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1. The name of the game.
1.1. Elliptic grid, lattice, sequence.

Have a look at this, on what is called “elliptic sequences”:

http://www.research.att.com/"njas/sequences/A006721

Greetings from [The On-Line Encyclopedia of Integer Sequences!

A006721 Somos-5 sequence: a(n) = (a(n — 1l)a(n —4) + a(n — 2)a(n — 3))/a(n — 5).
(Formerly M0735) 1, 1, 1, 1, 1, 2, 3, 5, 11, 37, 83, 274, 1217, 6161, 22833, 165713,
1249441, 9434290, 68570323, 1013908933, 11548470571, 142844426789, 2279343327171,

57760865728994, 979023970244321
REFERENCES ...

David Gale, ”The strange and surprising saga of the Somos sequence”, Math. Intelligencer 13(1) (1991),
pp. 40-42.

A. J. van der Poorten, Elliptic curves and continued fractions http://arXiv.org/abs/math.NT /0403225
A. J. van der Poorten, Recurrence relations for elliptic sequences... http://arXiv.org/abs/math.NT /0412293
J. Propp, The Somos Sequence Site http://www.math.wisc.edu/ propp/somos.html

D. Zagier, [Problems posed at the St Andrews Colloquium, 1996 http://www-groups.dcs.st-and.ac.uk/"john/Zagier/Prob
Consider (see somos.html above) recurrence relations linking products of cosines: cos((n+
1)0) cos((n—1)8) = cos?(nf) cos? §—sin*(nd) sin® §, cos((n+2)0) cos((n—2)0) = cos*(nd) cos*(26)—
sin?(nf) sin®(26), and eliminate sin*(nf): c,y1c,_1/ 80?0 — cyyocn_o/sin?(20) = 2 (cot? § —
cot?(26)), yielding a family of recurrence relations which showed sometimes unsuspected
integer particular solutions. Experts made the connection with integral invariants of elliptic
curves and these remarkable sequences have been called “elliptic”.


http://www.research.att.com/~njas/sequences/A006721
http://www.research.att.com/~njas/sequences/Seis.html
http://arXiv.org/abs/math.NT/0403225
http://arXiv.org/abs/math.NT/0412293
http://www.math.wisc.edu/~propp/somos.html
http://www-groups.dcs.st-and.ac.uk/~john/Zagier/Problems.html
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Supersolitons in layered Josephson structures

Yuri S. Kivshar
Institute for Low Temperature Physics and Engineering, 47 Lenin Avenue, Kharkov 310164, U.S.5.R.

Tatyana K. Soboleva
Institute for Physics and Engineering, 72 R. Luxemburg Street, Donetsk 340114, US.S.R.
(Received 15 March 1990; revised manuscript received 9 July 1990}

It is demonstrated that in a system of parallel-coupled long Josephson junctions forming a lay-
ered superconducting structure there are nonlinear excitations of coupled fluxon arrays in the
form of dynamical “supersolitons™ [A. V. Ustinov, Phys. Lett. A 136, 155 (1989)]. The supersoli-
tons in the system may be of two types, dynamical kinks and envelope solitons. The former ones
are described by the elliptic-lattice equation which is transformed into the sine-lattice equation in
the case of the dense fluxon arrays or the modified Boussi equation in the inuum limit. .

Rfosfﬁl?]g worlts!® < 1ptic grid” means a conve-
nient mesh for discretizing over ellipses, “ellip-
tic difference operator” is a partial difference
operator extending partial differential opera-
tor of elliptic type, an “elliptic lattice” is a
set of complex numbers {mw; + nws}, m and
n € Z of periods of elliptic functions, or simply
the support of a partial difference operator, or

also a special digital filter. ..

Airfoil grid built with elliptic grid generation.

William D. Henshaw 2006-06-17
http://www.1llnl.gov/CASC/Overture/henshaw /overtureFigures/node5.html

What is meant here is a new rule for building lattices {z, },n € Z, which may be useful
in difference calculus.

1.2. Known lattices.

(1) Arithmetic progression z,, = an + b,
(2) Geometric progression x,, = aq™ + b,
(3) Double geometric progression ANSUW (Askey- Nikiforov- Suslov- Uvarov- Wilson
[3,5,36,37,42-44])
T, =0aq"+bg " +c. (1)
Why this latter formula? My favorite way to introduce it is that the first order di-
vided difference of a polynomial on such a lattice yields a polynomial of lower degree.
SO7 p(xn+1) — p(xn)
Tnt1 — Tn
Tni1+ T, = ax, + (. No, this is too easy, we recover the simple geometric g—lattice, with
P(@nt1/2) = P(Tn-1/2) Then,
Tpt1/2 — Tp—1/2
still with p(z) = 22, (s + 1/2) + 2(s — 1/2) = ax(s) + 8. Entering (), assumed to be
valid for integer as well as half-integer s, one finds indeed that it fits, with ¢*/?+¢ /% = «,
certainly the fastest derivation.

is a polynomial of degree k — 1 if p has degree k. With p(x) = 22,

g = o — 1. It must have been a central divided difference
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But why choose a difference operator built on z—values? A
(seemingly) more general setting uses an (apparently) indepen-

1)) —
dent lattice of values: ply(s +1) —p(y(s)) which must be a

yis+1) 1 | y(s 1) — y(s)
¢/ : polynomial of degree lower than the degree of p:
y(s) 1 | p(y) =y*: yls+1) +y(s) = ax(s) + 5,

: : py) =v*: y(s+1)*+y(s+1)y(s)+y(s)* = some polynomial of
x(s) r(s+1) degree 2, from which we subtract the square of the first result,
to get y(s+ Dy(s) = vx(s)? + dz(s) + €.

These two equations already tell what y(s) and y(s + 1) are, as functions of

) ys + 1) = 2D \/ (“E) —aloge — ate) -

so, the (z,y) are on a conic y? — azy + y2*> — By + dx + ¢ = 0. But y(s + 1) must be
the ordinate of a second point with absciss z(s + 1)! A rigid law rules therefore the x—

{M_x@ -

and y—sequences, y(s +2) +y(s+1) =azx(s+ 1)+ =«

aM —y(s) —y(s+1)+28.

One recovers [36,37] x,, and ¥y, as combinations of ¢" and ¢~", where

1 a?—2
q+-—-= 77-
q Y
The slopes of the asymptotes of the conic above are s; and sy such that s; + s3 = « and
2
s s a —2 . .
$189 =7, Or 22 S q s the ratio of the slopes of the asymptotes of
52 S1
the conic.
ysh @ (b)
Yof === i
Y11‘ *****
S — e
)1@3 )1(1 )‘(2
Yo|---- B ‘
N A e
& . | T
! | ! : % X3
X5 )I(3 X2 )I(l

Figures from [37]
Remark also that ¢'/2 4+ ¢~'/? = a/,/7.
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2. The new lattice, at last

It will be introduced through four equivalent points of view:

2.1. Points (x,,y,), (xn, ynt1) on a biquadratic curve.

From [39]:

Simplest difference equations relate two values of the unknown fuction f: say, f(p(x))
and £(1(z)).

Most instances [41] are (¢(x),9(z)) = (x,z + h), or the more symmetric (x — h/2,z +
h/2), or also (x,qx) in g—difference equations [21]. Recently, more complicated forms
(r(x) —+/s(z),r(z) + y/s(x)) have appeared [5,12,28,29,43,44], where r and s are rational
functions.

This latter trend will be examined here: we need, for each z, two values f(p(z)) and
F(@(x) for f.

A first-order difference equation is F (z, f(p(x)), f(¥(x))) = 0, or f(p(z)) — f(¥(x)) =
G (z, f(e(x)), f(1(x))) if we want to emphasize the difference of f. There is of course some
freedom in this latter writing. Only symmetric forms in ¢ and v will be considered here:

(Df)(x) = F (z, f(e(x)), f((2))), (2)
where D is the divided difference operator

P(x) —e(z)
and where .# is a symmetric function of its two last arguments.
For instance, a linear difference equation of first order may be written as

a(x) f(p(x)) + b(z) f(Y(z)) + c(z) = 0,
as well as
a(z)(Df)(x) = B(@)[f(p(x)) + f( ()] + (=),
(@)][(x) = ¢(2)]/2, B(x) = —[a(x) + b(x)]/2, and y(z) = —c(x).
The simplest choice for ¢ and 9 is to take the two determina-

tions of an algebraic function of degree 2, i.e., the two y—roots
of

F(z,y) = Xo(z) + X1 (2)y + Xo(2)y* =0, (4a)

where Xg, X1, and X5 are rational functions.

z
—+
=
Q
—
&
I
=N
—
&
I
e

W10

Zo T

But difference equations must allow the recovery of f on a whole set of points! An initial-
value problem for a first order difference equation starts with a value for f(yo) at z = o,
where yq is one root of (Hal) at x = x¢. The difference equation at © = z relates then f(yo)
to f(y1), where y; is the second root of (Hal) at xy. We need x; such that y; is one of the



2006- — Elliptic lattices. 2 — The new lattice — 6

two roots of (Hal) at x4, so for one of the roots of F'(x,y;) = 0 which is not xy. Here again,
the simplest case is when F' is of degree 2 in x:

F(z,y) = Yo(y) + Yi(y)z + Ya(y)z® = 0. (4b)

Both forms (#al) and (L) hold simultaneously when F' is biquadratic:

F(z,y) = Z Z Ci Ty’ (5)

i=0 j=0

Yn+2 1 We again look for a sequence {(x,, ¥y, }nez on an algebraic

curve F(z,y) = 0 such that 1) at * = x,, correspond two or-
dinates y, and y,,1 given by an equation of degree two with
coefficients which are rational functions of z,; 2) at y = y,41
correspond two abscissae x, and x,,; given by an equation of

egree two with caefficients which are rational functions of y,, 1.
: : This leads to

Yn+1 T

Yn A

)

Look! two colours !

Definition 1. A sequence {...,z_1,z0,21,...} is an elliptic lattice if there exists a se-
quence {...,y_1,Y0, Y1, .. } and a biquadratic polynomial F (see (&), D), @)) F(z,y) =
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S Yo gy = Xo(x) + X1 (2)y + Xa(2)y? = Yoly) + Yi(y)x + Ya(y)?,
such that F(z,,y,) =0 and F(z,,yn+1) =0, for n € Z.
As y,, and ¥, are the two roots in t of F(x,,t) = Xo(z,) + X1(2n)t + Xo(z,)t? = 0,
useful identities are
X1 (ZEn> 62711172 + Cl,lxn + 0071 Xo(ll?n) 02701'% + Cl,Oxn + 0070
Yn + Yny1 = — == 2 y YnYn+1 = = 2 .
Xo(xy) C22T7 + C1 2%y + Co2 Xo(xy) Co 9T + C1 2%y + Co2

(6)

and the direct formula

QXQ(QC”) ’ (7)

Yn and Yp 1 =

where
P=X?%_4XyX, (8)

is a polynomial of degree 4.
Also, as x,_; and z,, are the two roots in ¢ of F'(¢,y,) = 0,

_Yl(yn) _
Yo (yn) C2.2Y2 + C21Yn + C20

1205 + C11Yn + C10 o Yo(yn) — co2ya + CoaYn + oo
- y ndn—1 — - .
Ya(yn)  Coy2 + CoalYn + C2p

(9)

Tp+ Tpq =

Factorizations:

F(z,y) = Xa(x)(y — ¢(@))(y —(z)) =Ya(y)(@ - ' @) (@—v " (). (10)

F(zn,y) = Xo(@)(y =) (Y = Yns1),  F(,9n) = Ya(yn) (@ — 20) (@ — 01).

The construction above is called “T-algorithm” in [59, Theorem 6].
Exercise. Is {z,} = {1,2,3,...} an elliptic sequence? Yes, of course, with y, = n,
so F(z,y) = (y —x)(y —x — 1). What are the other admissible y—sequences? And
{1,4,...,n%,...}? Yes. And {1,v/2,V/3,...}? No. Answers are very easy through other
equivalent definitions, see next section, § 22

There are 9 coefficients in (H), actually 8 degrees of freedom. Transformations = —
O/ +ﬁ/x a//+/8//y
oY
f)// + 0z ,}/// + 5//y
(@, yn) sequences. Two essential degrees of freedom remain. See Spiridonov & Zhedanov
[59]

with /8’ — 3’y and o”§" — """ # 0 lead to basically equivalent

Za — Zc
The first one is the modulus k. It appears from the cross ratios Ry pcq = 'Z — id ,
C
b — Zd
where z1, ..., z4 are the zeros of P, and where (a, b, ¢, d) is a permutation of (1,2, 3,4). The

important thing is that the cross ratio is left unchanged under a z — (o/ + f'x) /(v + 'x)
transformation. Among other choices, we may send the four zeros of P to a symmetric set
{=1/k,—1,1,1/k}. The 6 values of R under the 24 possible permutations of the indexes

1+ kN (1+k)?2  (1-k)?
happen to be (1 + k) ) (1+F) —( ) and their inverses. If R is one of these values,

4k 4k
the other ones are generated by applying one or several times R — 1/R and R — 1 — R
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(modular group (?)). Then the various possible values of the modulus are u such that

1i\/E>2

—u 1FVE
The same cross ratio Would be obtained With the four zeros of Q = Y7 — 4Y,Ys, relevant
from F(z,y) =0= 2z = (-Yi(y) £ VQ(y))/(2Y2(y)), see (BA) p. B for a case where the
degree of @) is reduced to 3 see also Appel & Goursat p-293, where it is stated that the
four tangents to the cubic meeting a given point of the curve define the same cross ratio.
A vanishing modulus corresponds to a polynomial P with a double zero. We then recover
the ANSUW case, up to rational transformations of coordinates.

The reduced form with two parameters which will be used here is

1 2
R = (1 +u> and are, if k is one root, +k, +1/k, + (

Fa,y) = k(1 = k2%)2%y" — k(1 = 27)(* + y°) — 2k(1 — I7)2'wy + 1 — k72"
= (1= k2?)2% — k(1 = 2%)(x +y)” = 2k(z' — k) (1 + k2 )wy +1 - k72"
(1)

k(1 —k*)2'z + /P(x)

K2[(1— k222)a% + 22 — 1]

The second parameter 2’ is investigated now. With ([l), (@) isy =

with P(x) = k?(1 — 2?)(1 — k%2?)(1 — 2?)(1 — k?*z?).

We already see that, if 2 is close to 1 or k=2, P is almost the zero polynomial, the curve
in the « — y plane has almost no width, any x,, leads to vy, and y, 1 close together, and to
Tpt1 close together too, and close to z,,.

]{32 2
n) |

2ke(1 —
Well, let us take the example 2’ = k= '+ asmall e. Then, v, and y,, = l”nﬂ:\/ e( : )(kQ

2ke(1 — 22)(1 — k?22)
1— k2
of the x—lattice, and that this step is small if 2’ is close to £1 or £k~ 1.

