9 C0017 6639444382048001901224181805785118027863549920148935235279681801 %A C0017 0900623683532797037372461456517341535339099046710530415693769030 %B C0017 5149495899521616659116633380195422726648281431181844171655357668 %C C0017 8183214058950327279912792802698357213567630466763140982693096862 %D C0017 2476494140464484288713308799468418700020456187690275033046203665 %E C0017 6444071790911969803974747888380267072284474815948208723961160122 %F C0017 7106717106661278181320110813953009722722666191070593990990119120 %N C0017 3^(1/3). %O C0017 1 %R C0017 SMA 18 175 1952. %I C0017 A2581 M3220 N1304 %P C0017 %Z C0017 HY GA IR. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0018 1442695040888963407359924681001892137426645954152985934135449406 %1 C0018 9311092191811850798855266228935063444969975183096525442555931016 %2 C0018 8716835964272066215822347933627453736988471849363070138766353201 %3 C0018 5533894318916664837643128615424047478422289497904795091530351338 %4 C0018 5880549688658930969963680361105110756308441454272158283449418919 %5 C0018 3390857771579004417128024684834137452269518236901123909403445996 %6 C0018 8539906113421722886278029158010630061976762445652605995073753240 %7 C0018 6256558154759381783052397255107248130771562675458075781713301935 %8 C0018 7300616876193737298267589741562381798356710344348975068070551808 %9 C0018 8486561386832917732182934913968431059345402202518636934526269215 %A C0018 0955971910022196792243214334244941790714551184993859212216753653 %B C0018 1130077463276720646123374110821191379443339848057931091287760967 %C C0018 0200375758998158851806126788099760956252507841024847056900768768 %D C0018 0584613278654747820278086594620609107490153248199697305790152723 %E C0018 2478729874098125410003344868757382236471649454475370671675958994 %F C0018 2809981826783490131666633534803678986944688709116660497353729258 %N C0018 1/log(2). %O C0018 1 %R C0018 MOC 17 177 1963. %I C0018 A7525 M3221 %P C0018 %Z C0018 IR HY. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0019 1444667861009766133658339108596430223058595453242253165820522664 %1 C0019 3038549377186145055735829230470988511429523184485575419803227050 %2 C0019 6445074319038245154340453233482995893546005650584501552292168553 %3 C0019 5611576388897919126952707106869045544192540232763245282911515553 %4 C0019 1294480526395191779440816753200019244730489909867275405109516334 %5 C0019 6543218600319567029829094301588012673380331752282079128374511027 %6 C0019 0487326081497898898319046335114385440544726281627479974946048127 %7 C0019 0356697908366707436286857745469285242239557660491219676478966504 %8 C0019 1624619970380238393270973185933767493537861443318182228398083559 %9 C0019 4059808014983771598773091422137665722889308303865337379608563592 %A C0019 7418524207501700955503473378672633650172532071964633094039805791 %B C0019 1812113218227157927982498693131512576454312566726907854309730131 %C C0019 9795400734975991541128419511779509569080208027670820622491702891 %D C0019 0504992550858838301530990168243094412628246769234504036301625290 %E C0019 7427222686799398217597082099591634096682726616752913939887439780 %F C0019 8627442421692903006767461609860921465318757318730508612623296525 %N C0019 e^(1/e). %O C0019 1 %R C0019 %I C0019 %P C0019 %Z C0019 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0020 1515426224147926418976043027262991190552854853685613976914074640 %1 C0020 5914830973730934432608456968357873460511587268852852295841083492 %2 C0020 6642665764911877947970415481046176162293883684548219432651882369 %3 C0020 8067581131232299035461333833518596595421652507204871131694841248 %4 C0020 8370282981016309404957477919913724532172853873219106809779147336 %5 C0020 5818769996769417477864903816339050561204977612534805446662960794 %6 C0020 0201952987727518553087967772818052753593112397590600518880880415 %7 C0020 1764154263227653969369419281681418048811050162285713125125736860 %8 C0020 8417050247537255162547284751410457996493346492583777329977995267 %9 C0020 4620708856662577940458954490095164618850324515554327610255137933 %A C0020 3718085468414791771323547050692212614636013851810485295066335920 %B C0020 5755414000937288132756611779760418697301696724871653429209936701 %C C0020 0215040882949959750661761671984261557111132629477412381031515161 %D C0020 3066360242301079967098082562692041094465730378984833988726011897 %E C0020 8544284084535701017507989189651403924298454448886003840607105743 %F C0020 6135092697254359616092967488612097910670894384002853513544087139 %N C0020 exp(exp(1)). %O C0020 2 %R C0020 %I C0020 %P C0020 %Z C0020 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0021 1618033988749894848204586834365638117720309179805762862135448622 %1 C0021 7052604628189024497072072041893911374847540880753868917521266338 %2 C0021 6222353693179318006076672635443338908659593958290563832266131992 %3 C0021 8290267880675208766892501711696207032221043216269548626296313614 %4 C0021 4381497587012203408058879544547492461856953648644492410443207713 %5 C0021 4494704956584678850987433944221254487706647809158846074998871240 %6 C0021 0765217057517978834166256249407589069704000281210427621771117778 %7 C0021 0531531714101170466659914669798731761356006708748071013179523689 %8 C0021 4275219484353056783002287856997829778347845878228911097625003026 %9 C0021 9615617002504643382437764861028383126833037242926752631165339247 %A C0021 3167111211588186385133162038400522216579128667529465490681131715 %B C0021 9934323597349498509040947621322298101726107059611645629909816290 %C C0021 5552085247903524060201727997471753427775927786256194320827505131 %D C0021 2181562855122248093947123414517022373580577278616008688382952304 %E C0021 5926478780178899219902707769038953219681986151437803149974110692 %F C0021 6088674296226757560523172777520353613936210767389376455606060592 %N C0021 Golden Ratio, Phi. %O C0021 1 %R C0021 Fibonacci Quartely Vol 4, page 161 1966. %I C0021 A1622 M4046 N1679 %P C0021 1/2*sqrt(5)/2; %Z C0021 IR GA HY AL. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0022 1644934066848226436472415166646025189218949901206798437735558229 %1 C0022 3700074704032008738336289006197587053040043189623371906796287246 %2 C0022 8700500778793510294633086627683173330936776260509525100687214005 %3 C0022 4796811558794890360823277761919840756455876963235636709710096948 %4 C0022 9020859320080516364788783388460444451840598251452506833876314227 %5 C0022 6587939295880632044721979084773409105902083782895492782638903797 %6 C0022 6358334394204515912081809959345444877458796500880889408701111634 %7 C0022 7106931614618428879815486244835909183448757387428394082760287563 %8 C0022 2143460100135766209820487206904000738266356030240228446296303245 %9 C0022 6609717195142772131595125567998619087193154395352410638044072142 %A C0022 1339654750580158723165839947624349142243348362904887009665059862 %B C0022 2630341095967365528113716703269114987840343571616057766763330672 %C C0022 5273689423841664088953622759540077279474812710252049837843323001 %D C0022 7165744810302860434966884794216728433597281997793810008466560780 %E C0022 5377828859472786259316186645882921606581938592324153258064617812 %F C0022 0188464977762598497756060938460605146768583472562319710183630147 %N C0022 Zeta(2). %O C0022 1 %R C0022 %I C0022 %P C0022 sum(1/n**2,n=1..infinity);Pi**2/6; %Z C0022 IR GA HY. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0023 1732050807568877293527446341505872366942805253810380628055806979 %1 C0023 4519330169088000370811461867572485756756261414154067030299699450 %2 C0023 9499895247881165551209437364852809323190230558206797482010108467 %3 C0023 4923265015312343266903322886650672254668921837971227047131660367 %4 C0023 8615880190499865373798593894676503475065760507566183481296061009 %5 C0023 4760218719032508314582952395983299778982450828871446383291734722 %6 C0023 4163984587855397667958063818353666110843173780894378316102088305 %7 C0023 5249016700235207111442886959909563657970871684980728994932964842 %8 C0023 8302078640860398873869753758231731783139599298300783870287705391 %9 C0023 3369563312103707264019249106768231199288375641141422016742752102 %A C0023 3729942708310598984594759876642888977961478379583902288548529035 %B C0023 7603385280806438197234466105968972287286526415382266469842002119 %C C0023 5484155278441181286534507035191650016689294415480846071277143999 %D C0023 7629268346295774383618951101271486387469765459824517885509753790 %E C0023 1388066496191196222295711055524292372319219773826256163146884203 %F C0023 2853716682938649611917049738836395495938145757671853373633125910 %N C0023 sqrt(3). %O C0023 1 %R C0023 PNAS 37 444 51. MOC 22 234 68. %I C0023 A2194 M4326 N1812 %P C0023 %Z C0023 AL HY GA IR. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0024 1781072417990197985236504103107179549169645214303430205357665876 %1 C0024 5128410768135882937075742164884182803348222452251457420010557945 %2 C0024 7424819650088156857512645001158459572674035828196794290950691578 %3 C0024 4452444104950624749464673954422493920612973667189929611817817165 %4 C0024 2864420491963881484122168597921107933464249196247355882269791909 %5 C0024 6702915015433548608693369337054694559016232743529532598372576605 %6 C0024 7036185991522439177800246866066358611728792783719231136775739394 %7 C0024 1040997516402036473484352386382021226506642476962500214726344491 %8 C0024 4484348856424178974964672272861347388162990813399863760165095122 %9 C0024 5930470345744755950618891448569923966073975162156342628654955137 %A C0024 3909258141962310785511202080191889749032762449465399591732002370 %B C0024 2346972595868267504864024051730817333687405009498105976458687029 %C C0024 3896367065248715697709906547424211801204145061066518815890360582 %D C0024 3941798519634236370134771763646188686856689181798821908601430001 %E C0024 9066725574605712722169911418933648461722485988806975526316560646 %F C0024 4885402822786400170714829524143677069517465752235987166746273979 %N C0024 exp(gamma). %O C0024 1 %R C0024 %I C0024 %P C0024 %Z C0024 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0025 1837877066409345483560659472811235279722794947275566825634303080 %1 C0025 9655313918545207953894865972719083952440112932492686748927337257 %2 C0025 6368158714431175183044536278720712148509471733809279181198276161 %3 C0025 1260326469746189254749251036503389908954820191718702783963223196 %4 C0025 2611480106953907721299179844624279113855486999422005670391966389 %5 C0025 8506278854129259137294882312495242609747363056899875868876466079 %6 C0025 7025895309314563863475975706171378846272564307946167205295058530 %7 C0025 9829800787111999992074126943705144047152430700687247592054316975 %8 C0025 0097227190768496265835824853999227536792803027895754591002020664 %9 C0025 1768393671238815951433252541175050764972451860505904216099036240 %A C0025 3936104519600917610771497670658882278136156555534754445076266765 %B C0025 1879014828040523867874263374089441371189156869826552081590826015 %C C0025 3679609403505177496187717491144646506687784893855965574993705422 %D C0025 5161751623317487505801769689661835077881525919088198969357960783 %E C0025 2426181446570287357290751247594207086908526347557529234407222834 %F C0025 5275359376791323805401488260958228279997692576121781272357409154 %N C0025 log(2*Pi). %O C0025 1 %R C0025 %I C0025 HY %P C0025 %Z C0025 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0026 1851937051982466170361053370157991363345809728981154909804783781 %1 C0026 8769818901663483585327103365029547577016843616480071570093724507 %2 C0026 9990196393422723224141650363650747880277577604070054253870459470 %3 C0026 3754807001254912619600032707857531260246278128015159869271262515 %4 C0026 6658037819170657049819111714215383017286869095002766891969837835 %5 C0026 6487869337592943191753618588398732813615371117416005336502859889 %6 C0026 2890641467009548887738224711295573667340663653320635391760413517 %7 C0026 2039112403028911351451318386134929257744182407526476030905279207 %8 C0026 7821485602218718149042544715014636358427779471177466137756058399 %9 C0026 8081360158977403570034140755912037021411398700597496445764243279 %A C0026 4571720297914619514587500552129836800839402275440787337189077600 %B C0026 2333785917481973461544153540137552020653495363707747972322353076 %C C0026 2771110135468092684117246271430826718796009174157616850804644775 %D C0026 6294559627846381809450570206315108346086296761158384244642331395 %E C0026 0265185688244399528850406818067141826009262580832371532232446900 %F C0026 0409192428978534923839641617493595572724049496826955294684580907 %N C0026 Gibbs Constant. %O C0026 1 %R C0026 %I C0026 %P C0026 Si(Pi). %Z C0026 %K C0026 Related to the Gibbs Phenomenom. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0027 1923155168211845896631923744196359071216782613333752386732529125 %1 C0027 3917884491613793593739097123785566051165094965780249772919084922 %2 C0027 9816437385993452135434289577422885465760324442066884573346146698 %3 C0027 4980956808684087164403574160830854272309254381662716773107938020 %4 C0027 0399942426915166058779273537957134087816599737672826305617066052 %5 C0027 1567092732493214012900672310517217662829998889368511247229274358 %6 C0027 4559031994264520178538389289359085058717816206325754107251397818 %7 C0027 9837556112379150636148760910104390259034417469090937012971326354 %8 C0027 6026876641328434769017416317757770812346564123632178634734612615 %9 C0027 7474328371599806022486308193873491864684934714503323707636189524 %A C0027 7637420595507164456702675975151779741772629529669464407992337123 %B C0027 0861153636444419296239381014262795985147871734289091404666963391 %C C0027 4611514282332548025647156179521090419510855485693657584677543770 %D C0027 8628098851574803182659483351246996032005245642253177026204332161 %E C0027 5143790925969725553761342726947722069984408422831756746211315126 %F C0027 4588753378385971759828927564529630137117394690823727397365598808 %N C0027 gamma^3. %O C0027 0 %R C0027 %I C0027 %P C0027 %Z C0027 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0028 1999909997918947576726644298466904449606893684322510617247010181 %1 C0028 7216525944404243784888937171725432151693804618287805466497334199 %2 C0028 8051432536129920864714813682478776817609673037091634313691188157 %3 C0028 2947102843075505750157713461345968680161070464780150721176248631 %4 C0028 4847860577867900833311083256953746572913680020323304929618504632 %5 C0028 8311505445223999073031801083806217262676995803543420966585468764 %6 C0028 4987964315998803435936569779503997342833135008957566815879735578 %7 C0028 1334927791924908462223948963574654689501489118919093471858265963 %8 C0028 4125467858826405003368952969739664830056458585514266653491945723 %9 C0028 9163444586998081050100236576797224041127139639108211122123659510 %A C0028 9050948710707066806359343256840929468906163467675785198127850897 %B C0028 6105578930404185798012310128090554341625440498767923349630830239 %C C0028 6952371198509012175432057419088516489412743155057902167919927734 %D C0028 2729649641164236667946343333283426879029077921683908271628596220 %E C0028 4236017635503457687548578367840612244775526347533765075525153681 %F C0028 8489395213976127148481818560841182505646929219117214340238871975 %N C0028 exp(Pi)-Pi. %O C0028 2 %R C0028 %I C0028 %P C0028 %Z C0028 %K C0028 No explanation is known for that string of nines at the beginning. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0029 2078086921235027537601322606117795767742192267783283480278139921 %1 C0029 9197438692855354090144561541445360482193391863359453100978222576 %2 C0029 0562619849815246928494837969063402939422923771294933409994439936 %3 C0029 2454998972424252957226885146278061423973469923605498233503382410 %4 C0029 6639117967274450173479847480215009778927995768233921300362493241 %5 C0029 2159008521133482361194590477731822128371973088098840232447066914 %6 C0029 4324987882325467802718752769554829460653527232084051567380443699 %7 C0029 7986248658641151176215772330257529854331517799289682015594882107 %8 C0029 3125189937933484240160373825573365432587434362840107945468073536 %9 C0029 4562305324663040316628508103952115690176410331478277769975541508 %A C0029 1925972263760547767675973204896159848635101096770560144600470594 %B C0029 8089458372703315410955243417192213190534025350346288944154108190 %C C0029 6823882700016503119303774587458225025656714013354178238170310198 %D C0029 1338933048645538763547404325889367480963185458489086136196263051 %E C0029 3285889082615228811398782220488819349199755649564845411840325646 %F C0029 8347103587915639385847740073347854254662295494464229236182394244 %N C0029 1/log(1/2+1/2*sqrt(5)). %O C0029 1 %R C0029 %I C0029 IR HY %P C0029 %Z C0029 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0030 2078795763507619085469556198349787700338778416317696080751358830 %1 C0030 5541987728548213978860027786542603534052177330723502180819061973 %2 C0030 0374663986999911263178641205731717779520067433766495422463819297 %3 C0030 3743053870376005189066303304970051900555620047586620529435183443 %4 C0030 1843455027479745344769934714172383230815271481800760921074192047 %5 C0030 1518783534895848218901860295823312956629520708234095676963637420 %6 C0030 3945143939418386190108082089777175170500434817645475171452989434 %7 C0030 1134142017562215488095419920914735851528567953452697630499372957 %8 C0030 7294825997028477524032480820777029187197217538347520860864858753 %9 C0030 4778655469838325536790138351722118641519595912039044480226696736 %A C0030 7943596502055843602956960655824943133694017295242896108616198249 %B C0030 9904513569005736405110266439137351740627907496884901227557191776 %C C0030 2037730358452877575760349503812991539865873765359168640051599889 %D C0030 7106379906160863003099013645709498138143803664034891345628757167 %E C0030 7992633770007495893444239802920932682306325249785616969349083402 %F C0030 5947248477168094655354769168600552152101721516829611551537372040 %N C0030 exp(-Pi/2). i^i. %O C0030 1 %R C0030 %I C0030 %P C0030 sqrt(-1)^sqrt(-1); %Z C0030 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0031 2078862249773545660173067253970493022262685312876725376101135571 %1 C0031 0614729193229234048754326694073321564310997561412868956566132691 %2 C0031 4694458311965705623294109531061640017807007041375078320755666248 %3 C0031 7877869206615046914282912338325693716136777293836109459387888090 %4 C0031 %5 C0031 %6 C0031 %7 C0031 %8 C0031 %9 C0031 %A C0031 %B C0031 %C C0031 %D C0031 %E C0031 %F C0031 %N C0031 -Zeta(-1/2). %O C0031 1 %R C0031 %I C0031 %P C0031 %Z C0031 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0032 2193280050738015456559769659278738223461637641994272334858015918 %1 C0032 6570268641892369341265228125781694047116775935790761569464704160 %2 C0032 0850762605377321498825766371805297571380456597872724776767447618 %3 C0032 7553129593552530565612194193832577193307480608531368213896175659 %4 C0032 8766510966436553091512057045356609836539616553346459064373502076 %5 C0032 4783604959136173542152978233043780022882962305802326378607842337 %6 C0032 4274573570202288519980906060551727339410149286414016982965175352 %7 C0032 2368650118179667647457626718601024618354031140185283877957644241 %8 C0032 9872115318694031813611643280952307300243980407056622263894694357 %9 C0032 1961144401709663883569352325342876568261223459595170898639075240 %A C0032 7413028766603575990876954471836670122447802557320011165920485737 %B C0032 4874464306938871176671665874235477628225501797045518227570136417 %C C0032 7239748416993429442894102234360498748470733717783541896063465911 %D C0032 1004443583106161213962732869557059035275368574238683663081722030 %E C0032 1283125293621755459187167549937979476221291739255759361220329558 %F C0032 2175073914479096748534460535766422536429953876532413694901848277 %N C0032 exp(Pi/4). %O C0032 1 %R C0032 %I C0032 %P C0032 %Z C0032 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0033 2236067977499789696409173668731276235440618359611525724270897245 %1 C0033 4105209256378048994144144083787822749695081761507737835042532677 %2 C0033 2444707386358636012153345270886677817319187916581127664532263985 %3 C0033 6580535761350417533785003423392414064442086432539097252592627228 %4 C0033 8762995174024406816117759089094984923713907297288984820886415426 %5 C0033 8989409913169357701974867888442508975413295618317692149997742480 %6 C0033 1530434115035957668332512498815178139408000562420855243542235556 %7 C0033 1063063428202340933319829339597463522712013417496142026359047378 %8 C0033 8550438968706113566004575713995659556695691756457822195250006053 %9 C0033 9231234005009286764875529722056766253666074485853505262330678494 %A C0033 6334222423176372770266324076801044433158257335058930981362263431 %B C0033 9868647194698997018081895242644596203452214119223291259819632581 %C C0033 1104170495807048120403455994943506855551855572512388641655010262 %D C0033 4363125710244496187894246829034044747161154557232017376765904609 %E C0033 1852957560357798439805415538077906439363972302875606299948221385 %F C0033 2177348592453515121046345555040707227872421534778752911212121184 %N C0033 5^(1/2). %O C0033 1 %R C0033 RS8 XVIII. MOC 22 234 68. %I C0033 A2163 M0293 N0105 %P C0033 %Z C0033 AL HY GA IR 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0034 2245172519832320626651282937439142868095817465731588729997644748 %1 C0034 9059275846479851251681928362572708209730381722857833380421173934 %2 C0034 5739909703298523124353409187235168636445281243220100370838309533 %3 C0034 5032511940662616915979858055381918901964452536684405613352638050 %4 C0034 3994361412314960214996628220370770969562579508342794572702991261 %5 C0034 2403389764371649361120745630811711909111202222751383630040747574 %6 C0034 8834944507089201420363136350763608943998051918726135911137450053 %7 C0034 4809964325181302302877148105978575777706778407410040095779608096 %8 C0034 1785965734973476516970076580001090730984556467145733764520624109 %9 C0034 9949323108377411602060701252771336220464945276237753289326019398 %A C0034 7058525344732248680390433602987907816010399245176769654887875249 %B C0034 8791305843019063957071209835503298995063868564962439341902712380 %C C0034 8844754527744837205778387321125447360234844247402805351154917641 %D C0034 3730565419185556166032672995606386281785677423142512912153638567 %E C0034 0589760702880942492928092051326385473239220704987028202187437621 %F C0034 6666637408623398679387192085271785645752373986994443040623078909 %N C0034 gamma^exp(1). %O C0034 0 %R C0034 %I C0034 %P C0034 %Z C0034 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0035 2245915771836104547342715220454373502758931513399669224920300255 %1 C0035 4066926040399117912318519752727143031531450073148896372716654162 %2 C0035 7272000368412458784838257801973999275162709111852386713529408348 %3 C0035 9216233769249673053675166259960166872554777588806087374292011817 %4 C0035 1661161372246197209044896331314599273279140914840576764889753784 %5 C0035 8853441020064925934903575947634691652862940078473954077552980198 %6 C0035 2902613122402951137999068865244293114633593928571607332954149153 %7 C0035 2530137722767555183068793043622842319088286797578297967264718164 %8 C0035 0007043571810583642606414580212239690697447498851616133184051062 %9 C0035 1636455956108413309428992831263755783615874304692916424601833531 %A C0035 9342336420036127263824523624703549571835049073419630023545342564 %B C0035 1290979211943031169080012925227704944036988526128619118395159687 %C C0035 3159169810191151307022170454764661795922522468451098320875962159 %D C0035 4421483998747447264175934025693668265035580476642374237061708505 %E C0035 6446643244574967388841936886831159252005556026457050593201170093 %F C0035 6276055359582664120199812004276137019217486203191051990550681657 %N C0035 Pi^exp(1). %O C0035 2 %R C0035 %I C0035 %P C0035 %Z C0035 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0036 2302585092994045684017991454684364207601101488628772976033327900 %1 C0036 9675726096773524802359972050895982983419677840422862486334095254 %2 C0036 6508280675666628736909878168948290720832555468084379989482623319 %3 C0036 8528393505308965377732628846163366222287698219886746543667474404 %4 C0036 2432743651550489343149393914796194044002221051017141748003688084 %5 C0036 0126470806855677432162283552201148046637156591213734507478569476 %6 C0036 8346361679210180644507064800027750268491674655058685693567342067 %7 C0036 0581136429224554405758925724208241314695689016758940256776311356 %8 C0036 9192920333765871416602301057030896345720754403708474699401682692 %9 C0036 8280848118428931484852494864487192780967627127577539702766860595 %A C0036 2496716674183485704422507197965004714951050492214776567636938662 %B C0036 9769795221107182645497347726624257094293225827985025855097852653 %C C0036 8320760672631716430950599508780752371033310119785754733154142180 %D C0036 8427543863591778117054309827482385045648019095610299291824318237 %E C0036 5253577097505395651876975103749708886921802051893395072385392051 %F C0036 4463419726528728696511086257149219884997874887377134568620916705 %N C0036 log(10). %O C0036 1 %R C0036 RS8 2. %I C0036 A2392 M0394 N0151 %P C0036 %Z C0036 IR TR HY GA 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0037 2314069263277926900572908636794854738026610624260021199344504640 %1 C0037 9524342350690452783516971997067549219675952704801087773144428044 %2 C0037 4146938358447174458796098493653279658636692422302689910137417646 %3 C0037 8440141039518386847724306805958816244984449143096677841367163196 %4 C0037 3414784038216511287637731470347353833162821294047891936224820221 %5 C0037 0060320654433627365572718237449896188580595916848726454790133978 %6 C0037 3402659510149964379242296816079956538142353620695760077059046089 %7 C0037 9883002254304871211791300849327379580729427301931042601691939325 %8 C0037 8532034289686618952832905217111571851855068022541972045663708655 %9 C0037 6838683054479927817040749776854036755653495721886788256399438471 %A C0037 8224585889428535247260568210271076018491534518468064887386774439 %B C0037 6305140051694405406652654309688690639373153598373110421744330239 %C C0037 6789669003504118148605339028720375991858688689748732432172158559 %D C0037 6074334676426167856117353336421265631915665454892289692245773889 %E C0037 5709053618038361975103265679436240883599064223471284653343731487 %F C0037 1706517894637427341269479680432104147666823028642934446787458303 %N C0037 exp(Pi). %O C0037 2 %R C0037 %I C0037 %P C0037 %Z C0037 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0038 2357111317192329313741434753596167717379838997101103107109113127 %1 C0038 1311371391491511571631671731791811911931971992112232272292332392 %2 C0038 4125125726326927127728128329330731131331733133734734935335936737 %3 C0038 3379383389397401409419421431433439443449457461463467479487491499 %4 C0038 5035095215235415475575635695715775875935996016076136176196316416 %5 C0038 4364765365966167367768369170170971972773373974375175776176977378 %6 C0038 7797809811821823827829839853857859863877881883887907911919929937 %7 C0038 9419479539679719779839919971009101310191021103110331039104910511 %8 C0038 0611063106910871091109310971103110911171123112911511153116311711 %9 C0038 1811187119312011213121712231229123112371249125912771279128312891 %A C0038 2911297130113031307131913211327136113671373138113991409142314271 %B C0038 4291433143914471451145314591471148114831487148914931499151115231 %C C0038 5311543154915531559156715711579158315971601160716091613161916211 %D C0038 6271637165716631667166916931697169917091721172317331741174717531 %E C0038 7591777178317871789180118111823183118471861186718711873187718791 %F C0038 8891901190719131931193319491951197319791987199319971999200320112 %N C0038 Copeland-Erdos number. %O C0038 0 %R C0038 %I C0038 %P C0038 cc:=``;for i from 1 to 325 do:cc:=cat(cc,convert(ithprime(i),string)); od; %Z C0038 IR. %K C0038 Prime numbers written in a row. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0039 2428189792098870328736041436179146358118362944783390497632749974 %1 C0039 7264447341208683681238055015720590438813806801377705872956847589 %2 C0039 9669360338361873241053003928658086692443946578908924916513710663 %3 C0039 7710425232367360767514797964668863983690485039373933225214580564 %4 C0039 0347256592540290028830867001979398074213872522790089323154228502 %5 C0039 2365155218858151942975608923633479086419957926222599842509090403 %6 C0039 7868426347076303076838563684218560814267976446059604379630381142 %7 C0039 1041621275844292057700163007280916980100703596621893466128982343 %8 C0039 1926737355829365269602682526958279694475279735227885563998846362 %9 C0039 9611868189949907862224879835610936304372558194868154071266808903 %A C0039 9110046272735513927716078337416320928815428889994397208487845323 %B C0039 4152708004308035548664015757620915591082058226614431425521726705 %C C0039 7042631000728032399488705130654015937417537006298381931261546997 %D C0039 4069317481395354238438130325673813846292110990298812971632204025 %E C0039 7573730266377870214047826804664646683622467574744155475103324044 %F C0039 0112973285928917205782636120241559134132069141428635506620723583 %N C0039 Product(1+1/n^3,n=1..infinity). %O C0039 1 %R C0039 %I C0039 %P C0039 1/Pi*cosh(sqrt(3)/2*Pi); %Z C0039 %K C0039 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0040 2502907875095892822283902873218215786381271376727149977336192056 %1 C0040 %2 C0040 %3 C0040 %4 C0040 %5 C0040 %6 C0040 %7 C0040 %8 C0040 %9 C0040 %A C0040 %B C0040 %C C0040 %D C0040 %E C0040 %F C0040 %N C0040 Feigenbaum reduction parameter. %O C0040 1 %R C0040 Journal of Physics(A) 12 275 1979. Math. of Computation 57 438 1991. %I C0040 A6891 M1311 %P C0040 %Z C0040 %K C0040 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0041 2625374126407687439999999999992500725971981856888793538563373369 %1 C0041 9086270753741037821064791011860731295118134618606450419308388794 %2 C0041 9753864044905728714477196814852322432039116478291488642282720131 %3 C0041 1783170650104522268780144484177034696946335570768172388768100092 %4 C0041 3706539519386506362757657888558223948114276912100830886651107284 %5 C0041 7106234658112981830124591328361000649826659236517261788308637107 %6 C0041 8645219552815427466510961100147250209790463938177871257500980365 %7 C0041 7792230643121651131087380599298242335584945612399567699978435964 %8 C0041 8640960032664824435213064915993032705307532565686183882654833098 %9 C0041 0284669624287388475184443683853073411504446947884005946446913168 %A C0041 2120592946054542163754891890060150356872862933140063632268146351 %B C0041 6121637648641314293423516002141805135282877319601798139178844071 %C C0041 5066299491909349627739620723413530255757818028118021020634097499 %D C0041 3923837290330361739816633600322612620886664117180538328558970002 %E C0041 7357226452332870106495863677266986873848591656982662617419885511 %F C0041 5684430332735123103243307572733164953615262048268479830605398100 %N C0041 Ramanujan Number. %O C0041 18 %R C0041 %I C0041 %P C0041 exp(Pi*sqrt(163)); %Z C0041 %K C0041 Very nearly 262537412640768744 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0042 2665144142690225188650297249873139848274211313714659492835979593 %1 C0042 3649204461787059548676091800051964169419893638542353875146742420 %2 C0042 3143836740781869850548757489508311478396285835618360834612664317 %3 C0042 9409148910053401437395034287083311904527116973731595652905657632 %4 C0042 8457297981774346372848330862819349528549927583773563188830693383 %5 C0042 2344596118050809768790812612749107289767429784266376325023696016 %6 C0042 9562488171163970292690385990355562846011560523202446500663180639 %7 C0042 1529947959280102745500352847408628685697748491775145744996588372 %8 C0042 9757457258999063882800035080369037338790904671828053836596767952 %9 C0042 2829468189601804934461532880842378994716838254056869371997377362 %A C0042 3543726326713082085669350247813249584441266170431183380998258190 %B C0042 3631133789576850952327307971157806076777376725599577962997694393 %C C0042 8497541384621068371403791894057204607551548248746311581327005527 %D C0042 7740580117488694405652197317909350581370671620544575999859693906 %E C0042 9498769787692472877230379033911589155664202676060971135681524908 %F C0042 5312455545659935574176122815155168089933928414216177023206262684 %N C0042 Gelfond-Schneider number. %O C0042 1 %R C0042 PSPM 28 16 76. %I C0042 A7507 M1560 %P C0042 2**(2**(1/2)); %Z C0042 IR TR 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0043 2678938534707747633655692940974677644128689377957301100950428327 %1 C0043 5904176101677438195409828890411887894191590492000722633357190845 %2 C0043 6950447225997771336770846976816728982305000321834255032224715694 %3 C0043 1817555449952728784394779441305765828401612319141596466526033727 %4 C0043 %5 C0043 %6 C0043 %7 C0043 %8 C0043 %9 C0043 %A C0043 %B C0043 %C C0043 %D C0043 %E C0043 %F C0043 %N C0043 GAMMA(1/3). %O C0043 1 %R C0043 %I C0043 %P C0043 %Z C0043 GA 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0044 2720699046351326775891117386463233598426099372139110863354827403 %1 C0044 0821847716895308255261874823180902532843336217215997883561940787 %2 C0044 4105161222469737804719459280742721511050716060699264073206312150 %3 C0044 5026019943649041173861199457310463456409727625142540059233779138 %4 C0044 4867496792738531503755908688294159392930817350006553434105356116 %5 C0044 7527698925441621381207647589326804009604481605744913095968034805 %6 C0044 8554353497078143755779753057310492499084217430595536534192200545 %7 C0044 2803161699025970771025521173408012537984272114454694894037585991 %8 C0044 5086862168315760210380485141031915635040204011885483144122820352 %9 C0044 2411598882583554571742969132553160037651391956101971003787983695 %A C0044 3583879901983392966634781510062500750756944690533333707348100039 %B C0044 2223147163465248857155518548250244856910375796856796930383697078 %C C0044 8572517710478324758866115344446342738785921283242927924744841016 %D C0044 9983512035228487431086946359808564858159787685162879186164433753 %E C0044 3345768146598875813094095588870642468614212595033830209830231744 %F C0044 3645422593658661815863697928452195097063074641912190892308120154 %N C0044 Pi*3^(1/2)/2. %O C0044 1 %R C0044 %I C0044 %P C0044 1/2*Pi*sqrt(3); %Z C0044 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0045 6931471805599453094172321214581765680755001343602552541206800094 %1 C0045 9339362196969471560586332699641868754200148102057068573368552023 %2 C0045 5758130557032670751635075961930727570828371435190307038623891673 %3 C0045 4711233501153644979552391204751726815749320651555247341395258829 %4 C0045 5045300709532636664265410423915781495204374043038550080194417064 %5 C0045 1671518644712839968171784546957026271631064546150257207402481637 %6 C0045 7733896385506952606683411372738737229289564935470257626520988596 %7 C0045 9320196505855476470330679365443254763274495125040606943814710468 %8 C0045 9946506220167720424524529612687946546193165174681392672504103802 %9 C0045 5462596568691441928716082938031727143677826548775664850856740776 %A C0045 4845146443994046142260319309673540257444607030809608504748663852 %B C0045 3138181676751438667476647890881437141985494231519973548803751658 %C C0045 6127535291661000710535582498794147295092931138971559982056543928 %D C0045 7170007218085761025236889213244971389320378439353088774825970171 %E C0045 5591070882368362758984258918535302436342143670611892367891923723 %F C0045 1467232172053401649256872747782344535347648114941864238677677440 %N C0045 log(2). %O C0045 0 %R C0045 MOC 17 177 63. %I C0045 A2162 M4074 N1689 %P C0045 %Z C0045 TR HY GA IR 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0046 3039635509270133143316383896291829167130763240167396465368270956 %1 C0046 8251936288670632357362782177686551284086673328455715874504218580 %2 C0046 2958255237208010654490449779158562905811848269548279359286373838 %3 C0046 5995907652472770552744782538307724006988226099312356255577372653 %4 C0046 8336909082114445610907287351055791065711567691362094219334684787 %5 C0046 9039480038140779684970946351043160948835411306380573065177840867 %6 C0046 7323204704619277541635589204105163918685973586205196648092618628 %7 C0046 9280948562789895442858484455356104088208405639771081981137520636 %8 C0046 2295313370143798824965330290564556738634086045567074285340367204 %9 C0046 0900551256687782956852434209397359539762476259178487648801314089 %A C0046 2423254106925623254498309163269606583395854090734965500454639123 %B C0046 7892792325484852530790180948254350725918622839653691550582504786 %C C0046 6360271836035024790964344895561712052538710275779634655437321123 %D C0046 3368620973544367221023592337479668185674843541549492111219108590 %E C0046 1947456363906236807996230180265490536328016444233870982772330292 %F C0046 1557068377734917512874041734177931419514423437745537835472508767 %N C0046 3/Pi^Pi. %O C0046 0 %R C0046 %I C0046 %P C0046 %Z C0046 IR GA 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0047 3162277660168379331998893544432718533719555139325216826857504852 %1 C0047 7925944386392382213442481083793002951873472841528400551485488560 %2 C0047 3045388001469051959670015390334492165717925994065915015347411333 %3 C0047 9484124085316929577090471576461044369257879062037808609941828371 %4 C0047 7115484063285529991185968245642033269616046913143361289497918902 %5 C0047 6652954361267617878135006138818627858046368313495247803114376933 %6 C0047 4671973819513185678403231241795402218308045872844614600253577579 %7 C0047 7028286440290244079778960345439891633492226526120677926516760310 %8 C0047 4843669779375692615572050036989490946942185000735834884464388273 %9 C0047 1109289109042348054235653403907274019786543725939641726001306990 %A C0047 0009557844631096267906944183361301813028945417033158077316263863 %B C0047 9519379370465476522063206368658719782204931242605345411160935697 %C C0047 9828132452297000798883523759585328579251362964686511497675217123 %D C0047 4595592380393756251253698551949553250999470388439903364661654706 %E C0047 4723499979613234340302185705218783667634578951073298287515794521 %F C0047 5771652139626324438399018484560935762602031676804240795894693424 %N C0047 10^(1/2). %O C0047 1 %R C0047 %I C0047 %P C0047 %Z C0047 IR GA HY AL 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0048 3331779238077186743183761363552442266594171402496297431508333380 %1 C0048 0226579369575666966126326863171597730303956560340239859445266992 %2 C0048 6995983655279833137860460342687803735583711288309759085498885527 %3 C0048 5110682580828007855278737560668420097413061758869117869431505032 %4 C0048 4483702760663422216993421703577153253600060741015276339995955943 %5 C0048 3815728674375783424342246556823932434704058503201360577846556623 %6 C0048 0580633659873850456705200030201478031284544766526262824540905936 %7 C0048 8111793718690365391787374644136628232478821575207439195083023003 %8 C0048 5825295929110494164054978040797359064145410714730188334237285057 %9 C0048 2696493698775223782640206744433739959552047501228852628730430567 %A C0048 2083807917820314483332377181367931160843498881621249228779170420 %B C0048 3631884481390005877823560935416583039062005708351734547213553593 %C C0048 1574977247856757082455078817846902753081585575339489022399243218 %D C0048 2646851222376597944082250651535911750795209885106735426727042416 %E C0048 8022081972371867180513623641872257764764706371291092905904229373 %F C0048 1603495931031633447825916364526018482113031490513222842451535071 %N C0048 gamma^2. %O C0048 0 %R C0048 %I C0048 %P C0048 Psi(1)**2; %Z C0048 GA 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0049 3625609908221908311930685155867672002995167682880065467433377999 %1 C0049 5699192435387291216183601367233843003614717513924207199658915240 %2 C0049 9402255997742645889036145060641374489685419499920192677303799463 %3 C0049 0892212412318323707992084397369907093905620929232342870274191448 %4 C0049 6039571368350368654879959683684764758514890904041663407630339718 %5 C0049 0668059577342379085590807145783129763563688255879288111906351681 %6 C0049 5850849474881502788673107310524879825166366128793164184417443827 %7 C0049 6457548009199147768019228150926119943229978378353634595543419474 %8 C0049 %9 C0049 %A C0049 %B C0049 %C C0049 %D C0049 %E C0049 %F C0049 %N C0049 GAMMA(1/4). %O C0049 1 %R C0049 %I C0049 %P C0049 %Z C0049 IR TR GA %K C0049 Proven transcendental by Chudnovski and Chudnovski. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0050 3665129205816643270124391582326694694542634478371052630536777136 %1 C0050 7056161531935273854945582285669890835830252304536483476556634251 %2 C0050 7194064663481465503056279213873025561892269971767228604180083261 %3 C0050 3019942189532855463393890461583132806371040809369384417114396747 %4 C0050 8468991705264226741840273910350046311904221893236804840957722768 %5 C0050 7543580355966487114918845581320233316396597680824993645293358466 %6 C0050 8462357426343756525369861095695215917735720106501342222449994153 %7 C0050 5070781422978330296377743119702939743503626331562446876550886089 %8 C0050 9413549070990894303949458256684494681152271706319432548904469756 %9 C0050 4936223469819270466722804100902961886880218201749101992361055490 %A C0050 5353248775853399980970743779162782181934419963190210504293301242 %B C0050 4150592792680975405614029209917615822480234209018841273681226932 %C C0050 1284034933052507728909167575791393588626671908786468115956639594 %D C0050 4299795802063954813959230279378674693155920271933093224151240077 %E C0050 3171624705899369070382753351373923180070104195572213045633258662 %F C0050 8947326070184882339110039410732806653401499469573021082748274189 %N C0050 -log(log(2)). %O C0050 0 %R C0050 %I C0050 %P C0050 %Z C0050 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0051 3678794411714423215955237701614608674458111310317678345078368016 %1 C0051 9746149574489980335714727434591964374662732527684399520824697579 %2 C0051 2790129008626653589494098783092194367377338115048638991125145616 %3 C0051 3449877199786844759579397473025498924954532393662079648105146475 %4 C0051 2061229422308916492656660036507457728370553285373838810680478761 %5 C0051 1956829893454497350739318599216617433003569937208207102277518021 %6 C0051 5849942337816907156676717623366082303761229156237572094700070405 %7 C0051 0973342567757625252803037688616515709365379954274063707178784454 %8 C0051 1946749093130698056016370211138977422821401738023283246528729138 %9 C0051 9004660986659512444097699851459164287803720202510224578732111059 %A C0051 5377768074371122062400051679652809754447802864860068385642004336 %B C0051 8466248434938691826206251899482197099242342520751049209344528512 %C C0051 4486022451380986417421061219536368310078209224804653079806562854 %D C0051 1547860617931557059871702159996991882282653979278037471274386351 %E C0051 5629671451194398670268245267971681438977214135957969054252910354 %F C0051 8859731078233269414118579235695949376986012657588031279984679484 %N C0051 1/e. %O C0051 0 %R C0051 %I C0051 %P C0051 %Z C0051 