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Abstract. An elliptic lattice, or grid, {z¢,x1,...} is built with the help of a biquadratic

curve F(x,y) = Z?:o 25:0 cijz'y’ by the following rules:

(1) let y,, and y, 41 be the two y—roots of F(x,,y) =0,
(2) then, z,41 is found as the remaining z—root of F(z,y,41) = 0.

There is also a direct symmetric biquadratic relation F(z,, x,.+1) = 0, see V. P. Spiridonov
and A. S. Zhedanov: Elliptic grids, rational functions, and the Padé interpolation, The

Ramanujan Journal 13, Numbers 1-3, June 2007, p. 285-310.

Numerators and denominators of rational interpolants on such lattices satisfy interesting
difference equations when the interpolated function f itself satisfies a Riccati difference

equation on the same lattice:

a(wn)L <y;:f :j;fy") = (@) f (yn) f (Un 1) + (@) (F(Wn) + F(Wns1)) + d(n),

where a, b, ¢, and d are polynomials.
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1. Difference equations and lattices.

Simplest difference equations relate two values of the unknown fuction f: say, f(¢(x))

and f(1)(x)).
Most instances [29] are (¢(x), ¢ (z)) = (x,x 4+ h), or the more symmetric (z — h/2,x +
h/2), or also (x,qx) in g—difference equations [T4]. Recently, more complicated forms

(r(z) —+/s(z), r(x) + \/s(x)) have appeared [5L8,22,23,B0,31], where r and s are rational

functions.
This latter trend will be examined here: we need, for each z, two values f(¢(z)) and

f((x)) for f.

A first-order difference equation is F (x, f(¢o(x)), f(¥(z))) = 0, or f(p(x)) — f(¥(z)) =
G (z, f(e(x)), f(1(x))) if we want to emphasize the difference of f. There is of course some
freedom in this latter writing. Only symmetric forms in ¢ and v will be considered here:

(Df)(x) = F (z, fle(x)), f(¥(2))), (1)
where D is the divided difference operator
D L0 — fo()
(Df)(z) = — ,
U(z) — o(z)
and where .# is a symmetric function of its two last arguments.
For instance, a linear difference equation of first order may be written as

a(x) f(p(x)) + b(z) f((x)) + c(z) = 0,

(2)

as well as
a(@)(Df)(x) = B(z)[f(p(x)) + f(x))] + v (2),
with a(z) = [b(z) — a(@)][b(x) - p(@)]/2, Bz) = —[a(x) + b(x)]/2, and 3(z) = —c(z).
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The simplest choice for ¢ and 1 is to take the two determina-
tions of an algebraic function of degree 2, i.e., the two y—roots
of

F(z,y) = Xo(z) + X1 (z)y + Xo(2)y* = 0, (3a)

where Xy, X1, and X, are rational functions.

But difference equations must allow the recovery of f on a whole set of points! An initial-
value problem for a first order difference equation starts with a value for f(yo) at x = zy,
where g is one root of (Bal) at © = . The difference equation at x = ¢ relates then f(yo)
to f(y1), where y; is the second root of (Bal) at xy. We need x; such that y; is one of the
two roots of (Bal) at x1, so for one of the roots of F'(x,y;) = 0 which is not xy. Here again,
the simplest case is when F' is of degree 2 in x:

F(z,y) = Yo(y) + Yi(y)z + Ya(y)z® = 0. (3b)

Both forms (Bal) and (BLH) hold simultaneously when F' is biquadratic:

Flz,y) =Y e’y (4)

i=0 j=0

2. Elliptic grid, or lattice.
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2.1. Definition of elliptic grid.

N (@
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Various forms of the curve F'(z,y) = 0 are degenerate parabo-
las (two parallel lines) or hyperbolas (two lines), or generic conics, or a full biquadratic
curve

—Xi(2) & /XP(2) — 4Xo(2) Xa(2)

y:

To one x = x,, correspond the two ordinates y, and 4, 1.
X1 () _ Xo(zn)

, and Y, Yni1 = .
Xg(l'n) YnYn+1 Xg(l'n)

One has y, + yp+1 = —
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(2, y3) (23, ¥3) —

I kxlva)
(o2 72 o)

(2o, Y1) (z1,91)
Also, to one ordinate y = y,, correspond the two abscissae x,, and z,_1, and we now have
Y1(yn) Yo(yn)

n n—1— — ) ndn—1 = . bt
IS T T R ®)

A relation involving only x, and z,_; is obtained by the elimination of y, through the
resultant of the two polynomials in vy, Pi(y,) = (zn + Tn_1)Y2(yn) + Y1(yn) and Py(y,) =
xnl,nflyé(yn) - Yb(yn)

The form of this resultant is most easily found through interpolation at the two zeros
wand v of Ya: let Ya(t) = a(t—u)(t—v), Yo(t) = B(t—u)(t—v)+ 5 (t—u)+ 5", Yi(t) = ~v(t—

(Tn + Tp—1)a + 7 Y v
. 0 (Tn +2pr)a+y o
_ I(4__ " — n n
u)(t—v)+v'(t—u)+~", then the resultant is R o0 — 3 _g —g
0 Tpnlp—10 — B _ﬂ/

which is clearly a polynomial of degree 2 in x,+x,,_1 and z,z,_1, so a symmetric biquadratic
relation:

2.1.1. Definition. An elliptic lattice, or grid, is a sequence satisfying.

E(xn, xp_1) = doo+do (!En+$n—1)+do,2(!Ei—mfi,l)+d1,1$nxn—1+d1,2$nl”n—1 (!En+$n—1>+d2,2xi$i

(6)
We also get a linear recurrence relation between three x’s by adding (??) for s and s+ 1:
aly(s+1)+y(s) —20  o®z(s)+af—26 “

v v

5 x(s)+x(s—1):@

x(s+1)+2x(s) +a(s—1) =

2y — o?

x(s+1)+ (7)

0

"

Y
0 )
_ ﬂ//

1:().



x(s+1)

x(s—1
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! : 2.1.2. Why elliptic?

L - - - The learned answer is that a biquadratic curve (H) or (@) is nor-
mally of genus one, and receives therefore a parametric representation

I I involving elliptic functions 2. It is also known that formulas like
x(s)  x(s+1) (@) appear in Euler’s pionneering work on what is now called addition
formulas for elliptic functions, that’s why the authors of [A2] use the letter E in (@).

Here is an explanation based on special Padé approximations, periodic continued frac-
tions, and orthogonal polynomials on several intervals:

Let S be a polynomial of degree 2 S(z) = v+ (2 — 20) + &(2 — 20)?, and we consider the
root of

Go(2 — 20)(2 — 20) f*(2) — 28(2) f(2) + Ci(z — 20) (2 — 1) = 0 (8)

which is regular at zy. It is also

S(z) —/Pl(z
fo) = 2D VIE
Co(z — 20) (2 — o)
where the choice of the square root of P(z) = S%(z) — (oCi(2 — 20)%(z — wo)(2 — 1) =
c(z — z1)(z — 22)(z — 23)(2 — 2z4) in a neighbourhood of zy is such that the value of this

square root is S(zg) = . Actually, this regular root even vanishes at zp, and can be
represented by the continued fraction

Z— 20

f(z) = — : (9)
QpZ + BO - (z ZZZ . )2
mzt b= 0422+520—“'
or folz) = S  n=0,1,... (10)

p 2 + ﬂn - (Z - ZO)fn-‘rl(Z)

with fy = f. Remark that a,,z+ 3, is the Taylor approximation of degree 1 to (z—z¢)/ fn(2).
We can therefore recover a,, and 3, from the behaviour of f,, near zj.
The form of f is kept in all the f,,’s (basically from Perron [35 § 60, eq. (5)-(14)]):

Gu(z = 20)(2 = 2) f(2) = 250(2) fu(@) + Cura (2 — 20) (2 — Tni1) = 0, (11)

and we have the

2.1.3. Proposition. The continued fraction expansion () of the quadratic function f defined
by ) involves a sequence of quadratic functions defined by (II). The related sequence
{z,} is an elliptic sequence.