O(e), and @41 = x, +2 +O(e), we see that 2’ is linked to a step

Baxter [10, § 15.10] uses 2%y +c(x?+y?)+2dry+1, so that P(x) = 4[d*z?— (c+2%)(cx®+
D] = —dcfxt — (k+ k)22 +1] = —de(1 - k*(2?/k)) (1 — (z*/k)) it k+ k1 = (&> — 2 —1) /c,
or (k+c¢)(1+ ke) = kd®.
k(1 -2
Baxter’s form follows from (IT]) in the variables k*/2x and k*/2y: (k'/2z)? (k:l/Qy)Q—%[(kl/2 )2+

21— k)2 1s 1y - -1 (1-k)%"” - k(1 - 277
Wk/ ©h'/?y+1 = 0. Check that ————— = - H ([~ )

=k + k7! indeed.

(k"?y)*]—
1 _ kQZ/Q
k(1 — 2?)
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Then, Baxter finds that \/—1/(kc) is the elliptic sine of the relevant step [10, eq.

1 1— k2272 _ , ) )
(15.10.8)]. Here, e = D] = k7'dc(¢) =sn(¢ + K +iK') if 2 is the el-
liptic sine 2’ =sn((). From [1, p.572]:
U u+ K+iK'
16.8.1 | sn ! 8O % m12de u |

The second parameter 2’ is a fixed point of the relation be-
tween x,, and z,1, i.e., E(Z,z') = 0 (see next section for F).
I In the F(z,y) = 0 setting, the fixed points z, = x,.1 occur at
: the y—extrema, so when 0F/0x = 0.

, With (D), at y = £1 or £1/k, x = £1/(k2') or +2/, OF [0z =
L 2K2(1 — k2P ay? — 2K% (1 — 2%)x — 2k(1 — K%)2'y
= 2k%2[22(1 — K*%) — (1 — )] — 2k(1 — k*)2y

Zi 2 Fitr = 2k(1 — k)2 (kZ’z F 1) or 2(1 — k*)(x F 2') = 0.
The four abscissae of interest are therefore £1/(kz’) and +2'.
1/(kz") + 2/
1/(kz') + 1/ (k2 1+ kz")?
A cross ratio is /(kz ), i //(k;z ) = (1 + k") . So, calculations similar to the oper-
2 +z Ak 2"

2+ 1/(k2")
ations defining the modulus lead here to k2.

With Baxter’s form, the abscissae corresponding to y = +k%? and y = +k~'/2 are
v 22y (2 +1y2) +2day+1 = (k+c)a? £2dkY 2z +ck+1 = (k+c) Y (k+c)r £dk'/?)? =
0= 2 = Fdk'?/(k +c) = F(1 + ke)/(dk"/?) and (k7' + ¢)2® £ 2dk 2z + k~le + 1 =
E~N(1 + ck) (1 + ke)x + dk'/?)? = 2 = FdkY?/(1 + ke) = F(k + ¢)/(dk'/?). The cross

k+ct1+ke
N Trciktc _ (LroP(Lekp
ratio is now ——- Ak + o) (1 + ke)
l+kc+k+c

2.2. Symmetric biquadratic relation between x,, and z,4.

The companion sequence {y,} is not needed in the definition of an elliptic lattice, but
the definition above is best suited to the description of difference equations.

A relation involving only z,, and z,, is obtained by the elimination of 3,1 through the
resultant of the two polynomials in y, 11 from @) Pi(yn+1) = (2n+2n1)Y2(Yns1) + Y1 (Yns1)
and Po(Ynt1) = TnTn1Y2(Unt1) — Yo(Unt1)-

The form of this resultant is most easily found through interpolation at the two zeros
w and v of Ya: let Ya(t) = a(t — u)(t —v), Yi(t) = Bt —u)(t —v) + f't + 3", Yo(t) =
Y(t —u)(t —v) + 7't +~", then, using the basis {1,t, (t — u)(t — v),t(t — u)(t —v)}, the
resultant is built with the coefficients of tP;(t), Pi(t), tP(t), and Ps(t):

(xn + xn-‘rl)a =+ ﬂ ﬁ/ <u + U)ﬁl + ﬂ// —U’Uﬂ/
_ 0 (xn + xn-i-l)a + 5 ﬁ/ ﬂ// o
E(l’m $n+1) = TnTni10l — —’)// _(u + ’U)"}/ _ 7// UU’)// =0,
0 TpTpi10l — 7y —' —~"

which is clearly a symmetric polynomial of degree 2 in x,, + 2,11 and z, 2,1
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(Bu+3")(Bv+ ") (arntni — 7)2
+[(Bu+ ) (Vv +9") + (Bv+ ") (Y u+ ") a(@n + Tot1) + B)(anTni1 — )
+(Vu+ ") (V0 + ")z + o) + )
+ (8" = BB (wnanir — 7) + ¥ (a(@n + 2at1) + B)] =

or, with S = x,, + ,,.1 and Il = 2,241,

[(Yv+9") (@S + 8) + (Bv+ ") (all = Y)][(vu+ ") (S + B) + (B'u + ") (oIl — )]
+ (8" = Y)Y (@S + B) + ' (all — )] = 0. (12)

Ezxample. With the canonical form (), a = k*(1—k?2"?), 3= 0,0 = —2k(1—-k?)2", 3" =

2 2 ’ "no__ 212 2(1 B Z/2>2 _ (1 B k2><1 B k22/4> _
O,y:—k(l—i),fy—(),*y—l—k:z _kl—kQZIQ_ 1 2. ;SO U+ v =
1—27
0,uv = =L
E(2n, Tpi1) = BPuv(0x,tni1 — )" + 720 (@ + 2pi1)? — 827" (azp@pnsr — )
= &’ fPuvrial " 0P (Tt Tnga)’ —af” (2yuv + ") TnTps1+077 (wvy +7")
[1+k2 Ak2272 4 k2 (14k2)2/4] ) (1—k22"2) 1-k2272

— —4k6(1 _ ]{32>22,2(1 . 2/2)(1 o kQZIQ) z? n+1 + k’4( ]{32)2(1 . ]{322,4)2(1‘n + xn—&-l)g
— AN (1= K221+ K — 4227 + B (1 + k) 2o — 4K (1 — K2)222(1 = 27) (1 — k%27)
4 22 12 ) ) 2 (1 = k%) 2
= —4k"(1 — k*)%2%(1 = 2%)(1 — k*27) § KPalal, — 700 — ) (1 = 2/2)($n + Tpi1)
1+ k? — 4k22"7 + k2 (1 + k%)
(1 _ 2/2)(1 _ kQZ/Q)
which is again of the form (Il), with the same k, but with 2’ replaced by z":

E(x,y) = K*(1—-k*2")2%y* —k*(1—2") (v +y)* +2k(2" — k) (1+ k2" )oy+1—-Kk*2" = 0 (13)

TnTnt+1 T 1}

2" (1 — k2212 2 —k 1+ k* — 4k%2" + K> (1 + k*)2

such that - = and 2 =

1 — k222 4k2272(1 — k2272)(1 — 2?) k(1 —kz") k2(1 — 22)(1 — k2272)
y 1_2k2212+k2214

k(1 =222 4 k2
(1Fk)(1 £ k2"?)? L — 2(1 — 2"*)(1 — k%27)
k(1 — 227 + k22'%)’ 1—2272 4 k224

from which =z (14)

Interesting identities are 2" £1 = — 1+

L 2(1 — k?)2"”
Z = —_— .
1 — 2272+ k224

Definition 2. An elliptic lattice, or grid, is a sequence satisfying a symmetric biquadratic
relation [59, Theorem 5]

I
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E(ry, xn1) = doo + do,l(l”n + Tpt1) + do,z(l”n + $n+1>2 + di 1 Tp Ty
+ di 20T 1 (Tn + Tngr) + ozl = 0. (15)

Remark that the coefficient of the product x,x,11 is di1 + 2dy ».
From symmetry of E, E(z,,x,—1) = E(z,_1,2,) = [[&) at n — 1 vanishes too. So, x,_1
and z,41 are the two y—roots of F(z,,y) =0, and

_do,l + (dl,l + Qdo,z)l”n + dl,zxi doo + do 12, + do,ﬂ%

Tpo1 + Tpe1 = s Ty 1Tpa1 = . (16
! + d072 -+ dLQZEn + dggl'% Lot d072 + dLQZEn -+ dggl‘% ( )
—(d d 2d, w4 diox?) £ \/P(z,
oy and 2,4, = (doji + (dig + 2dp2)xy + dy22;) (x )’ (17)
2(d0,2 + dy 27y + dg,ﬂ%)
. . . Yl(ynﬂ) N
with the same P as before (times a constant), as from [@) at n+1, z,41 = —ﬁ — Xy, =
2(Yn+1
Y, —X1(x,) £ /P(x,)
—— — 1, at , .
Y Ty & DX () rom ()

It becomes much easier to check if a given sequence is an elliptic one, as z,_ 1+ x,1 and

ZTn_1Tpe1 must be rational functions of degree < 2 of x,,.
1

cos 0 sin(nf) — sin 0 cos(nf)
1 2cosf/x, 2 cos 0z,

cos 0 sin(n#) + sin @ cos(nf) T cos? 0/x2 —sin® (1 — 1/22) T 1 —sin? Qx%;xn_lan -

Example. Let x,, = 1/sin(nf), then z,,_1 + x,11 =

[cos 0 sin(nf) — sin € cos(nh)][cos O sin(nd) + sin 6 cos(nd)] "~ cos? 0/x2 —sin? (1 — 1/22)

2

Ty

1 —sin® fz2’ i
E(xy, Tne1) = (1 — 22 sin® 0)a?,, — 22,241 cosf + 22 =0,
E(z,y) = —sin?0 2%y* + 2% + 3> — 2cos 0 xy.

E(zp,x,11) = 0 gives x,41 as a function of z,, a procedure quite common in numerical
analysis. The fized points z, : E(zo, 20) = 0 are especially interesting. May a sequence x,,
converge towards some fixed point? Normally, no: from the symmetry of E, dz,1/dx, —
—1 near a fixed point. But what is “normally”?

2.3. Coefficients of continued fraction expansion of an algebraic function.

We consider the algorithm for the coefficients of a continued fraction expansion of an
algebraic function involving v/P, where P is a polynomial of degree < 4 (but a part of the
algorithm is valid for any degree [hyperelliptic case, see § EE1 p. B2]), and let 21, ..., z4 be
the zeros of P (z4 = oo if degree P < 4).

We choose a continuous 4/ P(z) outside a system of two cuts, say [z1, z2] and [z3, z4]. So,
instead of dealing with the two-sheeted Riemann surface, we will sometimes emphasize a
sign ¢ in 4/ P(z), with ¢ = +1 or —1.

Let also zq different from 2, ..., 24, and 7+ 0(z — 2g) be the two first terms of the Taylor
expansion of y/P(z) about z = 2.

We look at continued fraction expansions about z, of functions involving v/P.
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Start with v/P itself, to see how things are going:

2
VP(z) =7+0(2—2) — T%Ei——%, where “Tayl”; means the two first terms of the

a2
Taylor expansion of what is needed there, i.e., of (2= %) , and “new cf” is
400z — 20) — V()
— 20)? 0(z — /P
the remainder Tayl; (z)— (2~ 20) = Tayl,(2)— 7 +2 (2= 20) + 2(2) )
v+6(z—2) — V/P(2) (2 = 20)2[(v + (2 = 20))* — P(2)]

where the denominator is a polynomial of degree < 2. So, intermediate steps will involve

W — VP
% where Z,, and S, are polynomials, with S,,(z) —+/P(z) = O((z—20)?) near zg, so

that S2(z) — P(z) = a polynomial multiple of (z — zo)QZn(z), say (z — 20)* Wy (2)Z,(2). We
keep at each step the Taylor expansion of degree 1 and consider the remainder (associate
continued fraction, see Perron [51, § 20], etc.)

(1) §=M’

wo P,, Q,(+ 0), D ganze Zahlen sind, und zwar D positiv, aber kein
Quadrat; umgekehrt ist jede solche Zahl eine quadratische Irrational-

zahl. Dabei kénnen wir ohne Beschrinkung der Allgemeinheit D po-

sitiv annehmen, weil ja

_ V-—ﬂ ~+ By — V—D-'— __ﬂ)_ .
Qo - Qo
Ferner diirfen wir voraussetzen, daB
D—P?
(2) [ -Q_,

eine ganze Zahl ist; sollte dies nimlich nicht von vorn herein der Fall

Py = b @ —
Q= PO R B D BT B R W 0 A28 P .
Sulz) = /PG _ (2 = z0)?
Zi(2) e a0 )+ VP Z(2) |
— VPR Zu(2) (2= 20)7250(2) = P(2)]/ 25 = Wa(2)/ Zn
and Sn(Z)MZ(Z)P(Z Tayl, (2) — SnH(ZZ:l(Z)P(Z), 80, Zn+1(2) = Wh(2), Spua(z) =
—5,(2) + W, (z)Taylor; (z), and check that S?_,(z) — P(z) is a polynomial multiple of (= —
20)2 Znia(2): Spa(2)=P(z) = Sp(2) = P(2)  —28a(2)Wa(2) Tayly (2)+ W, (=) Tayli(2),

(2 = 20)* Zn(2)Wa(2)
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so that Wiy1(2)(= Znia(2)) = Zn(2) — Tayll(z)QS (2 )—Z_i ))Tayl 1(2)

polynomial, as S,(z) — \/P(z), and therefore, 25,(z)/W, (z)—Tayli(z) are O((z — 20)?).

which is still a

See also that Z,,2(2) = Z,(2) — Tayll(z)s ((i— Zn;rl(z)
Let Tayl, ()= two first Taylor terms of (S, + V' P)/Zn;1 be written [1 — 8, (x — 20)]/an, S0
that ) = VPE) L emaw) an( — z)?
Zn(2) Su(2) +V/P(z) 1= Balz —2)+O((z — 20)?)
Zn+1(2)
Sn+1(2) _01 8 - 5”(21_ 20)]/ atn S,(2)
?ngg T 2=z z) | (=B =) 221(2) (18)
" an(z — 20)? a2(z — 2p)? s

Example. P(z) = 14+2242%, 29 = 0,50(2) = Taylor of VP =1,Zy(2) =1 = Z1(2) = (S3(2)—P(2))/2* =
—1 — 22, new Taylor of (Sg + V/P)/Z, = —2,51(z) = —So(2) + Tayl Z1(z) = 1 4 222, Zs(2) = (53(z) —
P(2))/(22Z,(z)) = —3, new Taylor of (S; +V/P)/Zs = —2/3,S85(z) = 1 — 222 and Zs3(z) = 5/3 — 22 etc.
Degree of S,, = 2, degrees of Z,, alternatively 0 and 2.
We will only consider now functions (.S,, — \/ﬁ) /Z, with S,, of degree 2 and Z,, of degree 1.
Why the negative sign before v/P? Perron uses a positive sign. But the same Perron
showed how to retrieve the measure from the Stieltjes transform [(z — ) 'du(z): when z
has a small positive imaginary part z = x* 4 i, € > 0, the imaginary part of the Stieltjes
transform is close to —mip/ (), see also Haydock, Haydox & Nex [22]. Then, formulas with
@' >0 and Z,(z) > 0 for large z contain a negative sign before the square root.
Examples with 2y = 00, so that we consider expansions with negative powers about co)
\/f —q)?
/ (z—a)b—z)dx (b—a) (1+(a+b)/2+“.>

(2 —x) 8 z 22

—(a+b)/2—+/(z —a)(z = b).