IR TR HY 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0052 3920728981459733713367232207416341665738473519665207069263458086 %1 C0052 3496127422658735285274435644626897431826653343088568250991562839 %2 C0052 4083489525583978691019100441682874188376303460903441281427252322 %3 C0052 8008184695054458894510434923384551986023547801375287488845254692 %4 C0052 3326181835771108778185425297888417868576864617275811561330630424 %5 C0052 1921039923718440630058107297913678102329177387238853869644318264 %6 C0052 5353590590761444916728821591789672162628052827589606703814762742 %7 C0052 1438102874420209114283031089287791823583188720457836037724958727 %8 C0052 5409373259712402350069339418870886522731827908865851429319265591 %9 C0052 8198897486624434086295131581205280920475047481643024702397371821 %A C0052 5153491786148753491003381673460786833208291818530068999090721752 %B C0052 4214415349030294938419638103491298548162754320692616898834990426 %C C0052 7279456327929950418071310208876575894922579448440730689125357753 %D C0052 3262758052911265557952815325040663628650312916901015777561782819 %E C0052 6105087272187526384007539639469018927343967111532258034455339415 %F C0052 6885863244530164974251916531644137160971153124508924329054982464 %N C0052 1-1/Zeta(2). %O C0052 0 %R C0052 %I C0052 %P C0052 1-Pi**2/6; %Z C0052 IR GA 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0053 3922646139209151727471531446714599513730323971506505209568298485 %1 C0053 2547208031503382848806505231041456914038034379886764996843321856 %2 C0053 0187370796648866325531877003002927708284792679262934379740474743 %3 C0053 4560678349258709176744625306684542186046544092107149397014020908 %4 C0053 %5 C0053 %6 C0053 %7 C0053 %8 C0053 %9 C0053 %A C0053 %B C0053 %C C0053 %D C0053 %E C0053 %F C0053 %N C0053 -Zeta(1,1/2). %O C0053 1 %R C0053 %I C0053 %P C0053 -Zeta(1/2)*(1/2*gamma+1/2*ln(8*Pi)+1/4*Pi); %Z C0053 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0054 3989422804014326779399460599343818684758586311649346576659258296 %1 C0054 7065792589930183850125233390730693643030255886263518268551099195 %2 C0054 4555837242996212730625507706345270582720499317564516345807530597 %3 C0054 2536427320836695934782717029991864190634560328089333886067046536 %4 C0054 5279671686934195477117721206532537536913347875056042405570488425 %5 C0054 8180482317903772804997176338575363992839140318693283694771754858 %6 C0054 2397750544479277611550704127039696724850473376038148139239013005 %7 C0054 6467602335630557008570072664110001572156395357782312341095260906 %8 C0054 9269089244567245554672105743928915256735109303850680783183519806 %9 C0054 5519646874381899801659597818877214588616174599005017129609403663 %A C0054 1329384620186504530996681431649143242106041745529453928221968879 %B C0054 9792718106125413701644536367652874648406122597740302757632013709 %C C0054 4221945117254654707584421414225028380618685941352575547745498015 %D C0054 3057834914761302200742289202782109330263327658274294341361264338 %E C0054 4980057963587894437275171155013545859889393745518894340738320491 %F C0054 5198296193070717617508033290865473642822691945906753799881712937 %N C0054 1/(2*Pi)^(1/2). %O C0054 0 %R C0054 %I C0054 %P C0054 %Z C0054 GA 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0055 4342944819032518276511289189166050822943970058036665661144537831 %1 C0055 6586464920887077472922494933843174831870610674476630373364167928 %2 C0055 7158963906569221064662812265852127086568670329593370869658826688 %3 C0055 3311636077384905142844348666768646586085135561482123487653435434 %4 C0055 3573172538356222813956030486466523660955393773561763234319167109 %5 C0055 9141159789496299351245793492635765546907767108241915047991098967 %6 C0055 4900103277537653570270087328550951731440674697951899513594088040 %7 C0055 4239315188681084025446540897970298632868287626241440134570435461 %8 C0055 3292060071260510402836712595484628770786199899232674843990234817 %9 C0055 1535934551079475492552482577820679220140931468164467381030560475 %A C0055 6357204088833832094889965227174945413317914176402474075057887678 %B C0055 6097109925754773004604865604951561005798574134027267520143924791 %C C0055 7970859047931285212493341197329877226463885350226083881626316463 %D C0055 8835536855017684602952863993916335106475557040505131823429888748 %E C0055 8212064359502381890264331771153738220336263441647839714600185839 %F C0055 6093006317333986134035135741787144971453076492968331392399810608 %N C0055 1/log(10). %O C0055 0 %R C0055 PNAS 26 211 40. %I C0055 A2285 M3210 N1299 %K C0055 Common logarithm of e. %P C0055 %Z C0055 IR TR GA HY 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0056 4636476090008061162142562314612144020285370542861202638109330887 %1 C0056 2019786416574170530060028398488789255652985225119083751350581818 %2 C0056 1625011155471530569944105620719336266164880101532502755987925805 %3 C0056 5168538891674782372865387939180125171994840139558381851150950216 %4 C0056 3330649387215460973207855555720860146322756524267305218045746400 %5 C0056 8697450583897363896489002648687785378012823633121716457814683690 %6 C0056 0993340528882486244562388119090158949767997197011496776001645006 %7 C0056 2530168121256093353041349396630129319242748402931611194920616208 %8 C0056 4415937236127316687698168702759318951033397332592903851289254594 %9 C0056 5922463215609783638009537499320948607339491864325160274827930450 %A C0056 3733177255465049960867577062275441628502227372371197447336697731 %B C0056 8510694013811269957779256274825660096211672674811527282722520722 %C C0056 5972684215710195877562091701557768709866542668903449351805472890 %D C0056 0537078381242128547943030243678452646699376838088771904127673115 %E C0056 9374806162883303202880446523958961892413051527087672643940007044 %F C0056 3923542442569122697771151892771722644634150145716485890125410264 %N C0056 arctan(1/2). %O C0056 0 %R C0056 %I C0056 %P C0056 %Z C0056 HY 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0057 4804530139182014246671025263266649717305529515945455868668641336 %1 C0057 2366538225983447219994826344392699093271559766135889748125512841 %2 C0057 3358268503177555294880844290839184664798896404335252423673643658 %3 C0057 0928812308860296391128071530318266176379609867308270245310592522 %4 C0057 6656312820024956976451435307963064082905548298567572314978510155 %5 C0057 8679108496083909151933110848706240528454341824454927967257169529 %6 C0057 5257711235965735880104133548647497043526869238858333882816648790 %7 C0057 8857540975096649723158050786731973450614471200509341451651211862 %8 C0057 1092035087482029855786912716092364298671733018446245632817596410 %9 C0057 8192663586577823392369742800142655279688239795869908197129189382 %A C0057 0699930825839343233464154340966319873368980954169096883844669475 %B C0057 4551058340780554804026217235773057628897654433440800585489759622 %C C0057 1411999519227087945494681391370023493264935098635699946010886029 %D C0057 8900645465619378210410794978760457745388343582681206074499441569 %E C0057 1713381583907425247894458151739486142686029753649689945335652291 %F C0057 8217388871690526612820701060119167739725540248075624884101753375 %N C0057 log(2)^2. %O C0057 0 %R C0057 %I C0057 %P C0057 %Z C0057 GA HY 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0058 4812118250596034474977589134243684231351843343856605196610181688 %1 C0058 4016386760822177441200942912272347499723183995829365641127256832 %2 C0058 3726737622753059241864409754182417007211837150223823937469187275 %3 C0058 2432791930187970790035617267969445457523053454341887652855325649 %4 C0058 0207399693496618755630102123996367930820635997798850998015682579 %5 C0058 7852649328666651116241713808272592788479026096533113247227514931 %6 C0058 4064985088932176366002566661953210679681757661847307351598603984 %7 C0058 8457545412056323413570047800639487224315261789680045093639052503 %8 C0058 4904785433521978653704371939033576772416703704176417679780319652 %9 C0058 3209965675879542161317599788574175988306925239971759004645396055 %A C0058 7551254692968807903367049621356294492555120383931774697654826977 %B C0058 5419090021482875917950104103150091720402851819763018833435075993 %C C0058 0550758126742131303293499107738876675178035135238757650875666509 %D C0058 7521115192509805325161772335414969051191031376000829815753239644 %E C0058 6099313611178395549652373337806244511589725385381256253244671053 %F C0058 9275623369281196653779619758917666711095846373635984559743713594 %N C0058 log(phi). %O C0058 0 %R C0058 RS8 XVIII %I C0058 A2390 M3318 N1334 %P C0058 log(1/2+1/2*sqrt(5)); %Z C0058 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0059 5403023058681397174009366074429766037323104206179222276700972553 %1 C0059 8110039477447176451795185608718308934357173116003008909786063376 %2 C0059 0021663456406512265417318584717971164474479494233117924551393254 %3 C0059 3359435177567028925963757361543275496417544917751151312227301006 %4 C0059 3135707823223677140151746899593667873067422762024507763744067587 %5 C0059 4981617842720216455851115632968890571081242729331698685247145689 %6 C0059 4904342375433094423024093596239583182454728173664078071243433621 %7 C0059 7481003220271297578822917644683598726994264913443918265694535157 %8 C0059 5076278251380499160730638031721445034986129488336335655779909793 %9 C0059 0152879278840389800974548251049924537987740061453776371387833594 %A C0059 2345241681642836188284823748963273905562609120175898275025285999 %B C0059 1743858069248558423221782685827108829156468300679687595513003610 %C C0059 8120336747472749181033673515093458888304203217596594052703934762 %D C0059 5024873707526613133698424160597105956065999786913844155744144664 %E C0059 2001283939887092632345333886862629965470976805483683035821182341 %F C0059 1732418465771864116514294188326444690783859132110896575103960705 %N C0059 cos(1). %O C0059 0 %R C0059 %I C0059 %P C0059 %Z C0059 HY 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0060 5495393129816448223376617688029077883306989812630647910901513045 %1 C0060 7663142005575304756261898911276140684146692757919040495526318590 %2 C0060 5450417734549848078207129395256287725094703876281688270975610026 %3 C0060 1156408875886889419139970426537839323510832374953687141792987794 %4 C0060 3000698803152906006836392355186819384773558380559416839086586250 %5 C0060 2841553060753907344342607909650625913030645934230065412361060041 %6 C0060 1186074892174667506461526100843421125988247546108823882428539431 %7 C0060 6454281589506290937285564063171286057328260161429150263449874790 %8 C0060 9691567676023896506619892254286017265556137668232879979106763396 %9 C0060 2776903826327089219839457230041344361865407953362338720245711646 %A C0060 0691442538786831806598144179106273232873298589435840446451356990 %B C0060 6835067495862965072477055694509983292056288856482328938870143806 %C C0060 4548296318506275719460957159631960983323959080438147279242020449 %D C0060 5163099676146527251947570818748536000180541287063016105886560109 %E C0060 7015592439767669989094255929681870729160076789008393992781794303 %F C0060 4763903514203857308736435378434747170357841069573597602072345417 %N C0060 -log(gamma). %O C0060 0 %R C0060 RS8 XVIII. %I C0060 A2389 M3740 %P C0060 %Z C0060 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0061 5963473623231940743410784993692793760741778601525487815734849104 %1 C0061 8232721911487441747043049709361276034423703474842862368981207829 %2 C0061 9529057196617369222665894024318513514368293763296254771187974025 %3 C0061 2432302052117885737856177283652365137855948674253562181300812083 %4 C0061 3784238448595980666983593217826489686047231099964510855581415383 %5 C0061 5206162575008318874187017581518579310050611604355294567103401503 %6 C0061 6663635029755807141964659205370602563858754392239763839327096186 %7 C0061 3555954208141117245933865465249552771087829990958035092991791621 %8 C0061 6389635691355069731255489979569371930717843870146967280775178170 %9 C0061 0499106605448472254946244137072561379284901975499830037495298303 %A C0061 8426547682453111389665104606160569870635068347161893124491230526 %B C0061 4149918184343827745648804281946265691438208018677444460174831369 %C C0061 8959152675647833695487186740099259602213107786153781858902163226 %D C0061 2956642078512987325163348487588340256844389750747943861531479299 %E C0061 3932807784399881769589219826357740623772168228057169916069633006 %F C0061 6837801738278339632544426209799414229337385628490796642900584404 %N C0061 -exp(1)*Ei(-1) %O C0061 0 %R C0061 %I C0061 %P C0061 %Z C0061 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0062 7363998587187150779097951683649234960631258329094979056821966523 %1 C0062 0847181802807864081869444182490225974582720321801478346017690055 %2 C0062 4229868477732944895880680415915142979334394163998909738083425408 %3 C0062 1520029546146727664979554751571056972458855740951911198864857982 %4 C0062 9433328581834861487045790649324680582119729407417116198674601654 %5 C0062 4485479889543142786974292724928598532747380156659130512545236749 %6 C0062 4154597773449101860414448973793322220865507304585980050655111918 %7 C0062 9338017331890327068185957293937796352569292021414362805981608876 %8 C0062 3091647656764089200563681690417652792652154091682197250552326447 %9 C0062 7646813159383043809989583900078755611335395490521438524130346215 %A C0062 3457599854790211802421898533425927038158436578567901788663851909 %B C0062 9589847649578146455045212664074436825052408587935995452420291968 %C C0062 6774100311819740383505356065846433687090253752952485814436801506 %D C0062 6642240052190351749758439051568244234310796570611672868391753708 %E C0062 6438175031998334537917178650178729583132166807457526236785528510 %F C0062 1696922360975795282761033968077326069723073543573616136752770598 %N C0062 Sum(1/C(2n,n),n=1..infinity). %O C0062 0 %R C0062 %I C0062 %P C0062 1/2*hypergeom([1, 2], [3/2], 1/4);2/27*Pi*3^(1/2)+1/3; %Z C0062 GA HY 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0063 6598803584531253707679018759684642493857704825279643640247354156 %1 C0063 6736330030756308104088242453371467745675265361417385915268129777 %2 C0063 7682952099474319550375315816728478627294085441342517362404028137 %3 C0063 3075319679080836893339721611007132085986867373329450125117846511 %4 C0063 1997371033841820124908788824103402505629682279991950522007168769 %5 C0063 