We first show that the quadratic equation ([II) holds for all n. Indeed, if f,, is the root of

([fT) such that f,(z) = Cjz(? %)(zﬁ<il), with S, (2)2 = Culni1(2—20)2(z—2n) (2 —Tpy1) =
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P(z), we have
fa(z) = Sn(2) = P(2) = Gubar(2 = 20)*(2 = 2a) (2 = Tnr) _ (2 — 2)

Gn(z = 20)(2 — ) [Sn(2) + v/ P(2)] Sn(2) + V P(2)

Crt1 (Z - xn+1)

C?’LJrI (anz + ﬁn)(z - xn+1) B Sn(z) B P(Z)

Cn-‘rl (Z - In-‘rl)

| Suer(2) = VPG
showing that f,.1(2) Y P P
Bu)(z — Tpi1) — Su(2), anz + B, being the Taylor approximant of degree 1 to [S,(z) +
V' P(2)]/[Cns1(z — xpy1)] about z = zg. This way to build S, ensures that the fourth-
degree polynomial S2 , — P has factors (z — z9)* and C,41(z — #,11). Let us call the
remaining factor (, 2(z — T,42), and this completes the definition of f, .

And here is how the present z,, and x,1 actually satisfy the elliptic lattice equation ([@l):

We expand S?’QL(Z> - P(Z) - CnCn-‘rl (Z_ ZO>2(Z —:L‘n>(Z _mn-‘rl) with Sn(z) = ’7_'_5(2_ ZO) +
&u(z—20)? and P(2) = 2 +270(2—20) + P"(20) (2 — 20)?/2+ P"" (20) (2 — 20) 6+ P"" (20) (2 —
20)*/24 (so that the expansion of the square root of P starts indeed with v + (2 — z9)).

anz+ﬁn -

, as expected, where S, 1(z) = (ur1(anz +

2960 + 0% = P"(20)/2 = Guua (20 — ) (20 — Tp1), (12a)
25€n - P”/(ZO)/6 = CTLC?’LJrl (220 — Tn — xn+1)7 (12b)
&n — P""(20)/24 = s (12c)

The last equation yields (,(,+1 as a polynomial of degree 2 in &,, therefore the two first
equations give the sum and the product of z,, and x, 1 as rational functions of degree 2 of
an intermediate parameter, and this is the structure of (Bal)-BH)-@): 20—z, and 20 — 2,41
are the two roots of

25€n - PW('ZO)/G (Z _ ZC) 2’Y€n + (52 - P"(ZO)/2 -0
& — P"(z)/24 " &£-P"(x)/24

(20 — 37)2 -
F(a,y) = [y* = P"(20)/24] (20 — x)* = [20y — P"(2) /6] (20 — x) + 27y + 6° — P"(29)/2 = 0.

So, the continued fraction expansion ({)-(I) of a quadratic algebraic function leads to
an elliptic lattice.

Conversely, can we find P, zp,etc. from a given elliptic lattice (B)? From a solution
Tp = Tpt1 = 2o of ([Za))-(Zd) (when &, = 00), 2 is one of the four roots of

E(Zo, Zo) = do’o + 2d0’12’0 + (Zdo’g + d171)Z§ + 2d1722’g + dg’gzg =0.

Moreover, (@) yields y = z,41 as a quadratic function of x = x,, as

—dLQZEQ — d171$ — d()’l + \/(dLQxQ + d171$ + d071)2 — 4<d272$2 + dLQZE -+ d072)(d072$2 -+ doy}’l? -+ d070>

y= 2(d272$2 -+ dLQx -+ d072)

Let us look now at the (S, P, (,(z—x,)) construction as a way to find x,; from z,: if z, is
known, S2 — P must vanish at z = z,, = S,,(z,) = 7+(2,— 20) +&n (20— 20)? = £/ P(2,,),
giving two possible values for &,. Then, as already seen, we factor S? — P as a constant
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times (2 — 20)*(z — x,,) times a last factor which must be a constant times z — x,, 41, yielding
for x,,1 an expression containing \/P(z,), so that we obtain P from

(dLQZEQ -+ d171[l? -+ d071>2 — 4<d272$2 -+ dLQZE + d072)(d072$2 + doJZE + d()’o) = const. P(l’)

This allows to interpret any elliptic lattice in terms of the continued fraction expansion
of a quadratic algebraic function.

2.1.4. The elliptic functions, at last. Let

An(2) z— 2
— 1
Balz (- = 20)° : (13)
0602’+60— (2—2)2
a1z -+ Bl - 0
T
27 62 Qp_12 + Bn—l

with Ag =0, A1(2) = 2 — 20, Ak11(2) = (arz + Bk) Ar(2) — (2 — 20)2As_1(2),
By =1, Bi(2) = apz + Bo, Biy1(2) = (az + i) Br(z) — (2 — 20)*Br—1(2), or also B_; =0,
A_1(2) =—-1/(z — 20).

Ik

et — Ap
———— " gatisf = oz + — (2 — 20)%/ g, or =
\B, — A, Y Gk+1 k Br — ( 0)*/ 9r Z— 2

i.e., the recurrence () of the f;’s, which correspond to A\ = f (as

Ratios gry1 =
Z— 20
oz + B — Gr1’ _
go = =AMA1 = (2= 20)A, 50 go(2)/(z = 20) = fo(2) = f(2) if A= f).
The quadratic function B, f — A, = (z — z0)"fof1 - fn has an extremely peculiar set
of zeros and poles: let f°Y be the conjugate function to f, i.e., the quadratic function

S+ VP

Co(z — 20)(z — g
way to deal with two-sheeted Riemann surfaces. Then, the set of zeros and poles of B,, f — A,
is a part of the set for (B, f — A,)(Bn,f<% — A,)

where the sign of the square root of P has been changed, an elementary

(Buf = Ap)(Bof = Ay) = (2= 20)*" fo- - fufg™ - f5
_9 So— VP Sy — VP Sy+VP So+ VP
Co(z — 2) Cu(2 — @) Co(2 — o) Gz — 2n)
_ (2= 20)"(z = Tni1)
CoGalz —x0)

a very limited set! Actually, most zeros and poles are concentrated at zg and co: B, f — A,
has a zero of order 2n+1 at zy (Padé property), B, f©™ — A,, a simple pole; both functions
have a pole of order n at oo.

= (z— 2p)

2.1.5. What is (are) the period(s)?



Marseille-Luminy July 2007 — Elliptic lattices. 2 — Diff. eq. & lattices — 9

Consider the integral of

B, — A,
g dt o { n 1(t)f(?) no1(t) ] on a
~ 4o 4D miy/ P(t) By (t) feoni(t) — A, (t)
— r big contour, result is 0, as everything is regular

2 2 when t is large; and we shrink the contour about
zo and the zero and pole xy and z,,:

L dt o /dt Tnodt Zitt dt
o= [ ot | Lt \ﬁPa)”;Nj/Zj v

periods

It happens that, knowing n, P, and z, (I4)
allows to find the remaining unknowns, includ-
ing the + signs (Jacobi problem, [11,3,26,32. 33 7]).