/ ¢/ (x —a)( x—b)(x—c)(d—x)dx

|z — xo|(z — x)

= (2 —20)2 = (a+b+c+d—4x0)(2 — 20)/2 + S(z0) — /(2 —a)(z = b)(z — ¢)(z — d)

= const.
Z— X9
if @ < b < ¢ < d are real, the measure is positive if zy is in the gap [b, ¢]. The numerator
must vanish at z = xg. If that does not happen, one must add to the measure a Dirac mass
at T = xy.
Finally, let the continued fraction step be

Su(x) ~ VP _ (2 — 20)
(: = 20)Zu(d) ot Bulz — 20) — (2 — 20)ura(2)

Sh P
The coefficients «,, and (3, are immediately found from (2) + (2)

2 +20(z ) + O((= = ) At
274202 — %) + zZ— 2 _ N o)
 Zpa(20) + 20 4 (20) (2 — 2) 4o nt O )+ 0( ))

fulz) = (19)
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with P of degree 3 or 4, asks for a sequence of polynomials {5, (z) = y+d(x—2) + &, (x—
20)%, Zn(x) = Gz —20)}, n=0,1,..., such that S2(z) — P(z) = a, (v — 20)*Zn(2) Zpi1 (),
see § B4 p. B7

Sp(x) — /P
Definition 3. {z,} in the continued fraction arrangement f,(x) = (z) (z)

(2 — 20)Ca(® — @)
= (T — 2) = (T — %) is an in-
1- ﬂn(l‘ - ZO) - (l‘ - Zo)fn+1(fl?> 1— ﬁn(l' _ ZO) _ Q”+1(x - 20)2

1 —5n+1(37—20) -

stance of elliptic lattice.

2.4. Values of elliptic functions with arguments in arithmetic progression.

Jacobi and Abel related the continued fraction above to a closed formula for z,, through
the Jacobi inversion problem, see [B8) p. B, which brings us to
Definition 4. An elliptic lattice is a sequence x, = E(nh + uy), where £ is any elliptic
function of order 2 (i.e., with 2 zeros and 2 poles in a fundamental parallelogram of periods).

A first way [59] to establish this definition is to recognize ([[H) as an addition formula for
elliptic functions.

One may also establish, see p. [T that the biquadratic curve F(z,y) = 0 in (@) has genus
1 and a parametric representation

T = 51(5), Yy = 52(8)7

with & and & elliptic functions of order 2, inverting an elliptic integral of the first kind

. / T du Y dv
P(u) VQ(v)
with a continuous determination of the square root along the path of integration.

Now, let s,, and s/, correspond to the two points (z,,y,) and (., Yni1). As E1(sn) =
&1(s)) with y,+1 normally different from y,,, s, + s, = a constant, say v, (as s, and s, are
integrals involving the square root of a polynomial on two paths with the same endpoints
[the second endpoint being z,], the square roots are opposite on a part of the paths).
Similarly, s/, + s,+1 = another constant, say v,. Therefore, s,11 = s, +h, with h = v — ;.

The essential parameters in the description of an elliptic sequence is the modulus k& and
the step h (actually, the ratio h/w one one period). The modulus is also related to the
ratio wy /we of periods. Finally, in a multiplicative setting, the main parameters are the
nome p and the multiplier ¢, which are basically (i.e., up to multiplication by constants)
the exponentials of the periods ratio and the step.

The modulus and the step depend only on F' in (H) (or E in ([H)). For each starting
point (zg,yo), or so = ho, there is a different elliptic lattice with the same k and h.

It is always possible to relate & to & through a rational transformation of first degree
Eo(s) = LGl EN2) B 0y ogg)

Y& (s+h/2)+6
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2.5. Relations with other problems.

and there are relations with
Poncelet problem (see [?,15,16])

One considers two conics C and Cs. From a point P; on Cf,
one constructs a tangent to Cy meeting C at P, and so on. The
coordinates of the P;’s, or the (central or parallel) projections
of these points on any straight line, make an elliptic lattice.
From P, onwards, there is no double choice left for the next
point, as one of the two possible tangents leads to the preceding
point. At the first point, the other possible tangent simply leads
to Py, and continues with P_q, etc.

From Burskii and Zhedanov: let {X = Ry(z),Y = Ry(x)} and {X = Si(y),Y = Sa2(y)}
be parametric representations of the two conics C; and C5. Ry, etc. are rational functions
of degree < 2: R; = r;/u, S; = s;/v. The line P,Q,, with parameters x,, and y,, is tangent
at @y, so

1 Ry(x,) Ra(xy) w(zy) r(x,) ro(x,)
Ba(@n) = a) - Ralwn) = Solun)) _ |1 5,00) Solym)| = |0(mm) s1(5m) s2(m)| =0,
S Bk o St i) [0 ) sl

which is our F'(z,, yn).
Elliptic curves.

Q

An elliptic curve is neither an ellipse nor a curve. It is a set
! of points which happens to be a group with respect to a pe-
: culiar addition rule. The geometric picture may seem strange:
\/ | let P be a polynomial of third degree, follow the line joining
P+Q two points of the (cubic!) curve y = 1/ P(x) until it intersects
a third one, and take the symmetric point with respect to the
r—axis.

Excerpts of Appell & Goursat [4]

http://www.archive.org/details/theoriefonctionsO0apperich

Theory of algebraic functions and their integrals: study of analytic functions on a Rie-
mann surface.

Contents:

1. Two-sheeted Riemann surfaces u? = z,u> = A(z—e;)(z—e2) (2 —e3) (2 —e4), u* =
A(z—ey1) -+ (2—ey). Uniform function on a Riemann surface: zeros, singular points, poles,
orders. Rational functions of z and w: characteristic properties. Genus. 1-54.

2. Hyperelliptic integrals. Singularities. Kinds. Number of first kind integrals =
genus. Third kind integrals with two logarithmic singularities. Second kind integrals with
a single pole, etc. 55-98.
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3. Connection of two-sheeted surfaces. Periods of hyperelliptic integrals.
Cuts. Cauchy theorem on a two-sheeted surface. Normal integrals. Periods. 99-164.

4. Algebraic functions and the corresponding Riemann surfaces. Puiseux
method, m—sheeted surfaces. Uniform functions on a Riemann surface 165-221.

5. Connection of Riemann surfaces. Periods of Abelian functions. Connection
order for surfaces. Euler formula for polyhedra. Cuts on a Riemann surface. Examples.
Binomial equations. Regular Riemann surfaces. Abelian integrals: general properties,
periods, classification. 222-255.

6. Birational transformations. Genus conservation. Order and class of a cycle.
Halphen transformation. Nother’s theorem. Geometric definition of genus. Curves of
genus zero; one; two. 256-298.

7. Normal integrals. Decomposition of an Abelian integral into simple ele-
ments. Reduction cases. Integrals of first kind. Adjoint curves. Integrals of second
and third kind. Normal integrals of the three kinds, their periods. Exchange of parameter
and argument in integrals of third kind. Reduction in third kind integrals and 2p integrals
of first and second kind. Algebraic integrals. Logarithmic integrals. Integrals of first kind
reducible to elliptic integrals. 299-372.

8. Uniform functions on a Riemann surface. Rational function in terms of normal
integrals of second kind. Riemann-Roch’s theorem. Special functions. Functions of minimal
order. Hyperelliptic curves. Relation between poles and zeros. General expression of a
uniform function with a finite number of singularities. 373-399.

9. Abel’s theorem. General theorem. Application to integrals of first, second, and
third kind. General formula. Application to hyperelliptic integrals. Second proof. Re-
duction of any sum of integrals to p integrals and algebraic-logarithmic terms. Addition
theorem for first kind integrals. Solution of a system of differential equation. Extension of
Abel’s theorem to algebraic skew curves. 400-434.

10. The inversion problem. Curves whose parametric representation is made of
uniform functions of an Abelian integral. The three forms. Inversion of an integral of first
kind related to a curve of genus one. Doubly periodic functions. Euations F'(u,u') = 0 with
uniform solutions. Method of M. Hermite. Application to binomial equations. Functions
with algebraic addition theorems. The Jacobi inversion problem, and extensions. 435-469.

11. Normal curves. Modules. Theorem of M. Schwarz. Birational transformations
of a curve of genus one into itself. Normal curve of Clebsch. Normal curve of Nother.
Modules of a class of algebraic curves. Simply rational transformations. 470-487.

12. Geometric applications of Abel’s theorem. Intersections of an algebraic curve
and a family of algebraic curves. Applications to cubics and quartics. Double tangents to
quartics; conics with four tangents. Applications of Abel’s theorem to areas, angles, and
arcs. Skew biquadratic curves. 488-526.

From chap. 6, one may also establish that the biquadratic curve F(z,y) = 0 in (H) has
genus 1 and a parametric representation

r=CE(s), y= 52(5>>

with & and &, elliptic functions of order 2.
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Indeed, from chapter 6 of Appell & Goursat’s book [4], a birational transformation
(z,y) < (& n) sending the biquadratic curve ([H) F(z,y) = 0 to the canonical elliptic
curve 7} = P3(§), Where P3 is a polynomial of third degree, see [4, p.292]: from ([@) y =

+ v/ P(2))/(2X5(z)), choose w = a square root of P(x), so that y = (—X;(z) +

)/(2X2( ) < w = Xl( ) + 2yX2(x), and x = z; + 1/£, where z; is one of the four roots

of P(z) = 0. Then, with P(z;+1/&) = P3(€) /€ and n = wé?, n* = £'P(2 +1/€) = P5(€).

1 1
$:Zl+g’ gzx—zl’
_ = Xi(z +1/8) /€ s e
v 2X5(z + 1/¢) ’ n = [Xi(z) + 2yXs(x)]/( 1) (20)

_ —8Xi(n+ 1/ 40
282 X5(z1 + 1/€)
F(x,y) = Xo(a) + Xi(x)y + Xa(2)y” =0 1’ — Py(€) = 0.
Then, the Weierstrass representation holds
£ = plhu+ug), n= ¢ (hu+ up).

So, x =21 +1/p, y=(=X1 + ¢'/p*)/(2X2).

The birational transformation, and the Weirstrass function representation are also de-
scribed by Burskii & Zhedanov [16].

However, the authors of [31] recommend the biquadratic setting instead of the more
familiar cubic one, see [31, pp. 300-301].

(21)

What are the (£,n) corresponding to the points
(@, Yn) and (2, Yni1)? Let us index them as (€, 1)ay,
and (&,m)2n41. The &s are obviously enough &, =
Eon+1 = 1/(xn, — z1). Then, 19, and 1,1 are the
two opposite square roots of Ps(&,). The next
point is taken on the line y = constant = y,.1,
—& Xy (21 +1/6) +1

262 X5 (21 + 1/¢€)

(5» n)step

= constant

& so on the curve

0.25 _ =& X1(z1+ 1/&0) + Nanta

265, X2 (21 + 1/&n)
parabola n = a second degree polynomial in £, up
to the intersection with n? = P3(£): the equa-
tion for §2n+2 is & [Xl(zl 1/€) + 2yni1Xo(21 +
1/5)} Py(&) = &'P(z + 1/§) = [Xai(a +
1/€)? — 4X0(21 1/€)Xa(z1 + 1/€), so a second
degree equation y,11X1(z1 + 1/8) + v2, 1 Xo(21 +
1/€)) = —Xo(z1+1/€), which is our F(x, y,41) = 0.
The two £—roots of E2F (2 + 1/, yns1) = (1 +
€21)*Ya (Y1) +E(1+E€21)Y1(Yns1) + Y0 (Yn41) = 0
are therefore éQn and §2n+2> whence €2n + §2n+2 = _(221)/2(yn+1) + }q(yn—i-l))/F(Zl;yn—&-l)
and &nons2 = Yo(Yna1)/F (21, Ynt1)-

As F(z1,y) = Xo(21)y*+X1(21)y+Xo(21) = 0 at the double root y = y(21) = —X1(21)/(2X2(21))
when X7 (1) — 4Xo(21)X2(21) = 0, F(21,y) = (2Xa(21)y + X1(21))?/(4X2(21)).-

= Yn+1, Which is a

k=052 =521
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Remark that (§ant2—E€2n)* = [(221Y2(Yn+1)+Y1(Yn11))*=4Y2(Yns1) F (21, Yns 1)/ F? (21, Yni1) =

Y2 (Ynt1) = AY0(Uns1)Ya(Yns1)]/ F? (21, Ynt1)-

Also, Ton + Tont2 = —Mons1 + Monse = —[265,Xa (21 + 1/&0) Y1 — &, X1(21 + 1/En) +

265,10 Xa(21 + 1/&ant2)lynr1 + €542 X1 (21 + 1/€anra) = 2[(5,42 — E5.) X2(21) + (S2nt2 —
Ean) X5 (20)|Yn 11 + (63,10 — E5,) X1 (21) + (Eanra — E20) X[ (21)

Eont2Mon+EonMont2 = —Eant2M2n+1+E2nNont2 = _£2n+2[2£%nX2(Zl+1/£2n)}yn+1_£2n+2£an1(Zl+

1/€9n) 620 (265, 1o Xo (2141 /Eon12) [Un 11 +E2n&5 2 X1 (21 1/ %nw) = (San+2—620) [2€2n&2n12X2(21)Yn1—
X9 Unt1 + EonbonaX1(21) — XT/2] = (Sang2 — Eon) [4X2% — X Yn1 — X{//Q] :

According to the addition rule of an elliptic curve, each new point (£, 7)2,42 is the result
of adding a fixed step to (§,7)2,, which means that the straight line joining (&, 7)sep to
(&2, M2n) must meet the cubic n? = P3(€) at the opposite of (€212, 2n+2), which happens to
M2n + Non+2 ¢ Sont2M2n + SonMont2

9 £2n+2 - §2n §2n+2 - §2n
meets the cubic n? — £1P(z + 1/€) = {%] 4= Pl(2)E — P'()£%)2 -
2nt+2 — Son

= {2[(&n + Lni2)Xa(21) + X3(20)[Yns1 + (bon + Cons2)Xa(21) + X{(20) P + -+ —
P'(2)€* — P"(2)€*/2—- - at a third point £6P:D) together with & = &, and &9, so that
P/ ()€Y = {2[(Ea, + &any2) Xa(21) + X5(21)ynr1 + (an + Eanta) Xa(21) + X[ (1)} —
P"(21)/2 = P'(21)(€2n + &ant2) = [(&an + Sont2) 2X2(21)Ynt1 + Xi(21)) + 2X5(21)yns1 +
X{(Zl>]2_PN(Zl>/2_P,(Zl><§2n+€2n+2) _ [_4X2(Zl>221}/2(yn+1> + )fl(yn-i-l)

( ) ( ) 2Yn+1X2(21) + Xi(21)
221Ys Ynt1) + Y, Yn+1 .

