Marseille-Luminy July 2007

Rational interpolation to solutions of Riccati difference equations on elliptic lattices.

Alphonse Magnus, Institut de Mathématique Pure et Appliquée, Université Catholique de Louvain, Chemin du Cyclotron,2, B-1348 Louvain-la-Neuve (Belgium) (0)(10)473157, magnus@inma.ucl.ac.be, http://www.math.ucl.ac.be/membres/magnus/

> ... opresivo y lento y plural. J.L. Borges

This version: June 28, 2007 (incomplete and unfinished) The present file is http://www.math.ucl.ac.be/membres/magnus/num3/ellric07.pdf

Abstract. An elliptic lattice, or grid, $\{x_0, x_1, \ldots\}$ is built with the help of a biquadratic curve $F(x, y) = \sum_{i=0}^{2} \sum_{j=0}^{2} c_{i,j} x^i y^j$ by the following rules:

(1) let y_n and y_{n+1} be the two y-roots of $F(x_n, y) = 0$,

(2) then, x_{n+1} is found as the remaining x-root of $F(x, y_{n+1}) = 0$.

There is also a direct symmetric biquadratic relation $E(x_n, x_{n+1}) = 0$, see V. P. Spiridonov and A. S. Zhedanov: Elliptic grids, rational functions, and the Padé interpolation, *The Ramanujan Journal* **13**, Numbers 1-3, June 2007, p. 285–310.

Numerators and denominators of rational interpolants on such lattices satisfy interesting difference equations when the interpolated function f itself satisfies a Riccati difference equation on the same lattice:

$$a(x_n)\frac{f(y_{n+1}) - f(y_n)}{y_{n+1} - y_n} = b(x_n)f(y_n)f(y_{n+1}) + c(x_n)(f(y_n) + f(y_{n+1})) + d(x_n),$$

where a, b, c, and d are polynomials.

CONTENTS

1. Difference equations and lattices.	2
2. Elliptic grid, or lattice.	3
2.1. Definition of elliptic grid	4
2.2. Periodicity, theta functions	9
2.3. A special product 1	0
3. Elliptic Pearson's equation. 1	1
3.1. Theorem	1
3.2. "Elliptic logarithm" 1	2
4. Recurrences of biorthogonal rational functions 1	2
4.1. Padé and interpolatory continued fractions 1	2

4.2.	Biorthogonality and orthogonality	14
4.3.	Example: the exponential function (Iserles [18])	14
5.	Elliptic Riccati equations.	15
5.1.	Definition	15
5.2.	Rational interpolation	15
5.3.	Theorem	16
6.	Classical case.	20
7.	Linear difference relations and equations for the numerators and the denominato 20	rs of the interpola
7.1.	Difference equation for the denominator p_n	22
8.	Hypergeometric expansions.	24
9.	References	27
		27

1. Difference equations and lattices.

Simplest difference equations relate two values of the unknown function f: say, $f(\varphi(x))$ and $f(\psi(x))$.

Most instances [29] are $(\varphi(x), \psi(x)) = (x, x + h)$, or the more symmetric (x - h/2, x + h/2), or also (x, qx) in q-difference equations [14]. Recently, more complicated forms $(r(x) - \sqrt{s(x)}, r(x) + \sqrt{s(x)})$ have appeared [5,8,22,23,30,31], where r and s are rational functions.

This latter trend will be examined here: we need, for each x, two values $f(\varphi(x))$ and $f(\psi(x))$ for f.

A first-order difference equation is $\mathcal{F}(x, f(\varphi(x)), f(\psi(x))) = 0$, or $f(\varphi(x)) - f(\psi(x)) = \mathcal{G}(x, f(\varphi(x)), f(\psi(x)))$ if we want to emphasize the difference of f. There is of course some freedom in this latter writing. Only symmetric forms in φ and ψ will be considered here:

$$(\mathcal{D}f)(x) = \mathscr{F}(x, f(\varphi(x)), f(\psi(x))), \qquad (1)$$

where \mathcal{D} is the divided difference operator

$$(\mathcal{D}f)(x) = \frac{f(\psi(x) - f(\varphi(x)))}{\psi(x) - \varphi(x)},\tag{2}$$

and where \mathscr{F} is a symmetric function of its two last arguments.

For instance, a linear difference equation of first order may be written as

$$a(x)f(\varphi(x)) + b(x)f(\psi(x)) + c(x) = 0,$$

as well as

$$\alpha(x)(\mathcal{D}f)(x) = \beta(x)[f(\varphi(x)) + f(\psi(x))] + \gamma(x),$$

with $\alpha(x) = [b(x) - a(x)][\psi(x) - \varphi(x)]/2$, $\beta(x) = -[a(x) + b(x)]/2$, and $\gamma(x) = -c(x)$.

where X_0, X_1 , and X_2 are rational functions.

But difference equations must allow the recovery of f on a whole set of points! An initialvalue problem for a first order difference equation starts with a value for $f(y_0)$ at $x = x_0$, where y_0 is one root of (3a) at $x = x_0$. The difference equation at $x = x_0$ relates then $f(y_0)$ to $f(y_1)$, where y_1 is the second root of (3a) at x_0 . We need x_1 such that y_1 is one of the two roots of (3a) at x_1 , so for one of the roots of $F(x, y_1) = 0$ which is not x_0 . Here again, the simplest case is when F is of degree 2 in x:

$$F(x,y) = Y_0(y) + Y_1(y)x + Y_2(y)x^2 = 0.$$
 (3b)

Both forms (3a) and (3b) hold simultaneously when F is **biquadratic**:

$$F(x,y) = \sum_{i=0}^{2} \sum_{j=0}^{2} c_{i,j} x^{i} y^{j}.$$
(4)

2. Elliptic grid, or lattice.

2.1. Definition of elliptic grid.

Various forms of the curve F(x, y) = 0 are degenerate parabolas (two parallel lines) or hyperbolas (two lines), or generic conics, or a full biquadratic curve

$$y = \frac{-X_1(x) \pm \sqrt{X_1^2(x) - 4X_0(x)X_2(x)}}{2X_2(x)}.$$

To one $x = x_n$ correspond the two ordinates y_n and y_{n+1} . One has $y_n + y_{n+1} = -\frac{X_1(x_n)}{X_2(x_n)}$, and $y_n y_{n+1} = \frac{X_0(x_n)}{X_2(x_n)}$. $(x_2, y_3) \ (x_3, y_3)$

 (x_2, y_2)

Also, to one ordinate $y = y_n$ correspond the two abscissae x_n and x_{n-1} , and we now have

 (x_0, y_0)

$$x_n + x_{n-1} = -\frac{Y_1(y_n)}{Y_2(y_n)}, \qquad x_n x_{n-1} = \frac{Y_0(y_n)}{Y_2(y_n)}.$$
(5)

 (x_1, y_2)

A relation involving only x_n and x_{n-1} is obtained by the elimination of y_n through the resultant of the two polynomials in $y_n P_1(y_n) = (x_n + x_{n-1})Y_2(y_n) + Y_1(y_n)$ and $P_2(y_n) = x_n x_{n-1}Y_2(y_n) - Y_0(y_n)$.

The form of this resultant is most easily found through interpolation at the two zeros u and v of Y_2 : let $Y_2(t) = \alpha(t-u)(t-v), Y_0(t) = \beta(t-u)(t-v) + \beta'(t-u) + \beta'', Y_1(t) = \gamma(t-u)(t-v) + \gamma'(t-u) + \gamma'', Y_1(t) = \gamma(t-u)(t-v) + \gamma'(t-u) + \gamma'', Y_1(t) = \gamma(t-u)(t-v) + \gamma'(t-u) + \gamma'', Y_1(t) = \gamma(t-u)(t-v) + \beta'', Y_1(t) = \gamma(t-u)(t-v)$

which is clearly a polynomial of degree 2 in $x_n + x_{n-1}$ and $x_n x_{n-1}$, so a symmetric biquadratic relation:

2.1.1. Definition. An elliptic lattice, or grid, is a sequence satisfying. $E(x_n, x_{n-1}) = d_{0,0} + d_{0,1}(x_n + x_{n-1}) + d_{0,2}(x_n^2 + x_{n-1}^2) + d_{1,1}x_nx_{n-1} + d_{1,2}x_nx_{n-1}(x_n + x_{n-1}) + d_{2,2}x_n^2x_{n-1}^2 = 0.$ (6)

We also get a linear recurrence relation between three x's by adding (??) for s and
$$s+1$$
:

$$x(s+1) + 2x(s) + x(s-1) = \frac{\alpha(y(s+1) + y(s)) - 2\delta}{\gamma} = \frac{\alpha^2 x(s) + \alpha\beta - 2\delta}{\gamma}, \text{ so}$$

$$x(s+1) + \frac{2\gamma - \alpha^2}{\gamma} x(s) + x(s-1) = \frac{\alpha\beta - 2\delta}{\gamma}$$
(7)

The learned answer is that a biquadratic curve (4) or (6) is normally of genus one, and receives therefore a parametric representation involving elliptic functions [42]. It is also known that formulas like

x(s) = x(s+1) (6) appear in Euler's pionneering work on what is now called addition formulas for elliptic functions, that's why the authors of [42] use the letter E in (6). Here is an explanation based on special Padé approximations, periodic continued frac-

tions, and orthogonal polynomials on several intervals:

Let S be a polynomial of degree 2 $S(z) = \gamma + \delta(z - z_0) + \xi(z - z_0)^2$, and we consider the root of

$$\zeta_0(z-z_0)(z-x_0)f^2(z) - 2S(z)f(z) + \zeta_1(z-z_0)(z-x_1) = 0$$
(8)

which is regular at z_0 . It is also

$$f(z) = \frac{S(z) - \sqrt{P(z)}}{\zeta_0(z - z_0)(z - x_0)},$$

where the choice of the square root of $P(z) = S^2(z) - \zeta_0 \zeta_1 (z - z_0)^2 (z - x_0)(z - x_1) = c(z - z_1)(z - z_2)(z - z_3)(z - z_4)$ in a neighbourhood of z_0 is such that the value of this square root is $S(z_0) = \gamma$. Actually, this regular root even vanishes at z_0 , and can be represented by the continued fraction

$$f(z) = \frac{z - z_0}{\alpha_0 z + \beta_0 - \frac{(z - z_0)^2}{\alpha_1 z + \beta_1 - \frac{(z - z_0)^2}{\alpha_2 z + \beta_2 - \cdots}},$$
(9)

or
$$f_n(z) = \frac{z - z_0}{\alpha_n z + \beta_n - (z - z_0) f_{n+1}(z)}, \quad n = 0, 1, \dots$$
 (10)

with $f_0 = f$. Remark that $\alpha_n z + \beta_n$ is the Taylor approximation of degree 1 to $(z-z_0)/f_n(z)$. We can therefore recover α_n and β_n from the behaviour of f_n near z_0 .

The form of f is kept in all the f_n 's (basically from Perron [35, § 60, eq. (5)-(14)]):

$$\zeta_n(z-z_0)(z-x_n)f_n^2(z) - 2S_n(z)f_n(x) + \zeta_{n+1}(z-z_0)(z-x_{n+1}) = 0,$$
(11)

and we have the

2.1.3. Proposition. The continued fraction expansion (9) of the quadratic function f defined by (8) involves a sequence of quadratic functions defined by (11). The related sequence $\{x_n\}$ is an elliptic sequence.

We first show that the quadratic equation (11) holds for all n. Indeed, if f_n is the root of (11) such that $f_n(z) = \frac{S_n(z) - \sqrt{P(z)}}{\zeta_n(z - z_0)(z - x_n)}$, with $S_n(z)^2 - \zeta_n \zeta_{n+1}(z - z_0)^2(z - x_n)(z - x_{n+1}) =$

P(z), we have

$$f_n(z) = \frac{S_n^2(z) - P(z) = \zeta_n \zeta_{n+1} (z - z_0)^2 (z - x_n) (z - x_{n+1})}{\zeta_n (z - z_0) (z - x_n) [S_n(z) + \sqrt{P(z)}]} = \frac{(z - z_0)}{\frac{S_n(z) + \sqrt{P(z)}}{\zeta_{n+1} (z - x_{n+1})}}$$
$$= \frac{z - z_0}{\alpha_n z + \beta_n - \frac{\zeta_{n+1} (\alpha_n z + \beta_n) (z - x_{n+1}) - S_n(z) - \sqrt{P(z)}}{\zeta_{n+1} (z - x_{n+1})}}$$

showing that $f_{n+1}(z) = \frac{S_{n+1}(z) - \sqrt{P(z)}}{\zeta_{n+1}(z-z_0)(z-x_{n+1})}$, as expected, where $S_{n+1}(z) = \zeta_{n+1}(\alpha_n z + \beta_n)(z-x_{n+1}) - S_n(z)$, $\alpha_n z + \beta_n$ being the Taylor approximant of degree 1 to $[S_n(z) + \sqrt{P(z)}]/[\zeta_{n+1}(z-x_{n+1})]$ about $z = z_0$. This way to build S_{n+1} ensures that the fourth-degree polynomial $S_{n+1}^2 - P$ has factors $(z-z_0)^2$ and $\zeta_{n+1}(z-x_{n+1})$. Let us call the remaining factor $\zeta_{n+2}(z-x_{n+2})$, and this completes the definition of f_{n+1} .