There is absolutely no need for n to be an integer in the description ([[4]) of the Jacobi
problem. To see how this z, is a function of n, we ...take the derivative of ([4]) with
respect to n (!1):

1 dx

I _n7
A /P(gjn) dn

odt
where h = —2 / 20} We have a differential equation for x,. An initial condition
20

consists of 2y and a sign (= a place on the Riemann surface of \/F)

h

Generalization.
Hyperelliptic case, generalization of Padé approximation and continued fraction (recur-

rence relations) constructions: see [?,AB344]. We then have a vector of length ¢ (genus)

[SL’SLI), ce xgg)] of unknowns which is a well defined function (Jacobi-Abel function) of

the left-hand side [nho, ..., nhy_1].
2.2. Periodicity, theta functions.

x, is kept unchanged if nh + hy in ([4) is augmented by integers times the integrals

Zj4+1 tk
2w; =2 / dt (periods).
j g %0 ( )

So, x, is some periodic function (elliptic function) of nh + hy. There are two zeros
and two poles in a fundamental parallelogram of periods (2wq,2ws), they are given by

O at < dt
nh + hy = i/ and =+ ——, say, +(p and +(.
2 V P() a VPt

We expect x,, to involve standard functions of nh + hg + (o and nh + hy £ (.
With the p—theta function

O(usp) = [[(1 = pw)(1 = p"* Ju),
5=0
which vanishes at logu = all the integer multiples of log p plus all the integer multiples of
27, we consider [37, § 2]
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. nh+h0—C0 . nh+h0+Co
Olexp |im————— ) |0 (exp | iT——————
C ! w1
Ty =
_nh+hy—Ce . nh+hy+ (o
Olexp|im—————— ) |0 |exp | in————
w1 w1

see also A2, § 4], there is a simple relation between the p—theta function and the Jacobi
theta functions.

Let ¢ = exp(imh/w1), go = exp(imhg/w1), No = exp(im(y/wr), Moo = eXp(iT(s/w1), 5O
0(q"q0m0)0(q" q0/70)
0(4"q0M0)0(4" 90 /Moo

Zp, — Tm, where n and m need not be integers, is another (much more interesting) elliptic
function of n with the same poles, but with zeros such that n = m is one of them. This
leads to replace 1y by 1/(qoq™):

n =

0(q"™)0(q" ™ q5)

Ty — Ty = C 15
0(q"q000)0(4" 90 /110) 15)
For the y’s, one has
2] qn—m 0 qn+mq/2
PPREAL (a3 (16)
(g™ 05 )0(q™ 40/ %)
with the same 6 function and the same ¢
2.3. A special product.
We will have to considerate the special algebraic function

(e(z) = yo)(p(x) = y2) -+~ (0(x) = y2n—2)
and its conjugate

oo ) — (200) = 0)(0(w) )+ (2(2) — )
" (Y(x) = yo)(Y(x) — yg) (¥(2) = y2n—2)

F(x,y)F(x,y3) - F(2, Yon-1) . Yo(y1)Ya(ys) - - Yo(yon—1) © — T2n—1

F(z,y0)F(2,12) - F(2,y2n- 2) Ya(y0)Ya(i2) -+ - Yo(yan—2) ®*—a_1

The value of () is well defined when x is some x,:

the product is

X (l‘ ) _ (ym-H - yl)(ym-i-l - y3) cee (ym+1 — an_1>
(Ym = Y0) (Ym — ¥2) =+ (Ym — Y2n-2)
Now, following (H), y» — ys is a ratio of products with numerator 6(q"~*)0(¢"™q}), so

0(q™)0(q™2qi)0(q™2)0(q"qR) - - 0(g™ 2" 2)0(¢" " q)
0(q™)0(qmq)0(qm=2)0(qm2qF) - - - 0(qm 2 +2)0(qm+ 224
e(qm-‘ranéQ)

0(q™qf?)

and what remains is

() = (18)
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and (24 O(pgiom)
X0 () = — 19
(@) G(qgm+1) O(pg—m-1) (19)

from the identities 0(pu) = 6(1/u) = —0(u)/u.

3. Elliptic Pearson’s equation.

A famous theorem by Pearson relates the classical orthogonal polynomials to the differ-
ential equation w’ = rw satisfied by the weight function, where r is a rational function of
degree < 2.

3.1. Theorem. Let {(z(so+k),y(so+k))} be an elliptic lattice built on the biquadratic
curve (Bal)-BL)-@), with so ¢ Z. If there are polynomials a and ¢, with a(x(so)) — (y(so +
1) = y(s0))c(@(s0)) = a(z(so + N)) — (y(so + N +1) = y(so + N))c(z(so + N)) = 0, such
that

W41 . Wk
o Yoy ) (@ — ) Ya(yp)(xg, — 23 y) ot W41 Wy,
a(xk) / / - C<mk> Y- / / / + Y- / / / )
Y1 — Yk Q(yk+1)(xk+1 —x7) 2(yk)((37k )_ Th_y)
20

k=0,1,...,N, where (z},y}) is a shorthand for (x(so+k),y(so+k)), and wy = wy41 =0,
then,

fl) =Y wk (21)

= T Ui
satisfies
_ W) = fle(@) . . .
a(x)Df(z) = a(z) o) = o) (@)[f (p(2) + f((x)] + d(x),  (22)
where d is a polynomial too.
Indeed,
f@ (@) — flp() i wy L wXo(x)
U(z) — o(x) n — v (¥ (z) — ) — F(z,y;)
N wiXs(2) Yoy (@ — 1) Valu) (o) — 7))
ZYQ k)(“l'_x;cq)(fﬁ_xk Z T =,

0
with Wy = WN+1 = 0,

il wi[ X1 () + 2y, Xa(x Y wi [ Xy (@ +2ka2( )]
@) + = 2 X el — e E yk “TL T e
w1 [X1(2) + 2, X ()] wi[Xa(2) + 295, X (2)]
B wi [ X1 (z) + 2y, X2 ()] _ al n(y;ﬁl)(%ﬂ — ) Ya(yp) (2}, — )_)
ZYQ% Nz — ) _y)(z — xp) Z T — ) ,

0
therefore the rational functions aDf and c(f(¢) + f(¢)) differ by a polynomial if all the
residues are equal:
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Wg41 _ Wy, }
YQ(QZﬂ)(%ﬂ - x;c) YQ(yl/c)(fL’gc - x;cq)
(2) [warl[Xl(x;c) + 2y Xo(z)] w[Xa (2 )+2y2X2($2)}]

(e} e} |

!/
1Ty,
x J—

* Yo (Ui ) (@hyr — 23) Ya(yp,) (@) — 7 y)

for k=0,1,...,N. Or, as Xy(z},) = —(y}, + ¥p;1) X2(2},),

a(zy,

) [ Wg41 _ Wy, }
YQ(iy;cH)(x;cH - x;c) YQ(yl/c)(fL’gc - x;cq)

— s~ 1) | 7

W+1 4 W ]
y;chl)(x;chl - x;c) }/Q(yl/c)(xéc - x;cq)

3.2. “Elliptic logarithm”.

T —a a—2b

We extend f(z) = log p— which satisfies f'(x) = m

function whose divided difference is a rational function of low degree.
Answer: wg = (2}, — x5 _1)Ya2(v.),

by looking for a

(2 — 25) Xo()

(o —h)w = h) 29)

Df(x) =

4. Recurrences of biorthogonal rational functions.

From excerpts of Spiridonov & Zhedanov [A{], also

A. Zhedanov, Biorthogonal rational functions and generalized eigenvalue problem, J.
Approx. Theory 101 (1999), no. 2, 303-329, and [51].

