INMA 2171 Analyse numérique: approximation, interpolation, intégration.

2009-2010 septembre-décembre 2009

Alphonse Magnus, CYCLO, b124, alphonse.magnus@uclouvain.be , http://perso.uclouvain.be/alphonse.magnus/ tel. (010) (47) 31 57

Matière vue.

1. Théorèmes généraux.

Théor. d'existence, unicité (norme stricte), continuité de l'application de meilleure approx.

2. Tchebycheff.

Théor. d'équioscillation, cond. nécessaire et suffisante. Unicité, symétrie (ou parité) f(a+b-x) = $\pm f(x)$, inégalité de La Vallée Poussin $\min_i |f(x_i) - p(x_i)| \leq E$.

Polynômes de Tchebycheff: déf., premières propriétés, équadiff. $(1-x^2)y'^2 = n^2(1-y^2)$, $T_n(\cos\theta) =$ $\cos n\theta$, zéros et extrema, récurrence, coeff. de x^n .

Développements de xf(x), de x^p , de $\frac{1}{x-A}$. Équadiff. linéaire d'ordre 2, forme de Sturm-Liouville $u(x)[v(x)y']' = \lambda_n y$. Pol. de 2ème espèce U_n , solution générale récurrence et équadiff.

Notion de "bonne base" dans V_n de base $\{b_0, \ldots, b_n\}$: si $f \in V_n$, $f = \sum_{n=0}^{\infty} c_k(f)b_k$, $A_n \leqslant \frac{\|f\|}{\sum_{n=0}^{\infty} |c_k(f)|} \leqslant B_n$,

avec $B_n/A_n \leq$ une fonction lentement croissante de n.

Orthogonalité, base duale, $c_n(f) = (2/\pi) \int_{-1}^1 f(x) T_n(x) (1-x^2)^{-1/2} dx = (2/\pi) \int_0^{\pi} f(\cos \theta) \cos(n\theta) d\theta$, sommes de Fourier. Relation entre "bonne base" et "bonne approximation" $\frac{\|f - \sum_{0}^{n} c_k(f)b_k\|}{\|f - \hat{p}_n\|} \leqslant$

 $1 + \frac{B_n}{A_n}$ (lemme de Lebesgue $||f - Lf|| \le (1 + ||L||)E$ si $V \subset \text{noyau de } I - L$). Séries de Tchebycheff-

Fourier $\sum_{k=0}^{\infty} c_k(f) T_k$ (énoncé Dirichlet, fonctions de variation bornée).

Series de T_n , vitesse de décroissance coefficients et reste: uniquement les estimations en $F^{(m)}$, où $F(\theta) = f(\cos \theta)$.

Orthogonalité discrète $\sum_{p=0}^{"N} T_m(\cos(p\pi/N)) T_{\ell}(\cos(p\pi/N)) = N\delta_{m,\ell}/2 \text{ si } 0 < k, \ell < N \Rightarrow c_k^{(N)}(f) = (2/N) \sum_{p=0}^{"N} f(\cos(p\pi/N)) T_k(\cos(p\pi/N))$. Aliasing $c_k^{(N)} = c_k + c_{2N-k} + c_{2N+k} + c_{4N-k} + \cdots$.

3. Approximation en moyenne quadratique.

Produit scalaire, espace préhilbertien, norme $||f|| = \sqrt{(f,f)}$, projection orthogonale = meilleure approximation, symétrie et positive définition de la matrice de Gram, méthode de Gram-Schmidt, factorisation de Cholesky.

Polynômes orthogonaux, intégrale de Riemann-Stieltjes $\int_a^b f(x) d\mu(x)$, produit scalaire (f,g) $\int_a^b f(x)g(x)\,d\mu(x)$. Récurrence. Formule de Christoffel-Darboux. Cas $x=y:\varphi_n'(x)\varphi_{n-1}(x)$ $\varphi'_{n-1}(x)\varphi_n(x) = \beta_n^{-1} \sum_0^{n-1} \varphi_k^2(x)$. Zéros: nombre et simplicité dans (a,b), entrelacement (par φ_n/φ_{n-1} croissante entre deux zéros de φ_{n-1}). Zéros et orthogonalité discrète $\sum_{j=1}^n w_j \varphi_k(x_j) \varphi_m(x_j) = \delta_{k,m}, 0 \leqslant k, m < n, \ w_j = 1/\sum_{k=0}^{n-1} \varphi_k^2(x_j)$, formules d'intégration de Gauss $\sum_{j=1}^n w_j F(x_j) = \int_a^b F(x) d\mu(x)$ si $F \in \mathscr{P}_{2n-1}$.

Pol. orthogonaux fonctions propres d'opérateurs différentiels $p\Phi_n'' + q\Phi_n' + r\Phi_n = \lambda_n\Phi_n$.

Moindres carrés comme meilleure approximation dans un préhilbertien, avec le produit scalaire de \mathbb{R}^N . Pseudo-inverse d'une matrice rectangulaire. Variance de somme de carrés des erreurs = $(N-n)\sigma^2$. Orthogonalité discrète Fourier pour le produit scalaire $\sum_{j=-N/2}^{N/2-1} f(2\pi j/N) \overline{g(2\pi j/N)}$: $b_k(x) = \exp(ikx), k = -N/2, \dots, N/2 - 1 \Rightarrow \sum_{j=-N/2}^{N/2-1} b_k(2\pi j/N) \overline{b_m(2\pi j/N)} = N\delta_{k,m}$. Analyse d'un signal. Ondelettes: notions.