And here is how the present x_n and x_{n+1} actually satisfy the elliptic lattice equation (6): We expand $S_n^2(z) - P(z) = \zeta_n \zeta_{n+1} (z-z_0)^2 (z-x_n)(z-x_{n+1})$ with $S_n(z) = \gamma + \delta(z-z_0) + \xi_n(z-z_0)^2$ and $P(z) = \gamma^2 + 2\gamma \delta(z-z_0) + P''(z_0)(z-z_0)^2/2 + P'''(z_0)(z-z_0)^3/6 + P''''(z_0)(z-z_0)^4/24$ (so that the expansion of the square root of P starts indeed with $\gamma + \delta(z-z_0)$).

$$2\gamma\xi_n + \delta^2 - P''(z_0)/2 = \zeta_n\zeta_{n+1}(z_0 - x_n)(z_0 - x_{n+1}),$$
(12a)

$$2\delta\xi_n - P'''(z_0)/6 = \zeta_n\zeta_{n+1}(2z_0 - x_n - x_{n+1}),$$
(12b)

$$\xi_n^2 - P''''(z_0)/24 = \zeta_n \zeta_{n+1}.$$
 (12c)

The last equation yields $\zeta_n \zeta_{n+1}$ as a polynomial of degree 2 in ξ_n , therefore the two first equations give the sum and the product of x_n and x_{n+1} as rational functions of degree 2 of an intermediate parameter, and this is the structure of (3a)-(3b)-(4): $z_0 - x_n$ and $z_0 - x_{n+1}$ are the two roots of

$$(z_0 - x)^2 - \frac{2\delta\xi_n - P'''(z_0)/6}{\xi_n^2 - P''''(z_0)/24}(z_0 - x) + \frac{2\gamma\xi_n + \delta^2 - P''(z_0)/2}{\xi_n^2 - P''''(z_0)/24} = 0,$$

 \mathbf{SO}

$$F(x,y) = [y^2 - P'''(z_0)/24](z_0 - x)^2 - [2\delta y - P'''(z_0)/6](z_0 - x) + 2\gamma y + \delta^2 - P''(z_0)/2 = 0.$$

So, the continued fraction expansion (9)-(11) of a quadratic algebraic function leads to an elliptic lattice.

Conversely, can we find P, z_0 , etc. from a given elliptic lattice (6)? From a solution $x_n = x_{n+1} = z_0$ of (12a)-(12c) (when $\xi_n = \infty$), z_0 is one of the four roots of

$$E(z_0, z_0) = d_{0,0} + 2d_{0,1}z_0 + (2d_{0,2} + d_{1,1})z_0^2 + 2d_{1,2}z_0^3 + d_{2,2}z_0^4 = 0.$$

Moreover, (6) yields $y = x_{n\pm 1}$ as a quadratic function of $x = x_n$ as $y = \frac{-d_{1,2}x^2 - d_{1,1}x - d_{0,1} \pm \sqrt{(d_{1,2}x^2 + d_{1,1}x + d_{0,1})^2 - 4(d_{2,2}x^2 + d_{1,2}x + d_{0,2})(d_{0,2}x^2 + d_{0,1}x + d_{0,0})}{2(d_{2,2}x^2 + d_{1,2}x + d_{0,2})}$

Let us look now at the $(S_n, P, \zeta_n(z-x_n))$ construction as a way to find x_{n+1} from x_n : if x_n is known, $S_n^2 - P$ must vanish at $x = x_n \Rightarrow S_n(x_n) = \gamma + \delta(x_n - z_0) + \xi_n(x_n - z_0)^2 = \pm \sqrt{P(x_n)}$, giving two possible values for ξ_n . Then, as already seen, we factor $S_n^2 - P$ as a constant

times $(z-z_0)^2(z-x_n)$ times a last factor which must be a constant times $z-x_{n+1}$, yielding for x_{n+1} an expression containing $\sqrt{P(x_n)}$, so that we obtain P from

$$(d_{1,2}x^2 + d_{1,1}x + d_{0,1})^2 - 4(d_{2,2}x^2 + d_{1,2}x + d_{0,2})(d_{0,2}x^2 + d_{0,1}x + d_{0,0}) = \text{ const. } P(x).$$

This allows to interpret any elliptic lattice in terms of the continued fraction expansion of a quadratic algebraic function.

2.1.4. The elliptic functions, at last. Let

$$\frac{A_n(z)}{B_n(z)} = \frac{z - z_0}{\alpha_0 z + \beta_0 - \frac{(z - z_0)^2}{\alpha_1 z + \beta_1 - \frac{(z - z_0)^2}{\alpha_2 z + \beta_2 - \frac{\ddots}{\alpha_{n-1} z + \beta_{n-1}}}},$$
(13)

with $A_0 = 0$, $A_1(z) = z - z_0$, $A_{k+1}(z) = (\alpha_k z + \beta_k) A_k(z) - (z - z_0)^2 A_{k-1}(z)$, $B_0 = 1$, $B_1(z) = \alpha_0 z + \beta_0$, $B_{k+1}(z) = (\alpha_k z + \beta_k) B_k(z) - (z - z_0)^2 B_{k-1}(z)$, or also $B_{-1} = 0$, $A_{-1}(z) = -1/(z - z_0)$.

Ratios
$$g_{k+1} = \frac{\lambda B_{k+1} - A_{k+1}}{\lambda B_k - A_k}$$
 satisfy $g_{k+1} = \alpha_k z + \beta_k - (z - z_0)^2 / g_k$, or $\frac{g_k}{z - z_0} = z - z_0$

 $\frac{\tilde{\alpha}_{k}z + \beta_{k} - g_{k+1}}{\alpha_{k}z + \beta_{k} - g_{k+1}}$, i.e., the recurrence (10) of the f_{k} 's, which correspond to $\lambda = f$ (as $g_{0} = -\lambda/A_{-1} = (z - z_{0})\lambda$, so $g_{0}(z)/(z - z_{0}) = f_{0}(z) = f(z)$ if $\lambda = f$). The quadratic function $B_{n}f - A_{n} = (z - z_{0})^{n}f_{0}f_{1}\cdots f_{n}$ has an extremely peculiar set

The quadratic function $B_n f - A_n = (z - z_0)^n f_0 f_1 \cdots f_n$ has an extremely peculiar set of zeros and poles: let f^{conj} be the conjugate function to f, i.e., the quadratic function $\frac{S + \sqrt{P}}{\zeta_0(z - z_0)(z - x_0)}$ where the sign of the square root of P has been changed, an elementary way to deal with two-sheeted Biemann surfaces. Then, the set of zeros and poles of $B_n f - A_n$

way to deal with two-sheeted Riemann surfaces. Then, the set of zeros and poles of $B_n f - A_n$ is a part of the set for $(B_n f - A_n)(B_n f^{\text{conj}} - A_n)$

$$(B_n f - A_n)(B_n f^{\text{conj}} - A_n) = (z - z_0)^{2n} f_0 \cdots f_n f_0^{\text{conj}} \cdots f_n^{\text{conj}}$$
$$= (z - z_0)^{-2} \frac{S_0 - \sqrt{P}}{\zeta_0(z - x_0)} \cdots \frac{S_n - \sqrt{P}}{\zeta_n(z - x_n)} \frac{S_0 + \sqrt{P}}{\zeta_0(z - x_0)} \cdots \frac{S_0 + \sqrt{P}}{\zeta_n(z - x_n)}$$
$$= \frac{(z - z_0)^{2n}(z - x_{n+1})}{\zeta_0 \zeta_n(z - x_0)},$$

a very limited set! Actually, most zeros and poles are concentrated at z_0 and ∞ : $B_n f - A_n$ has a zero of order 2n + 1 at z_0 (Padé property), $B_n f^{\text{conj}} - A_n$ a simple pole; both functions have a pole of order n at ∞ .

2.1.5. What is (are) the period(s)?

It happens that, knowing n, P, and x_0 , (14) allows to find the remaining unknowns, includ-

ing the \pm signs (*Jacobi problem*, [1,3,26,32,33,?]).

There is absolutely no need for n to be an integer in the description (14) of the Jacobi problem. To see how this x_n is a function of n, we ... take the derivative of (14) with respect to n (!!):

$$h = \pm \frac{1}{\sqrt{P(x_n)}} \frac{dx_n}{dn},$$

where $h = -2 \int_{z_0}^{z_1} \frac{dt}{\sqrt{P(t)}}$. We have a differential equation for x_n . An initial condition consists of x_0 and a sign (= a place on the **Riemann surface** of \sqrt{P}).

Generalization.

Hyperelliptic case, generalization of Padé approximation and continued fraction (recurrence relations) constructions: see [?, 4, 33, 44]. We then have a vector of length g (genus) $[x_n^{(1)},\ldots,x_n^{(g)}]$ of unknowns which is a well defined function (*Jacobi-Abel function*) of the left-hand side $[nh_0, \ldots, nh_{q-1}]$.

2.2. Periodicity, theta functions.

 x_n is kept unchanged if $nh + h_0$ in (14) is augmented by integers times the integrals $2\omega_j = 2\int_{z_j}^{z_{j+1}} \frac{t^k}{\sqrt{P(t)}} dt \ (periods).$

So, x_n is some periodic function (*elliptic function*) of $nh + h_0$. There are two zeros and two poles in a fundamental parallelogram of periods $(2\omega_1, 2\omega_2)$, they are given by $nh + h_0 = \pm \int_{z_1}^0 \frac{dt}{\sqrt{P(t)}}$ and $\pm \int_{z_1}^\infty \frac{dt}{\sqrt{P(t)}}$, say, $\pm \zeta_0$ and $\pm \zeta_\infty$. We expect x_n to involve standard functions of $nh + h_0 \pm \zeta_0$ and $nh + h_0 \pm \zeta_\infty$.

With the p-theta function

$$\theta(u;p) = \prod_{j=0}^{\infty} (1-p^j u)(1-p^{j+1}/u),$$

which vanishes at $\log u =$ all the integer multiples of $\log p$ plus all the integer multiples of $2\pi i$, we consider [37, § 2]

$$x_n = C \frac{\theta\left(\exp\left(i\pi\frac{nh+h_0-\zeta_0}{\omega_1}\right)\right)\theta\left(\exp\left(i\pi\frac{nh+h_0+\zeta_0}{\omega_1}\right)\right)}{\theta\left(\exp\left(i\pi\frac{nh+h_0-\zeta_\infty}{\omega_1}\right)\right)\theta\left(\exp\left(i\pi\frac{nh+h_0+\zeta_\infty}{\omega_1}\right)\right)}$$

see also [42, § 4], there is a simple relation between the p-theta function and the Jacobi theta functions.

Let
$$q = \exp(i\pi h/\omega_1)$$
, $q_0 = \exp(i\pi h_0/\omega_1)$, $\eta_0 = \exp(i\pi \zeta_0/\omega_1)$, $\eta_\infty = \exp(i\pi \zeta_\infty/\omega_1)$, so
$$x_n = C \frac{\theta(q^n q_0 \eta_0)\theta(q^n q_0/\eta_0)}{\theta(q^n q_0 \eta_\infty)\theta(q^n q_0/\eta_\infty)}$$

 $x_n - x_m$, where n and m need not be integers, is another (much more interesting) elliptic function of n with the same poles, but with zeros such that n = m is one of them. This leads to replace η_0 by $1/(q_0q^m)$:

$$x_n - x_m = C \frac{\theta(q^{n-m})\theta(q^{n+m}q_0^2)}{\theta(q^n q_0 \eta_\infty)\theta(q^n q_0 / \eta_\infty)}$$
(15)

For the y's, one has

$$y_n - y_m = C' \frac{\theta(q^{n-m})\theta(q^{n+m}q_0^{\prime 2})}{\theta(q^n q_0' \eta_{\infty}')\theta(q^n q_0' / \eta_{\infty}')}$$
(16)

with the same θ function and the same q

2.3. A special product.

We will have to considerate the special algebraic function

$$\mathcal{X}_{n}(x) = \frac{(\psi(x) - y_{1})(\psi(x) - y_{3})\cdots(\psi(x) - y_{2n-1})}{(\varphi(x) - y_{0})(\varphi(x) - y_{2})\cdots(\varphi(x) - y_{2n-2})}$$
(17)

and its conjugate

$$\mathcal{X}_{n}^{\text{conj.}}(x) = \frac{(\varphi(x) - y_{1})(\varphi(x) - y_{3})\cdots(\varphi(x) - y_{2n-1})}{(\psi(x) - y_{0})(\psi(x) - y_{2})\cdots(\psi(x) - y_{2n-2})}$$

the product is $\frac{F(x, y_{1})F(x, y_{3})\cdots F(x, y_{2n-1})}{F(x, y_{0})F(x, y_{2})\cdots F(x, y_{2n-2})} = \frac{Y_{2}(y_{1})Y_{2}(y_{3})\cdots Y_{2}(y_{2n-1})}{Y_{2}(y_{0})Y_{2}(y_{2})\cdots Y_{2}(y_{2n-2})} \frac{x - x_{2n-1}}{x - x_{-1}}.$

The value of (17) is well defined when x is some x_m :

$$\mathcal{X}_n(x_m) = \frac{(y_{m+1} - y_1)(y_{m+1} - y_3)\cdots(y_{m+1} - y_{2n-1})}{(y_m - y_0)(y_m - y_2)\cdots(y_m - y_{2n-2})}$$

Now, following (15), $y_r - y_s$ is a ratio of products with numerator $\theta(q^{r-s})\theta(q^{r+s}q_0^{\prime 2})$, so

$$\mathcal{X}_{n}(x_{m}) = \frac{\theta(q^{m})\theta(q^{m+2}q_{0}'^{2})\theta(q^{m-2})\theta(q^{m+4}q_{0}'^{2})\cdots\theta(q^{m-2n+2})\theta(q^{m+2n}q_{0}'^{2})}{\theta(q^{m})\theta(q^{m}q_{0}'^{2})\theta(q^{m-2})\theta(q^{m+2}q_{0}'^{2})\cdots\theta(q^{m-2n+2})\theta(q^{m+2n-2}q_{0}'^{2})}$$

and what remains is

$$\mathcal{X}_{n}(x_{m}) = \frac{\theta(q^{m+2n}q_{0}^{\prime 2})}{\theta(q^{m}q_{0}^{\prime 2})}$$
(18)

and

$$\mathcal{X}_n^{\text{conj}}(x_m) = \frac{\theta(q^{m-2n+1})}{\theta(q^{m+1})} = \frac{\theta(pq^{2n-1-m})}{\theta(pq^{-m-1})}$$
(19)

from the identities $\theta(pu) = \theta(1/u) = -\theta(u)/u$.