Also Brezinski, Iserles, Ismail, Masson, Norsett.

4.1. Padé and interpolatory continued fractions.

4.1.1. Padé. il aq matches a given Laurent expansion cq/x+
r— B+
T — Bl + Q1
_i_i
T — 6n71
c1/x? 4+ -+ at oo up to the copy1/2**? term. Numerators and denominators satisfy the

recurrence relation P, 1(x) = (v — ) Po(2) +a, P,_1(x), suggesting some kind of (formal?)
orthogonality. This is even more obvious in the matrix-vector setting

Bo Vo Py(z) Py(x)
V=0 I3} V=02 Py (fE) Pl@)
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If one wants to approximate a Taylor expansion about the origin, just take z = 1/x and
rewrite the Continue&i graction as
0

which matches a given Taylor-Maclaurin expan-

2
a1z
1-— Zﬂo + !
1 -Gz + 3
i QAp_1%
1- ﬂn—lz
sion up to the z?" term.
4.1.2. Interpolation. Rational interpolations to a given set of values at x = yo, y1,... (yes,

the relevant set will be a y—lattice) are achieved by

T — Yo
(. —y)(z —32)

aox—i-ﬂo -

(!E - y2n—3)(!13 - an—2>
Qp 1T + 6n71

Qp—2T + ﬂn—Q +

which agree with a given set up to & = ya,,.
The recurrence relations for p, and g, are

Pot1(®) = (@ + Bn)pa(2) — (T — Y2n-1) (T — Y2u)Pn-1(2), (24)
gn+1 (‘7}) = (Oénl' + ﬂn)qn(x) - ('Z' - y2n71)(‘7} - yQH)anl(x)ﬂ

with ¢ = af, po = 1, ¢1(x) = aj(aox + Go) + = — Yo, p1(x) = apx + Fy. We could as well
start with ¢_1(x) = —=1/(x —y_1) and p_; = 0.
We also have the Casorati relation

Pn(T)qn-1(%) = Pn1(2)gn(7) = —(x — yo) (T — y1) -+ (T — Y2n—3) (T — Yan_2). (25)
pn(T) .

( —y2) (T —ya) - (2 — yan)

(= Yont2) Rng1(7) = (anx + Bn) Ru(2) — (2 — yon—1) Rn-1(2),

so that the matrix-vector setting is now

Consider now rational functions R, (z) =

—Bo —Y2 Ro(z) ap —1 Ro(x)
- b1~ Ry (x) -1 o -1 Ri(x)

So, {Ro, Ry, ...} is a right eigenvector which is in some way biorthogonal to the set of
left eigenvectors {1y, T1, ...} satisfying the recurrence

(2 = y2nt1) Tog1(2) = (@nz + ) Tn(w) — (7 — yon) T (),
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which is of the same structure that the recurrence of the R,’s, but with the odd z’s
interchanged with the even a’s. Actually, T, (z) is a constant times the same p,(z) as
before, divided by (z — y1)(z — y3) ... (¥ — Y2n—1)-

That p, is invariant under matrix transposition is clear: p,(z) is the determinant

apr + By —(x —y2)
(z—y) aw+p —(r—y)

(T — Yon—3) Q1T+ Bna

4.2. Biorthogonality and orthogonality.

But what is the bilinear form exhibiting the biorthogonality condition?
Let g,/pn interpolate a formal Stieltjes transform-like function

flz) = /S du(t)

x—t’

then ¢, interpolates p,f at the 2n + 1 points yo, y1,...,y2n. Also, for k < n, §(z) =

Gn(2)pr(x)(z — Yorys) - - (& — yan_1), still of degree < 2n, interpolates p,(x)py(x))(z —
Yokt3) -+ (& — yon—1) f (), still has a vanishing divided difference at these 2n + 1 points:

[Yo, - -, Yon] Of Pru(@)pr(2)) (2 — Yory3) - (T — Yon_1) f()
_ / Pa(O)pr(t))(t — yorr3) - (£ — Yan—1) dp(?)
s (t=50) -+ (t = y2n)

as the divided difference of a rational function A(z)/(z —1t) is A(t)/{(t—yo) - (t —yan)}
(Milne-Thomson [29, ...]).
So, R, is orthogonal to T with respect to the formal scalar product

(91, 92) = /S 01 ()ga(t) dia(t).

N-1

Even simpler: if f(z) = Z P 7

N-1

(91,92) = D pugr (@) ga ().

4.3. Example: the exponential function (Iserles [18]).

Rational interpolations to e** at x =0, h, 2h, ...
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The hypergeometric expansions are

O I e T LIRS )
CZQn— 2n—k;;k2)!...(n—k‘+l)th(x_h)...(x_(k;—l)h),

= (n(x )+0( (x —h)---(x—2nh)),
(26)

where t = e — 1. The constant C,, is needed to allow the form of the recurrence relation

©).

5. Elliptic Riccati equations.
5.1. Definition.

An elliptic Riccati equation is

o) L) = F(o(a)
Uw) = ola)

If = x,,,, some point of our z—lattice, then p(z) = y,,, and P(x) = Yp41.
A first-order difference equation of the kind (7)) relates f(yo) to f(y1) when x = x;
f(y1) to f(y2) when x = x4, etc. The direct relation is

LbajJrc] flp)+d
S e

= b(x) f(p(2)) f((2)) + c(x)(f(p(x) + f(¥(2))) +d(z).  (27)

f(¢): a

v —
It is sometimes easier to write (E1) as
e(@) f(p(@)f (¥ (x)) + g(x) f(p(x)) + h(2) f((x)) + k(z) = 0, (28)
Wheree:—b,g:—L—c, h:L—c, and k = —d.

However, if a, b, ¢, and d are rational functions, g and h are conjugate algebraic functions:
h+g and hg are symmetric functions of ¢ and 1, hence rational functions. This also happens

with 2a = (h — g)(¢¥ — ¢).
5.2. Rational interpolation.

We consider now rational interpolation according to the setting of § above. Why is
this relevant?

T — Yon . . .
From f,(z) = , T + (3, is the polynomial interpolant of
) e T B = = et o) |
degree 1 to (2 —yan)/ fn(x) at Y2ni1 and Yo 12, s0 we need f,(Y2ni1) and fr(Y2ni2) in order
to find «,, and £,.



+gn(x)
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Now, if f, satisfies the Riccati equation

enla) PRI )0 o) + ) F (o)) + 00 + )
(29

or equivalently

en () fu(p(2)) fr (¢ () + gn (@) fup(2)) + hn () fr (9 (2)) + k() = O, (30)

where e, = —b,,, g, = — n, —Cn, by = In__ _ Cn, and k, = —d,,, one finds at x = x4,
©(2) = yan, V() = yYon+1, and frn(y2n) = 0, s0
fo(y2ni1) = Yont1 = Yon (Y2n11 = Yoan)dn(T20) _ (2 )7 (31)
AnpYon+1 + ﬂn an(l'Qn) - <y2n+1 - an)Cn(x2n> hn(x2n>

and at © = x9,.1, keeping the e — g — h — k form,

Yon+2 — Yon o gn(x2n+1)kn(x2n) - kn(xQnJrl)hn(xQn)

AplYon+2 + ﬂn B _en(xQn—i-l)kn(xQn) + h(xQn-i-l)h(an)
which shows how to extract a,, and 3, from a,,... at s, and x5,,1. Another form of

B2) is

fo(Y2n+2) = ., (32)

(y2n+2 - y2n>[(y2n+1 - y2n>en(x2n+l> + (any2n+1 + ﬂn)hn(xQn—&-l)]
+ (any2n+2 + ﬂn)[(@/?n-&-l - y2n>gn(x2n+1> + (anan—H + ﬂn)kn(xQn-&-l)] =0. (33>
Furthermore, the Riccati form is well suited to continued fraction progression:

5.3. Theorem.

If f,, satisfies the Riccati equation (29) with rational coefficients a,, by, ¢,, and d,,, and if

T — Yon . . .
folz) = , then f, ., satisfies an equation of same complexity
( ) o + B, — (SC - y2n+1)fn+1(x)
(degree of the rational functions) of its coefficients.