P'(z1) /24P (21)4X5(z must be independent of y,,1!!! Also, for
( 1)/ ( 1) 2( 1)(2yn+1X2(Zl) +X1(21))2 p Yn+1

all z,y, OF (z,y)/0x = X5y? + Xjy + X = 2Ya(y)z + Yi(y). At @ = 21, P'(z1) = 2X, X| —
1X0X, — AX X} =~ (XY (y(20))? + Xig(=1) + XpJ, where y(z) = — X3 (21)/ (2% (1),
as Xo(21) = X7 (21)/(4X2(21)). So, P'(z1) = —4X5(21)[221Ya(y(21)) + Yi(y(21))], and

be (§ant2, —M2nt2) = (§,1)2n43. The straight line n = —

2
+2X5(21)Ynr + X1(21) | —

Xl 2 + X/ +X, Pll = Xl 2 + X/ +X,
P/(z)€bter D) = {_2 ny y(lzl) 0 42Xy +X;} - ; 1)—4[X;y2(zl)+xly(zl)+xg] Q?y_y (1Zy1>>2 0

X/ +X + X/ 2 P X712 +X'y+ X!

_ { 9 29 Zl ]y X/} i (Zl) —4[Xéy2(21>+X{y(Zl)+X(l)] oY 1Y . 0

y —y(z1) ; 2 (y —y(z1))
R P// X/ 2 X/ X/
= { 2X0y(z1) — X| + ( )} - ;2’1) 2R QZ(J + (1y); where R is the residue
Yy—y= Yy —ylz

—2[X (Zl> + le(zl) + X{] = P'(21)/(2X3(21)).Then, P'(z1)§EP) = (2X0y(z) + X1)?
, R R? P"(z1) —R/2+ (2X5y(21) + X7)(y —y(21)) + Xo(y — y(
—2(2Xy(21 )+ X + - 2R
( y(2) 1)y—y(m) (y—y(=1))? 2 (v —y(z1))?
(2X2y(21) +X’) P”(zl)/Q—i-QRX/ X{Q —P”(zl)/2—4X§X6 = —XlX{/—O—QX(’)’XQ—i-
2X0 XY = 2X5 (X[ + XIy(=1) + X292 ().

glsten) _ 2X5(21) [ Xy + X7 y(21)+X" “(20)] 1 XG4+ X{y(=) + X3y (1)
P'(z) T2 X+ Xjy(z1) + Xhy?(z1)
1 8°F(x,y)/02% at (21,y(21)) Ya(y(z1))

2 OF(z,y)/0r at (21,y(21)  2:1Ya(y(21) + Ya(z1)
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n(step,l) n2n + n2n+2€(8tep 1)+€2n+2n2n + §2nn2n+2 o [—QXéy(Zﬂ - X+ R = P//(QXQ):| g(step,l)

Sont2 — Eon Eoant2 — Eon Ynt1 — Y(21)
OF(x,Yns1)/02

Ya(Ynt1) P'/(2X5) ( ) 2Y(Yn+1) —Xyn i1 -
+4X —n_X// " _X// 92— _QX/ Py _X/ +7:| step,1 + n n+
oy + X1 2 i/ (@) =X Ynt1 — y(21) ‘ Ynt1 — Y(21)
Pl 2X XII XII n XII
Xi//Q _ [—QXéy(Zl) _Xi + /( 2) :| g(step,l) + ( Qy(zl) + 1)y +1 1+ Xg _Xi//Q _
y(n-l-l 1_) y(zl) ) Ynt1 — y(21>

P/ step, 2X X// X// X// — O

(QXéy(Zl)‘i‘Xi)fsmp’l—’— (Zl)g /( 2(21)) + Xoy (Zl) + 1y(21) + Xy +Xé/y(21>+
Ynt1 — Y(21)

X7/2
= (2X3y(z1) + X7)E" P! + Xjy(z1) + XT/2

1 (XGX5 — XPX0)y?(21) + 22X X5 — XgX5)y(z1) + X X7 — Xg X3

2 Xoy?(21) + Xjy(z1) + X
Xi+ X + Xhy? 221Y; Y,
Returning to (z, ), 2PV = 2, —2 0 + 19(21) 2//1/ 2(21) — - 2Ya(y(z1)) +Yi(z1)
, Xg + X{y(=1) + X3y (=1) Ya(y(21))
-z — RACHE = 2}, the second z—root of F(z,y) = Ya(y)z? + Yi(y)z + Yo(y) = 0 at
Ya(y(z1))
y=y(z);
) _ =Xl + JECPD) 4 e (g2 X2 X{E = XY/2 41
2X5(z1 + 1/€6ten 1)) 2[X58% 4+ X506+ X7 /2]
_ —Xi8 +2Xgy(21)€ + Xiy(z1)
=y(2z1) as —X1(21) = 2X5(21)y(21).
(X2 + X456 + X4 /2] y(21) 1(21) 2(21)y(21)

To multiples of (£, 7)(step,1 according to the addition rule of the elliptic curve correspond
iterates of (z,y)®*PY on the biquadratic curve F(z,y) = 0. Let zy (step ) an nd y fstep) he
the abscissae and ordinates so constructed. To the neutral element (£,7) = ( o0) of
the elhptlc curve correspond the starting point (z, y)(Step D= (z1,y(21)). Remark that

(step,1) (step,l) (step,1) _ (step,1)

T_p = Tn yY—n - yn—i—l

Of course, the same may be done with any z;, i = 1,...,4, not just z;.

More: goto (Ed), p.

New notation: let (x,,y,) correspond to (&,,m,), and (2, yn41) correspond to (&, —ny):

1 —Xi(z1 +1/6) + 7/ —Xi(z +1/60) —m/&
Tp = 21+—7Yn = n;n = ",then, n+1,'n
B 2Xo(m+1/6) T T 2Xa(m £ 1/6) (St

is the second intersection of the line y = constant = y,,,1, i.e. the parabola n = £2X;(z; +
1/6) + 2y, 182 Xo(21 + 1/€) and the cubic n? — £4(X? — 4XX5) = 0, so the equation for
€= &1 18 Y1 Xa (21 + 1/5) + Y Xo(21 + 1/6) + Xo(21 +1/€) =0,
—Xi(21 +1/6) — nn/fn [Xl(zl +1/€0) + 7771/63}2 _

X1 (21 +1/6n) Xi(21+1/6n)

_X1(21+1/§n)X1(Z1+1/§)+MX2(21+1/€) /%) { (21 +1/€)

X (21 +1/6n) —4Xo(21 + 1/6) X (21 +1/5) B
Xl T 15 Xo(21+1/8) +2Xo (21 + 1/6) Xa(z1 + 1/6) = 0

(L + X+ /6 ) | T/

Xo(z1 +1/8) = Xa(21 + 1/8) |+

Xo(ar +1/€) — Xa(z1 + 1/5)} 2K (51 1/6) X (21 +1/60)— Xo(z1 +

20f course, this is F(z1 + 1/&,yn+1) = 0.
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1/&0)Xa(z1 +1/€)] = 0, two roots: £ = &, and

<5 +X1(zl+1/§n)) {%Xﬁ(zl+l/§n) XU (1 4 1/60) + (2 sn) {%){g —X{’} /2}+

AXG (21 + 1/60) X1 + 1/6) — X1 + 1/€2) Xb(z1 + 1/E0)] + e*éﬁW%M+UW*XMH
1/€)XY] = 0

: X
, ("— + Xl) { TN - X{] +2[X! X5 — XoX]

b (I Xl) [éxg - X{’] /24 XJX5 — XoX{
X - xye+xGe:
<7ln + X1§n> { ~[Xy(21) — Xo] — [Xa(21) — Xl]] + 26, [[Xo(21) — Xo] Xz — Xo[X(21) — Xo]]

at 21 + 1/&, + X;(z1) =

1 én

bt (2 -+ ) |hae - x| 24 20 - Xy
2
<T}_n + X1§n) {é 2(21) — Xl(h)] + 28, [Xo(21) X2 — XoXa(21)]

X
[ X1 Xy - X;'] /2 4+ XY Xy — XoXY
2

: X,
(ZQ +X1> { X - X{] +2[X] X, — XoX))
2

i X@) {% Xy(z) — Xl(zl)] + 26,[Xo(21) X2 — XoXa(21)]

&n
n/én+ X
M1 = En i Xa(z1 4+ 1/6nin) — 27]/27)(2152“)(2(21 +1/&n+1)

also, §n+1 - én = én (

2 1 1 1 1\° e T 1 1 1

n+1 I 2 " 2 ! "

- n+§nx< —>+§n X2< ——)—gnnix( ) XQ(
52 i §n+1 gn +1( 1/ ) £n+1 gn i X2 2 £n+1 5n < / ) £n+

where X7, X], etc. are the values at z; + 1/&,.

—X1(z1 +1/&,) — 1, /&2
AISO, from Yn+1 = 1§)é2(21/f 1)/5 ;’ /f s Mn+1 = §n+1Xl(Zl+1/§n+1)+2yn+1€n+1X2(Zl+

1/ §n+1).
And now, the constant difference of (£,7),4+1 and (§,7), according to the addition rule
of elliptic curves: look at where the line n = 7, — Tt (§ &,) meets the cubic

§n+1 - gn
7 —=E'P(2 +1/8) =1n* = P'(21)6* — (P"(21)/2)* —

p— <"”“+"”)2—P”<z )/2| — €0 —€
step P/(Zl> §n+1 — fn 1 n n+1

2 1 1 1 1 2 52 + X1
n+l / " L _
(1 T )"” o (én+1 fn) + e (X/2) (§n+1 - én) Gy,

/ 1 _ i /1 L _ _]
= (£n+1 sn) T XE/2) (sn+1 :

P'(z1)

€n+1 - gn

gn - £n+1
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2
-+ X
— 1 gn + fn+1 fn+1 / fn+1 — fn " 2 gn Xé (Xé//Q) ,
( 5721 Mn — gn X 5721 X1 /2 - n+1 X2 |:_€n€n+1 + §2 2 (§n+1 - én):|) - P (Zl)/2 —

gn - §n+1
we isolate 7, through 1, = (1, +&2X1) — X1 = —2X082yn1 — 2 X4

gn X/ X// 2 gn / gn 7571 " ? 17
e _(—2X2yn+1 ey, (égz)g)(fnﬂ—sn)—sn—snﬂ} (60 + G o = T X 4 X /2> - P )/2}
gn_§n+1
X///2

-5 B SHL z 2 _Xi/= "
= P'(z) [( 2Yn+1 [ c, En — Ent1Xo(21) | + Ent1 X1 (21) + 60X - ) ~P(z))2| -
= 7 (2001 X320 + (60 60 Xalo0)] + (60 + 6000) X 1) + X1 (20)Y = P2)/2] = 60 = s

1 1 Yy (ys1)/ Yo(ynsr) — 2
which depends only on v, 1 as &, +&,41 = + — 1(Yn+1)/Yo(Yn+1) — 221 _

Tn =21 Tptl — 21 [Yzl(yn-&-l) + ZlYl(ﬁyn—H) + Z%YQ(yn—i-l)VYQ(yn-l-l)
_OF/0x

€n+1

at (Zla yn+1)7 S0,
2

OF/0x OF/0x

gsmp:ﬁ Pt {Xé(gl)_ F XQ(Zl)]‘ = Xi(2) + X{(20) o = P(21)/2 L OF/0

F

Fo? 1og}/8x8y
with F(z,y) = Xao(z)(y—p(2))(y—1(z)), where ¢ and ¢ = (— X1+ P)/(2X3), 0% log F/0xdy =

0 1 1 B ¢ e X ) .
%[y—goer—w _(y—go)2+(y V)2 FQ[(SO"Hvb)[( (‘P"’"@Z})/Q) + (W —¢) /4}"’_

20/ = )W =) 2) = —(é) [(w%) +§]+<y+%) (%)

Ate=2,P=0p=9= 3/(2’1) = —X1/(2X2), F(z1,9) = Xa(y — y(21))% P'(21) =

2X1 X1 —4Xo X, —4X] Xo = —4Xo (X y(21)+ X502 (21)+ X)) = —4X20F [0z at (21,y(21)), P’/ X3 =
(P/X3Y = (X2 X3) = 40X/ X, ) P(2)/2 = X, X[+ (X1)? — 2X0 XJ — 4X4X) — 2X) X, =
—2X,0°F /0% + (X])? — 4X}[ X}, and

_ ! X (5 0o PV X (XG/X0)y + (Xo/Xo)'
e = P Hy—y(zo{ (%) w-ve+5g]} - P )/2] oA PR R E

S XN\ PLCDN g o X /X) PEXS)

=P { X2<X2> +X("z»/—y«zo} P2 2 Yy ) )

l

X2
X XiXy  X3Xp)? X}
X; 2+ 1X222 +7[2X1X/ AX0 X} — 4X}Xo)

el o

2X,0%F )02 — (X!)? + 4X, X}, + (X})2 — 2

_828};7//862 at (x,y) = (z1,y(21)).
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Tn+1 + Tin Nn+1 + Tin
Tlstep = Tln — ( i ) (éstep - én) = —Nn+1 — ( a ) (gstep - €n+1>

§n+1 - fn £n+1 gn
_ Tn — Tln+1 N (nn+1+nn) <£ N §n+§n+1)
2 €n+1 — gn step 2
- % [nn - §3L+1X1(Zl + 1/§n+1) - 2yn+1§21+1X2(21 + 1/§n+1>} - (Zn—i—l i 7]n> <€step - M)
n+l1 — gn 2

= — Y1 X2 (21+1/&) X1 (21 +1/6,) /2= € X1 (214 1/&041) /2= Ynia €21 Xo(z1+1/Ei1)
—{2yn11 [X5(21) + (6o + Enpr) Xa(20)] + (& + i) Xa(21) + X (21) } (ﬁstep _ St §n+1>

2
= —Yn1[(& + &2 11) X2(21) + (& + &as1) Xo(21) + X3] — (& + &2 11) X1 (21) /2
— (& + &) X1(21)/2 = XT/2 = {20041 [X5(21) + (& + Enr1) Xa(20)] + (& + Enpr) Xa(21) +

Xi(zl)} <§step - %

= (& + fn+1)2[jyn+1X2 = X1/2 = 2yn1 Xo + X1)(=1/2)] + §nni1 [20n 1 Xo + Xa] + (6 +

=0
bt )= Yn1X5— X1 /2= (2n11 X2+ X1)Estep +Yn+1 X5+ X1 /2} =1 X — XV /2— (2yn 1 X5+
Xi)éstep
= [Qyn+1X}a+ Xl”ﬁnﬁn{;l - (fn + §n+)1/)€step} - yn+1X§/ - X{//Q - (2yn+1X§ + Xi)ﬁstep
n —"_ n + 22 n ste
= [y Xy X, P2 ) D) E 2V Doen o (2 X X

F(21,Yns1) = Xo(Yns1 — y(21))?
Yo(Yn+1)Y1(y(21)) — Yi(Yns1)Ya(y(21))

221}[2((/21))_’_}/1( ( )) :_YQ( ( ))/éstep —y X”—X”/Z—(Zy X/+X/)§
)2 n+1<39 1 n+1<39 1/Sstep