3. Elliptic Pearson's equation.

A famous theorem by Pearson relates the classical orthogonal polynomials to the differential equation w' = rw satisfied by the weight function, where r is a rational function of degree ≤ 2 .

3.1. **Theorem.** Let $\{(x(s_0 + k), y(s_0 + k))\}$ be an elliptic lattice built on the biquadratic curve (3a)-(3b)-(4), with $s_0 \notin \mathbb{Z}$. If there are polynomials a and c, with $a(x(s_0)) - (y(s_0 + c_0)) + (y(s_0 + c_0))$ $1) - y(s_0)c(x(s_0)) = a(x(s_0 + N)) - (y(s_0 + N + 1) - y(s_0 + N))c(x(s_0 + N)) = 0, \text{ such}$ that211 an

$$a(x'_{k})\frac{\frac{w_{k+1}}{Y_{2}(y'_{k+1})(x'_{k+1}-x'_{k})}-\frac{w_{k}}{Y_{2}(y'_{k})(x'_{k}-x'_{k-1})}}{y'_{k+1}-y'_{k}} = c(x'_{k})\left[\frac{w_{k+1}}{Y_{2}(y'_{k+1})(x'_{k+1}-x'_{k})}+\frac{w_{k}}{Y_{2}(y'_{k})(x'_{k}-x'_{k-1})}\right],$$
(20)

k = 0, 1, ..., N, where (x'_k, y'_k) is a shorthand for $(x(s_0 + k), y(s_0 + k))$, and $w_0 = w_{N+1} = 0$, then,

$$f(x) = \sum_{k=1}^{N} \frac{w_k}{x - y'_k}$$
(21)

satisfies

$$a(x)\mathcal{D}f(x) = a(x)\frac{f(\psi(x)) - f(\varphi(x))}{\psi(x) - \varphi(x)} = c(x)[f(\varphi(x)) + f(\psi(x))] + d(x), \qquad (22)$$

where d is a polynomial too.

Indeed,

$$\frac{f(\psi(x)) - f(\varphi(x))}{\psi(x) - \varphi(x)} = -\sum_{1}^{N} \frac{w_k}{(\varphi(x) - y'_k)(\psi(x) - y'_k)} = -\sum_{1}^{N} \frac{w_k X_2(x)}{F(x, y'_k)}$$
$$= -\sum_{1}^{N} \frac{w_k X_2(x)}{Y_2(y'_k)(x - x'_{k-1})(x - x'_k)} = X_2(x) \sum_{0}^{N} \frac{\frac{w_{k+1}}{Y_2(y'_{k+1})(x'_{k+1} - x'_k)} - \frac{w_k}{Y_2(y'_k)(x'_k - x'_{k-1})}}{x - x'_k}$$
with $w_0 = w_{N+1} = 0$.

with $w_0 = w_{N+1}$ υ,

$$\begin{split} f(\psi(x)) + f(\varphi(x)) &= -\sum_{1}^{N} \frac{w_{k}[X_{1}(x) + 2y'_{k}X_{2}(x)]}{X_{2}(x)(\varphi(x) - y'_{k})(\psi(x) - y'_{k})} = -\sum_{1}^{N} \frac{w_{k}[X_{1}(x) + 2y'_{k}X_{2}(x)]}{F(x,y'_{k})} \\ &= -\sum_{1}^{N} \frac{w_{k}[X_{1}(x) + 2y'_{k}X_{2}(x)]}{Y_{2}(y'_{k})(x - x'_{k-1})(x - x'_{k})} = \sum_{0}^{N} \frac{\frac{w_{k+1}[X_{1}(x) + 2y'_{k+1}X_{2}(x)]}{Y_{2}(y'_{k+1})(x'_{k+1} - x'_{k})} - \frac{w_{k}[X_{1}(x) + 2y'_{k}X_{2}(x)]}{Y_{2}(y'_{k})(x'_{k} - x'_{k-1})}, \end{split}$$

therefore the rational functions $a\mathcal{D}f$ and $c(f(\varphi) + f(\psi))$ differ by a polynomial if all the residues are equal:

$$a(x'_{k})X_{2}(x'_{k})\left[\frac{w_{k+1}}{Y_{2}(y'_{k+1})(x'_{k+1}-x'_{k})}-\frac{w_{k}}{Y_{2}(y'_{k})(x'_{k}-x'_{k-1})}\right]$$

= $c(x'_{k})\left[\frac{w_{k+1}[X_{1}(x'_{k})+2y'_{k+1}X_{2}(x'_{k})]}{Y_{2}(y'_{k+1})(x'_{k+1}-x'_{k})}-\frac{w_{k}[X_{1}(x'_{k})+2y'_{k}X_{2}(x'_{k})]}{Y_{2}(y'_{k})(x'_{k}-x'_{k-1})}\right]$
or $k = 0, 1$. Note as $Y_{1}(x'_{k}) = c(x'_{k}-x'_{k}) + c(x'_{k}-x'_{k}) + c(x'_{k}-x'_{k})$

for k = 0, 1, ..., N. Or, as $X_1(x'_k) = -(y'_k + y'_{k+1})X_2(x'_k)$,

$$\begin{aligned} a(x'_k) \left[\frac{w_{k+1}}{Y_2(y'_{k+1})(x'_{k+1} - x'_k)} - \frac{w_k}{Y_2(y'_k)(x'_k - x'_{k-1})} \right] \\ &= c(x'_k)(y'_{k+1} - y'_k) \left[\frac{w_{k+1}}{Y_2(y'_{k+1})(x'_{k+1} - x'_k)} + \frac{w_k}{Y_2(y'_k)(x'_k - x'_{k-1})} \right] \end{aligned}$$

3.2. "Elliptic logarithm".

We extend $f(x) = \log \frac{x-a}{x-b}$ which satisfies $f'(x) = \frac{a-b}{(x-a)(x-b)}$ by looking for a function whose divided difference is a rational function of low degree.

Answer: $w_k = (x'_k - x'_{k-1})Y_2(y'_k)$,

$$\mathcal{D}f(x) = \frac{(x'_N - x'_0)X_2(x)}{(x - x'_0)(x - x'_N)}.$$
(23)

4. Recurrences of biorthogonal rational functions.

From excerpts of Spiridonov & Zhedanov [40], also

A. Zhedanov, Biorthogonal rational functions and generalized eigenvalue problem, J. Approx. Theory **101** (1999), no. 2, 303–329, and [51].

Also Brezinski, Iserles, Ismail, Masson, Norsett.

4.1. Padé and interpolatory continued fractions.

4.1.1. Padé.
$$\frac{\alpha_0}{x - \beta_0 + \frac{\alpha_1}{x - \beta_1 + \frac{\ddots}{x - \beta_{n-1}}}}$$
matches a given Laurent expansion $c_0/x + \frac{\alpha_0}{x - \beta_1 + \frac{\cdots}{x - \beta_{n-1}}}$

 $c_1/x^2 + \cdots$ at ∞ up to the c_{2n+1}/x^{2n+2} term. Numerators and denominators satisfy the recurrence relation $P_{n+1}(x) = (x - \beta_n)P_n(x) + \alpha_n P_{n-1}(x)$, suggesting some kind of (formal?) orthogonality. This is even more obvious in the matrix-vector setting

If one wants to approximate a Taylor expansion about the origin, just take z = 1/x and rewrite the continued fraction as $\alpha_0 z$

which matches a given Taylor-Maclaurin expan-

$$\frac{1 - z\beta_0 + \frac{\alpha_1 z^2}{1 - \beta_1 z + \frac{\alpha_{n-1} z^2}{1 - \beta_{n-1} z}}}{+ \frac{\alpha_{n-1} z^2}{1 - \beta_{n-1} z}}$$

sion up to the z^{2n} term.

4.1.2. Interpolation. Rational interpolations to a given set of values at $x = y_0, y_1, \ldots$ (yes, the relevant set will be a *y*-lattice) are achieved by

$$\frac{q_n(x)}{p_n(x)} = \alpha'_0 + \frac{x - y_0}{\alpha_0 x + \beta_0 - \frac{(x - y_1)(x - y_2)}{\vdots}}$$

$$\frac{\vdots}{\alpha_{n-2}x + \beta_{n-2} + \frac{(x - y_{2n-3})(x - y_{2n-2})}{\alpha_{n-1}x + \beta_{n-1}}}$$

which agree with a given set up to $x = y_{2n}$.

The recurrence relations for p_n and q_n are

$$p_{n+1}(x) = (\alpha_n x + \beta_n) p_n(x) - (x - y_{2n-1})(x - y_{2n}) p_{n-1}(x),$$

$$q_{n+1}(x) = (\alpha_n x + \beta_n) q_n(x) - (x - y_{2n-1})(x - y_{2n}) q_{n-1}(x),$$
(24)

with $q_0 = \alpha'_0$, $p_0 = 1$, $q_1(x) = \alpha'_0(\alpha_0 x + \beta_0) + x - y_0$, $p_1(x) = \alpha_0 x + \beta_0$. We could as well start with $q_{-1}(x) = -1/(x - y_{-1})$ and $p_{-1} = 0$.

We also have the Casorati relation

$$p_n(x)q_{n-1}(x) - p_{n-1}(x)q_n(x) = -(x - y_0)(x - y_1)\cdots(x - y_{2n-3})(x - y_{2n-2}).$$
 (25)

Consider now rational functions $R_n(x) = \frac{p_n(x)}{(x - y_2)(x - y_4)\cdots(x - y_{2n})}$: $(x - y_{2n+2})R_{n+1}(x) = (\alpha_n x + \beta_n)R_n(x) - (x - y_{2n-1})R_{n-1}(x),$

so that the matrix-vector setting is now

So, $\{R_0, R_1, \ldots\}$ is a right eigenvector which is in some way biorthogonal to the set of left eigenvectors $\{T_0, T_1, \ldots\}$ satisfying the recurrence

$$(x - y_{2n+1})T_{n+1}(x) = (\alpha_n x + \beta_n)T_n(x) - (x - y_{2n})T_{n-1}(x),$$

which is of the same structure that the recurrence of the R_n 's, but with the odd x's interchanged with the even x's. Actually, $T_n(x)$ is a constant times the same $p_n(x)$ as before, divided by $(x - y_1)(x - y_3) \dots (x - y_{2n-1})$.

That p_n is invariant under matrix transposition is clear: $p_n(x)$ is the determinant

$$\begin{vmatrix} \alpha_0 x + \beta_0 & -(x - y_2) \\ (x - y_1) & \alpha_1 x + \beta_1 & -(x - y_4) \\ & \ddots & \ddots & \ddots \\ & & & (x - y_{2n-3}) & \alpha_{n-1} x + \beta_{n-1} \end{vmatrix}$$

4.2. Biorthogonality and orthogonality.

But what is the bilinear form exhibiting the biorthogonality condition? Let q_n/p_n interpolate a formal Stieltjes transform-like function

$$f(x) = \int_{S} \frac{d\mu(t)}{x - t}$$

then q_n interpolates $p_n f$ at the 2n + 1 points y_0, y_1, \ldots, y_{2n} . Also, for k < n, $\tilde{q}(x) = q_n(x)p_k(x)(x - y_{2k+3})\cdots(x - y_{2n-1})$, still of degree < 2n, interpolates $p_n(x)p_k(x)(x - y_{2k+3})\cdots(x - y_{2n-1})f(x)$, still has a vanishing divided difference at these 2n + 1 points:

$$[y_0, \dots, y_{2n}] \text{ of } p_n(x)p_k(x))(x - y_{2k+3}) \cdots (x - y_{2n-1})f(x) = \int_S \frac{p_n(t)p_k(t))(t - y_{2k+3}) \cdots (t - y_{2n-1}) d\mu(t)}{(t - y_0) \cdots (t - y_{2n})} = 0,$$

as the divided difference of a rational function A(x)/(x-t) is $A(t)/\{(t-y_0)\cdots(t-y_{2n})\}$ (Milne-Thomson [29, ...]).

So, R_n is orthogonal to T_k with respect to the formal scalar product

$$\langle g_1, g_2 \rangle = \int_S g_1(t)g_2(t) \ d\mu(t).$$

Even simpler: if $f(x) = \sum_{0}^{N-1} \frac{\rho_k}{x - x'_k}$,

$$\langle g_1, g_2 \rangle = \sum_{0}^{N-1} \rho_k g_1(x'_k) g_2(x'_k).$$

4.3. Example: the exponential function (Iserles [18]).

Rational interpolations to e^{ax} at $x = 0, h, 2h, \ldots$

The hypergeometric expansions are

$$p_n(x) = C_n \sum_{k=0}^n \frac{(-1)^k (2n-k)(2n-k-1)\cdots(n-k+1)t^k}{h^k (1+t)^k k!} x(x-h)\cdots(x-(k-1)h),$$

$$p_n(x)e^{ax} = C_n \sum_{k=0}^\infty \frac{(2n-k)(2n-k-1)\cdots(n-k+1)t^k}{h^k k!} x(x-h)\cdots(x-(k-1)h),$$

$$= q_n(x) + O(x(x-h)\cdots(x-2nh)),$$
(26)

where $t = e^{ah} - 1$. The constant C_n is needed to allow the form of the recurrence relation (24).