T — Yon

anT + ﬂn - (l‘ - an+1)fn+1(ll3)
actually using the (B) form:

Indeed, enter f,(z) =

in the Riccati equation (21) for f,,

en () o) — yon (@) = yon
G T B = (P — o) TP 30 (0) B — (002) — i) e (90
p(r) — yon W(x) = Yo -
0 P 21 R YR 23) M P e M 7 o TPy T AR ) M

or

en(2)(P(x) = Yan) (Y () = yan) + gn (2) (P (2) = yan) [t (2) + Bn — ((2) = Yan+1) frsr (P(2))]

+ha (@) (¥ () = Yan)[onp(2) + Bn = (9(2) = Yani1) fasa (0(2))]
—H{;n(x) [and}(m) +ﬂn - (¢(x) _y2n+1)fn+1(w(x))] [an¢($> +ﬂn - (‘P("E) _y2n+1)fn+1(90(x))] =0
We therefore have a relation between f,11(p(x)) and f,41(¢(z)) of the form

1 (@) fror1 (9(0)) furt (0(2)) 4 Gs1 () s (0(2)) s (2) frn (9(2)) ki () = 0, (34)
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where
nt1() = (V() = Yant1)(0(®) — Yans1)kn(),
gn+1($) —(p(x) = y2n11) [(V(2) = yan) b (2) + (Qn () + Bn)kn ()],
n1(7) = =(¥(2) = Yant1) [((2) = Y2n)gn (@) + (anp(2) + Bn)kn ()], (35)
n+1(~”€) (2(2) = y2n) (¥ () = y2n)en() + (0(2) = yon) (nt () + Bn)gn(z)

) —
+ (@) = y2n) (anp(x) + Bo)hn(2) + (@0t (x) + Bo)(np(z) + Bn)Ekn ().

The tilde é,etc. notation is needed because (B2]) is not yet the equation (Bl with n
replaced by n + 1: the coefficients of (B4l) will have to be divided by common factors first.
The equation (B4) is already a Riccati equation, introducing the difference and the sum

of fr1(p(x)) and fri1(i(2)) as
(00, fus(p(a)) = LIt D ) o LD = Tl
then (B4]) takes the form of (27)

(s (£) s (o)) 00) o)) LGN 0 () i (012

— (B () +gn+1(x))f”+1(30<m>) ‘;‘ far1(@(z)) ki1 ().

The coefficients are now symmetric functions of ¢ and ), therefore rational functions, as
o+ =—-X1/Xy and pp = X/ X,

I

2ap11(7) = (hngr () = gna (2)) ((2) =p(2)) = [($(2) =y2011) (£(£) =Y20) +(P(2) =y2011) ((2) =y2n)]an ()
+(W (@) = () [(Y2n+1 = Y2n)a (@) + (Qntoni1 + B)dn ()],

—26341(%) = P 1 (2)+gn41(7) = (Y2n11—Y20) an (@) +[(V(2) —y2n+1) (0(2) =Y20) +(2(2) = Y2n11) (¥ () = Y20)]
+(p() = Y2nt1) (¥ (x) + B) + (V() = yan1) (@ (x) + Ba)ldn(z)

We must now be sure that no increase of complexity occurs in the new Riccati equation!
From ¢+ = — X, /X5 and pyp = X/ X,, where the X'’s are second degree polynomials,
we see that the new coefficients (hy,41(2)—gn+1(2)) (V(x)—p(2)), €nt1(z), hpi1 () +gni1(2),
and k,1(z) are rational functions of denominator X,, and sometimes X2. This problem
is settled by multiplying the four coefficients by X5, assuming that b,, ¢,, and d, already
have the factor Xs.
The new coefficients are now polynomials, but of higher degree than before! Fortunately,
they have convenient common factors, which can be removed:
(1) The four coefficients of (Bdl) vanish at © = .
Indeed, at © = x9,, ¥(x) = Yonyt1, so that &, and Bn+1 do already vanish. More-
over, with ¢(x) = ya,, one sees that §,1 and ]%n+1 are products containing the
factor (yan+1 — Yon)hn(T2n) + (nYoni1 + Bn)kn(22,), which must vanish, according
to (BI0).
Remark that x — 9,41 is an obvious factor of €,,1 and §,1; also a (much less
obvious) factor of kn41, as kni1 at & = Za,41 from [BH) gives (B3).
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(2) When n > 0, the four coefficients of (B4) vanish at x = x2,_1.
According to the remark just above, if n > 1, e,,, g, Emd k, already vanish at xo, 1,
S0 €41 and h,41 vanish too. The values of g, and k, ;1 at x5, 1 from ([BH) contain
the same remaining term (¢ (z) — y2,)hn,(x) which vanishes at x = x5, 1 too.

If an, bn, cn, and d,, are polynomials, we recover polynomials Withgut increasing the
degrocs by gy (1) s (1)(000) ~(0) 2 =), =l s 2

~ ol
and —k,,1(x) by (& = 2o 1) (@ — 720)

(P(0) =) () =) = 2D D + Kol o) _

, or, considering that

(SU - $2n)(~’€ - $2n71)

Xo(z) - X(2)
we may as well divide by (¢(x) — ya,) (V(2) — yan):

XQ(I)

1

(90 - an)(w — Yon

and the division of (BH) by (p(x) — y2n)(¥(x) — y2,) yields at last the Riccati coefficients
at the (n 4 1)™ step:

[€n+17 Gn+1, hn+17 knJrl} = ) [én+17 §n+17 }Nanrla /;;nJrlL

0 ®Y — Yon+1 0 (<P — y2n+1>(04nl/1 + 5n)
gn+1 ) __77 ) - _ gn
© = Yon (¢ = Y20) (¥ — Y2n)
_ Y = Yan (0 = yon) (¢ — y2n) (36)
- 0. 0. 0. (9 = Y2n1) (¥ — Yont1) e
(¢ = Y20) (¥ — y2n)
- ant) + B, any + B ) () + Bn)(anp + Bn) i
L L Y=y =Y (=)W —y) L
or gn+1 = Mngn
A very interesting identity is
gn+1hn+1 - €n+1kn+1 - (90 — y2n+1)(w — y2n+1) [gnhn - enkn}a

(()0 - an)(w - y2n)
which, by (p(x) — Yot ) W(@) —Yoni1)  F(x,92041)  YoWoni1) (T — Ton) (7 — T2041)

((p(l‘) - y2n>(¢<m) - y?n) F(ZE, an) %(y2n> (l‘ - x?n—l)(x - x2n>’

O (0)a() o) () = ALt BT = )1 1) o))

becomes

(37)
The polynomial coefficients are then recovered by a1 = (hny1 — gni1) (¥ —9)/2, byyr =
—ent1, Cni1 = —(Pnt1 + gnt1)/2, and dp 41 = —ky,41, using the rational functions ¢ +