VOIR SUITE p.2.

Suites totales & maximales, espaces de Hilbert, $\{\varphi_k\}$ orthonormale totale dans $X \Leftrightarrow \sum |c_k(f)|^2 =$ $||f||^2$ pour $\forall f \in X$ (Parseval), où $c_k(f) = (f, \varphi_k)$, etc.

Noyaux reproduisants (ou régénérateurs) comme représentants de Fréchet-Riesz de la forme $f \in$ $V_n \to f(x)$: $f(x) = \sum_{0}^{n} c_k(f) \varphi_k(x) = \int_a^b f(t) [K_n(x;t) := \sum_{0}^{n} \varphi_k(x) \overline{\varphi_k(t)}] d\mu(t)$. Si $c \notin [a,b]$, $K_n(x;c)/K_n(c;c)$ est la fonction de V_n (esp. sous-tendu par $\varphi_0, \ldots, \varphi_n$), qui vaut 1 en x = c, et de norme minimale.

Densité de \mathscr{P} dans $\mathscr{C}_{[a,b]}$, $-\infty < a < b < \infty$ (donc dans $L^2_{(a,b)}$): théor. de Weierstrass et dém. par polynômes de Bernstein

Énoncé de Stone-Weierstrass.

4. Interpolation & applications.

Problème d'interpolation en général et théorème d'équivalence $p \in V$, $\lambda_i(p) = y_i$ donnés pour $i = 1, ..., \dim(V) \Leftrightarrow p = \sum y_j L_j$, où $L_j \in V$ et $\lambda_i(L_j) = \delta_{i,j}$.

Cas de l'interpolation polynomiale classique $V = \mathscr{P}_{n-1}, \lambda_i(f) = f(x_i), x_1, \ldots, x_n$ distincts.

Base de Lagrange-Hermite: $V = \mathscr{P}_{2n-1}, \ \lambda_i(f) = f(x_i); \lambda_{i+n}(f) = f'(x_i), i = 1, \ldots, n.$ (pas tous les détails). Spline cubique d'interpolation (idem).

Formulation de Newton $p_{n-1}(x) = [x_1]_f + [x_1, x_2]_f(x - x_1) + \dots + [x_1, \dots, x_n]_f(x - x_1) \cdot \dots \cdot (x - x_{n-1}),$ différences divisées, Neville-Aitken $p_{i,j}(x) = \frac{(x - x_i)p_{i+1,j}(x) - (x - x_j)p_{i,j-1}(x)}{x_j - x_i} \Rightarrow [x_i, \dots, x_j]_f =$

$$\frac{[x_{i+1},\ldots,x_j]_f-[x_i,\ldots,x_{j-1}]_f}{x_j-x_i} \text{ (coeff. de } x^{j-i-1}\text{)}.$$
 Hermite-Genocchi.

Reste d'interpolation (et points optimaux) $f(x) - p_{n-1}(x) = k_n(x)(x-x_1) \cdots (x-x_n)$, avec $k_n(x) = k_n(x)(x-x_1) \cdots (x-x_n)$ $f^{(n)}(\xi)/n! = [x_1, \dots, x_n, x]_f$

Regles d'integration $\int p_{n-1}$. Trapèze (n=2), Simpson (n=3).

Reste d'intégration Gauss $\int (f - p_{\text{Hermite}}) d\mu$.

Théorème de Peano $f \in \mathscr{C}^n_{[a,b]}$ et $\mathscr{P}_{n-1} \subseteq \operatorname{Ker}(\mathcal{R}) \Rightarrow \mathcal{R}(f) = \int_a^b f^{(n)}(t)K(t)\,dt$, avec $K(t) = \mathcal{R}$ appliquée à $(x-t)^{n-1}_+/(n-1)!$. Exemple $\mathcal{R}(f) = \int_a^b f(x)dx - (b-a)(f(a)+f(b))/2$ (trapèze).

5. Différences finies.

Opérateurs $E, \Delta, \nabla, \delta, D, J$. Interpolation Gregory $f(x_0 + sh) = (E^s f)(x_0) = ((I + \Delta)^s f)(x_0) =$ $\sum_{0}^{\infty} (s(s-1)\cdots(s-k+1)/k!)(\Delta^{k}f)(x_{0}). \text{ Comparer par } [x_{0},x_{0}+h,\cdots,x_{0}+kh]_{f} = (\Delta^{k}f)(x_{0})/(h^{k}k!).$ Opérateurs de dérivation $D^k = h^{-k}\delta^k + \cdots$

Intégration $J = \Delta D^{-1}$ et $E = e^{hD} \Rightarrow J = h\Delta/\ln(I + \Delta) = -h\nabla/((I - \nabla)\ln(I - \nabla)) = h + h\nabla/2 + h\Delta/\ln(I + \Delta)$ \cdots (Adams).

Euler-Maclaurin: principe.