5. Elliptic Riccati equations.

5.1. **Definition.**

An elliptic Riccati equation is

$$a(x)\frac{f(\psi(x)) - f(\varphi(x))}{\psi(x) - \varphi(x)} = b(x)f(\varphi(x))f(\psi(x)) + c(x)(f(\varphi(x)) + f(\psi(x))) + d(x).$$
(27)

If $x = x_m$, some point of our x-lattice, then $\varphi(x) = y_m$ and $\psi(x) = y_{m+1}$.

A first-order difference equation of the kind (27) relates $f(y_0)$ to $f(y_1)$ when $x = x_0$; $f(y_1)$ to $f(y_2)$ when $x = x_1$, etc. The direct relation is

$$f(\psi) = \frac{\left\lfloor \frac{a}{\psi - \varphi} + c \right\rfloor f(\varphi) + d}{\frac{a}{\psi - \varphi} - c - bf(\varphi)}.$$

It is sometimes easier to write (27) as

$$e(x)f(\varphi(x))f(\psi(x)) + g(x)f(\varphi(x)) + h(x)f(\psi(x)) + k(x) = 0,$$
(28)
where $e = -b$, $g = -\frac{a}{ak - a} - c$, $h = \frac{a}{ak - a} - c$, and $k = -d$.

However, if a, b, c, and d are rational functions, g and h are conjugate algebraic functions: h+g and hg are symmetric functions of φ and ψ , hence rational functions. This also happens with $2a = (h - g)(\psi - \varphi)$.

5.2. Rational interpolation.

We consider now rational interpolation according to the setting of \S 4.1.2 above. Why is this relevant?

From $f_n(x) = \frac{x - y_{2n}}{\alpha_n x + \beta_n - (x - y_{2n+1})f_{n+1}(x)}$, $\alpha_n x + \beta_n$ is the polynomial interpolant of degree 1 to $(x - y_{2n})/f_n(x)$ at y_{2n+1} and y_{2n+2} , so we need $f_n(y_{2n+1})$ and $f_n(y_{2n+2})$ in order to find α_n and β_n .

Now, if f_n satisfies the Riccati equation

$$a_{n}(x)\frac{f_{n}(\psi(x)) - f_{n}(\varphi(x))}{\psi(x) - \varphi(x)} = b_{n}(x)f(\varphi(x))f_{n}(\psi(x)) + c_{n}(x)(f(\varphi(x)) + f(\psi(x))) + d_{n}(x),$$
(29)

or equivalently

$$e_n(x)f_n(\varphi(x))f_n(\psi(x)) + g_n(x)f_n(\varphi(x)) + h_n(x)f_n(\psi(x)) + k_n(x) = 0,$$
(30)

where $e_n = -b_n$, $g_n = -\frac{a_n}{\psi - \varphi} - c_n$, $h_n = \frac{a_n}{\psi - \varphi} - c_n$, and $k_n = -d_n$, one finds at $x = x_{2n}$, $\varphi(x) = y_{2n}, \ \psi(x) = y_{2n+1}$, and $f_n(y_{2n}) = 0$, so

$$f_n(y_{2n+1}) = \frac{y_{2n+1} - y_{2n}}{\alpha_n y_{2n+1} + \beta_n} = \frac{(y_{2n+1} - y_{2n})d_n(x_{2n})}{a_n(x_{2n}) - (y_{2n+1} - y_{2n})c_n(x_{2n})} = -\frac{k_n(x_{2n})}{h_n(x_{2n})},$$
(31)

and at $x = x_{2n+1}$, keeping the e - g - h - k form,

$$f_n(y_{2n+2}) = \frac{y_{2n+2} - y_{2n}}{\alpha_n y_{2n+2} + \beta_n} = \frac{g_n(x_{2n+1})k_n(x_{2n}) - k_n(x_{2n+1})h_n(x_{2n})}{-e_n(x_{2n+1})k_n(x_{2n}) + h(x_{2n+1})h(x_{2n})},$$
(32)

which shows how to extract α_n and β_n from a_n, \ldots at x_{2n} and x_{2n+1} . Another form of (32) is

$$(y_{2n+2} - y_{2n})[(y_{2n+1} - y_{2n})e_n(x_{2n+1}) + (\alpha_n y_{2n+1} + \beta_n)h_n(x_{2n+1})] + (\alpha_n y_{2n+2} + \beta_n)[(y_{2n+1} - y_{2n})g_n(x_{2n+1}) + (\alpha_n y_{2n+1} + \beta_n)k_n(x_{2n+1})] = 0.$$
(33)

Furthermore, the *Riccati* form is well suited to continued fraction progression:

5.3. **Theorem.**

If f_n satisfies the Riccati equation (29) with rational coefficients a_n , b_n , c_n , and d_n , and if $f_n(x) = \frac{x - y_{2n}}{\alpha_n x + \beta_n - (x - y_{2n+1})f_{n+1}(x)}$, then f_{n+1} satisfies an equation of same complexity (degree of the rational functions) of its coefficients.

Indeed, enter $f_n(x) = \frac{x - y_{2n}}{\alpha_n x + \beta_n - (x - y_{2n+1})f_{n+1}(x)}$ in the Riccati equation (27) for f_n , actually using the (30) form:

$$\begin{split} e_{n}(x) \frac{\varphi(x) - y_{2n}}{\alpha_{n}\varphi(x) + \beta_{n} - (\varphi(x) - y_{2n+1})f_{n+1}(\varphi(x))} \frac{\psi(x) - y_{2n}}{\alpha_{n}\psi(x) + \beta_{n} - (\psi(x) - y_{2n+1})f_{n+1}(\psi(x))} \\ + g_{n}(x) \frac{\varphi(x) - y_{2n}}{\alpha_{n}\varphi(x) + \beta_{n} - (\varphi(x) - y_{2n+1})f_{n+1}(\varphi(x))} + h_{n}(x) \frac{\psi(x) - y_{2n}}{\alpha_{n}\psi(x) + \beta_{n} - (\psi(x) - y_{2n+1})f_{n+1}(\psi(x))} + k_{n}(x) = 0. \\ e_{n}(x)(\varphi(x) - y_{2n})(\psi(x) - y_{2n}) + g_{n}(x)(\varphi(x) - y_{2n})[\alpha_{n}\psi(x) + \beta_{n} - (\psi(x) - y_{2n+1})f_{n+1}(\psi(x))] \\ & \quad + h_{n}(x)(\psi(x) - y_{2n})[\alpha_{n}\varphi(x) + \beta_{n} - (\varphi(x) - y_{2n+1})f_{n+1}(\varphi(x))] \\ & \quad + k_{n}(x)[\alpha_{n}\psi(x) + \beta_{n} - (\psi(x) - y_{2n+1})f_{n+1}(\psi(x))][\alpha_{n}\varphi(x) + \beta_{n} - (\varphi(x) - y_{2n+1})f_{n+1}(\varphi(x))] = 0 \\ \text{We therefore have a relation between } f_{n+1}(\varphi(x)) \text{ and } f_{n+1}(\psi(x)) \text{ of the form} \end{split}$$

$$\tilde{e}_{n+1}(x)f_{n+1}(\varphi(x))f_{n+1}(\psi(x)) + \tilde{g}_{n+1}(x)f_{n+1}(\varphi(x)) + \tilde{h}_{n+1}(x)f_{n+1}(\psi(x)) + \tilde{k}_{n+1}(x) = 0, \quad (34)$$

where

$$\tilde{e}_{n+1}(x) = (\psi(x) - y_{2n+1})(\varphi(x) - y_{2n+1})k_n(x),
\tilde{g}_{n+1}(x) = -(\varphi(x) - y_{2n+1}) [(\psi(x) - y_{2n})h_n(x) + (\alpha_n\psi(x) + \beta_n)k_n(x)],
\tilde{h}_{n+1}(x) = -(\psi(x) - y_{2n+1}) [(\varphi(x) - y_{2n})g_n(x) + (\alpha_n\varphi(x) + \beta_n)k_n(x)],
\tilde{k}_{n+1}(x) = (\varphi(x) - y_{2n})(\psi(x) - y_{2n})e_n(x) + (\varphi(x) - y_{2n})(\alpha_n\psi(x) + \beta_n)g_n(x)
+ (\psi(x) - y_{2n})(\alpha_n\varphi(x) + \beta_n)h_n(x) + (\alpha_n\psi(x) + \beta_n)(\alpha_n\varphi(x) + \beta_n)k_n(x).$$
(35)

The tilde \tilde{e} , etc. notation is needed because (34) is not yet the equation (30) with n replaced by n + 1: the coefficients of (34) will have to be divided by common factors first.

The equation (34) is already a Riccati equation, introducing the difference and the sum of $f_{n+1}(\varphi(x))$ and $f_{n+1}(\psi(x))$ as

$$f_{n+1}(\psi(x)), f_{n+1}(\varphi(x)) = \frac{f_{n+1}(\varphi(x)) + f_{n+1}(\psi(x))}{2} \pm (\psi(x) - \varphi(x)) \frac{f_{n+1}(\psi(x)) - f_{n+1}(\varphi(x))}{2(\psi(x) - \varphi(x))},$$

then (34) takes the form of (27)

$$(\tilde{h}_{n+1}(x) - \tilde{g}_{n+1}(x))(\psi(x) - \varphi(x))\frac{f_{n+1}(\psi(x)) - f_{n+1}(\varphi(x))}{2(\psi(x) - \varphi(x))} = -\tilde{e}_{n+1}(x)f_{n+1}(\varphi(x))f_{n+1}(\psi(x)) - (h_{n+1}(x) + g_{n+1}(x))\frac{f_{n+1}(\varphi(x)) + f_{n+1}(\psi(x))}{2} - k_{n+1}(x).$$

The coefficients are now symmetric functions of φ and ψ , therefore rational functions, as $\varphi + \psi = -X_1/X_2$ and $\varphi \psi = X_0/X_2$.

$$2\tilde{a}_{n+1}(x) = (h_{n+1}(x) - g_{n+1}(x))(\psi(x) - \varphi(x)) = [(\psi(x) - y_{2n+1})(\varphi(x) - y_{2n}) + (\varphi(x) - y_{2n+1})(\psi(x) - y_{2n})]a_n(x) + (\psi(x) - \varphi(x))^2[(y_{2n+1} - y_{2n})c_n(x) + (\alpha_n y_{2n+1} + \beta_n)d_n(x)],$$

$$-2\tilde{c}_{n+1}(x) = h_{n+1}(x) + g_{n+1}(x) = (y_{2n+1} - y_{2n})a_n(x) + [(\psi(x) - y_{2n+1})(\varphi(x) - y_{2n}) + (\varphi(x) - y_{2n+1})(\psi(x) - y_{2n+1})(\varphi(x) - y_{2n+1$$

We must now be sure that no increase of complexity occurs in the new Riccati equation!

From $\varphi + \psi = -X_1/X_2$ and $\varphi \psi = X_0/X_2$, where the X's are second degree polynomials, we see that the new coefficients $(h_{n+1}(x) - g_{n+1}(x))(\psi(x) - \varphi(x)), e_{n+1}(x), h_{n+1}(x) + g_{n+1}(x)$, and $k_{n+1}(x)$ are rational functions of denominator X_2 , and sometimes X_2^2 . This problem is settled by multiplying the four coefficients by X_2 , assuming that b_n , c_n , and d_n already have the factor X_2 .

The new coefficients are now polynomials, but of higher degree than before! Fortunately, they have convenient common factors, which can be removed:

(1) The four coefficients of (34) vanish at $x = x_{2n}$.

Indeed, at $x = x_{2n}$, $\psi(x) = y_{2n+1}$, so that \tilde{e}_{n+1} and \tilde{h}_{n+1} do already vanish. Moreover, with $\varphi(x) = y_{2n}$, one sees that \tilde{g}_{n+1} and \tilde{k}_{n+1} are products containing the factor $(y_{2n+1} - y_{2n})h_n(x_{2n}) + (\alpha_n y_{2n+1} + \beta_n)k_n(x_{2n})$, which must vanish, according to (31).

Remark that $x - x_{2n+1}$ is an obvious factor of \tilde{e}_{n+1} and \tilde{g}_{n+1} ; also a (much less obvious) factor of \tilde{k}_{n+1} , as \tilde{k}_{n+1} at $x = x_{2n+1}$ from (35) gives (33).

(2) When n > 0, the four coefficients of (34) vanish at $x = x_{2n-1}$. According to the remark just above, if $n \ge 1$, e_n , g_n , and k_n already vanish at x_{2n-1} , so \tilde{e}_{n+1} and \tilde{h}_{n+1} vanish too. The values of \tilde{g}_{n+1} and \tilde{k}_{n+1} at x_{2n-1} from (35) contain the same remaining term $(\psi(x) - y_{2n})h_n(x)$ which vanishes at $x = x_{2n-1}$ too.