X)X, 0t = Xo X, (6 — 9)* = (X2 — 4X0X2)/ X2, (9(2) — ) (0(2) — ) = (Xo() +
U X (2) 1 92X (2))/ X(2) = (2, )/ X(2) = Yl (& — Zan) (& — Fanr)) Ko ()
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© — Yan+1 (o — Yont1)(an® + () Y — Yont1 (¥ — yant1) (e + Bn)
it ! Y — Yon (0 = y2n) (¥ — y2n) i Y — Yo It (0 = Y2n) (¥ — y2n)

1 - Y2n - Y2n 1 - Y2n - Y2n
:__[80 Z/2+1+¢ yQH}(hnﬂ:gn)——{(p y2+1_l/1 Yont1

hn F gn
21 ¢—yam Y — Yo 2 p—ym Y — Yon ( )

_ (¢ — yont1) () + Bp) £ (¥ — yani1) (anp + 5B5) L
(90 - y2n>(¢ - an) "
1 |:2X0 + (Yon + Yoni1) X1 + QanyanXQ} (ho = g) — (Y2n+1 — Yon) (0 — V)
2 XQF(QZ', ygn) " In 2F(5C7 an)
_an[(LE 1)) — yonia (¥ £ @)] + Bale £ — yona (1 £ 1)]
F(:L’, an)

(gn + hn)

kn

S0,

2Xo + (Y2n + Y2n11) X1 + 2020 Y2011 X2
Apt1 = hn — On - 2= Ap
+1 ( +1 g +1) (1/) 80)/ 2F<ZE, y2n>
n - n AnYon + n
+(1/) _ )2 { Yon4+1 — Y2 Yon+1 0,

Cp, n
2F(z,y2n)/ X2 F(x,y2,)/ X5

or

2Xo + (Y2n + Yont1) X1 + 2y2ny2n+lX2a
2F(x, yan) "
— Yon)Cn + 2(nlani1 + Bn)dn]/ Xo
2F(x, yan) '

2X0 + (Y2n + Yon+1) X1 + 2y20Yon1X2
+1 ( +1 g +1)/ 2F(£C, an)
Yani1 = Yon an(2X0 + yont1X1) — Gu( X1 + 2y2n41X2)
2Un —

QF(I‘, an) QF(I‘, y2n>

b (¢ = Yont1) (¥ — y2n+1)d _ F($>y2n+1)d
n+l — n — )
(90 - an)(w - y2n> F(l‘, Yon
AnlYon + Bn
F(Z’, an)
+ [an(QXO + anXl> - ﬂn(Xl + QanXQ)}Cn + (O[?LXO - anﬂnXl + B?LXQ)dn
F(:C7 yQTl)

From the theorem of § B3 a1, ..., d,,1 must remain polynomials of fixed degree. This
can be rechecked, knowing that X5 is a factor of b,,, ¢, and d,,, that b, (x2,—1) = d,(T2,-1) =
0

. And (B7) becomes, using g, = —a,/(¥ — @) — Cny hn = @/ (¥ — @) — Cn, and (Y — )2 =
PIX3 = (X7 — 4X,X,)/ X}
ca(®) = ba(@)dn(@) [y o T — Tan-1 [ () — bo(x)do()
T B A e aral R ¢ 73
YQ(Z/Qn—OYQ(an—:’J o YQ(%)
YQ(anJ)YQ(an#D T YQ(ZJO) .

Upy1 =

(X2 — 4X0Xo) [(G2nts (38)

d,

dn+1 = — Xoay, + by,

I
2

P(z) = ag(z) |, (39)

where C), =
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6. Classical case.

We keep the lowest possible degree, which is 3, considering that b,, and d,, must be Xy (x)
times a polynomial containing the factor x — o, 1.

Let d,(z) = (u(r — w25-1)Xa2(x), a, of degree 3, and ¢, = X, times a polynomial of
degree 1.

F(x, yany1) Y (Yant1)
bn N ) — L2n— X N e ) — L2n X
+1(2) F (2, yon) Gl — 22n-1) Xa(2) Ya (1) G — Tan+1) Xa(2)
From the Riccati equation () at = 9,1 and f,,(y2,) = 0, we have
CLn(l?n—l) _ Cn(l'Qn_1>,
Yon — Yon—1

allowing the divison of the left-hand side of (BY), leaving
Cn () = bn (@) dn ()

P(z) — al(z) = Cp(x — 12,1)Q(2),

X3 (x)
where @ is a fixed polynomial of degree 5.
At each of the four zeros z1,..., 24 of P,

an(2;) = i\/—Cn(Zj — Z2n-1)Q(%),
allowing to recover the third degree polynomial a, from four values...should the square
roots be determined! Square root-free relations come from (B) at z;, knowing that ¢(z;) =
¥(zj), which we call ¢;:
¥i — Yont+1
————an(%)
©Yi — Yon !
Remark that, from B9), Q(z;) = —a2(z;)/(z; — x_1), so there is a subtle relation between
the product of the (¢; — yont1)/(¢; — Y2n)’s and a square root of (z; — z2,-1)/(2; — x_1).
Indeed, as explained in § 23 eq. (), the product is the value of the algebraic function X,
at z;, where X' = its conjugate X%, so that the value is a square root of X (z;) X" (z;) =
Cn(2 = Yansa) /(25 — T-1).
Well, from (), z,, = z; means mh + hy = a sum of half-periods, so ¢™q, = —1 or
+p!'/2, and we have from (IS)- ()
0(¢*" q00;) :
N = 2L D95y =1, 4
an(z]) 9((]60'j) CLO(Z])7 J ) )

An+1 (Zj> =

where o; = £1 or +p'/2.
7. Linear difference relations and equations for the
numerators and the denominators of the
interpolants.

, the recurrence relations for p,, and ¢, being now (§ T2 p. [3)

pn+1(l’) = (OénSC + 6n)pn(x) - (‘T - y?nfl)(x - an)pnfl(qj))
(O‘nx ~+ ﬂn>pn(x> - pn—&-l(x) .

(@ = Y2n—1) (@ = y2n)

or pu1(x) =
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We now consider the linear recurrence satisfied by combinations of such products, i.e.,
by combinations of

Pr(@)Pn(V); Pr(0)@n-1(¥), Gn1(p)pu(¥), and gn—1(0)qn—1(¥).