F(21, Yn41) = })/(2((1/(7&%— y(21)
2 1Yz " " / /
:7Yn _7Yn se_nX_X 2_2nX+X ste
Uil — y(zl) |: 1(y +1) YvQ(y(Zl)) 2(y +1) gt p — Yn+1Xo 1/ ( Ynt+149 1)§t P
Now, for any x and y, OF/0x = 2Ya(y)x + Yi(y) = Xy(x)y* + X](2)y + Xp. Of special
interest is F'(z, y(z1)) which is a quadratic polynomial in z, vanishing at z = z; and = = 2]
(see p. ), so that OF /Ox vanishes at (x,y) = ((z1 + 21)/2,y(21)), so

2X2(21) [yn+1—y(21)]

e e
= [ 2yn+1X2 +X1 }

0?F/0x? Yo(y(z1)) 1
step = T AAa~ Ao ) = - = 22
Seo = "prier V) T TR + ) A—a

1

Remark that xge, = 21 + 5— = 21. Return to 7sgep:
step

21Yi(y, DYa(yy ste
Tlstep = [ 1(y +1> T <Zl T Zl) 2(y +1>] 6 P _ yn-‘rng - Xi//Q - (Qyn-‘rlXé + X{)éstep
Yn+1 — y(2’1)

_ Q[Xé((zl + Zi)/Q)ygLJrl + X{((zl + Zi)/Q)yn-H + X(,)((Zl + Zi)/Q)}ésteP _2£step[yn+1Xé((zl+

Y1 — y(21)
21)/2) + X1 (21 + 21)/2) /2]
= 2step[X1((21 + 21)/2) /2 + X5((21 + 21)/2)y(21)

Xi(21) — Xi(z1) — [Xa(21) — Xa(21)]

=
—
AN

SN—

= gste
P 21— 21

Mstep = Eatep [ X1(21) + 2y(21) X2(2))] (22b)
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_Xl(z/l) + nStep/ggtep
2X5(21)

= y(21).

leading to Ystep =

From cubic to biquadratic, following Appell & Goursat [4, p.293]: take (£o,70) on the
cubic n? = P3(§) and intersect with the line n — ny = t({ — &). For a given ¢, the
equation for £ is [y + t(§ — &)]* — P3(§) = 0 solved by & = & and the two roots of

2ot +13(€ — &) — —P?’(fg — 23(50) =0:

—(P"/6)(€ — &)* + (t* — Py (£0)/2)(€ — &) + 2not — P3(&0) = 0,

12 — P{(&)/2 £ Q1) := (12 — P{(&)/2)* + 2P (2ot — P5(%))/3
Py"/6

The four zeros of the quartic Q are the slopes of lines leading to a double intersection, i.e.,
of the four tangents to the cubic issued from the point (§y, 7). We show that the cross ratio
of these four tangents is independent of the point (£y,79) of the cubic curve: let (£1,1:) be
another point on the cubic curve, then Q;(t) = (t* — Py (&1)/2)? + 2P (2mt — P§(&1))/3
An interesting point is & — oo, then, Py (&) ~ Py'¢, Py(&) ~ Py'€2/2, n ~ (Py'¢3/6)Y/2, and
Qoo (t\/6F5"€) ~ (P5")7E7((6t% — 1/2)* +2(2t — 1/2)/3).

§=6& +

3. Proofs of equivalence.
3.1. 1. and 2.

3.1.1. From 1. to 2. : as seen in () in § 2 p. @ the elimination of y,, from () yields a
relation of degree 2 in z,, + z,,—1 and z,x,_1, which is ([I3).

But one can also find ([[8) directly from (@) and [@). Indeed, the sum of z,, + x,_; and
Tpt1 + T, from (@) yields x,—1 + 22, + i1 a8 —=Y1(Yn)/ Yo (Yn) — Y1(Yns1)/Yo(Ynt1), which
is a symmetric rational function of y, and y,1, therefore, from (H), a rational function
of x,, allowing to recover ([H), although the final rational function seems liable to be of

fourth degree, but wait.
Y1 (yn Y, —
A expansion in simple fractions leads to =, +z,_1 = — 1(ym) = _a2_ M —
Y2 (Yn) Ca2  Cop(Yn —u)
Yi(v)/(v — u)

CQ,Q(yn —v)
asymptotes of the curve F'(z,y) = 0). Then,

, where u and v are the two roots of Y5(y) = 0 (ordinates of the horizontal

Tp—1+ an + Tn41

_ —QQ— )fl(u> Yn + Ynt+1 — 2u . )fl(v) Yn + Ynt+1 — 2v
22 C22(U—0) Yn¥ns1 — W + Yns)u+u? c22(v —u) Yn¥ns1 — U + Yns1)v + 02
_ ot Yi () Xi1(zn) + 2uXs(xy,)
coo  Ca2(u—v) Xo(x,) + Xi(zp)u + Xo(x,)u? = F(x,, u)
Yi(v) X1 () + 20X5(xy)

ca2(v —u) Xo(z,) + X1(2n)v + Xo(x,)0? = F(2p,v)
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of small degree, as F(z,,u) = Yo(u) + Yi(u)z, and F(z,,v) = Yy(v) + Yi(v)x,. The
numerators are OF (z,,,y)/0y = Y (y) + Y{(y)zn + Y3 (y)z2 at y = v and y = v, so
Tp—1+ Tn41
gft2 1 Yo(w) + Yi(w)an + Yy(w)ay  Yg(v) + Yi(w)an + Y5 (0)25]
= —/— —_ — xn
Ca2  Coo(u—) o+ Yo(u)/Yi(u) Tn + Yo(v)/Yi(v)

which must reduce to

B do1+ (2doo + di1)xy, + dy 222
da [y + Yo(u)/Yi(w)][2s + Yo(v) /Y1 (v)]

Remark that, as Y;(y) = 222y + 21, the —2z,, term cancels with the contribution of
(Y2 (u) = Y3(v))/(c22(u — v)).
The equation ([23al) is a recurrence relation joining z,_1,x,, and z,1. Remark that
p1 and py, the two roots of da 9p*+dy 2p+dp o = 0 must be —Yy(u)/Yi(u) and —Yy(v)/ Y (v).
Yoln) _ oz, Yolu)/(w—v) _ Yo(v)/(v — )
Yo(Yn)  caz c2,2(Yn — u) coo(yn —v)

Tp—1+ Tny1 = (23&)

Also, z,2,_1 =

(U - U>2[CQ,25L“nfL“n—1 - Co,ﬂ [02,233n$n+1 - 00,2}
_ Vi (u) . YNWYe(v)  Yo(u)Yo(v) Y5 (v)
(Yn =W W1 =) Yo — WY1 = V) W1 =W (Yo =) (Yo — ) (Ynt1 — V)
Y () (yn = 0) (Y1 — v) = Yo(u)Yo(0) [(Ynt1 — ) (Yn = 0) + (Yo — W) (Y1 — V)] + Y5 (0) (yn — ) (Yn11 — w)
(¥n = ) (Ynt1 — 1) (Y — 0)(Yns1 — V)
Y (u)F(an, v) — 2Yo(u)Yo(v)[Xo(zn) + (u + v) X1 (2n) + uvXa(x,)] + YE(0)F (2, u)
F(@n, u)F(2a,v) = [Yo(u) + Yi(w)za][Yo(v) + Y1 (v)z,]

= Xg(l'n)

_ Xs(z) YE(u)F (zn, v) — 2Yo(u)Yo(v) [ Xo(@n) + (u + 0) X1 (z,) + voXa(z,)] + YE(0)F (2, u)
(u —v)?c3 5 [Yo(u) + Yi(u)zn][Yo(v) + Yi(v)2n]

o2 00 + 01Ty, + 0912 5.2
C20Tn [Tn + Yo(u)/Yi(u)][zn + Yo(v)/Yi(v)] 5,72

which must also reduce to
d()’o -+ d()’l[l?n + dogl‘%
dya[rn + Yo(u)/Yi(uw)] [z, + Yo(v)/Yi(v)]

but it does not seem useful to follow this track any longer.

(23b)

Tp—-1Tp4+1 =

3.1.2. From 2. to 1. : From a sequence satisfying (), let us construct a valid sequence
{yn}. We must construct F(z,y) = a(y —u)(y —v)z> + [Bly — u)(y —v) + By + "]z +
Y(y —u)(y —v) + 7'y + 7" such that the resultant above is exactly (IH).

With S =z, + x4 and Il = z,2,41, () is

d070 + do’ls + d07282 + d171H + dl’QHS + dQ,QHQ =0. (24)
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We see that () holds if (S,1II) = (—f5/a, /), so, one chooses (—F/a,v/a) = (S,1I) as a
pointfl on the conic Edl). We now have

?E = dyo(aS+—B)* +dio(all—y+7)(@S+B—B) +daz(all—y47)? +do 1a(aS+3—5)
+dya(all — 5 +7) 4+ doga® = doa(aS + 8)* — 2do28(aS + B) + do2 5
+di2(all — y) (@S + B) — di28(all — ) + dy2y(aS + B) — dy 287 + daz(all —7)?
+2dg oy (eIl — ) + dyoy* + do (@S + B) — do1af + dyya(all — ) + dy oy + o?do g
= do (S + B)* + dio(dl = ) (aS + B) + dap(all —=)* + dfy y (aS + B) + d} 1 (all = 7) = 0,

if 050,252 —di 2087 + d2,272 —doaf + dy oy + OéQdo,o =0, (25)

with d6’1 = doJO( - 2d072ﬁ -+ dLQ’}/ and dll,l = dLlOZ — dLQﬂ -+ 2d272’7. Let £1 and P2 be the
two roots of daop? + dyop + doo = 0, then, dos[all — v — py(aS + B)][adl — v — pa(aS +
B)] +dp 1 (@S + B) + dy (Il —7) = 0, and we multiply by some constant C' and compare

with (I2):
fu+ 5" = Ch, Yu++" = —pCh,
v+ " =Cy, Vv +" = —psCy,

(/8//’)/ _ ﬁ/’y”>ﬁ/ — Cd/Ll, (ﬁ”’y/ _ /B/'y”>’7/ — Cd/&l,
where 0102 = Cdg’g,

/ Z

Yu++" Yv+y
S0, Tur an o are —p; and —p, . We subtract o'/ = dg , /d ;:
Gui g BV g BV =B et B dapetdy,
B'(p1 + d(),l/d/l,l), B (p2 + d(),l/dll,l)’ plv+pB" d/l,lpl + d6,1
6” _ B/dll,l(upl - Up?) + d6,1(u - U)
d/1,1(02 - P1>
’}/// _ ’y/d/l,l(v - u)p1p2 + d(),l(vpl - up?)
d6,1(p2 —p1)
ﬂ//’)/ _ ﬁ,’}/" _ BIVI(U - U) (dll,lpl + d:),l)(dll,po + d(),l)
dll,ldf),l(m - p1)
Fut g = Y (u—v)(dy1p2 + dy ) Fot g — Y (uw—v)(dy1p1 + dy )
dy 1 (p2 — p1) ’ dy 1 (p2 = p1)
1 ' (u—v)(dy1p2+dy1) 7 (u—v)(dy o1+ dpy )
C=Fu+8")Bv+8"/dyos = — : ; : ,
(5 ERIC g )/ 22 da o d6,1(102 - p1) d6,1(102 — p1)

or gy C . u—w
d/1,1 d6,1 By =By d2,2(ﬂ2 - p1)
The degrees of freedom are therefore u, v, and (3, )/« on the conic R = 0 of (24I).

3The importance of this conic has been stressed by A.Ronveaux [52].
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F(z,y) =a(y—U>(y—v)x2+[ﬂ(y—U>(y—v)+B’y+ﬂ”]x+7(y ) —v)+7y+7

- dy 1 (upy — vpa) + dg 1( v)
= (y —u)(y — v)(az® + fz + —i-#{d’x 4+ A 0 x
(y —w)(y —v)( Br+7) (r = pr)das | T11%Y p—
oy dy (v = u)p1p2 + diy ; (vpr — upz)}
0,1
’ P2 — p1
— v
= (y —u)(y —v)(az® + Bz 4+ ) + m[d’l,l[pz(y —v) = p1(y — e+ dy, (u—v)w
+dop2(y —u) = pr(y —v)] + di 1 prpa(v — u)]

(26)

Where is is recalled that d; = doov — 2dp 23 + di oy and dy | = dy 1o — dy 28 + 2da 27
The two numbers u and v are the values of y making x infinite, we write (286]) (divided

by y — v) asafunctionon:y_u,usingy: andv—u=y—u—(y—o):
y—v —

(a®+Bw+7) - [dh 1 [p2—prY Tt s (1=Y )a-+dp 1 [p2Y —pa]+di 1 p1p2(Y =1)] = 0

Y -1 (p2 — p1)2das

Now, u and v have disappeared, they are completely hidden in Y, very satisfactory.

(dy 1+ doy) (@ = p2)Y? + [(p2 — p1)°daz(aa® + Bx + ) — (df o2+ dy 1) (& — p1) — (d 1 +

do 1) (x = p)]Y + (dy 12 + dy 1) (2 — p1) = 0

—(p2 = p1)?daa(0a® + B + ) + (di 2 + dy ) (@ — p1) + (dyyp1 + dyy) (@ — p2) £ /Plz)
2(dy 11+ dy 1) (@ — p2)

with P(z) = [(p2 — p1)?doo(aa® + B2 +7) = (dy 102 + dy 1) (2 — p1) = (dy 11+ diyy ) (@ =
p2)I? = (dy1p1 + dy 1) (dy1p2 + diyy ) (x — p1) (T — p2)

With the example of pIll a?E(x, y) = sin® § x2y* — 2% — 9> +2cos § vy = sin? OI12 — 52 +
2(1 + cosO)II = [sinfxy + = + y|[sinfzy — (x + y)] + 2(1 + cosO)zy : @ = sinb,dy o =
Ldoo = —1/sin®0,dyy = 2(1 + cosf)/sin®0,p1, po = F1/sinf,d;; = 2(1 4 cosf +
ysinf)/sind,dfy ; = 23/ sin> 0.

Then, F'(z,y) = (y—u)(y—v)(sinf 2>+ Bz +7) + ((u—v) sin ) /2){[d} ;2 +dfy, ] (y — (u+
v)/2) + (u —v)[dj ,wsin @ + df | /sin 0] /2}, with a*y* — % + 2(1 + cos f)ay = (1 4 cosf +
ysinf)? — (14 cosh)? — 3% = 0.