If a_n , b_n , c_n , and d_n are polynomials, we recover polynomials without increasing the degrees by multiplying $(\tilde{h}_{n+1}(x) - \tilde{g}_{n+1}(x))(\psi(x) - \varphi(x))/2$, $-\tilde{e}_{n+1}(x)$, $-[\tilde{h}_{n+1}(x) + \tilde{g}_{n+1}(x)]$, and $-\tilde{k}_{n+1}(x)$ by $\frac{X_2(x)}{(x - x_{2n-1})(x - x_{2n})}$, or, considering that

$$(\varphi(x)-y_{2n})(\psi(x)-y_{2n}) = \frac{X_0(x) + X_1(x)y_{2n} + X_2(x)y_{2n}^2}{X_2(x)} = \frac{F(x,y_{2n})}{X_2(x)} = Y_2(y_{2n})\frac{(x-x_{2n})(x-x_{2n-1})}{X_2(x)},$$

we may as well divide by $(\varphi(x) - y_{2n})(\psi(x) - y_{2n})$:

$$[e_{n+1}, g_{n+1}, h_{n+1}, k_{n+1}] = \frac{1}{(\varphi - y_{2n})(\psi - y_{2n})} [\tilde{e}_{n+1}, \tilde{g}_{n+1}, \tilde{h}_{n+1}, \tilde{k}_{n+1}],$$

and the division of (35) by $(\varphi(x) - y_{2n})(\psi(x) - y_{2n})$ yields at last the Riccati coefficients at the $(n+1)^{\text{th}}$ step:

$$\begin{bmatrix} g_{n+1} \\ h_{n+1} \\ e_{n+1} \\ k_{n+1} \end{bmatrix} = \begin{bmatrix} 0, & -\frac{\varphi - y_{2n+1}}{\varphi - y_{2n}}, & 0, & -\frac{(\varphi - y_{2n+1})(\alpha_n \psi + \beta_n)}{(\varphi - y_{2n})(\psi - y_{2n})} \\ -\frac{\psi - y_{2n+1}}{\psi - y_{2n}}, & 0, & 0, & -\frac{(\psi - y_{2n+1})(\alpha_n \varphi + \beta_n)}{(\varphi - y_{2n})(\psi - y_{2n})} \\ 0, & 0, & 0, & \frac{(\varphi - y_{2n+1})(\psi - y_{2n+1})}{(\varphi - y_{2n})(\psi - y_{2n})} \\ \frac{\alpha_n \psi + \beta_n}{\psi - y_{2n}}, & \frac{\alpha_n \varphi + \beta_n}{\varphi - y_{2n}}, & 1, & \frac{(\alpha_n \psi + \beta_n)(\alpha_n \varphi + \beta_n)}{(\varphi - y_{2n})(\psi - y_{2n})} \end{bmatrix} \begin{bmatrix} g_n \\ h_n \\ e_n \\ k_n \end{bmatrix}$$
(36)

or $\boldsymbol{g}_{n+1} = \boldsymbol{M}_n \boldsymbol{g}_n$.

A very interesting identity is

$$g_{n+1}h_{n+1} - e_{n+1}k_{n+1} = \frac{(\varphi - y_{2n+1})(\psi - y_{2n+1})}{(\varphi - y_{2n})(\psi - y_{2n})}[g_nh_n - e_nk_n],$$
which, by
$$\frac{(\varphi(x) - y_{2n+1})(\psi(x) - y_{2n+1})}{(\varphi(x) - y_{2n})(\psi(x) - y_{2n})} = \frac{F(x, y_{2n+1})}{F(x, y_{2n})} = \frac{Y_2(y_{2n+1})}{Y_2(y_{2n})}\frac{(x - x_{2n})(x - x_{2n+1})}{(x - x_{2n-1})(x - x_{2n})},$$
becomes
$$g_n(x)h_n(x) - e_n(x)k_n(x) = \frac{Y_2(y_{2n-1})Y_2(y_{2n-3})\cdots Y_2(y_1)}{Y_2(y_{2n-2})Y_2(y_{2n-4})\cdots Y_2(y_0)}\frac{x - x_{2n-1}}{x - x_{-1}}[g_0(x)h_0(x) - e_0(x)g_0(x)].$$

The polynomial coefficients are then recovered by $a_{n+1} = (h_{n+1} - g_{n+1})(\psi - \varphi)/2$, $b_{n+1} = -e_{n+1}$, $c_{n+1} = -(h_{n+1} + g_{n+1})/2$, and $d_{n+1} = -k_{n+1}$, using the rational functions $\varphi + \psi = -X_1/X_2$, $\varphi \psi = X_0/X_2$, $(\psi - \varphi)^2 = (X_1^2 - 4X_0X_2)/X_2^2$, $(\varphi(x) - y_m)(\psi(x) - y_m) = (X_0(x) + y_mX_1(x) + y_m^2X_2(x))/X_2(x) = F(x, y_m)/X_2(x) = Y_2(y_m)(x - x_m)(x - x_{m-1})/X_2(x)$:

(37)

$$\begin{split} g_{n+1} \pm h_{n+1} &= -\frac{\varphi - y_{2n+1}}{\varphi - y_{2n}} h_n - \frac{(\varphi - y_{2n+1})(\alpha_n \psi + \beta_n)}{(\varphi - y_{2n})(\psi - y_{2n})} k_n \mp \frac{\psi - y_{2n+1}}{\psi - y_{2n}} g_n \mp \frac{(\psi - y_{2n+1})(\alpha_n \varphi + \beta_n)}{(\varphi - y_{2n})(\psi - y_{2n})} k_n \\ &= -\frac{1}{2} \left[\frac{\varphi - y_{2n+1}}{\varphi - y_{2n}} + \frac{\psi - y_{2n+1}}{\psi - y_{2n}} \right] (h_n \pm g_n) - \frac{1}{2} \left[\frac{\varphi - y_{2n+1}}{\varphi - y_{2n}} - \frac{\psi - y_{2n+1}}{\psi - y_{2n}} \right] (h_n \mp g_n) \\ &- \frac{(\varphi - y_{2n+1})(\alpha_n \psi + \beta_n) \pm (\psi - y_{2n+1})(\alpha_n \varphi + \beta_n)}{(\varphi - y_{2n})(\psi - y_{2n})} k_n \\ &= -\frac{1}{2} \left[\frac{2X_0 + (y_{2n} + y_{2n+1})X_1 + 2y_{2n}y_{2n+1}X_2}{X_2F(x, y_{2n})} \right] (h_n \pm g_n) - \frac{(y_{2n+1} - y_{2n})(\varphi - \psi)}{2F(x, y_{2n})} (g_n \mp h_n) \\ &- \frac{\alpha_n [(1 \pm 1)\varphi \psi - y_{2n+1}(\psi \pm \varphi)] + \beta_n [\varphi \pm \psi - y_{2n+1}(1 \pm 1)]}{F(x, y_{2n})} k_n \end{split}$$

so,

$$a_{n+1} = (h_{n+1} - g_{n+1})(\psi - \varphi)/2 = \frac{2X_0 + (y_{2n} + y_{2n+1})X_1 + 2y_{2n}y_{2n+1}X_2}{2F(x, y_{2n})} a_n + (\psi - \varphi)^2 \left[\frac{y_{2n+1} - y_{2n}}{2F(x, y_{2n})/X_2}c_n + \frac{\alpha_n y_{2n+1} + \beta_n}{F(x, y_{2n})/X_2}d_n\right]$$

or

$$a_{n+1} = \frac{2X_0 + (y_{2n} + y_{2n+1})X_1 + 2y_{2n}y_{2n+1}X_2}{2F(x, y_{2n})} a_n + (X_1^2 - 4X_0X_2) \frac{[(y_{2n+1} - y_{2n})c_n + 2(\alpha_n y_{2n+1} + \beta_n)d_n]/X_2}{2F(x, y_{2n})}.$$
 (38)

$$c_{n+1} = -(h_{n+1} + g_{n+1})/2 = -\frac{2X_0 + (y_{2n} + y_{2n+1})X_1 + 2y_{2n}y_{2n+1}X_2}{2F(x, y_{2n})} c_n + \frac{y_{2n+1} - y_{2n}}{2F(x, y_{2n})} X_2 a_n - \frac{\alpha_n (2X_0 + y_{2n+1}X_1) - \beta_n (X_1 + 2y_{2n+1}X_2)}{2F(x, y_{2n})} d_n + \frac{(\varphi - y_{2n+1})(\psi - y_{2n+1})}{(\varphi - y_{2n})(\psi - y_{2n})} d_n = \frac{F(x, y_{2n+1})}{F(x, y_{2n})} d_n, \\ d_{n+1} = -\frac{\alpha_n y_{2n} + \beta_n}{F(x, y_{2n})} X_2 a_n + b_n + \frac{[\alpha_n (2X_0 + y_{2n}X_1) - \beta_n (X_1 + 2y_{2n}X_2)]c_n + (\alpha_n^2 X_0 - \alpha_n \beta_n X_1 + \beta_n^2 X_2)d_n}{F(x, y_{2n})}$$

From the theorem of § 5.3, a_{n+1}, \ldots, d_{n+1} must remain polynomials of fixed degree. This can be rechecked, knowing that X_2 is a factor of b_n , c_n , and d_n , that $b_n(x_{2n-1}) = d_n(x_{2n-1}) = 0$.

And (37) becomes, using
$$g_n = -a_n/(\psi - \varphi) - c_n$$
, $h_n = a_n/(\psi - \varphi) - c_n$, and $(\psi - \varphi)^2 = P/X_2^2 = (X_1^2 - 4X_0X_2)/X_2^2$

$$\frac{c_n^2(x) - b_n(x)d_n(x)}{X_2^2(x)}P(x) - a_n^2(x) = C_n \frac{x - x_{2n-1}}{x - x_{-1}} \left[\frac{c_0^2(x) - b_0(x)d_0(x)}{X_2^2(x)}P(x) - a_0^2(x) \right], \quad (39)$$
where $C_n = \frac{Y_2(y_{2n-1})Y_2(y_{2n-3})\cdots Y_2(y_1)}{Y_2(y_{2n-2})Y_2(y_{2n-4})\cdots Y_2(y_0)}.$

6. Classical case.

We keep the lowest possible degree, which is 3, considering that b_n and d_n must be $X_2(x)$ times a polynomial containing the factor $x - x_{2n-1}$.

Let $d_n(x) = \zeta_n(x - x_{2n-1})X_2(x)$, a_n of degree 3, and $c_n = X_2$ times a polynomial of degree 1.

$$b_{n+1}(x) = \frac{F(x, y_{2n+1})}{F(x, y_{2n})} \zeta_n(x - x_{2n-1}) X_2(x) = \frac{Y_2(y_{2n+1})}{Y_2(y_{2n})} \zeta_n(x - x_{2n+1}) X_2(x)$$

From the Riccati equation (29) at $x = x_{2n-1}$ and $f_n(y_{2n}) = 0$, we have

$$\frac{a_n(x_{2n-1})}{y_{2n} - y_{2n-1}} = c_n(x_{2n-1}),$$

allowing the divison of the left-hand side of (39), leaving

$$\frac{c_n^2(x) - b_n(x)d_n(x)}{X_2^2(x)}P(x) - a_n^2(x) = C_n(x - x_{2n-1})Q(x)$$

where Q is a fixed polynomial of degree 5.

At each of the four zeros z_1, \ldots, z_4 of P,

$$a_n(z_j) = \pm \sqrt{-C_n(z_j - x_{2n-1})Q(z_j)},$$

allowing to recover the third degree polynomial a_n from four values...should the square roots be determined! Square root-free relations come from (38) at z_j , knowing that $\varphi(z_j) = \psi(z_j)$, which we call φ_j :

$$a_{n+1}(z_j) = \frac{\varphi_j - y_{2n+1}}{\varphi_j - y_{2n}} a_n(z_j)$$

Remark that, from (39), $Q(z_j) = -a_0^2(z_j)/(z_j - x_{-1})$, so there is a subtle relation between the product of the $(\varphi_j - y_{2n+1})/(\varphi_j - y_{2n})$'s and a square root of $(z_j - x_{2n-1})/(z_j - x_{-1})$. Indeed, as explained in § 2.3, eq. (17), the product is the value of the algebraic function \mathcal{X}_n at z_j , where \mathcal{X} = its conjugate $\mathcal{X}^{\text{conj}}$, so that the value is a square root of $\mathcal{X}(z_j)\mathcal{X}^{\text{conj}}(z_j) = C_n(z_j - y_{2n+1})/(z_j - x_{-1})$.

Well, from (14), $x_m = z_j$ means $mh + h_0 =$ a sum of **half-periods**, so $q^m q'_0 = -1$ or $\pm p^{1/2}$, and we have from (18)-(19)

$$a_n(z_j) = \frac{\theta(q^{2n}q'_0\sigma_j)}{\theta(q'_0\sigma_j)}a_0(z_j), \quad j = 1, \dots, 4$$

where $\sigma_i = \pm 1$ or $\pm p^{1/2}$.