We just have to consider a product r,s,, kowing that
(OanD + ﬂn)rn — n+1 : and
2 y2n+1)(§0 - y2n+2)
s anw + ﬂn)sn — Sp+1
n—1 —
(v — ygnfl)(w — Yon)

Simplest way is to write it as matrix-vector recurrence.

rn_lz(
_

T'nSn—1 —A(Y) B(v) Tn+18n
Me1sn | _ | —Alp) B(p) TnSnt1 (40)
TnSn 1 Tn+1Sn+1
risa]  L—A@BW) —AWB) AQAW) BB | ras,
where A(t) = ! and B(t) = — 2t T b

(t - y2n71)(t - y2n) (t - y2n71)(t - y2n) '

The matrix is D, ' M’ E, ", where

_w — Yon-1
Y = Yon-1

(80 - Z/Qn—l)(l/f - an—1>_

-()0 — Yon+1

E — Y — Yont1
" (90 - Z/2n+1)(¢ - y2n+1>

1

and where M is the transposed of the matrix of (BH).
This means that the recurrence of the r,s,’s is basically the adjoint of the recurrence

@) of the (e, gn, hn, kn)’s

Remark that EnDnJrl = (QD — y2n+1)(w — y2n+1)I-

SO? m) 18 Pn-1 = D;IMZEglpnﬂ gnann—l = gnMZEglpn = gn—i—lE;Llpn (from
(Bﬂ)>7 or ((10 - y2n+1)(w - y2n+1)gnann_1 = gn+1Dn+1an

9ni1Dni1p, = (0 —y1) (W —y1) (0 —y3) (0 —y3) - (0 = Yans1) (¥ — Y2ni1)goDop_y

so that, for any choice of r,, and s, (p, or ¢,),
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(V—=Yon+1)In+17n 4150 H(O0—=Yon+1) Pn17nSnr1+Hnt17n 41541+ (0 —=Yon+1) (V—Yons1) Eng17nsn
= (e =y)W =) —y3) (¥ —y3) - (¢ — Y2nt1) (¥ — Yont1)
X [( —y-1)goros—1 + (¢ — y—1)hor_150 + eoros0 + (0 — y-1) (V¥ — y_1)kor_15_1]
With the two choices (r,s) = (p,p) and (g, p):

(V=Y2n41)Gn+10n+1(2)Pn (V) (0 =Y2n11) M 1100 ()P (V) Feni1Pn 11 (0)Prs1 (V) F(0—2n 1) (0 —Yant1) k100 ()P (¥)
= e —y1) (W —y1) (@ —y3) (¥ —y3) - (¥ = Yant1) (¥ — Yany1),

(Y =Y2n+1) Gn-+10n+1 () Pn () + (0 —Y2n+1) Rt 18 ()Pt 1 (V) F 116041 (0) a1 (V) (0= Y2n+1) (W —Y2n11) knt 16 (0)Pn (V)
= (¢ = y-1)hog-1(@) (¢ = y1) (¥ —y1) (@ — y3) (¥ — y3) - - (¢ — Y2nt1) (¥ — Y2n+1),
Multiply the first equation by ¢, (¢), the second one by p,(¢), and subtract:

(@0 (P)Pr11(0) = Pr(0) @1 ()] [(V = Y2n11) Gnt1Pn(¥) + €ng1Pnia (¥)]

= ln(@)eo—pn() (p=y-1)hog1 (P)] (e —y1) (b —y1) (P—ys) (¥—y3) - - - (¥=Y2nt1) (U —Y2n11),
and using the Casorati relation (20])

(@ZJ - y?n-&-l)gn—&-lpn(w) + en-&-lpn-&-l(@b) = [Cln(SO)eo —+ pn(‘aO)hO]Xn-l-h (41&)
(Y —y) (@ —y3) - (¥ — Yont1)

(6 —=wo)(p —y2) -+ (9 —yan)
Similarly, with (r,s) = (p, p) and (p, q),

where X, 1 =

(0 = Y2nr1) i 1Pn(9) + ns1Pnr1(0) = [ga(1)e0 + Pu (1) go] Xi37, (41b)
(o —y)(@p—y3) (¥ — yans1)
(775 - Z/o)(@b - 3/2) te (¢ - y2n>

conj __
where X7 =

Xyt

is the conjugate of the algebraic function

7.1. Difference equation for the denominator p,.

Here, eo(z) = 0.

Take ([ETa) at ¢ (y):
(Y=v2n11)9n 11 (7 W) (W) Fenis (07 (©))Pni1 () = ho(¥ ™ (W))Pn (0™ (1)) Xnga (0 (),
and {HTH) at o~ 1(y):
(Y—=Y2n41) hnr1 (97 W))Pn (V) Fens1 (07 @) Pnr1 () = 9ol (W))pn (W (™ (W) Xt (07 (1),

S0,

ho (@ () pn (0(P™ () X1 (V™ (y) = (¥ — Y2nt1)gnr1 (V™ (1)) P (y)
en1(V1(y))

90( () (W (™ W) X3 (07 (1) = (¥ = Yons ) P (07 (1)) Pn(y)
ent1(p(y))

Pn+1 (y) =
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possible only if

ho( ™ @)pa (@ WD X1 (@) 9ol W)pa((e ™! () Xt (9~ (1))
ent1(V1(y)) ent1(p71(y))
91 @7 () harale' ()
ol i) [ )

At y = some y,:

hO (xmfl)pn (ymfl)XnJrl (xmfl) 90 (xm)pn(merl)X;i_nlJ (xm)

€n+1(xm—l) €n+1 (ZEm)

o gn+1($m,1) _ thrl(xm) _
- |:€n+1(xm—1) en+l(xm):| (ym y2n+1)pn(ym)

Remark that X, 1 (2,_1) and X77(,,) have the same numerator (Y, —y1) (Ym—3) -+ (Ym—
y2n+1)7 50,

go(ﬂfm) pn(merl) . ho(iUmq) pn(ymfl)

ent1(Tm) Wma1 = Y0) Wms1 —Y2) - Wms1 — Y2n)  €nt1(Tm-1) Um-1 = Y0) Wm-1 —¥2) - (Ym—1 — Y2n)

_ {hnﬂ(xm) _ gn+1(£€m1)] Pn(Ym)
Cnt1(Tm) en-&-l(xm—l) (Ym — yl)(ym —y3) - (ym - 1/271—1>7
Pn()
(@ —yo)(x —y2) -+ (& — y2n)
G elen) =
_ {hnﬂ(xm) _ gn+1(£€m1)} Pn(Ym)
Cnt1(Tm) en-&-l(xm—l) (Ym — yl)(ym —y3) - (ym - 1/271—1>7

satisfies

Therefore, R, (z) =

Rn (ym—l )

?
If Dt means

Hy) — e Hy)
then
S PW) =Pl W) P (W) — p(y)
(D rDp)) (y) = ) y— ') o) e 'y) —y
v y) — ¢ (y)

At y = some y,,:

\Pm) = pYm-1) mm)p(ymﬂ) — p(Ym)
(D' (rDp)) (ym) = fn L it = U

Tm—1 — Tm
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match if r@m) Y = Y1) =— 90(Tm)nt1 (Tm-1) . We already encountered a function
r(@m—1)(Ym+1 — Ym) en+1(Tm)ho(Tm-1)
satisfying a similar difference equation, from Pearson’s equation w(@m) =
(Tm = Tm—1)Y2(Ym)
_ 9o(Tm-1) W(Tm—1) g 7 (Tm)ent1(Tm) _ ()
ho(Tm—1) (Tm-1 = Tm—2)Yo(Ym-1) " Um+1 — Ym)9o(Tm)  Ya(ym)(Tm — Tim—1)
Pr(Ym)
Di(rD
(D) (Ym = Y0)Um — Y2) ++ (Ym — Y20)
_ 1 T(iC 71) (ym - yO)(ym - y2) co (ym - an) (ymfl - yO)(ymfl - yQ) T (qu — y2n)
Tm—1 — Tm " Ym — Ym—1
pn(merl) _ pn(ym)
() (Ym+1 = Y0) Yms1 = Y2) - Ymr1 = Y20)  (Um — Y0)Ym — ¥2) - (Ym — Y20)
Ym+1 — Ym
T(xm>€n+l(xm)

(ym+1 - ym)(xmfl - CUm)go (xm)

[ ho(Tm-1) { Pr(Ym) Pr(Ym—1) ]

€nt1(Tm-1) -
Pu(Ym+1) Pr(Ym) ] ]