Y:
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Also,
2(Y = 1)F
(u—v)(y —v)

= 2V (sina® + o+ ) + (¥ — 1) sin0{[d} o+ di, (Y + 1) + [dy ywsing + d/sin6](1 — Y)}/2
= —2Y (sinOa® + B + ) + {[d}, sin 0 x + dfy , sin 0] (Y? — 1) — [d} .z sin® 0 + d | ](Y — 1)*}/2
= [d},sinf — dj, sin®6)(z — 1/sin0)Y?/2 — [2sin 0 2° + (28 — dy, sin® O)x + 2y — d},]Y
— [dy 1 sinf + dj, sin® 0] (z + 1/ sin6) /2
=[1+cosf — B+ vsinf)(z — 1/sin0)Y? — 2[sin 2> — (1 + cos)/sin O]V
—[1+cosf+ G+ vysinf](z+1/sinb)

sinf 22 — (14 cosf)/sinf £ rsinfy/a?2 —1 (1 +cosh)[—zcosh + Va2 — 1][z £ Va2 — 1]

Y = =
[1+cosf — G+ ysinb|(z —1/sin0) sin@[1 + cos — B+ ysinf](x — 1/sin )
(1+cosf)[(1 —cos§)R? — 1 — cos
= h =z+tVa?-1 that © =
sinf[1 4+ cos@ — G+ ysinf](R+ 1/R — 2/ sin0) where 1t = v ) S0 thab
14+cosf) 1—cosf 14 cosd sin ¢ 1+ cost
(R+1/R)/2. Remark that sind  sind N sinf  sinf +1 + cosd M "ot

1+cosh)” 9 sinf (R + cot(0/2))
< sin @ ) = cot™(6/2), ¥ = [1+cosf — 3+ vsinf](1 — R~'tan(0/2))
If T = 1/sin(nd), R = (1+ COS(@G))/Sin(nH), R™' = (1 F cos(nb))/ sin(@e), .
_ sin@ (1 =+ cos(nd) + cot(6/2) sin(nh)) _ 2cos?(0/2) (sin(6/2) + sin((n + 1/2)0))
1+ (3081%—t ﬂt—ﬁ :yEsin 0] (sin(nd) — (1 F cos(nh)) tan(6/2))  [1 4 cosf — B+ ysinb](sin((n £ 1/2)0) — cos(6/2)

E(z,y) = doo + do1(x +y) + doo(z + y)* + diazy + diozy(z + y) + dopz’y?
= (doa + d1 27 + da22®)y® + (doy + (2do 2 + di1)7 + d127%)y + do o + do 1z + do 27
= dyo(v — p1)(x — p2)y* + (do1 + (2do2 + dy1)w + dy27?)y + doo + do17 + do22°
a?E(z,y) is
dap|axy—y—pi(a(z+y)+B8)|[ary—v—pa(a(z+y)+B)]+[—2do 28 + di 27y + doc] (az+

’
do 1

y) + B) + [—d128 4 2da 2y + dy 10 (axy — )

Vv
!
dyy

3.2. Half-integer indexes ( new in 2011) .

Spiridonov and Zhedanov have a very ingenious argument [59, p. 298] amounting to build
a possible y— sequence as half-integer entries of the z—sequence: y, = x,,_/2. They rely on
elliptic functions identities, but here is an elementary derivation: can we find a quadratic
algebraic function r + /s, with r and s rational functions, such that two iterations of
this function to x, gives x,,17 The result must be a quadratic algebraic functions whose
two determinations are x,_; and z,1, as explained in (). Similarly, the two choices
of the sign of the square root in r(x,) £ /s(x,) must yield z,_1/5 and z,11/2. A new
application of r + /s represents a new half-step either forward or backward, so that the
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four determinations r(r(z,)+o1/s(z,))+02 \/S(T($n> + 014/ s(x,)) with independent signs
o1 and o9, must be z,1, x,_1, AND z, twice.

H H (:c—r(r(xn)Jral\/s(xn))—ag\/s(r(xn) +o1vV8(xn)) = (T—2p_1) (=2 1) (2—2,)?

o1=%1 op==+1
[l =7 (r(n) +V/s(20))* = s(r(@n) +V/s(@n) ] [[& =7 (r(2n) = /s(20))]* = s(r(@a) = V/5(2))]
= = () + v/50n)) + 1(1(0) — V5@ + [ () + v/5(En)
1 (r () S () /5072 ()= 5]+ 5 ()4 ()50 () /(o) -
_ < 5 do1+ <2d0,2 + d1,1>33n + dl,QZL“ng n doo + doxy + do, 25132> — ) 2 from I5)
do2 + di oz, + do o2 do 2 + di oy, + do o2

— E(%’,l‘n) (l’—l‘ )2 2

doo + dioxy + dg 222 v

Example: x, = cos(nf) = 112 = cos(0/2) cos(nh)Fsin(0/2) sin(nd): r(x) = x cos(0/2)
and s(z) = (1—2?)sin?(0/2), s(r(x,)E£+/s(x,)) = [1—12 cos?(0/2)F2z,, cos(/2) sin(/2) /1 — 12—
(1—22)sin?(0/2)] sin*(0/2) = [z, sin(6/2) —cos(6/2) /1 — 22]*sin*(0/2) etc. So, the ratio-

nal function s must contain P and s(r £ +/s) must be the square of an algebraic expression
containing \/ﬁ

From 11 = x,,+ 2541 — 2, = sum of roots of F(z,yp11) = 0 minus z, = —

—X1(xn) + / P(zy)

- — — x, which must be the same as

Yy
2X2(l'n)
_(dO,l + (Qdo’g + dl,l)l'n + dl’gxi) + const. \/ P(l’n)
doo + dy 2wy, + dyox? = d2,2(33n —p1)(xn — p2)
Try something else. A half step forward from z,, must be the
same than a half step backward from x,1:
F(xy, Tpq1/2) = 0, as well as F'(Zp41, Tny1/2) = 0, holding for
Tpi1j2 4 half-integer indexes as well, F(z,11/2,%n) = F(Znt1/2, Tny1) =
r(z) £ s(a:): 0, amounting to F' to be symmetric, so, in (), u and v are the
Tpo1/2 L | two roots of ax?+ Bz +v = 0, whence E(u,v) = E(v,u) = 0, as
: : —f/a and 7/« are the sum S and the product IT of the coordi-

Tn Tnt1 nates of a point of the symmetric quartic ([H) in the form ).
dyy (upy — vps) + dy 5 (u — v)

n(yn+1)
YVQ(:%#I)

_xn

Seems to lead nowhere.

Tn+3/2

The equality of the coefficients of x and y in (28) yields =dy 4,
P2 — pP1 '
u+v d + 2+ d; —dy 1di2/(2ds22) + d
or dlll ; +d01 — (u—v) 1,1(P2 P_l)/ 01 _ (u — ) 11 12/(_ 2,:2) 0,17
P2 = P1 P2 =P 1
u+v P2+ p1
al’11 5 +dp d’11 +dp

(27)

u—v p2 = p1
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Ty Sprertots

locuy @) \| (pa, p1)

Funny symmetry between the two pairs (u,v) and (p1, p2)
u ...but do we have E(p1,p2) = 0777 Of course no, p; and p,
are the abscissae and ordinates of the asymptotes of the curve
ol PlBwe =0 g

Now, 1) is

P1

_ —di2
[—dyi 26 + 2da oy + dl,la}Q—f — 2dp 23 + dyi oy + do 1 [—d1 20 + 2d2 27 + dy10] 2y 2do 23 + dy 2y + do
u—v a Lm;
_ —dy
[—d1 206 + 2d2 oy + d1,104}2—§ — 2dp o8 + di oy + doac [—d1.2f + dr 0] 2y = 2do 20 + dop
uU—v - —

P2 — P1
as d671 = do’l&—2do726+d172’7 and dll’l = dl’lOé—dl’26+2d2’2’)/.
And as p; and py be the two roots of dg2p* + dy2p + do2 = 0, remark that (p2 — p1)? =
(di 5 — 4dzpdo2) /3 5.

[—di128 + 2d2 27 + dl,la};—f — 2dp 23 + dipy + do 1 [dO,l - 27d2 , ] a+ (p2 = p1)*dzB/2

U—v P2 — pP1
With v +v = —(3/a and uwv = v/a,

0,1 — d1d12 — (p2 — p1)%dao(u+v)/2
[dLQ(U + U) + 2d2,2uv + dl,l} (U + U) — 4d0’2(u + U) + 2d172UU + Qdo’l . ’ 2d272 ’
2(u —v) p2 = p1 7
a second equation for (u,v), together with E(u,v) = 0.
With the example above, E(u,v) = —sin®0 u?v? + u® + v? — 2cosf uwv = 0, dfy, =

d()’l + 2d072(u -+ ’U) + dLQUU = 2<U -+ ’U), dll,l = dl,l + dLQ(u + ’U) -+ 2d272uv = —2(]. + cos 9) —
2sin? 0 uv = —4 cos?(0/2)[1 + 2sin?(0/2) uv],

F(z,y) = (y —u)(y — v)(2® — (u+v)z +uv) + vv

(pg — pl)dg’g = —2sinf

[ dy ((upr —vpy) +dfy (u—wv d) (v—u +d,(vpr —u
d371$y+ 1,1( P1 p2) 0,1( )x+d671y+ 1,1( )p1p2 0,1( P1 p2)
L P2 — P1 P2 — pP1
uU—

R e G R~

2/1 ] 1 2 —
—2[1 4 cos 6 + sin® 0 uv]zy + [+ cos6 + sin 9uv](;/+'v)9/51n0+ (u+ v)(u U)x+2(U+U)y

sin
2[1 + cos§ + sin® @ wv](v — u)/ sin® 6 — 2(u + v)?/ sin 6
+ -
2/sin@

= (y— u)(y — v)(x —u)(x —v) + ——
- y —2sinf

{[1 4 cos 8 + sin® 0 uv)[—2zy + (u+ v)z + (v — u)/sinb] + (u+ v)(u — v)zsing + 2(u + v)y — (u+v)*}
and [1 4 cos 6 + sin® 6 uv](u + v) + (u + v)(u — v)sinf = 2(u + v) so,
1. either u+v = 0, u —v # 0, and E(u,—u) = —sin’f u* + 2(1 + cosO)u? =
4cos?(0/2)[—sin?(0/2)u? + 1u? =0:u= —v = 1/sin(6/2), F(x,y) = (y* — v?)(z* — u?)

+ 221% 7 {—2[1 + cos 0 — sin® § u?]zy + 2[1 4 cos § — sin®  u?]/(sin(0/2) sin 6) }
—2sin
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-2 cof(@/Q)
- vy P T o e~
1 - oo o o 4sin®(0/2)cos?(6/2) 1 4sin?(6/2) cos?(0/2)
sin?(6/2) —S O/ ey - sin @ sin(6/2) R sin?(6/2) sin® fsin?(0/2)
2 cos?@/Q) =0

which is E(xy) with parameter 6/2 instead of 6!
2. or sin?f wv + cosf — 1 = (v — u)sinf, hyperbola with asymptotes u = 1/siné
and v = —1/sinf, part of the asymptotes of E(u,v) = 0, is that meaningful? One

0—1 in @
cos +usimb E(u,v) = —sin®0 u?0? + u? + v? — 2cos uwv = 0 :
sinf(1 — usinf)

(1 + usin®)(cosd — 1 + usin6)? ) 2ucos€(cos@ —1+4usinf)  (cos@—1)* 0
sin? 0(1 — usin ) " sin@(1 — usinf) - sin?0
so what??
Could the TWO sides of (1) vanish simultaneously? Alas, no: with E(z,, z,41) =
zr o xk 4+ 01w, 120 (20 + Tpga) — (234 + 22) + 225013, + 0.25(2, + T,11) + 1, one finds
B/ ~v/a | left side | right side
-0.50000 |-0.22900 | 0.11586 | -0.47566
-0.40000 |-0.24788 | 0.12493 | -0.37553
-0.30000 | -0.26137 | 0.14072 | -0.27541
-0.20000 |-0.26928 | 0.16199 | -0.17528
-0.10000 | -0.27150 | 0.18741 | -0.07516
-0.024938 | -0.26938 | 0.20839 0
0 -0.26795 | 0.21560 | 0.02497
0.10000 |-0.25862 | 0.24511 | 0.12509
0.20000 |-0.24355 | 0.27442 | 0.22522
0.26814 |-0.23004 | 0.29344 | 0.29344
0.30000 |-0.22284 | 0.30190 | 0.32534
0.40000 |-0.19663 | 0.32582 | 0.42547
0.50000 |-0.16513 | 0.34432 | 0.52559
then, at equality of the two sides, u = 0.36394, v = —0.63208 (p; = —1.0512,py =
0.95125), and
F(z,y) = 2%y*+0.26814xy(z+y) —0.23004(2* +y*) +1.81932y +0.31796 (x +y) +0.98238

puts v =

It seems that we have to do it the hard way. From the R—conic (4)), v is a root of an
equation of degree 2
a2y — (d120 — di)y + do o8 — doraf + dopa® = 0
and also the square of ([£7), using (u — v)? = (8% — 4ay)/a*:
2

[—d120 + 2d2 2y + d1,104];—5 — 2dp 28 + di oy + doac
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2

dy1d
[do,l — 1’2] a+ (p2 — p1)*daf/2
_ ’ (8% - 4ay)/a?

P2 — P1
(dy o — d2,25/06)272 + 2(d12 — doof/c)[do1av — (2doo + di1/2)0 + d1,252/06h + [doae — (2dp2 +
di1/2)B + d1,252/0¢]22
dy 1dy 2}
dy; — ——=| o?
{ Ol 2dyy di1dy 2

- + |:d071 —

(&, — Ad>2do2) /B, ] #dai + (dla ~ ddaoslo2) P14 (B~ dei) o0

2d272

after elimination of v

(dm - dQ,Qﬂ/OZ)Q[(szﬂ - d1,104)7 - do,Qﬂ2 + do,laﬁ - do,oOéQ}/dz,z
+2(d12 — dopf/a)[dorcr — (2do2 + di1/2) 8 + di28%/(20)]y + [dojor — (2do2 + di1/2)0 +
d1,252/(204)]2 )

dy1dy 2

d _ > > 2
{ 0,1 7203272 ] «
(dF 5 — 4dypdo2)/d5 o

dy1d

[t = T2 sy 4 (8, dduadoa) 4| (5 - 1)
2,2

{(dm —doof/a)[(dr2 — dapf/a)(d1 2 — dix) /doo + 2do 1 — 2(2dp 2 + dy 1/2) 5 + d1,252/04

do1da o — dy 1dy2/2]*
R 12/2] + 4 [dodao — dyadip/2] B4 (df 5 — 4daado2) 3P /o b
d172 — 4d272d072 ’

= (d1o—da28/a)*(do o3 — do 1B+ dooa®) /dao— [do1a— (2dp o +dy 1 /2) B+ d1 282/ (20)])* +

do1dyo — dy 1dy /2] 32
orty BB 4y — 26 o+ (8 , — Adaa) 5/ (40
1,2 s s

i

[do.1doo — dy1dy2/2)
diQ — 4d272d072

{[diQ/dQ,Q — 4dy odp 2 — dy1dy 2 + Qdo,ldQ,QW + |4 — digdl,l/dQ,Q + 2do,1d1,2] Of} Y

[d0,1d2,2 - d1,1031,2/2}2
d%g - 4d2,2d0,2
[—2d1 2do0 — di odo,1 /doo + 2do1(2do s + di,1/2)] a8 + [d} odoo/da2 — df 4 ]”

= [digdo,g/dm + 2dy gdo,1 + daadop — doydas — (2do2 4 dia/2) + ] #+

Amazing (13 Feb. 2011), it reduces to v = W!
degree 1
Putting this formula for v in E(u, v) = da2v*—(d1 28—di 10)y+do 232 —do 1 f+do g = 0
amounts to a polynomial equation of degree 4 for 3/a. With the example E(u,v) = u?v? +
0.1uv(u+v)—(u?+0?)+2uv+0.25(u+v)+1 = (v/a)?=0.18v/a?— 3 /y?+4v/a—0.258/v+1,