7. Linear difference relations and equations for the numerators and the denominators of the interpolants.

, the recurrence relations for p_n and q_n being now (§ 4.1.2, p. 13) $p_{n+1}(x) = (\alpha_n x + \beta_n) p_n(x) - (x - y_{2n-1})(x - y_{2n}) p_{n-1}(x),$ or $p_{n-1}(x) = \frac{(\alpha_n x + \beta_n) p_n(x) - p_{n+1}(x)}{(x - y_{2n-1})(x - y_{2n})}.$ We now consider the **linear** recurrence satisfied by combinations of such products, i.e., by combinations of

$$p_n(\varphi)p_n(\psi), p_n(\varphi)q_{n-1}(\psi), q_{n-1}(\varphi)p_n(\psi), \text{ and } q_{n-1}(\varphi)q_{n-1}(\psi).$$

We just have to consider a product $r_n s_n$, kowing that

$$r_{n-1} = \frac{(\alpha_n \varphi + \beta_n)r_n - r_{n+1}}{(\varphi - y_{2n+1})(\varphi - y_{2n+2})}, \text{ and}$$
$$s_{n-1} = \frac{(\alpha_n \psi + \beta_n)s_n - s_{n+1}}{(\psi - y_{2n-1})(\psi - y_{2n})}.$$
Simplest way is to write it as matrix-vector recurrence.

$$\begin{bmatrix} r_{n}s_{n-1} \\ r_{n-1}s_{n} \\ r_{n}s_{n} \\ r_{n-1}s_{n-1} \end{bmatrix} = \begin{bmatrix} -A(\varphi) & B(\psi) \\ -A(\varphi) & B(\varphi) \\ 0 & 1 \\ -A(\varphi)B(\psi) & -A(\psi)B(\varphi) & A(\varphi)A(\psi) & B(\varphi)B(\psi) \end{bmatrix} \begin{bmatrix} r_{n+1}s_{n} \\ r_{n}s_{n+1} \\ r_{n+1}s_{n+1} \\ r_{n+1}s_{n+1} \\ r_{n}s_{n} \end{bmatrix}$$
(40)
where $A(t) = \frac{1}{(t-y_{2n-1})(t-y_{2n})}$ and $B(t) = \frac{\alpha_{n}t + \beta_{n}}{(t-y_{2n-1})(t-y_{2n})}.$

The matrix is $\boldsymbol{D}_n^{-1} \boldsymbol{M}_n^T \boldsymbol{E}_n^{-1}$, where

$$\begin{split} \boldsymbol{D}_{n} &= \begin{bmatrix} \psi - y_{2n-1} & & & \\ & \varphi - y_{2n-1} & & \\ & & 1 & \\ & & & (\varphi - y_{2n-1})(\psi - y_{2n-1}) \end{bmatrix}, \\ \boldsymbol{E}_{n} &= \begin{bmatrix} \varphi - y_{2n+1} & & & \\ & \psi - y_{2n+1} & & \\ & & & (\varphi - y_{2n+1})(\psi - y_{2n+1}) & \\ & & & 1 \end{bmatrix}, \end{split}$$

and where \boldsymbol{M}_{n}^{T} is the transposed of the matrix of (36).

This means that the recurrence of the $r_n s_n$'s is basically the **adjoint** of the recurrence (36) of the (e_n, g_n, h_n, k_n) 's

Remark that $\boldsymbol{E}_{n}\boldsymbol{D}_{n+1} = (\varphi - y_{2n+1})(\psi - y_{2n+1})\boldsymbol{I}.$ So, (40) is $\boldsymbol{\rho}_{n-1} = \boldsymbol{D}_{n}^{-1}\boldsymbol{M}_{n}^{T}\boldsymbol{E}_{n}^{-1}\boldsymbol{\rho}_{n}, \ \boldsymbol{g}_{n}\boldsymbol{D}_{n}\boldsymbol{\rho}_{n-1} = \boldsymbol{g}_{n}\boldsymbol{M}_{n}^{T}\boldsymbol{E}_{n}^{-1}\boldsymbol{\rho}_{n} = \boldsymbol{g}_{n+1}\boldsymbol{E}_{n}^{-1}\boldsymbol{\rho}_{n}$ (from (36)), or $(\varphi - y_{2n+1})(\psi - y_{2n+1})\boldsymbol{g}_{n}\boldsymbol{D}_{n}\boldsymbol{\rho}_{n-1} = \boldsymbol{g}_{n+1}\boldsymbol{D}_{n+1}\boldsymbol{\rho}_{n}$:

$$\boldsymbol{g}_{n+1}\boldsymbol{D}_{n+1}\boldsymbol{\rho}_{n} = (\varphi - y_{1})(\psi - y_{1})(\varphi - y_{3})(\psi - y_{3})\cdots(\varphi - y_{2n+1})(\psi - y_{2n+1})\boldsymbol{g}_{0}\boldsymbol{D}_{0}\boldsymbol{\rho}_{-1}$$

so that, for any choice of r_n and s_n $(p_n \text{ or } q_n)$,

$$\begin{aligned} (\psi - y_{2n+1})g_{n+1}r_{n+1}s_n + (\varphi - y_{2n+1})h_{n+1}r_ns_{n+1} + e_{n+1}r_{n+1}s_{n+1} + (\varphi - y_{2n+1})(\psi - y_{2n+1})k_{n+1}r_ns_n \\ &= (\varphi - y_1)(\psi - y_1)(\varphi - y_3)(\psi - y_3)\cdots(\varphi - y_{2n+1})(\psi - y_{2n+1}) \\ &\times [(\psi - y_{-1})g_0r_0s_{-1} + (\varphi - y_{-1})h_0r_{-1}s_0 + e_0r_0s_0 + (\varphi - y_{-1})(\psi - y_{-1})k_0r_{-1}s_{-1}] \\ &\text{With the two choices } (r, s) = (p, p) \text{ and } (q, p): \end{aligned}$$

$$\begin{aligned} (\psi - y_{2n+1})g_{n+1}p_{n+1}(\varphi)p_n(\psi) + (\varphi - y_{2n+1})h_{n+1}p_n(\varphi)p_{n+1}(\psi) + e_{n+1}p_{n+1}(\varphi)p_{n+1}(\psi) + (\varphi - y_{2n+1})(\psi - y_{2n+1})k_{n+1}p_n(\varphi)p_n(\psi) \\ &= e_0(\varphi - y_1)(\psi - y_1)(\varphi - y_3)(\psi - y_3)\cdots(\varphi - y_{2n+1})(\psi - y_{2n+1}), \end{aligned}$$

$$\begin{aligned} (\psi - y_{2n+1})g_{n+1}q_{n+1}(\varphi)p_n(\psi) + (\varphi - y_{2n+1})h_{n+1}q_n(\varphi)p_{n+1}(\psi) + e_{n+1}q_{n+1}(\varphi)p_{n+1}(\psi) + (\varphi - y_{2n+1})(\psi - y_{2n+1})k_{n+1}q_n(\varphi)p_n(\psi) \\ &= (\varphi - y_{-1})h_0q_{-1}(\varphi)(\varphi - y_1)(\psi - y_1)(\varphi - y_3)(\psi - y_3)\cdots(\varphi - y_{2n+1})(\psi - y_{2n+1}), \end{aligned}$$

Multiply the first equation by $q_n(\varphi)$, the second one by $p_n(\varphi)$, and subtract:

$$\begin{aligned} [q_n(\varphi)p_{n+1}(\varphi) - p_n(\varphi)q_{n+1}(\varphi)][(\psi - y_{2n+1})g_{n+1}p_n(\psi) + e_{n+1}p_{n+1}(\psi)] \\ &= [q_n(\varphi)e_0 - p_n(\varphi)(\varphi - y_{-1})h_0q_{-1}(\varphi)](\varphi - y_1)(\psi - y_1)(\varphi - y_3)(\psi - y_3)\cdots(\varphi - y_{2n+1})(\psi - y_{2n+1}), \\ &\text{and using the Casorati relation (25)} \end{aligned}$$

$$(\psi - y_{2n+1})g_{n+1}p_n(\psi) + e_{n+1}p_{n+1}(\psi) = [q_n(\varphi)e_0 + p_n(\varphi)h_0]\mathcal{X}_{n+1},$$
(41a)
where $\mathcal{X}_{n+1} = \frac{(\psi - y_1)(\psi - y_3)\cdots(\psi - y_{2n+1})}{(\varphi - y_0)(\varphi - y_2)\cdots(\varphi - y_{2n})}.$
Similarly, with $(r, s) = (p, p)$ and (p, q) ,

$$(\varphi - y_{2n+1})h_{n+1}p_n(\varphi) + e_{n+1}p_{n+1}(\varphi) = [q_n(\psi)e_0 + p_n(\psi)g_0]\mathcal{X}_{n+1}^{\text{conj}},$$
(41b)

where $\mathcal{X}_{n+1}^{\text{conj}} = \frac{(\varphi - y_1)(\varphi - y_3)\cdots(\varphi - y_{2n+1})}{(\psi - y_0)(\psi - y_2)\cdots(\psi - y_{2n})}$ is the conjugate of the algebraic function \mathcal{X}_{n+1} .

7.1. Difference equation for the denominator p_n .

Here,
$$e_0(x) \equiv 0$$
.
Take (41a) at $\psi^{-1}(y)$:
 $(y-y_{2n+1})g_{n+1}(\psi^{-1}(y))p_n(y)+e_{n+1}(\psi^{-1}(y))p_{n+1}(y) = h_0(\psi^{-1}(y))p_n(\varphi(\psi^{-1}(y)))\mathcal{X}_{n+1}(\psi^{-1}(y)),$
and (41b) at $\varphi^{-1}(y)$:
 $(y-y_{2n+1})h_{n+1}(\varphi^{-1}(y))p_n(y)+e_{n+1}(\varphi^{-1}(y))p_{n+1}(y) = g_0(\varphi^{-1}(y))p_n(\psi(\varphi^{-1}(y)))\mathcal{X}_{n+1}^{conj}(\varphi^{-1}(y)),$
so,
 $p_{n+1}(y) = \frac{h_0(\psi^{-1}(y))p_n(\varphi(\psi^{-1}(y)))\mathcal{X}_{n+1}(\psi^{-1}(y)) - (y - y_{2n+1})g_{n+1}(\psi^{-1}(y)))p_n(y)}{e_{n+1}(\psi^{-1}(y))}$
 $= \frac{g_0(\varphi^{-1}(y))p_n(\psi(\varphi^{-1}(y)))\mathcal{X}_{n+1}^{conj}(\varphi^{-1}(y)) - (y - y_{2n+1})h_{n+1}(\varphi^{-1}(y))p_n(y)}{e_{n+1}(\varphi^{-1}(y))}$

possible only if

$$\frac{h_0(\psi^{-1}(y))p_n(\varphi(\psi^{-1}(y)))\mathcal{X}_{n+1}(\psi^{-1}(y))}{e_{n+1}(\psi^{-1}(y))} - \frac{g_0(\varphi^{-1}(y))p_n(\psi(\varphi^{-1}(y)))\mathcal{X}_{n+1}^{\mathrm{conj}}(\varphi^{-1}(y))}{e_{n+1}(\varphi^{-1}(y))} \\ = \left[\frac{g_{n+1}(\psi^{-1}(y))}{e_{n+1}(\psi^{-1}(y))} - \frac{h_{n+1}(\varphi^{-1}(y))}{e_{n+1}(\varphi^{-1}(y))}\right](y - y_{2n+1})p_n(y)$$

At $y = \text{some } y_m$:

$$\frac{h_0(x_{m-1})p_n(y_{m-1})\mathcal{X}_{n+1}(x_{m-1})}{e_{n+1}(x_{m-1})} - \frac{g_0(x_m)p_n(y_{m+1})\mathcal{X}_{n+1}^{\text{conj}}(x_m)}{e_{n+1}(x_m)} = \left[\frac{g_{n+1}(x_{m-1})}{e_{n+1}(x_{m-1})} - \frac{h_{n+1}(x_m)}{e_{n+1}(x_m)}\right](y_m - y_{2n+1})p_n(y_m)$$

Remark that $\mathcal{X}_{n+1}(x_{m-1})$ and $\mathcal{X}_{n+1}^{\operatorname{conj}}(x_m)$ have the same numerator $(y_m - y_1)(y_m - y_3) \cdots (y_m - y_{2n+1})$, so,

$$\frac{g_{0}(x_{m})}{e_{n+1}(x_{m})} \frac{p_{n}(y_{m+1})}{(y_{m+1}-y_{0})(y_{m+1}-y_{2})\cdots(y_{m+1}-y_{2n})} - \frac{h_{0}(x_{m-1})}{e_{n+1}(x_{m-1})} \frac{p_{n}(y_{m-1})}{(y_{m-1}-y_{0})(y_{m-1}-y_{2})\cdots(y_{m-1}-y_{2n})} \\
= \left[\frac{h_{n+1}(x_{m})}{e_{n+1}(x_{m})} - \frac{g_{n+1}(x_{m-1})}{e_{n+1}(x_{m-1})}\right] \frac{p_{n}(y_{m})}{(y_{m}-y_{1})(y_{m}-y_{3})\cdots(y_{m}-y_{2n-1})}, \\
\text{Therefore, } R_{n}(x) = \frac{p_{n}(x)}{(x-y_{0})(x-y_{2})\cdots(x-y_{2n})} \text{ satisfies} \\
- \frac{g_{0}(x_{m})}{e_{n+1}(x_{m})}R_{n}(y_{m+1}) - \frac{h_{0}(x_{m-1})}{e_{n+1}(x_{m-1})}R_{n}(y_{m-1}) \\
= \left[\frac{h_{n+1}(x_{m})}{e_{n+1}(x_{m})} - \frac{g_{n+1}(x_{m-1})}{e_{n+1}(x_{m-1})}\right] \frac{p_{n}(y_{m})}{(y_{m}-y_{1})(y_{m}-y_{3})\cdots(y_{m}-y_{2n-1})}, \\$$

If \mathcal{D}^{\dagger} means

$$(\mathcal{D}^{\dagger}p)(y) = \frac{p(\psi^{-1}(y)) - p(\varphi^{-1}(y))}{\psi^{-1}(y) - \varphi^{-1}(y)},$$

then

$$(\mathcal{D}^{\dagger}(r\mathcal{D}p))(y) = \frac{r(\psi^{-1}(y))\frac{p(y) - p(\varphi(\psi^{-1}(y)))}{y - \varphi(\psi^{-1}(y))} - r(\varphi^{-1}(y))\frac{p(\psi(\varphi^{-1}(y))) - p(y)}{\psi(\varphi^{-1}(y)) - y}}{\psi^{-1}(y) - \varphi^{-1}(y)}$$