(Ym = Y0)(Ym —2)  Um — Y20)  Um-1 = Y0) Wm—1 — Y2) == (YUm—1 — Y2n)
4 9o(Tm) —

ent1(Tm) [(ym+1 = Y0)Wm+1 = Y2) (Y1 — Y2n)  (Ym — Y0)(Ym — Y2) -+ (Ym — Y2n)

Therefore, R, (z) = Po() satisfies
(@ = yo) (= —y2) - (¥ — Yan)

(DI D) nlym) =~ — —Zf)?iinj (ECZLMOW

h0<xm—l> _ 90(513m) hn-&-l(xm) _ Gnt1 (xm—1> (ym - yO)(ym - y2> T (ym - an)
ent1(Tm—1)  ent1(Tm) ent1(Tm) ent1(Tm—1)] Ym = Y1) Ym —Y3) - (Um — Y2n—1)

Rn<ym)

8. Hypergeometric expansions.

From:

David R. Masson: The last of the hypergeometric continued fractions, Report-no: OP-SF
12 Sep 1994 http://arxiv.org/abs/math.CA/9409229

Dharma P. Gupta; David R. Masson: Contiguous relations, continued fractions and
orthogonality Trans. Amer. Math. Soc. 350 (1998), 769-808. This article is available free
of charge http://www.ams.org/tran/1998-350-02/50002-9947-98-01879-0/home . html

Building blocks:


http://arxiv.org/abs/math.CA/9409229
http://www.ams.org/tran/1998-350-02/S0002-9947-98-01879-0/home.html
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(=)@ —y1) (T — Yn1) _ (. —wo)(@ — 1) (T — Tp2)
T R P e P [Py B P I
Indeed, (¢(z)—yo)(p(x)—y1) - - (p(x) —yn—1) and (¥ () —yo) (¥ (z) —y1) - - - (V(2) = yn-1)
both vanish at © = g, 21, ..., Z,_2, and similarly for the {z} }s and the {y; }s.
The common denominator is

(p(z) — ) (W(x) —yp)e(x) — yo)(W(x) —y5) - = [F(2, ) Flx,ys) -+ Fx, )]/ X5 (x) =
Yao(y)) - - Yg(yn)(ac —ap)(x — 2))? - (v — 2, )2(:13 — ac’n)/XQ(x)Q, and the numerator is
(" = (Yo + - F Y )" )@ = (g + -+ yn)e" T ) (" — (yo ot
ynfl)so"‘w---)(w"—(y’1+~-+y;)w"‘1+-~)]/(w @)= Wo+ Yn1—Y — - —
y@)@"’lwnfhr- -+, a symmetric polynomial of degree 2n—2 Vanlshlng at T = x9,21,...,%Tno
and v =z, x5, ..., 2.

The constant C,, is found through particular values of x, either x_; or x,,_;:

o - (Y1 =) (Y1 — Yn1) (v —ap) (g — 1) -+ (2 — )
e =y = ) (Yo — ) Xa(woa) (o — @o) (g — @1) - (21 — @)
_ (Y = Y0) (Y = 11) " (Yn = Yn—2) (Tn1 = 20)(Tn 1 —21) -+ (T2 — 7))

(Yn = Y)Y —¥5) - (Y — yp,) Xo(Tp1)(Tn-1 — 20)(Tn-1 — 21) - (Tno1 — Tp2)

(Of course, Cp = 0).
Also,

(o@) —yo)(e(@) —yn) - (P(x) = yn—s) | () —90) (W) —31) - (@) = Y1)

(p(z) — yﬁ(s@(%) Ys) - (p(x) — 1) () —yh) () = yy) -~ (Y(x) — )

where D,, is a polynomial of degree 2.

Now let us consider the difference equation (23]) of the elliptic logarithm with f(z) =
i {70 M 78,
" (@-y)@—y) (2 —y)
interpolated at yo, y1,... (cf. Zhedanov [01]). Here, a(z) = (z — x})(x — 2y), ¢ =0, and d

is a constant time X, in ([22):

(‘7} — x{))(x — 'Z.?V) — 2 —
Xo(2) Df(zx) =Yy 0

, as we know that the poles are the y’s and that f in

_ —@o)(® —x1) (@ —wpa) o
(z =) Z”’“Ck (w—a)w—ah) - (w—ap) N

_ o
N () BTN,

Use z — 2y = -
Tp—1 — Ty, Tp—1 — Ty,

) [ c + 1 C k_%](x_%)(x_m'”(“wk1> ;o
2: Tk k Vie+1C k41 =z —
= % = ) —ap
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o — Thy
So, 7101m = Ty — 20,
me — ) (a — ) () — 2h) - (g, — 7))

Cr (w0 —aly) (w1 —ay) -+ (Tp1 — )’

Tk = N.

k=1,

7

Pnf — Gy vanishes at @ = yo,y1, - y2q. Let
pa() = 8i(x —yo)(x — 1) - (& = y;1)
0

We shall manage to represent p,(z)f(z) as a polynomial of degree n (which will be
( —yo)(® —y1) - (T — Yrin1)

(@ —y)(@ =) (=)
coefficients when k£ =1,2,...,n.

¢n) plus a sum of terms

, k=1,2,..., N, with vanishing

T — Yo
f(@) = f(yo)

— 1 — 2h) (29 — 2
a0y1+ﬂ0:yl y1:(1 0)(2 N)

At n =1, pi(x) = apx + [y which interpolates at = y; and y»

M (2y — x0) Xa(21)
Y2 — Yo Yz — 9/1
(8% + pry g
e T - W) L2y
Y1 -+ 72 ; , AR
Y2 — U (y2 — y1)(y2 — v3) Y2 — Y2
Y1 — U
1T ’)/Qy Y,
whence oy = —ﬁ
m Y1+ Y2 ;
Y2 — Yo
T —"Yo (fﬁ—yo)(ﬂ?—yl)
pi(z) f(7) = yo(awr + Fo) + 71wz + Bo) + Yoz + Bo)
T =y (. —y1)(x — )
oy + 5 oy, + 3
Use agz + By = T 00— yf) + HT D (0 gy
Y — Y Y — Yk
aoy1 + Bo aoyy + Bo (x —yo)(x —11) aoy2 + Bo (x —yo)(x — 1)
p1() f(x) = volaor + fo) + 1————(x — yo) +71—, ! S +72 - -
h—Un B N~ r—1uy Y2 — Yo r—1Y
¢1()
oYy + Bo (x — yo) (@ —y1) (@ — 1)
172 / / / T+
Yy — Ya (z —y1)(x — )
and we have to check that
oYy + Bo agy2 + Bo
M + 72 — =
h—Wn Y2 — Yo
leY + Q +
oo + oly1 Bo ¥ 0Y2 /ﬁo
N—un Y2 — Yo
— ) = ) o
_ =) —wh-w) + Y2 —

(Y2 — v5) +72(y2 — y1) (Y2 — v5) + v2(y2 — y1)

=0.
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pif(x) —qu(z Z{ aoyk+ﬂ0+ k aoyis1 + Bo| (& —yo)(@ —y1) - (@ — yn)

1
- R N A I AR C )

For a general n, we represent the unknown denominator as
v) =3 Gilx—yo)w—u) (@ —yi)(@—y) - (@ — 1))
Then, in each term of po()f(x) = S0 83/ ()& = wo)lw = )+ (& = y-2)(o =
Z - x_ya (@ = Y1) - (T — Yjik1)
7]

—y)(@—yy) - (x —yp)

1) =353 >€”§(;%”;':Fi;%‘+’f”

Y) - (x—yl), we expand f as f(x

I

Ys) Yr)
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