B v/ u v left side | right side

-2.2172 | -4.9068 | 3.5857 | -1.3685 | -2.1950 | -2.1950

one finds the four roots| -0.18928 |-0.26979 | -0.43333 | 0.62261 | -0.16454 | -0.16454
0.0035158 | -3.7319 | -1.9336 | 1.9301 | 0.028489 | 0.028489

0.26814 |-0.23004 | 0.36394 |-0.63208 | 0.29344 | 0.29344
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each one leading to a valid F"
[#2 — 2.21722 — 4.9068]y* — [2.21722? + 8.9183z + 0.68660]y — 4.90687* — 0.68660x + 1.2428
[72—0.18928x —0.26979]y* — [0.18928 2% +1.7989z — 0.13308]y —0.26979x2 +0.133082 +1.0303
22 + 0.00351582 — 3.7319]y% + [0.003515822 + 6.6839z + 0.21100]y — 3.731922 + 0.21100z + 1.0101
[#2+0.268142—0.23004]y? +[0.268142%+1.81932+0.31796]y —0.230042? +0.317962+0.98238
For a given sequence {--- ,x_1,xq, x1, - - } satisfying E(z,, x,41) = 0, we find four valid
sequences {--- ,T_3/9,T_1,T_1/2, L0, T1/2, L1, - } we solve F(xp,y) = 0 in y and evaluate
_Yiy)
Ya(y)
T_1/2). One then proceeds with repeated use of (@) and ({).
With the example above, starting with zy = 0:

— xo: from (@), the result must be z; (and y is then z1/5) or x_; (and y is then

T T-1/2 Zo T1/2 19! T3/2 T2
1.1328 | -0.57808 | 0 | 0.43815 | -0.88278 | 2.0770 |-4.6529
1.1328 | 2.2163 | 0 | -1.7231 | -0.88278 | -0.60265 | -4.6529
1.1328 | 0.54929 | 0 |-0.49275 | -0.88278 | -1.4312 |-4.6529
1.1328 | -1.4879 | 0 | 2.8701 |-0.88278 | 0.58236 |-4.6529

Is it a surprise that there are 4 interpolants {-- -, &, _1/2, Tn, Tpt1/2, Tny1, - - - } tO a given
elliptic sequence {x,}? If we accept that x,, = E(an +b) with a periodic function of period
p and integer n, then E(an + b+ a/2) AND E(an+ b+ a/2+ p/2) are both valid instances
of #4172, as a new translation of a/2 (resp. a/2 + p/2), will indeed yield z,4;. And
if the function £ has TWO periods, say p and p’, then there are four possible half-step
translations which are: a/2,a/2 + p/2,a/2 +p'/2, AND a/2+ (p+p')/2.

So, elementary recovery of half-integer indexes gives a hint that two-periodic functions
will be somehow involved. Honestly, I knew it.

More on halving-doubling step in § B2 p.

Same experiment with the form () E(x,y) = k*(1 — k?2")2%y* — k*(1 — 2")(x +y)* +
2k(2" — k)(1 + k2")ay + 1 — k*2" = 0, dfy; = dogor — 2dooff + dioy = 2K*(1 — 2"%)f3
and dj; = dl 10z — d19f + 2daoy = 2k(2" — k)(1 + k2")a + 2k*(1 — k?2")y, p1,p2 =

:|:\/ //2 — k2 //2) (IZZD is
D R K)o 3R K I(30) 4 21— e 21— < or
[— (2" — k)(1 + k2") + 2k(1 — sz/g_)}zﬂ (1 — K2) 3 a p2—p1
_ //2 2,02
/B —day = +ky/(1 (1 — k222)ap.

Again, # = 0 is an obvious solution! But we do it by the book: squaring and eliminating
72 through k(1 — k%2"*)72 — k2(1 — 2"?) 3% + 2k(2" — k) (1 + k2")ary + (1 — k?2"%)a? = 0,
[—(2" — k)(1 + k2") + 2k(1 — 2")]2a®B% — 2k(1 — K*2")[— (2" — k)(1 + k2") + 2k(1 —
Z//Q)]QBQ,Y + (1 _ kQZ//Q)BQ[kQ(l _ Z”Q)ﬁQ _ 2/6(2’” _ k)(l + kz”)a’y _ (1 _ k‘QZNQ)OéQ} —
(3 — day)E*(1 — 2")(1 — k*2")3%. Amazing (again): a lot of terms cancel, and we
have 3 = 0 as only solution! Then, E = k*(1 — k22"?)y? + 2k(2" — k)(1 + k2")ay + (1 —

ll
k22?02 = (1 — k22") (kQ,yQ + Qk

k//
kIR "2—1
Lh VO nd P s from @, (4 = 1/a)a® — /a) +
— KRz

= 0 = an equation for uv = —u? =

ory—i—on

v/ =k
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u—"v

m[dﬁ,l[/)z(y —v) = puly — Wz +dy, (u = v)w + do,[pa(y — u) = paly — )] +

2ud, 1 [2pawy + 2up3)

dy 1 prp2(v — w)] = (Y —y/a)(@® — v/a) + 20
P202,2
(1 —=2") (1 —2")
d o) e )
1,1 a(l . kZZ//Q)xy a(l . kQZ//Q)

= (y" —v/a)(@” —v/a)+ (1— Z//Q)/(l _ kQZ//Q))kQ(l — kQZN2>

P B e B O 0 o s
now, from ([dl) 2" = _k'(l o 4 k22’4)’z — k= k(1 — 2272 + k22%) ’
S kfl _ -2+ 2(1 + kQ)ZIQ B 2k22/4 Z//Q 1= (1 o ]{32> (1 B k22,4)2
k’(l _ 22,/2 + k22’4) ’ /{2(1 _ 22,/2 + k2214)2’

TR ) o Eat e C )

(1 — 2272 + k2214)2 ’
Y oy — (1+ K2)(1 4+ k22") £+ (1 — k*)(1 — k") — 4k22" _ (- k?2'*)% and k*(1 — 2%)? _
a 2k2(1 — (1 + k2)272 + k221%) k21— k222)(1 — 27?)
1 ( 1 — k2,2 )il 7(1 _ Z//Q) - (1 _ k2z’4)2 B (1 _ k2z’4)2
k k’(l _ 2/2) ’ Oz(l _ k’QZ”Q) k22’2(1 _ 2/2)2 2/2(1 _ kQZ/Q)Q’

dyy = 2ka[(z" — k)(1 + kz") + k(1 — k*2")v/a]
2(1 — k?)2"” [—1 — k2 4+ 4k%2? — B2 (1 + k)2 =24+ 2(1 + k?)2? — 2k22"

— 9k
22 ¢ f2en k(1 — 2272 + k22/) 1— 2272+ k224 al’”

3.3. (1. or 2.) and 3.

3.3.1. From 3. to 2. and 1. Let P(z) = c(z — z1)(z — 22) (2 — 23) (2 — 24), whose square root
has the Taylor expansion about zy \/P(2) = v+ d(x — 29) + - -- which is matched by the
two first Taylor coefficients of S, (z), so that only one unknown remains in S,,:

Sp(x) = v+ 6(x — 20) + &nl — 20)*.
We will need further coefficients: P(z) = v2+276(z—20)+P" (20)(x—20)%/2+ P (2) (z—
20)3/6 + PW(2)(z — 20)*/24 =
2ye
P"(2)/6 — ° P"(%)/2 — *
P/(z0)/2 — & !

VP(z) = v+6(x—20)+ 5 (x—20)*+ 5 (2—20)3+- -
_ gl
€ n

Sp(w) ++/Plx) 11— Fu(z— 2) _ Gug1(20 — Tpg) 6
2 it i
1 Sn(z) —\/P(2) (T — 29)? o Gu—e -
P /A R gy P priy Ty ) g oy P S
n

— — , SO
20— Xn & —€
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1 Gnlnt1 1 1 5 n

(20 — 2p) (20 — Tpy1)  27(&n —€)’ 20— Ty 20— Tnr1 Y &n—€
We will only need Z,(z) = const. (z — z,) and W, (z) = Z,41(x) = const. (x — zy41).
We now expand S2(z) — P(z) = (z — zo)QWn(x)Zn(:c) = const. (z — 2z0)*(x — x,) (7 —
Tpy1) = const. [(x — 20)* + (220 — 2y — Tpy1)(x — 20) + (20 — Tn) (20 — Tns1) (T — 20)?):
€2 — PW(z)/24 is the constant (= (,(ut1), the coeff. of (z — 20)%,

26,0 — P¥(2) /6 = 2(6,6 — de —yn) = [&) — PW(0)/24](220 — w1 — Tnp1),

0% + 296, — P"(20)/2 = 2y(&n — €) = €7 — PW(20)/24] (20 — @) (20 = nt1),
from which x,, + z,41 and x,x,,; are rational functions of &,.

z, and ¥, are the roots of (£2 — PW(0)/24)(z — 7)? — 2(£,6 — de — n)(20 — ) +
29(&, — €) = 0. Do we have &, = y,41?7 Then, &, 1 + &, must be the rational function
[20(z0 — x5) — 27]/ (20 — 2n)?. From (&), &, + &1 = coefficient of 2% of S, (2) + S,-1(2) =
(1= Bn1(z = 20)] Zn(2) [ an—1, 80 & + &nm1 = —Bn-1Ga/[Ca(20 — ) /(27)] = —2Bn-17/ (20 —
p) = 2[0 = /(20 — xn)]/ (20 — 2n) OK.

So F(z,y) = (y* — PW(0)/24) (20 — 2)* = 2(yd — de — yn)(20 — =) + 27(y — ).

The elimination of &, yields a symmetric algebraic relation between x,, and x,.1: let

S =2z — xp — Tpypr and I = (20 — ) (20 — Tpt1),

(28)

P"(2)/6 | 8= P"(20)/2 = ~2¢

___ S I om 28
S I
2v%nS P"(2)I1/6 — 2veS]?
il A e —_Sp® 24
ST — ~S 2011 — 278 SP(z0)/24,

89%1(31L — 7S) = [P""(20)11/6 — 29eS]* — P (20)[11 — 7S] /6,

[(P"(20)/6)*— P (z0) /G}HQ—W[QEP’"(ZO)—éP(“)(zo)}HS/?)—i—*yQ[462—13(4)(Zo)/6}52—87277((§£—75) =0.

3.3.2. From 8. to 1. There is also a direct way to construct a valid y—sequence, simply

from Yn+1 = gn m (E&)

F(z,y) = (" = ¢)(w = 20)* + (20y — P (2)/6) (2 — 20) + 6" + 2yy — P"(20)/2.  (30)
From (@) and (£8), the two z—roots of F(x,y) = 0 at y = yp41 = &, must indeed be z,
and 1.

As a function of y, Xy(z)y?* + X1(z)y + Xo(2):

F(z,y) = (v—20)"y*+2(0(x—20) +7)y—c(r—20)" — (PP (20) /6) (x —20)+87~ P"(20) /2. (31)

Check that X? — 4X,X, = const. P: indeed, X;(x)? — 4X(z)Xa(x) = de(x — 20)* +
4(PB)(20)/6)(x — 20)® + 4P"(20)/2(2 — 20)® + 876 (x — 29) + 472 = 4P(x).

Of special interest is Q(y) = Y1(y)* — 4Yy(y)Yz2(y) from (BI):

Qy) = [20y — PP (20)/6)* — 4(y* — ¢)[6° + 29y — P"(20) /2]
which is only of third degree
—87y° +2P"(20)y” + 4[2¢ + P (2) /6]y + [P (20) /6] + 4cld® — P"(20) /2],
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and happens to be basically a cubic resolvent [11,63] of P(x) = c(z—21) - - - (x—24)! Indeed,
with § = P'(20)/(27) and +* = P(z), we find

_QW) _
"o
(%O3_P%%)(§g2_< e _;P@@p®@@>gy_<p®@@>{_ c (P@@)Q_QP%%)
o 2P(z0) \ v P(zp) 6.P2%(2p) v 6P (20) P(2p) P(z) P(zp)
whose coefficients depend only on the four values p; = 1/(z0 — 2;), j = 1,...,4, as

P'(20)/P(20) = 31 ps: P"(20)/(2P(20)) is the sum of the 6 products p;p; for 1 <i < j < 4;
P®(2)/(6P(2)) is the sum of the 4 possible products p;pjpr, 1 < i < j < k < 4; and
¢/ P(z0) = p1p2p3pa-

Then, the coefficient of (2y/v)? is (—1) times the sum of the 6 products p;p; above; the
coefficient of 2y/~ is the sum of the 12 products p;p;prpe with one repeated factor; and the
last coefficient is (—1) times the sum of the four terms of the form (p;p;px)? and the sum
of the four terms p?p;prp.

This amounts to the zeros of () as

2
71/ = p1p2 + papa, p1ps+ p2pa, and pi1ps + paps,

and oo, if ) is to be considered a fourth-degree polynomial.

Check:
R3 — k2
p1p2 + p3ps — (p1ps + p2pa) _ z3 — 21 (32)
p1p2 + p3ps — (p1pa + p2ps3) 4" %2
Z4 — 21
A+ B
The general F is (1 + Cy)*F (x, 1 icy), with the F' of (Bl), and the new @ is
Y
A+ B A+ B
(1+ Cy)*Q ( . :_rny>, whose four zeros are given by . iC; = %(pjp4 + prpe), and
y=-1/C.
. . . A+ Bz;
The choice of A, B, and C' ensuring that () = constant P is such that Ti0L
Zj
%(p]’m + prpe)y J = 1,2,3, and zg = —1/C, in order to keep the cross-ratio in (B2),
1 1 B
so A+ Bz; = l(pjp4+pkpg) (——— ,j =123 A+ Bzy = A+ Bzy — — =
224 Pi P4 P1
~y 1 1 B o 1 1 B
i L B S S ) A+By-2 =
5., (P1oat paps) ( o p4> At Bo-—=o- (P2pa+ prps) ( 0 ) AT B

1 1
2%4@304 + p1p2) o) then, A + Bzg = v(—=p1 — p2 — p3 + pa)/(224) and B =

4
Y(=p1p2 — p1ps — paps + p1p2ps/pa)/(2z4).
2(1 — kQ)zoynH 1— k2 g — k2(1 — zg)yle
TnTn - )
E[(1=E228)y2 0 — 1+ 23] R (1 - R222)y2 e — 1+ 2]

For the F of (), z,,+2p+1 =
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(1—Kk223)?
422

—[(1+ E2)(1 4 k228) — 4k 28w tngy — 1 — K220 + (1 4+ k)22 (33)

E(xm xn-ﬁ-l) = (xn + xn-&-l)Q - k2(1 - Z§><1 - kQZg)(xnxn-i-l)Q

Fixed points z,, = @, 1 satisfy (1 — 22)(1 — k%22)(z? — 22)(K*2? — 2,%) = 0.

3.3.3. From 2. to 3. Can we find P, zp,etc. from ([[H)? If zyp = oo, dy2 = 0; when zy = 0,
doo = 0. As S = II = 0 satisfies ([£29), so does © = y = 2, i.e., 2 is one of the four roots of

d27223 + 2d17223 -+ (4d072 + d171)Z§ + 2d07120 + d070 =0.