At $y = \text{some } y_m$:

$$(\mathcal{D}^{\dagger}(r\mathcal{D}p))(y_m) = \frac{r(x_{m-1})\frac{p(y_m) - p(y_{m-1})}{y_m - y_{m-1}} - r(x_m)\frac{p(y_{m+1}) - p(y_m)}{y_{m+1} - y_m}}{x_{m-1} - x_m}$$

match if
$$\frac{r(x_m)(y_m - y_{m-1})}{r(x_{m-1})(y_{m+1} - y_m)} = -\frac{g_0(x_m)e_{n+1}(x_{m-1})}{e_{n+1}(x_m)h_0(x_{m-1})}$$
. We already encountered a function satisfying a similar difference equation, from Pearson's equation $\frac{w(x_m)}{(x_m - x_{m-1})Y_2(y_m)} = -\frac{g_0(x_{m-1})}{h_0(x_{m-1})}\frac{w(x_{m-1})}{(x_{m-1} - x_{m-2})Y_2(y_{m-1})}$. So, $\frac{r(x_m)e_{n+1}(x_m)}{(y_{m+1} - y_m)g_0(x_m)} = \frac{w(x_m)}{Y_2(y_m)(x_m - x_{m-1})}$.

$$(\mathcal{D}^{\dagger}(r\mathcal{D}))\frac{p_{n}(y_{m})}{(y_{m}-y_{0})(y_{m}-y_{2})\cdots(y_{m}-y_{2n})}$$

$$=\frac{1}{x_{m-1}-x_{m}}\left[r(x_{m-1})\frac{\frac{p_{n}(y_{m})}{(y_{m}-y_{0})(y_{m}-y_{2})\cdots(y_{m}-y_{2n})}-\frac{p_{n}(y_{m-1})}{(y_{m-1}-y_{0})(y_{m-1}-y_{2})\cdots(y_{m-1}-y_{2n})}}{y_{m}-y_{m-1}}\right]$$

$$-r(x_m)\frac{p_n(y_{m+1})}{(y_{m+1}-y_0)(y_{m+1}-y_2)\cdots(y_{m+1}-y_{2n})} - \frac{p_n(y_m)}{(y_m-y_0)(y_m-y_2)\cdots(y_m-y_{2n})}}{y_{m+1}-y_m}$$

$$= -\frac{r(x_m)e_{n+1}(x_m)}{(y_{m+1} - y_m)(x_{m-1} - x_m)g_0(x_m)} \\ \left[\frac{h_0(x_{m-1})}{(e_{n+1}(x_{m-1})} \left[\frac{p_n(y_m)}{(y_m - y_0)(y_m - y_2)\cdots(y_m - y_{2n})} - \frac{p_n(y_{m-1})}{(y_{m-1} - y_0)(y_{m-1} - y_2)\cdots(y_{m-1} - y_{2n})}\right] \\ + \frac{g_0(x_m)}{e_{n+1}(x_m)} \left[\frac{p_n(y_{m+1})}{(y_{m+1} - y_0)(y_{m+1} - y_2)\cdots(y_{m+1} - y_{2n})} - \frac{p_n(y_m)}{(y_m - y_0)(y_m - y_2)\cdots(y_m - y_{2n})}\right]\right]$$

Therefore,
$$R_n(x) = \frac{p_n(x)}{(x - y_0)(x - y_2) \cdots (x - y_{2n})}$$
 satisfies
 $(\mathcal{D}^{\dagger}(r\mathcal{D}))R_n(y_m) = -\frac{r(x_m)e_{n+1}(x_m)}{(y_{m+1} - y_m)(x_{m-1} - x_m)g_0(x_m)}$
 $\left[\frac{h_0(x_{m-1})}{e_{n+1}(x_{m-1})} - \frac{g_0(x_m)}{e_{n+1}(x_m)} + \left[\frac{h_{n+1}(x_m)}{e_{n+1}(x_m)} - \frac{g_{n+1}(x_{m-1})}{e_{n+1}(x_{m-1})}\right]\frac{(y_m - y_0)(y_m - y_2)\cdots(y_m - y_{2n})}{(y_m - y_1)(y_m - y_3)\cdots(y_m - y_{2n-1})}\right]R_n(y_m)$

8. Hypergeometric expansions.

From:

David R. Masson: The last of the hypergeometric continued fractions, Report-no: OP-SF 12 Sep 1994 http://arxiv.org/abs/math.CA/9409229

Dharma P. Gupta; David R. Masson: Contiguous relations, continued fractions and orthogonality Trans. Amer. Math. Soc. **350** (1998), 769-808. This article is available free of charge http://www.ams.org/tran/1998-350-02/S0002-9947-98-01879-0/home.html

Building blocks:

$$\mathcal{D}\frac{(x-y_0)(x-y_1)\cdots(x-y_{n-1})}{(x-y_1')(x-y_2')\cdots(x-y_n')} = C_n X_2(x) \frac{(x-x_0)(x-x_1)\cdots(x-x_{n-2})}{(x-x_0')(x-x_1')\cdots(x-x_n')}.$$

Indeed, $(\varphi(x)-y_0)(\varphi(x)-y_1)\cdots(\varphi(x)-y_{n-1})$ and $(\psi(x)-y_0)(\psi(x)-y_1)\cdots(\psi(x)-y_{n-1})$ both vanish at $x = x_0, x_1, \ldots, x_{n-2}$, and similarly for the $\{x'_k\}$ s and the $\{y'_k\}$ s. The common denominator is

 $\begin{aligned} &(\varphi(x) - y_1')(\psi(x) - y_1')\varphi(x) - y_2')(\psi(x) - y_2')\cdots = [F(x, y_1')F(x, y_2')\cdots F(x, y_n')]/X_2^n(x) = \\ &Y_2(y_1')\cdots Y_2(y_n')(x - x_0')(x - x_1')^2\cdots (x - x_{n-1}')^2(x - x_n')/X_2(x)^2, \text{ and the numerator is } \\ &[(\psi^n - (y_0 + \cdots + y_{n-1})\psi^{n-1} + \cdots)(\varphi^n - (y_1' + \cdots + y_n')\varphi^{n-1} + \cdots) - (\varphi^n - (y_0 + \cdots + y_{n-1})\varphi^{n-1} + \cdots)(\psi^n - (y_1' + \cdots + y_n')\psi^{n-1} + \cdots)]/(\psi - \varphi) = (y_0 + \cdots + y_{n-1} - y_1' - \cdots - y_n')\varphi^{n-1}\psi^{n-1} + \cdots, \text{ a symmetric polynomial of degree } 2n-2 \text{ vanishing at } x = x_0, x_1, \dots, x_{n-2} \\ &\text{and } x = x_1', x_2', \dots, x_{n-1}'. \end{aligned}$

The constant C_n is found through particular values of x, either x_{-1} or x_{n-1} :

$$C_{n} = \frac{(y_{-1} - y_{1})\cdots(y_{-1} - y_{n-1})}{(y_{-1} - y_{1}')(y_{-1} - y_{2}')\cdots(y_{-1} - y_{n}')} \frac{(x_{-1} - x_{0}')(x_{-1} - x_{1})\cdots(x_{-1} - x_{n}')}{X_{2}(x_{-1})(x_{-1} - x_{0})(x_{-1} - x_{1})\cdots(x_{-1} - x_{n-2})}$$
$$= \frac{(y_{n} - y_{0})(y_{n} - y_{1})\cdots(y_{n} - y_{n-2})}{(y_{n} - y_{1}')(y_{n} - y_{2}')\cdots(y_{n} - y_{n}')} \frac{(x_{n-1} - x_{0}')(x_{n-1} - x_{1})\cdots(x_{n-1} - x_{n}')}{X_{2}(x_{n-1})(x_{n-1} - x_{0})(x_{n-1} - x_{1})\cdots(x_{n-1} - x_{n-2})}$$

(Of course, $C_0 = 0$). Also,

$$\frac{(\varphi(x) - y_0)(\varphi(x) - y_1) \cdots (\varphi(x) - y_{n-1})}{(\varphi(x) - y_1')(\varphi(x) - y_2') \cdots (\varphi(x) - y_n')} + \frac{(\psi(x) - y_0)(\psi(x) - y_1) \cdots (\psi(x) - y_{n-1})}{(\psi(x) - y_1')(\psi(x) - y_2') \cdots (\psi(x) - y_n')}$$
$$= D_n(x) \frac{(x - x_0)(x - x_1) \cdots (x - x_{n-2})}{(x - x_0')(x - x_1') \cdots (x - x_n')},$$

where D_n is a polynomial of degree 2.

Now let us consider the difference equation (23) of the elliptic logarithm with $f(x) = \sum_{0}^{N} \gamma_k \frac{(x-y_0)(x-y_1)\cdots(x-y_{k-1})}{(x-y_1')(x-y_2')\cdots(x-y_k')}$, as we know that the poles are the y's and that f in interpolated at y_0, y_1, \ldots (cf. Zhedanov [51]). Here, $a(x) = (x-x_0')(x-x_N')$, c = 0, and d is a constant time X_2 in (22):

$$\frac{(x-x'_0)(x-x'_N)}{X_2(x)}\mathcal{D}f(x) = x'_N - x'_0.$$

$$(x-x'_N)\sum_{k=1}^N \gamma_k C_k \frac{(x-x_0)(x-x_1)\cdots(x-x_{k-2})}{(x-x'_1)(x-x'_2)\cdots(x-x'_k)} = x'_N - x'_0.$$
Use $x - x'_N = \frac{x'_N - x'_k}{x_{k-1} - x'_k}(x-x_{k-1}) + \frac{x_{k-1} - x'_N}{x_{k-1} - x'_k}(x-x'_k):$

$$\sum_{k=0}^N \left[\gamma_k C_k \frac{x'_N - x'_k}{x_{k-1} - x'_k} + \gamma_{k+1} C_{k+1} \frac{x_k - x'_N}{x_k - x'_{k+1}}\right] \frac{(x-x_0)(x-x_1)\cdots(x-x_{k-1})}{(x-x'_1)(x-x'_2)\cdots(x-x'_k)} = x'_N - x'_0.$$

So,
$$\gamma_1 C_1 \frac{x_0 - x'_N}{x_0 - x'_1} = x'_N - x'_0$$
,
 $\gamma_k = -\frac{x_{k-1} - x'_k}{C_k} \frac{(x'_0 - x'_N)(x'_1 - x'_N) \cdots (x'_{k-1} - x'_N)}{(x_0 - x'_N)(x_1 - x'_N) \cdots (x_{k-1} - x'_N)}, \quad k = 1, \cdots, N.$

 $p_n f - q_n$ vanishes at $x = y_0, y_1, \cdots y_{2n}$. Let

$$p_n(x) = \sum_{0}^{n} \delta_j(x - y_0)(x - y_1) \cdots (x - y_{j-1})$$

We shall manage to represent $p_n(x)f(x)$ as a polynomial of degree n (which will be q_n) plus a sum of terms $\frac{(x-y_0)(x-y_1)\cdots(x-y_{k+n-1})}{(x-y_1')(x-y_2')\cdots(x-y_k')}$, k = 1, 2, ..., N, with vanishing coefficients when k = 1, 2, ..., n.

At
$$n = 1, p_1(x) = \alpha_0 x + \beta_0$$
 which interpolates $\frac{x - y_0}{f(x) - f(y_0)}$ at $x = y_1$ and y_2
 $\alpha_0 y_1 + \beta_0 = \frac{y_1 - y_1'}{\gamma_1} = \frac{(x_1 - x_0')(x_2 - x_N')}{(x_N' - x_0')X_2(x_1)},$
 $\alpha_0 y_2 + \beta_0 = \frac{y_2 - y_0}{\gamma_1 \frac{y_2 - y_0}{y_2 - y_1'} + \gamma_2 \frac{(y_2 - y_0)(y_2 - y_1)}{(y_2 - y_1')(y_2 - y_2')}} = \frac{y_2 - y_1'}{\gamma_1 + \gamma_2 \frac{y_2 - y_1}{y_2 - y_2'}}$
whence $\alpha_0 = \frac{1}{\gamma_1} \frac{\gamma_1 - \gamma_2 \frac{y_1 - y_1'}{y_2 - y_2'}}{\gamma_1 + \gamma_2 \frac{y_2 - y_1}{y_2 - y_2'}}$
 $p_1(x)f(x) = \gamma_0(\alpha_0 x + \beta_0) + \gamma_1(\alpha_0 x + \beta_0) \frac{x - y_0}{x - y_1'} + \gamma_2(\alpha_0 x + \beta_0) \frac{(x - y_0)(x - y_1)}{(x - y_1')(x - y_2')} + \cdots$
Use $\alpha_0 x + \beta_0 = \frac{\alpha y_k + \beta_0}{y_k - y_k'} (x - y_k') + \frac{\alpha y_k' + \beta_0}{y_k' - y_k} (x - y_k)$:
 $p_1(x)f(x) = \underbrace{\gamma_0(\alpha_0 x + \beta_0) + \gamma_1 \frac{\alpha_0 y_1 + \beta_0}{y_1 - y_1'} (x - y_0)}_{q_1(x)} + \gamma_1 \frac{\alpha_0 y_1' + \beta_0}{y_1' - y_1} \frac{(x - y_0)(x - y_1)}{x - y_1'} + \gamma_2 \frac{\alpha_0 y_2 + \beta_0}{y_2 - y_2'} \frac{(x - y_0)(x - y_1)}{x - y_1'}$

$$+\gamma_2 \frac{\alpha_0 y_2' + \beta_0}{y_2' - y_2} \frac{(x - y_0)(x - y_1)(x - y_2)}{(x - y_1')(x - y_2')} + \cdots$$

and we have to check that

$$\begin{split} \gamma_1 \frac{\alpha_0 y_1' + \beta_0}{y_1' - y_1} &+ \gamma_2 \frac{\alpha_0 y_2 + \beta_0}{y_2 - y_2'} = \\ \gamma_1 \alpha_0 &+ \gamma_1 \frac{\alpha_0 y_1 + \beta_0}{y_1' - y_1} + \gamma_2 \frac{\alpha_0 y_2 + \beta_0}{y_2 - y_2'} \\ &= \frac{\gamma_1 (y_2 - y_2') - \gamma_2 (y_1 - y_1')}{\gamma_1 (y_2 - y_2') + \gamma_2 (y_2 - y_1)} - 1 + \gamma_2 \frac{y_2 - y_1'}{\gamma_1 (y_2 - y_2') + \gamma_2 (y_2 - y_1)} \\ &= 0. \end{split}$$

$$p_1 f(x) - q_1(x) = \sum_{k=2}^{N} \left[\gamma_k \frac{\alpha_0 y'_k + \beta_0}{y'_k - y_k} + \gamma_{k+1} \frac{\alpha_0 y_{k+1} + \beta_0}{y_{k+1} - y'_{k+1}} \right] \frac{(x - y_0)(x - y_1) \cdots (x - y_k)}{(x - y'_1)(x - y'_2) \cdots (x - y'_k)}$$