9223409940814097787626953707932174652296941447728408313475779368 %6 C0063 7286487969837972121942114360126409716777495118467526894899864788 %7 C0063 8735031400612104221274029913304793894630640959962842551117400217 %8 C0063 1224301523765801548364486266084996073901969183044451312867501330 %9 C0063 6711338167540042368298531300473719224313617955264178491864330278 %A C0063 0756133449166065238609080229467962852341826426558255601122364081 %B C0063 7499678015473971397679826375733102162922394423779621713888837163 %C C0063 6549577694533983489312197194643498576817745878661766236458466956 %D C0063 5030064688400052046935488158098374252714019582660708187777614388 %E C0063 4410669718849179506625309950551125603873283026187944985821129679 %F C0063 3977208840286917829299168355913757001865422780775332862089897061 %N C0063 exp(-e). %O C0063 -1 %R C0063 %I C0063 %P C0063 %Z C0063 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0064 6931471805599453094172321214581765680755001343602552541206800094 %1 C0064 9339362196969471560586332699641868754200148102057068573368552023 %2 C0064 5758130557032670751635075961930727570828371435190307038623891673 %3 C0064 4711233501153644979552391204751726815749320651555247341395258829 %4 C0064 5045300709532636664265410423915781495204374043038550080194417064 %5 C0064 1671518644712839968171784546957026271631064546150257207402481637 %6 C0064 7733896385506952606683411372738737229289564935470257626520988596 %7 C0064 9320196505855476470330679365443254763274495125040606943814710468 %8 C0064 9946506220167720424524529612687946546193165174681392672504103802 %9 C0064 5462596568691441928716082938031727143677826548775664850856740776 %A C0064 4845146443994046142260319309673540257444607030809608504748663852 %B C0064 3138181676751438667476647890881437141985494231519973548803751658 %C C0064 6127535291661000710535582498794147295092931138971559982056543928 %D C0064 7170007218085761025236889213244971389320378439353088774825970171 %E C0064 5591070882368362758984258918535302436342143670611892367891923723 %F C0064 1467232172053401649256872747782344535347648114941864238677677440 %N C0064 log(2). %O C0064 0 %R C0064 %I C0064 %P C0064 %Z C0064 TR IR GA HY 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0065 6045997880780726168646927525473852440946887493642468585232949784 %1 C0065 6270772704211796122804166273735338961874080482702217519026535083 %2 C0065 1344802716599417343821020623872714469001591245998364607125138112 %3 C0065 2280044319220091497469332127356585458688283611427866798297286974 %4 C0065 4149992872752292230568685973987020873179594111125674298011902481 %5 C0065 6728219834314714180461439087392897799121070234988695768817855124 %6 C0065 1231896660173652790621673460689983331298260956878970075982667878 %7 C0065 4007025997835490602278935940906694528853938032121544208972413314 %8 C0065 4637471485146133800845522535626479188978231137523295875828489671 %9 C0065 6470219739074565714984375850118133417003093235782157786195519323 %A C0065 0186399782185317703632847800138890557237654867851852682995777864 %B C0065 9384771474367219682567818996111655237578612881903993178630437953 %C C0065 0161150467729610575258034098769650530635380629428728721655202259 %D C0065 9963360078285527624637658577352366351466194855917509302587630562 %E C0065 9657262547997501806875767975268094374698250211186289355178292765 %F C0065 2545383541463692924141550952115989104584610315360424205129155898 %N C0065 sum(1/(n*C(2n,n)),n=1,,infinity). %O C0065 0 %R C0065 %I C0065 %P C0065 1/9*Pi*sqrt(3); %Z C0065 GA HY 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0066 7389056098930650227230427460575007813180315570551847324087127822 %1 C0066 5225737960790577633843124850791217947737531612654788661238846036 %2 C0066 9278127337447839221339807777490012289560741075370239133094755068 %3 C0066 2086581820269647868208404220982255234875742462541414679928129331 %4 C0066 8880707633010193378997407299869600953033075153208188236846947930 %5 C0066 2991355877144568312392327276460258833999646121284928520967890513 %6 C0066 8824663987122813726861064735626379295182227842948434586135287693 %7 C0066 8669857520015499601480750719712933694188519972288826362559719410 %8 C0066 9586619147987150432839769326461023511631238999001051378340676449 %9 C0066 8663892685615821864215577248492011193531621171951731747269796829 %A C0066 3451998505418486319713568594702291255739835611051497936814502776 %B C0066 4480764298510418211705594419178768347128527649780971346250414023 %C C0066 5242158740938668254271570392645296404550628778001311092650138483 %D C0066 3453026463631415604718881176579427863485990767045271193729587239 %E C0066 9598707331081496125310977059353009905032968107542109087762630857 %F C0066 2485003827872276144866745056498738587715751056243438943967139442 %N C0066 exp(2). %O C0066 1 %R C0066 %I C0066 %P C0066 %Z C0066 TR IR HY 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0067 8164215090218931437080797375305252217033113759205528043412109038 %1 C0067 4305561419455530006048531324839726561755884354820793393249334253 %2 C0067 1385023703470168591803162501641378819505539721136213701923284523 %3 C0067 4283123411030157746618769850665609087759577356088592708255670961 %4 C0067 1511603255836101453412728095225302660486164829592085247749725419 %5 C0067 1191271500533834073674513177454416699480215530972684390616972105 %6 C0067 9958065039379297587005270471610028297428995734644505701701103082 %7 C0067 6930529896276673940020997391153902511692115693331856436193281886 %8 C0067 7356259335520938127016626541645397371801227949921479099121251589 %9 C0067 7719252957621869994522193843748736289511599560877623254242109788 %A C0067 8031249582337843804332880240487467096566555049952788767180351255 %B C0067 3443784826960014018156912683901006125559846031156431128801995466 %C C0067 7849660214879231535089640098219689014895803216854654610987884309 %D C0067 3375147537123678256705617554490069667937389945110543099411044968 %E C0067 8572271298811057185720835831609174885658074423123956455857403738 %F C0067 8490440331108074066818018534205109244035940825937632942762395325 %N C0067 sum(1/2^(2^n),n=0..infinity). %O C0067 0 %R C0067 %I C0067 %P C0067 %Z C0067 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0068 8414709848078965066525023216302989996225630607983710656727517099 %1 C0068 9191040439123966894863974354305269585434903790792067429325911892 %2 C0068 0991898881193410327729212409480791955826766606999907764011978408 %3 C0068 7827325663474848028702986561570179624553948935729246701270864862 %4 C0068 8105338203056137721820386844966776167426623901338275339795676425 %5 C0068 5565477963989764824328690275696429120630058303651523031278255289 %6 C0068 8532648513981934521359709559620621721148144417810576010756741366 %7 C0068 4805500891672660580414007806239307037187795626128880463608173452 %8 C0068 4656391420252404187763420749206952007713347809814279021452682556 %9 C0068 6320823352154416091644209058929870224733844604489723713979912740 %A C0068 8192472504885548731193103506819081515326074573929111833196282150 %B C0068 8973486881142145283822986512570166738407445519237561432212906059 %C C0068 2482739703681801585630905432667846431075312638121732567019856011 %D C0068 0683602890189501942151616655191791451720046686595971691072197805 %E C0068 8854064600199401370140530958085520528052531711332305461638363601 %F C0068 8169947971500485150793983830395678167948161221402208916987109743 %N C0068 sin(1). %O C0068 0 %R C0068 %I C0068 %P C0068 %Z C0068 TR HY 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0069 8660254037844386467637231707529361834714026269051903140279034897 %1 C0069 2596650845440001854057309337862428783781307070770335151498497254 %2 C0069 7499476239405827756047186824264046615951152791033987410050542337 %3 C0069 4616325076561716334516614433253361273344609189856135235658301839 %4 C0069 3079400952499326868992969473382517375328802537830917406480305047 %5 C0069 3801093595162541572914761979916498894912254144357231916458673612 %6 C0069 0819922939276988339790319091768330554215868904471891580510441527 %7 C0069 6245083501176035557214434799547818289854358424903644974664824214 %8 C0069 1510393204301994369348768791158658915697996491503919351438526956 %9 C0069 6847816560518536320096245533841155996441878205707110083713760511 %A C0069 8649713541552994922973799383214444889807391897919511442742645178 %B C0069 8016926404032190986172330529844861436432632076911332349210010597 %C C0069 7420776392205906432672535175958250083446472077404230356385719998 %D C0069 8146341731478871918094755506357431937348827299122589427548768950 %E C0069 6940332480955981111478555277621461861596098869131280815734421016 %F C0069 4268583414693248059585248694181977479690728788359266868165629554 %N C0069 1/2*3^(1/2) %O C0069 0 %R C0069 %I C0069 %P C0069 sqrt(3)/2; %Z C0069 IR AL HY GA 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0070 9068996821171089252970391288210778661420331240463702877849424676 %1 C0070 9406159056317694184206249410603008442811120724053326278539802624 %2 C0070 7017204074899126015731530935809071703502386868997546910687707168 %3 C0070 3420066478830137246203998191034878188032425417141800197445930461 %4 C0070 6224989309128438345853028960980531309769391166688511447017853722 %5 C0070 5092329751472071270692158631089346698681605352483043653226782686 %6 C0070 1847844990260479185932510191034974996947391435318455113974001817 %7 C0070 6010538996753235903418403911360041793280907048182316313458619971 %8 C0070 6956207227719200701268283803439718783467346706284943813742734507 %9 C0070 4705329608611848572476563775177200125504639853673236679293278984 %A C0070 5279599673277976555449271700208335835856482301777779024493666797 %B C0070 4077157211550829523851728494167482856367919322855989767945656929 %C C0070 5241725701594415862887051148154475795953070944143093082482803389 %D C0070 9945040117428291436956487866028549527199292283876263953881445844 %E C0070 4485893821996252710313651962902141562047375316779434032767439147 %F C0070 8818075312195539386212326428173983656876915473040636307693733847 %N C0070 Pi/6*3^(1/2). %O C0070 0 %R C0070 %I C0070 %P C0070 Pi*sqrt(3)/2; %Z C0070 HY GA 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0071 9159655941772190150546035149323841107741493742816721342664981196 %1 C0071 2176301977625476947935651292611510624857442261919619957903589880 %2 C0071 3325859059431594737481158406995332028773319460519038727478164087 %3 C0071 8659090247064841521630002287276409423882599577415088163974702524 %4 C0071 8201156070764488380787337048990086477511322599713434074854075532 %5 C0071 3076856533576809583526021938232395080072068035576104823573394231 %6 C0071 9149829836189977069036404180862179411019175327431499782339761055 %7 C0071 1224779530324875371878665828082360570225594194818097535097113157 %8 C0071 1261580424272363643985001738287597797653068370092980873887495610 %9 C0071 8936597719409687268444416680462162433986483891628044828150627302 %A C0071 2742073884311722182721904722558705319086857354234985394983099191 %B C0071 1596738846450861515249962423704374517773723517754407085384644013 %C C0071 2174839299994757244619975496197587064007474870701490937678873045 %D C0071 8699798606448749746438720623851371239273630499850353922392878797 %E C0071 9063364403235478453585192777778727090608303199430133231671247615 %F C0071 8709792455479119092126201854803963934243495653759673949435473001 %N C0071 Catalan's Constant. %O C0071 0 %R C0071 FE90. %I C0071 A6752 M4593 %P C0071 sum((-1)^i/(2*i+1)^2,i=0..infinity); %Z C0071 HY GA %K C0071 Some faster converging series are known. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0072 9375482543158437537025740945678649778978602886148299258854334803 %1 C0072 6044381131270752279368941514115151749311382116241638535059404171 %2 C0072 5961733247197185174912402688214443700163931015045107160373574873 %3 C0072 1352956057133552593318050514872534799984717397570317550302619073 %4 C0072 %5 C0072 %6 C0072 %7 C0072 %8 C0072 %9 C0072 %A C0072 %B C0072 %C C0072 %D C0072 %E C0072 %F C0072 %N C0072 -Zeta(1,2). %O C0072 0 %R C0072 %I C0072 %P C0072 %Z C0072 %K C0072 Derivative of Zeta at 2. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0073 9869604401089358618834490999876151135313699407240790626413349376 %1 C0073 2200448224192052430017734037185522318240259137740231440777723481 %2 C0073 2203004672761061767798519766099039985620657563057150604123284032 %3 C0073 8780869352769342164939666571519044538735261779413820258260581693 %4 C0073 4125155920483098188732700330762666711043589508715041003257885365 %5 C0073 9527635775283792268331874508640454635412502697372956695833422785 %6 C0073 8150006365227095472490859756072669264752779005285336452206669808 %7 C0073 2641589687710573278892917469015455100692544324570364496561725379 %8 C0073 2860760600814597258922923241424004429598136181441370677777819473 %9 C0073 9658303170856632789570753407991714523158926372114463828264432852 %A C0073 8037928503480952338995039685746094853460090177429322057990359173 %B C0073 5782046575804193168682300219614689927042061429696346600579984035 %C C0073 1642136543049984533721736557240463676848876261512299027059938010 %D C0073 2994468861817162609801308765300370601583691986762860050799364683 %E C0073 2266973156836717555897119875297529639491631553944919548387706872 %F C0073 1130789866575590986536365630763630880611500835373918261101780887 %N C0073 Pi^2. %O C0073 1 %R C0073 RS8 XVIII. %I C0073 A2388 M4596 N1961 %P C0073 %Z C0073 IR HY GA 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0074 10765391922648457661532344509094719058797 %1 C0074 %2 C0074 %3 C0074 %4 C0074 %5 C0074 %6 C0074 %7 C0074 %8 C0074 %9 C0074 %A C0074 %B C0074 %C C0074 %D C0074 %E C0074 %F C0074 %N C0074 1/Varga's Constant %O C0074 0 %R C0074 %I C0074 %P C0074 %Z C0074 %K C0074 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0075 109868580552518701 %1 C0075 %2 C0075 %3 C0075 %4 C0075 %5 C0075 %6 C0075 %7 C0075 %8 C0075 %9 C0075 %A C0075 %B C0075 %C C0075 %D C0075 %E C0075 %F C0075 %N C0075 Lengyel's Constant. %O C0075 1 %R C0075 European Journal of Combinatorics, vol. 5, 1984 pp.313-321. %I C0075 %P C0075 %Z C0075 %K C0075 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0076 11243152295087446306487673151275614426958 %1 C0076 %2 C0076 %3 C0076 %4 C0076 %5 C0076 %6 C0076 %7 C0076 %8 C0076 %9 C0076 %A C0076 %B C0076 %C C0076 %D C0076 %E C0076 %F C0076 %N C0076 related to solution of x(n+1)=x(n)**2-x(n)+1. %O C0076 1 %R C0076 %I C0076 %P C0076 %Z C0076 %K C0076 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0077 11382238515276916043642532758447774733278 %1 C0077 %2 C0077 %3 C0077 %4 C0077 %5 C0077 %6 C0077 %7 C0077 %8 C0077 %9 C0077 %A C0077 %B C0077 %C C0077 %D C0077 %E C0077 %F C0077 %N C0077 related to solution of x(n+1)=x(n)**2-1. %O C0077 1 %R C0077 %I C0077 %P C0077 %Z C0077 %K C0077 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0078 1311028777146059905232419794945559706841377475715811581408410851 %1 C0078 9003952935352071251151477664807145467230678763358916090278044784 %2 C0078 5069696784735055971738761792021132074858245347596844998996607303 %3 C0078 6191560695405103110948714800428277269886152684774855144444162763 %4 C0078 %5 C0078 %6 C0078 %7 C0078 %8 C0078 %9 C0078 %A C0078 %B C0078 %C C0078 %D C0078 %E C0078 %F C0078 %N C0078 Lemniscate Constant. %O C0078 1 %R C0078 %I C0078 %P C0078 1/4*Pi^(3/2)/GAMMA(3/4)^2*2^(1/2); %Z C0078 %K C0078 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0079 145607494858268967139959535 %1 C0079 %2 C0079 %3 C0079 %4 C0079 %5 C0079 %6 C0079 %7 C0079 %8 C0079 %9 C0079 %A C0079 %B C0079 %C C0079 %D C0079 %E C0079 %F C0079 %N C0079 A constant from Nigel Backhouse. %O C0079 1 %R C0079 %I C0079 %P C0079 %Z C0079 %K C0079 Let P_N(x) = 1 + sum(ithprime(n)*x^n, n=1..N). %K C0079 Put Q_N(x) = 1/P_N(x). As N gets large, the ratio of coefficients of %K C0079 powers of x in Q_N(x), approaches the above number. %K C0079 sx52@liverpool.ac.uk : University of Liverpool. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0080 14616321449683623412626595423257213284681 %1 C0080 %2 C0080 %3 C0080 %4 C0080 %5 C0080 %6 C0080 %7 C0080 %8 C0080 %9 C0080 %A C0080 %B C0080 %C C0080 %D C0080 %E C0080 %F C0080 %N C0080 x such that GAMMA(x) is minimal. %O C0080 1 %R C0080 %I C0080 %P C0080 %Z C0080 %K C0080 See C0081. %K C0080 %K C0080 Very nearly 19/13 (Ramanujan). 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0081 88560319441088870027881590058258873320795 %1 C0081 %2 C0081 %3 C0081 %4 C0081 %5 C0081 %6 C0081 %7 C0081 %8 C0081 %9 C0081 %A C0081 %B C0081 %C C0081 %D C0081 %E C0081 %F C0081 %N C0081 minimal value of GAMMA(x). %O C0081 0 %R C0081 %I C0081 %P C0081 %Z C0081 %K C0081 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0082 152995403705719287491319417231 %1 C0082 %2 C0082 %3 C0082 %4 C0082 %5 C0082 %6 C0082 %7 C0082 %8 C0082 %9 C0082 %A C0082 %B C0082 %C C0082 %D C0082 %E C0082 %F C0082 %N C0082 w2 Constant. %O C0082 1 %R C0082 Francois Le Lionnais, Les Nombres Remarquables, Paris Hermann. %I C0082 %P C0082 %Z C0082 %K C0082 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0083 19021604 %1 C0083 %2 C0083 %3 C0083 %4 C0083 %5 C0083 %6 C0083 %7 C0083 %8 C0083 %9 C0083 %A C0083 %B C0083 %C C0083 %D C0083 %E C0083 %F C0083 %N C0083 Brun's Constant. %O C0083 1 %R C0083 %I C0083 %P C0083 %Z C0083 %K C0083 sum of inverses of twin primes. %K C0083 The calculation of this constant is at the origin of the Pentium Bug. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0084 1533772302310243567172856016722578994610129518942755491961760666 %1 C0084 0959379132006088833925563548813521570130456248175975800621772589 %2 C0084 8378907755342621848440028710019781472785300361444350104180229692 %3 C0084 3114127207052093466593624427978261920344314378225554068195619115 %4 C0084 1012172723656578000780177209726658980753436882843459799962066822 %5 C0084 0294898331714848700044508020670787898491289178892335544654486719 %6 C0084 5332203661794962150780198561168462142157251591121696361594745928 %7 C0084 3438227361781199199173634956053220022612692778217267947662614333 %8 C0084 5503031818797005221626123159749195849165524077237482886998126396 %9 C0084 7150276249975302330604842232066969252622071719444448784024696733 %A C0084 1982828948469971301794670929061910366167162318636949213395700990 %B C0084 8261595361182639170130319639011673566023640531097277182350537692 %C C0084 5224773035095462917393183643119461563319929493698111183956560068 %D C0084 8993574217779149906357126078111606132252306055417383428091116962 %E C0084 4223527192767180772493978937847230014535957626966524121287091226 %F C0084 7885407996826258324228035016478913962366039214800390561428420125 %N C0084 Kakeya's Constant. %O C0084 1 %R C0084 Francois Le Lionnais, Les Nombres Remarquables, Paris Hermann. %I C0084 %P C0084 Pi*(5-2*sqrt(2)/24); %Z C0084 %K C0084 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0085 1782213978191369111774413452972549340791731909773239381024959956 %1 C0085 8851541287637840802431676635782553089344691654390590242832007237 %2 C0085 1609466241224698183193304440691580844300831623521485059225129118 %3 C0085 5032205757091260620528266462450802768645378426168771943578383034 %4 C0085 5978943604654179333058167030255047978147740633984429355512597392 %5 C0085 7131851484715199464267093555750824146784832149267419783105716722 %6 C0085 8768468972668325299481120507392284163942673878597000697791104289 %7 C0085 8487803162999699269304351197324998710178766727173045863648514760 %8 C0085 4701659316888114930720650660711405336160026631760170680854538265 %9 C0085 9150318190903060193515801842051584567626640372089564659879643577 %A C0085 2488389325434670915813658089829180199037286782797617046758172337 %B C0085 5507340757273943007007796125518210897841661588530594349694531781 %C C0085 6864584734664771038367942228085531134516968772013659085159554971 %D C0085 0033709286835312292255286502952743356554669481909219776476206717 %E C0085 6817891575544489011908491514331205109901351470453441453432787641 %F C0085 6367319236317348475787753626711408551283923240403824950905050799 %N C0085 Grothendieck's Majorant. %O C0085 1 %R C0085 %I C0085 %P C0085 %Z C0085 %K C0085 %O C0085 1 %R C0085 Francois Le Lionnais, Les Nombres Remarquables, Paris Hermann. %I C0085 %P C0085 Pi/(2*log(1+sqrt(2))); %Z C0085 %K C0085 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0086 4669201609102990671853203820466201617258185577475768632745651343 %1 C0086 00413433021131473 %2 C0086 %3 C0086 %4 C0086 %5 C0086 %6 C0086 %7 C0086 %8 C0086 %9 C0086 %A C0086 %B C0086 %C C0086 %D C0086 %E C0086 %F C0086 %N C0086 Feigenbaum bifurcation velocity constant. %O C0086 1 %R C0086 Journal of Physics(A) 12 275 1979. Math. of Computation 57 438 1991. %I C0086 A6890 M3264 %P C0086 %Z C0086 %K C0086 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0087 2685452001065306445309714835481795693820382293994462953051152345 %1 C0087 5572188595371520028011411749318476979951534659052880900828976777 %2 C0087 1641096305179253348325966838185231542133211949962603932852204481 %3 C0087 9409618068664166428930847788062036073705350103367263357728904990 %4 C0087 4270702723451702625237023545810686318501032374655803775026442524 %5 C0087 8528694682341899491573066189872079941372355000579357366989339508 %6 C0087 7902124464207528974145914769301844905060179349938522547040420337 %7 C0087 7985639831015709022233910000220772509651332460444439191691460859 %8 C0087 6823482128324622829271012690697418234847767545734898625420339266 %9 C0087 2351862086778136650969658314699527183744805401219536666604964826 %A C0087 9890827548115254721177330319675947383719393578106059230401890711 %B C0087 3496246737068412217946810740608918276695667117166837405904739368 %C C0087 8095345048999704717639045134323237715103219651503824698888324870 %D C0087 9353994696082647818120566349467125784366645797409778483662049777 %E C0087 7486827656970871631929385128993141995186116737926546205635059513 %F C0087 8571376169712687229980532767327871051376395637190231452890030581 %N C0087 Khinchine's Constant. %O C0087 1 %R C0087 MOC 14 371 60. VA91 164. %I C0087 A2210 M1564 N0609 %P C0087 %Z C0087 %K C0087 D. H. Bailey calculated 7350 digits.(1995). 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0088 1747564594633182190636212035544397403485161436624741758152825350 %1 C0088 7650406235327611798907583626946078899308325815387537105932820299 %2 C0088 4418382801303693300215659936328237660717229756865923803716720381 %3 C0088 0410603421455606438277778683217313224369755877342625047478782128 %4 C0088 5086056791668167573992447684129703678251857628109371313372076707 %5 C0088 1931974249715811572309699230966927394965778110722267152054740901 %6 C0088 1506891571658308282005018489211780313467312296498582882818435713 %7 C0088 3159143170054956325334887536302670425627486948438002800259270026 %8 C0088 8475574364975504922461362399204001575063039721466481115123736401 %9 C0088 0295066011939046719437331253044510291151463975933191804797794609 %A C0088 9333746429426562908969344779296885419044079142558327219971840906 %B C0088 7468023761538935445655036027302854408493443028062670441824120043 %C C0088 9741867661772447563953444230685384952794358075189549030930507384 %D C0088 3954464206438717926390780392074428209795791773699230408221437464 %E C0088 5668043105692663197550459224432480748940806247493610709363091492 %F C0088 24368986933140903796823240790046284487394 %N C0088 -Madelung constant for NaCl. %O C0088 1 %R C0088 Pi and the AGM (J. Borwein & P. Borwein) formula 9.3 %I C0088 %P C0088 Sum{ (-1)^(j+k+l)/(sqrt(j^2+k^2+l^2): (j,k,l)0}; %Z C0088 %K C0088 Computed by D.H. Bailey (May 1995) with Benson formula. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0089 2807770242028519365221501186557772932308 %1 C0089 %2 C0089 %3 C0089 %4 C0089 %5 C0089 %6 C0089 %7 C0089 %8 C0089 %9 C0089 %A C0089 %B C0089 %C C0089 %D C0089 %E C0089 %F C0089 %N C0089 Fransen-Robinson Constant. %O C0089 1 %R C0089 Math. of Computation. %I C0089 %P C0089 %Z C0089 %K C0089 Related to a series for GAMMA function and Stieltjes constants. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0090 3036630028987326586 %1 C0090 %2 C0090 %3 C0090 %4 C0090 %5 C0090 %6 C0090 %7 C0090 %8 C0090 %9 C0090 %A C0090 %B C0090 %C C0090 %D C0090 %E C0090 %F C0090 %N C0090 Wirsig's Constant. %O C0090 0 %R C0090 Francois Le Lionnais, Les Nombres Remarquables, Paris Hermann. %I C0090 %P C0090 %Z C0090 %K C0090 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0091 31816877 %1 C0091 %2 C0091 %3 C0091 %4 C0091 %5 C0091 %6 C0091 %7 C0091 %8 C0091 %9 C0091 %A C0091 %B C0091 %C C0091 %D C0091 %E C0091 %F C0091 %N C0091 Isoperimetric Constant. %O C0091 0 %R C0091 Francois Le Lionnais, Les Nombres Remarquables, Paris Hermann. %I C0091 %P C0091 %Z C0091 %K C0091 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0092 1811090172 %1 C0092 %2 C0092 %3 C0092 %4 C0092 %5 C0092 %6 C0092 %7 C0092 %8 C0092 %9 C0092 %A C0092 %B C0092 %C C0092 %D C0092 %E C0092 %F C0092 %N C0092 Euler's constant in Z[i]. %O C0092 1 %R C0092 Francois Le Lionnais, Les Nombres Remarquables, Paris Hermann. %I C0092 %P C0092 %Z C0092 %K C0092 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0093 3275822918721811159787681882453843863608475525982374149405198924 %1 C0093 1907232156449603551812775404791745294926985262434016333281898085 %2 C0093 1150341709970823046646564670370807129022418613959423772012981792 %3 C0093 4251087697614930028806824926170594041290808697054441234922379888 %4 C0093 4427089726916409835535854804837478582876252691844500764338370387 %5 C0093 6741884459420351700003732122230624193601340916574804354470221732 %6 C0093 5993822298382263233915155285779861204684944725214872290148093612 %7 C0093 0890454342092099519978162400515039051381538771475429139307394617 %8 C0093 8045527838277727414847221513498826672911215448270452018633487650 %9 C0093 0197461804182629653652880116815110575135087115230163029427488336 %A C0093 4626099362896606336377631721650883480193611175632669841114675716 %B C0093 4673788536609062436703325968873753578142654195992507552782054563 %C C0093 7159407017761632115357055923392379438429270901774392301637440604 %D C0093 1267849616074783099029968056083369047909232336111034927147379005 %E C0093 2538954916571473419972293167664630764119832764653881696204634629 %F C0093 7332994286181358520050377154266892424005731518557308952871781294 %N C0093 Levy's Constant. %O C0093 1 %R C0093 Francois Le Lionnais, Les Nombres Remarquables, Paris Hermann. %I C0093 %P C0093 exp(Pi**2/(log(2)*12)); %Z C0093 %K C0093 see C0115 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0094 373955813619202288054728054346516415111629249 %1 C0094 %2 C0094 %3 C0094 %4 C0094 %5 C0094 %6 C0094 %7 C0094 %8 C0094 %9 C0094 %A C0094 %B C0094 %C C0094 %D C0094 %E C0094 %F C0094 %N C0094 Artin's Constant. %O C0094 0 %R C0094 MOC 15 397 71. %I C0094 A5596 M2608 %P C0094 %Z C0094 %K C0094 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0095 4749493799879206503325046363279829685595493732172029822833310248 %1 C0095 6455792917488386027427564125050214441890378494262395464775250455 %2 C0095 2099778523950882780814821592082565202912193041770281959987798787 %3 C0095 6404342380353179170625016170252803841553681975679189489592083858 %4 C0095 %5 C0095 %6 C0095 %7 C0095 %8 C0095 %9 C0095 %A C0095 %B C0095 %C C0095 %D C0095 %E C0095 %F C0095 %N C0095 Weierstrass's constant. %O C0095 0 %R C0095 Francois Le Lionnais, Les Nombres Remarquables, Paris Hermann. %I C0095 %P C0095 2**(5/4)*sqrt(Pi)*exp(Pi/8)*GAMMA(1/4)**(-2); %Z C0095 %K C0095 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0096 624329988543550870992936383100837244179642620180529286 %1 C0096 %2 C0096 %3 C0096 %4 C0096 %5 C0096 %6 C0096 %7 C0096 %8 C0096 %9 C0096 %A C0096 %B C0096 %C C0096 %D C0096 %E C0096 %F C0096 %N C0096 Golomb's Constant. %O C0096 0 %R C0096 Francois Le Lionnais, Les Nombres Remarquables, Paris Hermann. %I C0096 %P C0096 %Z C0096 %K C0096 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0097 660161815846869573927812110014555778432623 %1 C0097 %2 C0097 %3 C0097 %4 C0097 %5 C0097 %6 C0097 %7 C0097 %8 C0097 %9 C0097 %A C0097 %B C0097 %C C0097 %D C0097 %E C0097 %F C0097 %N C0097 Twin Primes Constant. %O C0097 0 %R C0097 Le Lionnais. MOC 15 398 61. %I C0097 A5597 M4056 %P C0097 %Z C0097 %K C0097 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0098 6617071822671762351558311332484135817464001357909536048089442294 %1 C0098 7958464613859763130665248076810712015170977531075941097247868058 %2 C0098 1643721687453324207229824442327640922920607860008648053326693895 %3 C0098 1526942028215425692085403456100394606163834472771107263924054689 %4 C0098 7434592322069695104571767853038748238911194887130919810475594295 %5 C0098 3120545589150326753940164393320790294473473479010132900154516660 %6 C0098 0642731445463113650395856252896443964373900626507351434749911653 %7 C0098 3540376378675705958829699270063500978386289740462915842777306955 %8 C0098 7430187885803716470017544601967121335982623876512065551505953382 %9 C0098 8281442492815931568016481658129911912468681742538796067114408338 %A C0098 5962036245968755328720698995275209149543768315871982607183656932 %B C0098 7991821337185639447759795860031495377302353537591681976432088663 %C C0098 8761213723743456544539160466691236289725645485547899749367949903 %D C0098 6787454198087305903903975046429880243733984398127096523272663805 %E C0098 7779297187173093916715126325857845393789259694776116795702854531 %F C0098 2570851202124609101739182422265676598386800760949577826879652854 %N C0098 Robbins's Constant. %O C0098 0 %R C0098 Francois Le Lionnais, Les Nombres Remarquables, Paris Hermann. %I C0098 %P C0098 4/105+17/105*2^(1/2)-2/35*3^(1/2)+1/5*ln(1+2^(1/2))+2/5*ln(2+3^(1/2))- 1/15*Pi; %Z C0098 %K C0098 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0099 74759792025341143517873094363652421026172 %1 C0099 %2 C0099 %3 C0099 %4 C0099 %5 C0099 %6 C0099 %7 C0099 %8 C0099 %9 C0099 %A C0099 %B C0099 %C C0099 %D C0099 %E C0099 %F C0099 %N C0099 Parking Constant. %O C0099 0 %R C0099 Math. of Computation. %I C0099 %P C0099 %Z C0099 %K C0099 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0100 76422365358922 %1 C0100 %2 C0100 %3 C0100 %4 C0100 %5 C0100 %6 C0100 %7 C0100 %8 C0100 %9 C0100 %A C0100 %B C0100 %C C0100 %D C0100 %E C0100 %F C0100 %N C0100 Landau's Constant. %O C0100 0 %R C0100 Francois Le Lionnais, Les Nombres Remarquables, Paris Hermann. %I C0100 %P C0100 %Z C0100 %K C0100 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0101 92890254919208189187554494359517450610317 %1 C0101 %2 C0101 %3 C0101 %4 C0101 %5 C0101 %6 C0101 %7 C0101 %8 C0101 %9 C0101 %A C0101 %B C0101 %C C0101 %D C0101 %E C0101 %F C0101 %N C0101 Varga's constant. %O C0101 1 %R C0101 %I C0101 %P C0101 %Z C0101 %K C0101 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0102 1945280494653251136152137302875039065901577852759236620435639112 %1 C0102 6128689803952888169215624253956089738687658063273943306194230184 %2 C0102 6390636687239196106699038887450061447803705376851195665473775341 %3 C0102 0432909101348239341042021104911276174378712312707073399640646659 %4 C0102 4403538165050966894987036499348004765165375766040941184234739651 %5 C0102 4956779385722841561961636382301294169998230606424642604839452569 %6 C0102 4123319935614068634305323678131896475911139214742172930676438469 %7 C0102 3349287600077498007403753598564668470942599861444131812798597054 %8 C0102 7933095739935752164198846632305117558156194995005256891703382249 %9 C0102 3319463428079109321077886242460055967658105859758658736348984146 %A C0102 7259992527092431598567842973511456278699178055257489684072513882 %B C0102 2403821492552091058527972095893841735642638248904856731252070117 %C C0102 6210793704693341271357851963226482022753143890006555463250692416 %D C0102 7265132318157078023594405882897139317429953835226355968647936199 %E C0102 7993536655407480626554885296765049525164840537710545438813154286 %F C0102 2425019139361380724333725282493692938578755281217194719835697214 %N C0102 Dubois-Raymond 2nd constant. %O C0102 0 %R C0102 Francois Le Lionnais, Les Nombres Remarquables, Paris Hermann. %I C0102 %P C0102 1/2*(exp(2)-7); %Z C0102 %K C0102 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0103 5671432904097838729999686622103555497538157871865125081351310792 %1 C0103 2304579308668456669321944696175229455763802497286678978545235846 %2 C0103 5940072995608516439289994614311571492959803594376698474635606134 %3 C0103 2268461356989570453977624855707865877337063566333012384304556354 %4 C0103 2978608509015429081920856055752374819658465950807273089050157336 %5 C0103 1831596070667108039283918360149499646349348448317465915933636893 %6 C0103 3680971490856983717510093546792166747552889731475588925030572822 %7 C0103 4604865124854109688318448770433467727016574464765200627013360494 %8 C0103 8057883875774914635983034808686985627342099151198306130250270223 %9 C0103 7292838727216542426572698430693890685874829642167823425504200307 %A C0103 1966795220895590936913343950051154949542716768789494702443830337 %B C0103 8784002606637609098563645828787818795338304237475555696975428665 %C C0103 6135480540090110477123732473016808842009334259193374301935466235 %D C0103 3076567270975761218841385994442828002635250684447525596225061138 %E C0103 7848128978427693880472920268889238516484753423844953902789609971 %F C0103 1060547842212061361983111973376227976096491011771088137407049732 %N C0103 W(1). %O C0103 0 %R C0103 %I C0103 %P C0103 Solution of exp(x) - 1/x = 0. %Z C0103 %K C0103 W : Omega function of Lambert. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0104 1036927755143369926331365486457034168057080919501912811974192677 %1 C0104 9038035897862814845600431065571333363796203414665566090428009617 %2 C0104 7915597084183511072180087644866286337180353598363962365128888981 %3 C0104 3352767752398275032022436845766444665958115993917977745039244643 %4 C0104 9196666159664016205325205021519226713512567859748692860197447984 %5 C0104 3200672681297530919900774656558601526573730037561532683149897971 %6 C0104 9350398378581319922884886425335104251602510849904346402941172432 %7 C0104 7576341508162332245618649927144272264614113007580868316916497918 %8 C0104 %9 C0104 %A C0104 %B C0104 %C C0104 %D C0104 %E C0104 %F C0104 %N C0104 Zeta(5). %O C0104 1 %R C0104 %I C0104 %P C0104 sum(1/n**5,n=1..infinity); %Z C0104 HY GA %K C0104 We don't know if this number is irrational. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0105 1763222834351896710225201776951707080436017986667473634570456905 %1 C0105 5472758471869957367890838910506811055619330020274054680467376400 %2 C0105 2401379520573801043392673302307036497529675447164274374303901741 %3 C0105 6565384005522095243453556698266942639558302053548854145913508208 %4 C0105 3104393643656736618587043331573171809287097789810954168363751211 %5 C0105 5774719105876483128311371433944522684813012018209804037944042568 %6 C0105 7558913817470781415827410676176997180106117658115344871122490403 %7 C0105 8394819485117511829843123792540192533487442618499553352029977896 %8 C0105 7912880511965457695181197786947920843282297623994619882094844581 %9 C0105 4099680627550392429004489387836181076871507788319467266809965539 %A C0105 2277112528255933430969581697789255189648432700787154001865296672 %B C0105 8398733904857956041043333256191892446199131893146501992769492797 %C C0105 0415858853237673525171809006097427444281054965744837481066511899 %D C0105 5095678265475563359222255403243408821197885652730518924925961740 %E C0105 4375740897180239698196120787218493119629216937297365667602427646 %F C0105 8323643137024181077777851246850400311319023111832315787739592779 %N C0105 1/W(1). %O C0105 1 %R C0105 %I C0105 %P C0105 Solution of exp(1/x) - x = 0. %Z C0105 %K C0105 W : Omega function of Lambert. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0106 1008349277381922826839797549849796759599863560565238706417283136 %1 C0106 5716014783173557353460969689138513239689614536514910748872867774 %2 C0106 1984033544031579830103398456212106946358524390658335396467699756 %3 C0106 7696691427804314333947495215378902800259045551979353108370084210 %4 C0106 7329399046107085641235605890622599776098694754076320000481632951 %5 C0106 2586769250630734413632555601360305007373302413187037951026624779 %6 C0106 3954650225467042015510405582224239250510868837727077426002177100 %7 C0106 0195455778989836046745406121952650765461161356548679150080858554 %8 C0106 %9 C0106 %A C0106 %B C0106 %C C0106 %D C0106 %E C0106 %F C0106 %N C0106 Zeta(7). %O C0106 1 %R C0106 %I C0106 %P C0106 sum(1/n**7,n=1..infinity); %Z C0106 %K C0106 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0107 1002008392826082214417852769232412060485605851394888756548596615 %1 C0107 9097850533902583989503930691271695861574086047658470602614253739 %2 C0107 7072243015306913249876425109092948687676545396979415407826022964 %3 C0107 1544836250668629056707364521601531424421326337598815558052591454 %4 C0107 0848901539527747456133451028740613274660692763390016294270864220 %5 C0107 1123162209241265753326205462293215454665179945038662778223564776 %6 C0107 1660330281492364570399301119383985017167926002064923069795850945 %7 C0107 8457966548540026945118759481561430375776154443343398399851419383 %8 C0107 %9 C0107 %A C0107 %B C0107 %C C0107 %D C0107 %E C0107 %F C0107 %N C0107 Zeta(9). %O C0107 1 %R C0107 %I C0107 %P C0107 sum(1/n**9,n=1..infinity); %Z C0107 %K C0107 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0108 1475836176504332741754010762247405259511345238869178945999223128 %1 C0108 6271147678602633673171429894778980400728170225841282815020514562 %2 C0108 1521257493949857822174541459994018799541759109327949871559160403 %3 C0108 1349271099342015425615134736832575251590871914549016863000485145 %4 C0108 0655748506991483594199692099780283990946970320377371042160788150 %5 C0108 0515580090470643113961197326187224085791750089161218300305450802 %6 C0108 0736904639543575260558948426244398071837799927125671333584571034 %7 C0108 6725722237801422969315704088646303590972236098731619147633079382 %8 C0108 5469232528467804542055856389692426230479993325789292960386625904 %9 C0108 2429298823134246665023844512493698971815322280687865131446724736 %A C0108 2358152669150209742367008522568183250062234492658383966328619506 %B C0108 9626204974008292187552899967087920922016160309839732183814608938 %C C0108 5342288815877356876363720519379780946756702578438637088625279626 %D C0108 1519018681561216852475138834954270945514499387170085692896342697 %E C0108 6347308117732513304560528686378658169845690944192418796963769141 %F C0108 9540758225444374125323403758176172251088269388603393288997880015 %N C0108 arctan(1/2)/Pi. %O C0108 0 %R C0108 %I C0108 %P C0108 %Z C0108 %K C0108 Digits in binary can be generated by a simple reccurence. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0109 1063459833117227930767500345588482750571135295900555997522389661 %1 C0109 3142975805211084562176456281282308696182848708028272227767056230 %2 C0109 0491129527871991641752023843777160281600890865558065756957077497 %3 C0109 1563846980002638237632075409252060859655036165258251854853541267 %4 C0109 3426944075031446741747470168646086853611445545973998358330656952 %5 C0109 5451425545983387894806332711354974801388451946084757097704530507 %6 C0109 5240860614842302293410841965923672747679406177169122171695569163 %7 C0109 8682056464524473149494360619148075987840789961927733866417271648 %8 C0109 8757702118370822593014790620165438406090546241431499830097022792 %9 C0109 4862491320192138038727317466500153574344646083062945920912543285 %A C0109 9693415130900371547994400718021384684876770004698770480838860834 %B C0109 5161333215344754510102335346257696629210567593716128313821270313 %C C0109 3827551979506948643408667768577357970549677051673029471226764245 %D C0109 2638157305790354010688599185780041814804180645680010356046760610 %E C0109 7758312458631510621582259175995659139105533533369963055151676955 %F C0109 8065472318868873771547032465264867935330156907566404494066821023 %N C0109 8*Catalan/3-Pi/3*log(2*sqrt(3)). %O C0109 1 %R C0109 Ramanujan Notebooks Vol.I p. 289. Springer-Verlag. %I C0109 %P C0109 hypergeom([1, 1, 1/2], [3/2, 3/2], 1/4); %Z C0109 %K C0109 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0110 1587401051968199474751705639272308260391493327899853009808285761 %1 C0110 8252165056242191732735442132622209570229347616813220179034976598 %2 C0110 9815275227814001104454144661937551827856243687329051248507229233 %3 C0110 7449774275364607167537106663818475711752351575061704560272792426 %4 C0110 5087678157144694069509962448450509638778700223172923226094249670 %5 C0110 8479660449914155080109940107853081210338012450308582682536745901 %6 C0110 6717639488477252360208912954917322106547989478852586849120268844 %7 C0110 5391850208494065584431427295568270732992965172722531909901906364 %8 C0110 7232328456787018093538773128977245949193633205408572552266762209 %9 C0110 8178823741933262711791189764139802634411982003365519420922924578 %A C0110 9896003063504131235939306958065813021162017755503282034526672125 %B C0110 8489937136007959526106791443451107540382721950189169051085706997 %C C0110 8413179020576363385226139536642845387939940045824480901995808674 %D C0110 6627764611658933454622331029332519189204800207388066785789093059 %E C0110 4440631375534116009880669897870410309787822760755082263917726036 %F C0110 4259200616973868834425566932515531928679858772130582239897281915 %N C0110 4^(1/3). %O C0110 1 %R C0110 %I C0110 A5480 M3771 %P C0110 %Z C0110 %K C0110 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0111 1245730939615517325966680336640305080939309993068779811046173014 %1 C0111 3607466537754935666058951445881234256590280757992509749233994748 %2 C0111 0938053957088354995502124548906613189805124863125027482455241273 %3 C0111 9808667405699799320468977943786498136973131947170371507177429514 %4 C0111 2529583580792144534141134617965944344086077550152396112677058650 %5 C0111 1898587039810479712939896019445192832736340842796075280758695451 %6 C0111 1368764900147938909952653998927368656891374923931771226740233722 %7 C0111 3321718497669707759541575179915585385607175982404474946940210029 %8 C0111 3739382473802499148780142290185134259854653005888150108459829176 %9 C0111 5365457728537561069507528260447786049735388845466356536353592235 %A C0111 7914710522215413248595094246673630427771215561775987126986769702 %B C0111 8927174677863188178429919801875824041046248304100913225210817160 %C C0111 8784310667709115118206565025453728154657447629646759253015375749 %D C0111 6187108068713590871167964825122713839063614870926984029820720511 %E C0111 8649539910348532643478453784527428958534905124019701793002865779 %F C0111 9744047783815401040448253706733167649325523121932370933276840549 %N C0111 3^(1/5). %O C0111 1 %R C0111 %I C0111 A5532 M0953 %P C0111 %Z C0111 %K C0111 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0112 1319507910772894259374001971229640133033469013193418681505807795 %1 C0112 9805359808935208300503537952359594986277036006545418408351866990 %2 C0112 6584098707256532025541656426634541413808324998410106164127267692 %3 C0112 0513095149175209231057010253838503892048183636260511998987367838 %4 C0112 1568867111942845985777562980193349028954819422417244315723856883 %5 C0112 7180714808956412225920527633025870981234206814945914371376117884 %6 C0112 2207401277035914807741684204323981353346896503181824215175517129 %7 C0112 9290095095236275921589748600106343761668352062279393819592015791 %8 C0112 0779213660624561385282935250776120789877486080001582545536283351 %9 C0112 1394499309391182939542021533272121802265229981612400610263173048 %A C0112 5150955076291164775257113804035945692125726062135729022072582995 %B C0112 7916769609882528831580499468096030446004158210406108616445708141 %C C0112 4639522506881725901224976636657017521037082046487465298245291099 %D C0112 5354467459184484621965575830349704742921232085718550411309659919 %E C0112 8475494091703602423899378835923304806567937548035559958446473085 %F C0112 7272870714609799524013980313084422726013801915611524373475583951 %N C0112 4^(1/5). %O C0112 1 %R C0112 %I C0112 A5533 M2231 %P C0112 %Z C0112 %K C0112 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0113 1772453850905516027298167483341145182797549456122387128213807789 %1 C0113 8529112845910321813749506567385446654162268236242825706662361528 %2 C0113 6572442260252509370960278706846203769865310512284992517302895082 %3 C0113 6228932095379267962800174639015351479720516700190185234018585446 %4 C0113 9744949126403139217755259062164054193325009063984076137334774751 %5 C0113 5343366798978936585183640879545116516173876005906739343179133280 %6 C0113 9854846248184902054654852195613251561647467515042738761056107996 %7 C0113 1271072100603720444836723652966137080943234988316684242138457096 %8 C0113 0912042042778577806869476657000521830568512541339663694465418151 %9 C0113 0716693883321942929357062268865224420542149948049920756486398874 %A C0113 8385059306402182140292858112330649789452036211490789622873894032 %B C0113 4597819851313487126651250629326004465638210967502681249693059542 %C C0113 0461560761952217391525070207792758099054332900662223067614469661 %D C0113 2481887430699788352050614644438541853079735742571791856359597499 %E C0113 5995226384924220388910396640644729397284134504300214056423343303 %F C0113 9261756134176336320017037654163476320669276541812835762490326904 %N C0113 Pi^(1/2). %O C0113 1 %R C0113 RS8 XVIII. %I C0113 A2161 M4332 N1814 %P C0113 GAMMA(1/2); %Z C0113 %K C0113 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0114 3010299956639811952137388947244930267681898814621085413104274611 %1 C0114 2710818927442450948692725211818617204068447719143099537909476788 %2 C0114 1133523505999692333704695575064502964254193402661819734311602943 %3 C0114 5011839028981785826171544395318619290463538846995202393108496124 %4 C0114 6254040026331259462147884584731828267268398232619654279350763131 %5 C0114 7548350927138964946917785768918050790007599548087815459714585031 %6 C0114 9648776261224922908291181909514989971716198604776765000678205179 %7 C0114 1255732862866834200040292050983708457222489549429756214970724465 %8 C0114 9708613689609221909482761214391496528235167826492314804027746243 %9 C0114 2441633115387382593038830393806332161302390518805821319156854616 %A C0114 9290530150513192698537848841871832006575356946839297174213201090 %B C0114 5896890850585624640987218396876648539856235161277302638927878260 %C C0114 8498366810303084314155608139436176745488566634245381237339324224 %D C0114 6959434906021204450429682746068847854611568476841064379795004659 %E C0114 6991774565754086401846407945652954434107740829399974540073721701 %F C0114 6801948890554856910694003754116899634157592972180644303810281520 %N C0114 log(2)/log(10). %O C0114 0 %R C0114 %I C0114 %P C0114 %Z C0114 %K C0114 Common logarithm of 2. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0115 1186569110415625452821722975947237120568356536472054335954254298 %1 C0115 6528096320562544433003483011084868759466392637471751479886689946 %2 C0115 2885879289204858968350030526395365286264854323899675695063048176 %3 C0115 7713789797116007513726051482716365685732338672337283472902062271 %4 C0115 6739771749278593670766940253402486425565775689753658092801299962 %5 C0115 9809768376822177624695033480768713773864629184849528753454726865 %6 C0115 7598145471875804187616331281416548878523580819688609227205484133 %7 C0115 0049761327114183882501610720203598596009261317894651960280611053 %8 C0115 3147117979973716911164960509921802335566378131565181944230441364 %9 C0115 7110732142113788008884532772066493100541307713823446881068867903 %A C0115 4404026590316881480699185300648351088700740183715318416277245880 %B C0115 9946323750150333349257730270101507531958865680865391581185470248 %C C0115 8510999479368712215197477948240401082571127049859556634202957593 %D C0115 0504853969116715769366226579779573385568882224355990916640881465 %E C0115 3637856375958186245636196878188690644046423801156683034382203668 %F C0115 4767237417945240901293641495989710341133651272953540904463262571 %N C0115 Khintchine-Levy Constant %O C0115 1 %R C0115 Rockett Andrew, Szusz Peter, Continued Fractions, p.163 %R C0115 World scientific Publishing Co. 1972. %I C0115 %P C0115 Pi**2/(12*log(2)); %Z C0115 HY %K C0115 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0116 1324717957244746025960908854478097340734404056901733364534015050 %1 C0116 3028278512455475940546993479817872803299109209947422074251089026 %2 C0116 3904589779559431475709672347175416683903886741875173693158425354 %3 C0116 9908246622354533727350458987990956815062774550980248621301216989 %4 C0116 4157524574548625075626524610368938904839932269952074975962828868 %5 C0116 5569081507045136961098533525772815860334411419278282737652960329 %6 C0116 9358467423102848324169523900610854333821850839810180895735387047 %7 C0116 3931343967313767646021031652768893963935325943992483103109583953 %8 C0116 7751942602887740927186203389282016152555321827094706130567612398 %9 C0116 8920463730657196297771688630876153324800111768073116684532277431 %A C0116 5662899607266383572210363470709838371598022337102130982468490863 %B C0116 1296936634439244500715415042900081903067058984533905346887287406 %C C0116 6195775626167061764288919391230837918311716229603886147635880730 %D C0116 6315097483767582459270289013195095515560122800385957615401784215 %E C0116 1761874421595586099669924711478012082373365413973711912926405796 %F C0116 2484832322634420095923073636101515091300390033271919208565844628 %N C0116 Smallest Pisot-Vijayaraghavan number. %O C0116 1 %R C0116 Le Lionnais, Les Nombres Remarquables, Paris Hermann. %I C0116 %P C0116 fsolve(x**3-x-1); %Z C0116 %K C0116 Real root of x^3-x-1. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0117 1978111990655945110790791303001269415878367041456428180886391567 %1 C0117 3722732640989575434948921692514746826070438845657395892740813946 %2 C0117 1400099144321493608419132661951953704495147389340501009237102558 %3 C0117 2307879816877691146351151517986682766197183139122548496653247452 %4 C0117 1469229596146858586488125558818159777200604325554034467875909821 %5 C0117 9969512163318210387156203740455802349372489633215628840423559459 %6 C0117 9416397760191900957752329962365592680587250977533515691155202228 %7 C0117 3918110986487465418994223709249572006696639544949138002268589863 %8 C0117 5725989693046815626225985010983736644680897101713247279720031751 %9 C0117 3879366565020294509859146242441993083148359145475295900917115198 %A C0117 8548035542362190171499077665761142258327698251067011932542976904 %B C0117 2993529544106366115896072796810773291746544142451231221484686031 %C C0117 8431187148627339797199130641324767554782971267785998740083247323 %D C0117 5430429932540520229375109859370319608676802986304483551139265022 %E C0117 2180037056709972977367549010070147383058409229453262548655040749 %F C0117 3348814570865761842538652574913206994979886621613641994428783655 %N C0117 GAMMA''(1). %O C0117 1 %R C0117 %I C0117 %P C0117 Zeta(2)+gamma**2; %Z C0117 HY GA %K C0117 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0118 5444874456485317734099361004137650689571668694435382565647986924 %1 C0118 3027910942333841639032516446817786330092905318286479814798719397 %2 C0118 2027051851396084063413720676766284747980345959190567575425661554 %3 C0118 5771902598386373786971891475345327313448835673169504374475375688 %4 C0118 %5 C0118 %6 C0118 %7 C0118 %8 C0118 %9 C0118 %A C0118 %B C0118 %C C0118 %D C0118 %E C0118 %F C0118 %N C0118 -GAMMA'''(1). %O C0118 1 %R C0118 %I C0118 %P C0118 2*Zeta(3)+1/2*Pi^2*gamma+gamma^3; %Z C0118 HY GA %K C0118 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0119 2356147408402560449607312705652442040865376831336316996971897893 %1 C0119 4252564141968642822585434492450169582941241609048387004782218319 %2 C0119 7446148846261901881093480193963711412598984114349237786182870779 %3 C0119 8067734862572013303219351681187575477218055984860505400019038819 %4 C0119 %5 C0119 %6 C0119 %7 C0119 %8 C0119 %9 C0119 %A C0119 %B C0119 %C C0119 %D C0119 %E C0119 %F C0119 %N C0119 GAMMA''''(1). %O C0119 2 %R C0119 %I C0119 %P C0119 3/20*Pi^4+8*Zeta(3)*gamma+Pi^2*gamma^2+gamma^4; %Z C0119 HY GA %K C0119 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0120 1178394082683774242525641696549649610620911808576638716599960628 %1 C0120 5856076379568600536351286122816961847958798551135485772369851127 %2 C0120 6608295650126829153853130738558195796655005572169912300494087666 %3 C0120 5944732143986562216688731358649366408288320335539929789248027835 %4 C0120 %5 C0120 %6 C0120 %7 C0120 %8 C0120 %9 C0120 %A C0120 %B C0120 %C C0120 %D C0120 %E C0120 %F C0120 %N C0120 -GAMMA'''''(1). %O C0120 3 %R C0120 %I C0120 %P C0120 24*Zeta(5)+3/4*Pi^4*gamma+10/3*Zeta(3)*Pi^2+20*Zeta(3)*gamma^2+5/3* %P C0120 Pi^2*gamma^3+gamma^5; %Z C0120 HY GA %K C0120 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0121 1176280818259917506544070338474035050693415806564695259830106347 %1 C0121 0296883765485499620968301155818153946592071813793476817656271429 %2 C0121 9390469080189480252316007759657054606241887504896232590717733457 %3 C0121 1567548096997559812677289401128791972456983735177677402547018406 %4 C0121 6278603009315383369626077626819915970468346466323231071265612414 %5 C0121 2230084750982757531788114948316855868535248394324346506941148983 %6 C0121 5604855670999941131248924651646199928894650701513975703312904628 %7 C0121 5965316234036730870359350603811812061902043009241085523839830214 %8 C0121 9953872876195952056739715886750661129345807575743980651247047412 %9 C0121 2134188106798291251486337803701296891625290465195911765657939458 %A C0121 5147548608924166974891816070204188007795273821303291763399098187 %B C0121 4464693191554220975967586181179145555664298356496556596386045043 %C C0121 4719067256426322958012208664666341022433004123110637753690615489 %D C0121 2804267030782226373027706825877145786773674445329003975537521344 %E C0121 3969594529828030667432608207317189943453247528925058415973944040 %F C0121 8254461851691378006656323698981137666295496727278749361016763363 %N C0121 A Salem number. %O C0121 1 %R C0121 Structural Properties of Polylogarithms, AMS #37. p.365, 1991. %I C0121 %P C0121 fsolve(x**10+x**9-x**7-x**6-x**5-x**4-x**3+x+1); %Z C0121 AL %K C0121 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0122 1543888735855258318360446001307490971887149427968027241285433045 %1 C0122 3294418363022072079692370732625761071351305287907393901334669334 %2 C0122 1703433881859626991621103971947195599958538026707848962067233707 %3 C0122 0335930877362906435383263679655577953711386963303758337499706780 %4 C0122 6367217535238306528194536836306390009535177758267189164538043744 %5 C0122 5383021701105136988749068617724076486886463071578729730447495889 %6 C0122 0031058741721794846151720231347167208569863652631238572356538587 %7 C0122 3756161777517776577319669873339384871614648322765552088693647946 %8 C0122 3955687098773875646114826141413530757246206881438625156292748235 %9 C0122 3901589059187325386810792397178393849769784776313427121377277736 %A C0122 6169005699568481794433793080759317176862261250946193958966223122 %B C0122 6620530997077676007486333592659302804536198157665014285857435018 %C C0122 4097195701524746677429704332501580163270662096717848224987800383 %D C0122 3751595797113079790673172828777731129615651244280066992597760848 %E C0122 5200229192306263264257531520732844786509698787753503231660763742 %F C0122 2691062202213771032194448914925198222680043001856285694077613013 %N C0122 (27/8)^(9/4). %O C0122 2 %R C0122 Ramanujan notebooks. %I C0122 %P C0122 %Z C0122 AL IR %K C0122 This number is equal to (9/4)^(27/8) also. 0 5 10 15 20 25 30 35 40 45 50 55 60 ........|....|....|....|....|....|....|....|....|....|....|....|....|.... %0 C0123 6977746579640079820067905925517525994866582629980212323686300828 %1 C0123 1653085276464111299696565418267656872398282187739641339311319229 %2 C0123 6119532583948267154023368572077084687931653259676802609699344773 %3 C0123 5279134807392866925472877889269341631325163541360922351694910777 %4 C0123 6671270197989917890435512998227488474178151185828274743128000168 %5 C0123 8397357503158963055814845672281277378531389353796457494911144399 %6 C0123 5739496545408641490244407439658462383405191698214657075454152356 %7 C0123 1619789277021570199808441532569484324720553204382546010895369539 %8 C0123 5675614108617595161315382073293136443905115788991399794118453170 %9 C0123 7255433214244317404753282387468232949778600917592531885601921774 %A C0123 7449173024758275105885300397998919614286772988729202691184797255 %B C0123 4158448910383265324626150602695958039517132533551829053986426116 %C C0123 0122414588261244351825022559389263137501312747096674905266754096 %D C0123 5360402524508385488358940164115563648340734549714076368827296266 %E C0123 5134246462433258344593103771627997645494162129529126660817978430 %F C0123 0381978775455761063199246771331988090510227282881824758312010616 %N C0123 A constant with a nice continued fraction. %O C0123 0 %R C0123 %I C0123 %P C0123 BesselI(1,2)/BesselI(0,2); %Z C0123 %K C0123 Continued fraction is [0,1,2,3,4,5,...]. _________________________________________________________________ isc@cecm.sfu.ca