For a general n, we represent the unknown denominator as

$$p_n(x) = \sum_{j=0}^n \delta_j(x - y_0)(x - y_1) \cdots (x - y_{j-1})(x - y'_{j+1}) \cdots (x - y'_n)$$

Then, in each term of $p_n(x)f(x) = \sum_{j=0}^n \delta_j f(x)(x-y_0)(x-y_1)\cdots(x-y_{j-1})(x-y_{j+1})\cdots(x-y_{j-1})(x-y_{j+1})\cdots(x-y_n)$, we expand f as $f(x) = \sum_{j=0}^N \gamma_{k,j} \frac{(x-y_j)(x-y_{j+1})\cdots(x-y_{j+k-1})}{(x-y_1')(x-y_2')\cdots(x-y_k')}$, so $p_n(x)f(x) = \sum_{j=0}^n \delta_j \sum_{k=0}^N \gamma_{k,j} \frac{(x-y_0)(x-y_1)\cdots(x-y_{j+k-1})}{(x-y_1')(x-y_2')\cdots(x-y_k')}$

9. References

- N.I. Akhiezer, Elements of the Theory of Elliptic Functions, translated from the 2nd Russian edition (Nauka, Moscow, 1970), Transl. Math. Monographs 79, A.M.S., Providence, 1990.
- [2] Andrews George E.; Askey Richard; Roy Ranjan, Special Functions, Cambridge university press, Encyclopedia of mathematics and its applications. 71, 1999
- [3] A.I. Aptekarev, Asymptotic properties of polynomials orthogonal on a system of contours, and periodic motions of Toda lattices, Mat. Sb. 125 (167) (1984) 231-258 (Russian) = Math. USSR Sb. 53 (1986) 233-260.
- [4] A.I. Aptekarev, H. Stahl, Asymptotics of Hermite-Pad polynomials, in: A.A. Gonchar, E.B. Saff (Eds.), Progress in Approximation Theory, Springer, Berlin, 1992, pp. 127-167.
- [5] R. Askey, J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. A. M. S. 54 no. 319, 1985. pp. 1-55.
- [6] G.A. Baker, Jr., Essentials of Padé Approximants, Ac. Press, new York, 1975.
- [7] C. Brezinski, History of Continued Fractions and Padé Approximants, Springer, Berlin, 1991.
- [8] B.M. Brown, W.D. Evans, M.E.H. Ismail, The Askey-Wilson polynomials and q-Sturm-Liouville problems, Math. Proc. Camb. Philos. Soc. 119 (1996) 1-16.
- [9] V. P. Burskii, A. S. Zhedanov, The Dirichlet and the Poncelet problems, Reports of RIAM Symposium No.16ME-S1 Physics and Mathematical Structures of Nonlinear Waves Proceedings of a symposium held at Chikushi Campus, Kyushu Universiy, Kasuga, Fukuoka, Japan, November 15 - 17, 2004 http://www.riam.kyushu-u.ac.jp/fluid/meeting/16ME-S1/papers/Article_No_24.pdf
- [10] Vladimir P. BURSKII and Alexei S. ZHEDANOV, Dirichlet and Neumann Problems for String Equation, Poncelet Problem and Pell-Abel Equation, Symmetry, Integrability and Geometry: Methods and Applications Vol. 2 (2006), Paper 041, 5 pages arXiv:math.AP/0604278 v1 12 April 2006
- [11] J.S. Geronimo, W. Van Assche, Orthogonal polynomials with asymptotically periodic recurrence coefficients, J. Approx. Theory 46 (1986), 251-283.
- [12] J.S. Geronimo, W. Van Assche, Orthogonal polynomials on several intervals via a polynomial mapping, Trans. Amer. Math. Soc. 308 (1988), 559-581.
- [13] J. Gilewicz, Approximants de Padé, Lect. Notes Math. 667, Springer, Berlin, 1978.
- [14] Gruenbaum, F.Alberto; Haine, Luc: On a q-analogue of Gauss equation and some q-Riccati equations, in Ismail, Mourad E. H. (ed.) et al., Special functions, q-series and related topics. Providence, RI: American Mathematical Society, Fields Inst. Commun. 14, 77-81 (1997).

- [15] Martin H.Gutknecht, The Rational Interpolation Problem Revisited, The Rocky Mountain Journal of Mathematics, 21 no.1, pp.263-280 1991
- [16] R. Haydock, C.M.M. Nex, A general terminator for the recursion method, J. Phys. C: Solid State Phys. 18 (1985) 2235-2248.
- [17] R. Haydock, C.M.M. Nex, Densities of states, moments, and maximally broken time-reversal symmetry, Phys. Review B 74 (2006) (205121-1)–(205121-8).
- [18] A. Iserles, Rational interpolation to exp(-x) with application to certain stiff systems, SIAM J. Numer. Anal. 18 (1981), 1-12.
- [19] M.E.H. Ismail, The Askey-Wilson operator and summation theorems, pp. 171-178 in M.E.H. Ismail et al. (ed.), Mathematical Analysis, Wavelets, and Signal Processing. An International Conference on Mathematical Analysis and Signal Processing, Cairo University, Cairo, Egypt, January 3-9, 1994, Contemp. Math. 190, AMS, Providence, 1995.
- [20] Ismail, Mourad E. H., Classical and quantum orthogonal polynomials in one variable, with two chapters by Walter Van Assche, Cambridge university press, 2005
- [21] Ismail, Mourad E.H.; Masson, David R., Generalized orthogonality and continued fractions. J. Approximation Theory 83, No.1, 1-40 (1995).
- [22] R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Delft University of Technology, Faculty of Information Technology and Systems, Department of Technical Mathematics and Informatics, Report no. 98-17, 1998. See also the online version in http://aw.twi.tudelft.nl/~koekoek/askey.html
- [23] T.H. Koornwinder, Compact quantum groups and q-special functions, in Representations of Lie groups and quantum groups, V. Baldoni & M. A. Picardello (eds.), Pitman Research Notes in Mathematics Series 311, Longman Scientific & Technical, 1994, pp. 46-128. See also the part "q-Special functions, a tutorial", in ftp://unvie6.un.or.at/siam/opsf_new/koornwinder/ koornwinder3/koornwinder3.tex and *ibid.*/wilsonqhahn.ps
- [24] L. Lorentzen, H. Waadeland, Continued Fractions with Applications, North-Holland, 1992.
- [25] M. Maillard, S. Boukraa, Modular invariance in lattice statistical mechanics, Annales de la Fondation Louis de Broglie, Volume 26 numéro spcial, 2001, 287-328. http://www.ensmp.fr/aflb/AFLB-26j/aflb26jp287.pdf
- [26] A.P.Magnus: Recurrence coefficients for orthogonal polynomials on connected and non connected sets, pp. 150-171 in L.Wuytack, editor: Padé Approximation and its Applications, Lecture Notes in Mathematics 765, Springer Verlag Berlin 1979.
- [27] A.P.Magnus: Riccati acceleration of Jacobi continued fractions and Laguerre-Hahn orthogonal polynomials, pp 213-230 in H. Werner, H.J. Bünger, editors: Padé Approximation and its Applications, Bad Honnef 1983, Lecture Notes in Mathematics 1071, Springer Verlag, Berlin, 1984.
- [28] P. Maroni, An introduction to second degree forms, Adv. Comput. Math. 3 (1995) 59-88.
- [29] L. M. Milne-Thomson, The Calculus Of Finite Differences, Macmillan And Company., Limited, 1933. http://www.archive.org/details/calculusoffinite032017mbp
- [30] A.F. Nikiforov, S.K. Suslov, Classical orthogonal polynomials of a discrete variable on nonuniform lattices, Letters in Math. Phys. 11 (1986) 27-34.
- [31] A.F. Nikiforov, S.K. Suslov, V.B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, 1991.
- [32] J. Nuttall, S.R. Singh, Orthogonal polynomials and Padé approximants associated to a sustem of arcs, J. Approx. Theory 21 (1977), 1-42.
- [33] J. Nuttall, Asymptotics of diagonal Hermite-Padé polynomials, J. Approx. Theory 42 (1984), 299-386.
- [34] F. Peherstorfer, Orthogonal and extremal polynomials on several intervals, J. Comp. Appl. Math. 48 (1993), 187-205.
- [35] O.Perron, Die Lehre von den Kettenbrüchen, 2nd edition, Teubner, Leipzig, 1929 = Chelsea,
- [36] M. Rahman and S. Suslov. Classical biorthogonal rational functions. In Methods of Approximation Theory in Complex Analysis and Mathematical Physics IV, volume 1550 of Lecture Notes in Math., pages 131-146. Springer Verlag, 1993.
- [37] V. P. Spiridonov: classical elliptic hypergeometric functions and their applications, Lectures delivered at the workshop "Elliptic integrable systems" (RIMS, Kyoto, November 8-11, 2004). This work is

supported in part by the Russian Foundation for Basic Research (RFBR) grant no. 03-01- 00780. 253-287 http://www.math.kobe-u.ac.jp/publications/rlm18/17.pdf

- [38] Theta hypergeometric integrals Author(s): V. P. Spiridonov Original publication: Algebra i Analiz, tom 15 (2003), vypusk 6. Journal: St. Petersburg Math. J. 15 (2004), 929-967.
- [39] V.P. Spiridonov, Elliptic hypergeometric functions, Abstract: This is a brief overview of the status of the theory of elliptic hypergeometric functions to the end of 2006 written as a complement to a Russian edition (to be published by the Independent University press, Moscow, 2007) of the book by G. E. Andrews, R. Askey, and R. Roy, *Special Functions*, Encycl. of Math. Appl. **71**, Cambridge Univ. Press, 1999. Report number: RIMS-1589 Cite as: arXiv:0704.3099v1 [math.CA]
- [40] Spiridonov, V. P.; Zhedanov, A. S., Generalized eigenvalue problem and a new family of rational functions biorthogonal on elliptic grids, in Bustoz, Joaquin (ed.) et al., Special functions 2000: current perspective and future directions. Proceedings of the NATO Advanced Study Institute, Tempe, AZ, USA, May 29–June 9, 2000, Dordrecht: Kluwer Academic Publishers. NATO Sci. Ser. II, Math. Phys. Chem. 30, 365-388 (2001).
- [41] Spiridonov, Vyacheslav; Zhedanov, Alexei, Classical biorthogonal rational functions on elliptic grids. C. R. Math. Acad. Sci., Soc. R. Can. 22, No.2, 70-76 (2000).
- [42] V. P. Spiridonov and A. S. Zhedanov: Elliptic grids, rational functions, and the Padé interpolation The Ramanujan Journal 13, Numbers 1-3, June, 2007, p. 285–310.
- [43] H. Stahl, Three different approaches to a proof of convergence for Padé approximants, pp. 79-124 in J. Gilewicz, M. Pindor, W. Siemaszko, eds: Rational Approximation and its Applications in Mathematics and Physics, Proceedings, Lancut 1985, Lect. Notes Math. 1237, Springer, Berlin, 1987.
- [44] H. Stahl, Asymptotics of Hermite-Pad polynomials and related approximants A summary of results, in: Nonlinear Numerical Methods and Rational Approximation, ed. A. Cuyt (Reidel, Dordrecht, 1988) pp. 23-53.
- [45] H. Stahl, The convergence of Padé approximants to functions with branch points, J. Approx. Th. 91 (1997) 139-204.
- [46] P. Turchi, F. Ducastelle, G. Treglia, Band gaps and asymptotic behaviour of continued fraction coefficients, J. Phys. C: Solid State Phys. 15 (1982) 2891-2924.
- [47] W. Van Assche, Christoffel functions and Turán determinants on several intervals, J. Comp. Appl. Math. 48 (1993), 207-223.
- [48] Alfred J. van der Poorten, Elliptic Curves and Continued Fractions, Journal of Integer Sequences, http://www.univie.ac.at/EMIS/journals/JIS/index.html Volume 8, 2005 Issue 2 Article 05.2.5, 19 pages.
- [49] H. Widom, Extremal polynomials associated with a system of curves in the complex plane, Adv. Math. 3 (1969) 127–232.
- [50] Alexei Zhedanov, Biorthogonal Rational Functions and the Generalized Eigenvalue Problem, Journal of Approximation Theory, Volume 101, Issue 2, December 1999, Pages 303-329.
- [51] A.S. Zhedanov, Padé interpolation table and biorthogonal rational functions. In: Proceedings of RIMS Workshop on Elliptic Integrable Systems. Kyoto, November 811 (2004) to be published