Then, with = 29— (20— ,) and y = 20— (20— Tpt1), T+Yy = 220— S, Ty = 25 — 205 +11,
and ([H) becomes

d2,2H2 —(2dg 220+ dy 2) STI+ (dQ,QZg +(di2+di1)z0+ d0,2)52 + (2d2,22’§ +2(dy 2 +dy1)20)1
— (2d27223 + (3d1’2 + 2d1,1)zg + 4d07202’0 + do@)S = O,

must match (29)
Another way: ([H) yields y = z,+1 as a quadratic function of x = z,, as
. —dLQZEQ — (2d072 + d171>l‘ — d()’l + \/(dLQxQ + (2d072 + dLl)ZE + d071>2 — 4(d272$2 + dLQx + d072)(d072$2 + doJZE + d070>
y= 2(d272x2 + dLQl' + d072)
Let us look now at the (.S, P, Z,,) construction as a way to find x,,,; from z,: if x,, is known,
S?2 — P must vanish at z = z,, = S, (z,) = v+ 0(zn — 20) + &n(Tn — 20)* = £/ P(z0),
giving two possible values for &,. Then, we factor S2 — P:

2

Tn) — v — 0(Tn — 20 ) ) 1" 20 ) 1" 20 5 (4) 20
¥4 8(x — ) + £V P( H(Lnjzo)i( n )(;,;—zo) -y —275(96—20)—P§ )(:r:—z()) L é )(:c—zo) E 24(1 )

what remains is constant times (x—zy)?(z —x,) times a last factor which must be a constant
times & — 2,41, yielding for z, 1 an expression containing +/ P(z,), so that

(dLQJ}Q + (2d072 + d171)SL’ + do’l)Q — 4(d2’2$2 + dl’gl' + dog)(do’gl'2 + d0’1l' + d()’o) = const. P(SL’)

Generalization.
Generalization of Padé approximation and continued fraction (recurrence relations) con-
structions: see [7,8,47,61]

3.4. 3. and 4.
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3.4.1. 3. to 4.: Algorithm for square root of a polynomial.

Basically from Perron [51, § 20]

We may as well consider the general hyperelliptic case, with P of degree 2m [45].

Let P(z) = c¢(z—21) -+ (2 — 22mm), So a polynomial of degree m such that Sy(zo) =7 at a
fixed point zy, where v is the value at zg of a well defined definition of the square root of P
(we will need this square root only in a neighourhood of zj), and Z, and W} polynomials
of degree m — 1 which are a factors of P — SZ.

As a matter of fact, this strange latter condition comes from the consideration of a
function f which is the root of

(2 = 20)Zo(2) f*(x) — 2S0(2) f () + (2 — 20)Wo () =
vanishing at = = zy. If zp = oo, the property of f is f(z) = O(1/x) for large . We have

_ So(x) =V P(x)
f([l?) - (SL’ _ ZQ)ZQ(ZC) )
where P(z) = So(x)? — (x — 20)? Zo(x)Wo(z).

We now look at a continued fraction expansion to f of the form

flz) = ol - Z(i)l(x —20)? )
1—50(:13—Zo>— 1_51(:13_20)_
fn(x) = onlw = 20) n=0,1,...

= Bulz = 20) — (@~ ) ()
Remark that the two first Taylor terms of the expansion of f,, are
fn(x> = O‘n(x - ZO) + anﬂn(x - ZO>2 +--

The form of f is kept in all the f,’s, as

_ Salr) = v P(2)
A FEEAYAT)
R G0 1= Bulr—n)  onls — ) Zu@)[Sulz) + /P
= Ja(@) = T — 2 ~ - fulz) T — 2 B S2(x) — P(x)
which, if f, is a root of (z — 20) Z,(x) f2(x) — 2S,(2) fu(z) + (2 — 20) W, (x) = 0, with

(34)

1= Bule — )| Wa(e) fa, — Su(a) -

P(z)

Sn(2)?—(2—20)*Zn(2)W,(2) = P(z), turns as f,1(x) = [
so that
Zn—i-l(x) - Wn(x)/am
Snt1(z) = [1 = Bu(® — 20)] Zp41(x) — Sp(),
and, as we want
872L+1(x) - P(:L“) - <x - ZO)QZn-i-l(x)Wn-i-l( <x - ZO) an+1Zn+1( )Zn-i-?(x)v (35)

)=
remarking that S2_, () = [1—8, (2 —20)] Zoe1 () {[L= B (4= 20)] Zu1 () 28, () }+ S2(x) =
(1= (@ = 20)| Znr (2)(Susa (@) — Su(w)) + S2(x),

(x — 20)Wa(z) /o



e AU
explG(2)) = explof2)+ih(z) = fim (S ) %<
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Sn-‘rl (:E) — Sn(x>

(x —20)2
which is a polynomial, as S, and S,,; match v/P up to second order, so that the degree
of the polynomial W, ;i remains < m — 1.

Wi (2) = anWa(2) + [1 = Bulz = 20)]

(Hyper)elliptic functions and all that.
The Green function.

For any ng and p, from (Z2):

—p Sno - \/ﬁSnOJrl - \/ﬁ . Snojtpfl - \/ﬁ

Zno Zn0+1 Zn0+p—l

fnofno+1 .- 'fn0+p*1 = (l’ - ZO)

Y

o oo 2 () 205 = VPPl = VPP [y = VP’

oo noteT Zno (ZnoZnoJrl) (Zno+IZno+2) "'(ZnoerfQZnoerfl) Znoﬂ?*l
(=1)Pan, - - Qngyp-1[Sny — \/ﬁP[SnoJrl - \/ﬁP + [Sngtp-1 — \/ﬁPZnoer
Zno|S3, — Pl[Shg1 — P+ [Sh P

n no+p—1

Znotp (_1)Pq o [Sno — \/F} [Sno+1 — \/ﬁ} o [Sngtp—1 — \/]_3]
Zno ng + -+ Xng4p—1 [Sno + \/ﬁ} [SnOJrl + \/ﬁ} . [Snoerfl + \/ﬁ]

When p is (almost) a period, Z,,+, & Z,,, we have the limit

n—oo

1/(2p)
(Sno + \/ﬁ) e (Snoﬂ?fl + \/ﬁ)
) -l (Sno - ﬁ) T (Sn0+P—1 - \/ﬁ)

When P has real roots, exp(G(z)) is the ratio of complex conjugate numbers if z €
the support S, the locus where P(z) < 0. ¢g(z) is the harmonic function vanishing on
S, positive outside S (minimum principle), behaving like — log |z — zo|+ constant near z
(log |z|+const. for large z if zp = o0): the Green function singular at zy of S. When
zp = o0, the constant is the Robin constantll = -log of the logarithmic capacity of S.

What if P has general complex zeros zy, ..., 22,7 exp G(z) is already on the unit circle,
i.e., g(z) = 0 at the zeros of P. We still can think of a path S where g(z) =0, i.e., G(2) is
pure imaginary, and this path is characterized by the differential condition

G'(z) dz pure imaginary
4About Robin, see K. Gustafson, T. Abe: “The third boundary condition- was it Robin’s?”, Math.

Intelligencer vol. 20 (1998), nr. 1, pp. 63-71; “(Victor) Gustave Robin: 1855-1897”, ibid., vol. 20, nr. 2,
pp. 47-53.
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(or the quadratic differential (G')*(z) dz* < 0). We must know more on G:

S+ P S — P
G ~ 1 Z 2P 2V/P
2p S++P S—+P
P's
—25'
>3 2/E
2p S2 — (x — 20)2mZm Zmi1

is therefore a rational function divided by \/ﬁ, with possible poles at the zeros of the Z
1/(2p)

(Sno + \/ﬁ) e (Snoﬂ?fl + \/ﬁ)

(Sno = V'P) -+ (Spgp-1 — VP)

if some S,, + v/P vanishes, so does S2 — P, so, either Z,, or Z, 1. If it is Z,,, look at

Sm = —Sm-1+ [l = Bm—1(x — 20)| Zpn,, which shows that S,,_; F /P vanishes as well; and

if it iS Zmt1, Smt1 = —Sm+ [1 = Bz — 20)]| Zim+1 = —Sm at a zero of Z,,11. So, exp G has
no pole nor zero in the finite complex plane, and we must have

polynomials. But let us look again at exp(G(z)) ~ (

: (36)

where Q(z) = 2™ ! + .- is a monic polynomial of degree m — 1.
When m > 1, @ is completely determined by the conditions

2k
periods = 2 / Q0) dz pure imaginary.
31 P(z)

Importance of the Green function G on the behaviour of the denominator B,,.

A(xr)  ao(x — 20)

Remember: Bi(v) =1_ Bo(w = 20
Ay(x) _ ap(x — z9) _ ap(x — 29)[1 = Br(x — 29)]
Bo0) | e ) — =20 0= e = 20)][1= il = 20)] = el = )
0 0 1-— 1(1‘ — Zo)
Ani(z) = [1 = Bulx — 20)]An(2) — an(z — 20) An- ( ),
Buii1(7) = [1=B0(2—20)| Bu(¥) —an(2—20)* By1(2), Ao(x) = 0, Ai(2) = ap(r—2), Bo(x) =
1,31(3}) =1- ﬁo(l’—Zo)
ity )= L= 1=t [l B
{Al(x) Ba(x)] _ [~(@—2)" 0

The products (z—z0)" fo(z) . .. fu(z) satisfy the same recurrence relation, from f,1(z) =
1 So(z) — / P(x)

U et Ry rny e
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—z ) fi(z) = (x — % \/Wl_ﬁt)x_zo)}zl() So(#) — v P(@)
(x — 20) fo(x) f1(z) = ( 0) ( —Zo) (2) (z — 20) Z1(2)
Bi(2)5o(x) 2 (z) = S3(@) + Pla) = B Z@VP@) _ g e 4

(x = 20) Zo(%) Z1 ()
Let n be a quasi-period, then

B S — A, Z —B,_ P
B (2)f () — Ay (a) = D2t 8)5000) IZ@$@ {(2)\/P(@)
= (2= 20)" " fo(x) -+ fao1(z) = (=1)"as - - aye 9. Now, take the other determination of

X Y
V/P. G becomes —G (as seen form the definition of exp(G) through a product of Xk + \/\/; ’
. —

ON

or frm the quadratic differential), and

B, 15— A, 1Zy+ B, 1VP
Bn—lfconjugate - An—l = 0 Zl 0 + ! ~ (—1)”@1 ce ane"g,
0

whence
end — g9

Y

showing that most of the zeros of B,,_; are on the locus S = {z: ReG(z) = g(z) = 0}.

By~ (=1)"ay---a,Z

Remark: “Pell’s equation”. Make the product
[anlso - AanZOP - BZ,1P = Zé(x - Zo)ano .- -fnflfO,conj. .- -fnfl,conj.

So—\/F___Sn—l—\/ﬁSO—F\/F___Sn—l—F\/F
ZO Zn—l ZO anl
=ap...a2 (v — 20)"ZoZ,.

=77

What is (are) the period(s)?

If m > 1, let us consider the integrals of
t* ~1(t)So(t) — An1(t)Zo(t) + Bna1(t)/P(t)
27in/ P(t) 1(8)So(t) — Apn_1(t) Zo(t) — Bn_1(t)\/P(t)
on a big contour avoiding all the singularities, so that the value = 0,
S On the other hand, making the contour shrink
about S and the zeros of U and V =
—1(6)So(t) — An—1(t)Zo(t) & Bn-1(t)\/P(t
2 (which are zy and the zeros of Z, and Z,,), one
— finds

dt, k=0,...,m—2,

22m

zZero

0:—271/2: \/de > /

zeros of Zy,Zn,

Zj+1
dt+ N/ dt, kE=0,...
Z P(t)
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where the first term accounts for the zero of multiplicity 2n at zo of V = B,_1(t)So(t) —
A,1(t)Zo(t) — By—1(t)\/P(t), so that the logarithm of U/V on the lower path from z, to
z1 is the value on the upper path minus 4nzi; the + signs tell if the zero is a zero of U or
£k

) P(t)
to consider, in the “gaps” of S. Integrals on the two sides of S vanish, as vV P, = —VP_,
so that the logarithm takes opposite values on the sides of S.

Zj+1
V'; and where N; are (unknown) integers. There are only m — 1 integrals /

It happens that, knowing n, P, and Z,, ([BY) allows to find the remaining unknowns,
including the =+ signs (Jacobi problem, [2,6,32,45,47,48]).

There is absolutely no need for n to be an integer in the description (BX) of the Jacobi
problem. Let x(l) . x%m Y be the unknown zeros of Z,. To see how these xt’s are
functions of n, we .. .take the derivative of ([BR) with respect to n (!!):

m-1 VIR0
Vk:ZSZMﬂ k=0,...,m—2,

- (0 dn

=1 P(xy’)

zZ1 tk (2)
where v, = 2 / dt. We have a system of differential equations for the z;’’s. A
2 P(t)

single derivative is isolated through Lagrange interpolation polynomials:

d:zsne ) / t— ZEn dt
@ (q) /P

E— 1 In
q#L

An initial condition consists of a set :U( ) .. x%m Y and the signs s1, ..., 8,1 (= a set of
places on the Riemann surface of \/_ P).

The vector [z5, ..., 27" "] is a well defined function (Jacobi-Abel function) of the
left-hand side [nuy, ..., nvpy_s].
Periodicity: xg), . xﬁ{” U are kept unchanged if the left-hand side of (BY) is augmented

Zj+1 k
by integers times the integrals 2 / dt (periods)
2 Y (1)

It figures: in the canonical Jacobi setting, the z;’s are +1 and +k~*. Then, (B8) becomes

20 dt on dt »
2K + /x . = O ON, iK', (39)
as the phases of \/P(t) = /(2 — 1)(t2 — k2) = k=1 /(1 — £2)(1 — k2¢2) are +1, —i, —1,
+i, and +1 on R + i, and the relevant definite integrals of dt/\/(1 — t2)(1 — k2t2) are
on (—oo, —k™1) (=k7Y,—=1) (=1,1) (1,k7) (k71 +00)
K

—iK’ 9K K K,
! dt > d
where K = / = u (take t = 1/ku), K' =
o VA —-)(1—-k22) S /(1 —u2)(1 - k2u?)

dt o d 1 Ju?—1
= u (take t = — “

/o Ji-oa-a-mp) S J@-Di-re) TR T
11— (1= k)2 72)
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(see Milne-Thomson, in Abramowitz & Stegun:)

Equivalent Inverse
Fleo\a) Jacobian Elliptie ¢ { Substitution
Function
17.4.41 ity
s dl z|gt— x
e T T S (e == =b
“.L @+ ) P+ st (b d ) hhe=p =R
c(g gz:bllz 17.4.42 W ot .
a = _ fzla?— _a _
m=(at—b)}/al aJ; FrdETme cg™? (; = tan =7 t==a oy v
17.4.43 N s B S
2 .y B — ca G — —=bnd
of r—m T na (355 el T T

We clean a little bit (89): the integral from —k~! to —1 is —iK’, so that we throw in the
right-hand side an even integer multiple of iK' (the periods of the Jacobi elliptic integral
of first kind are 4K and 2iK’); the integral from —1 to 0 is —K. We have

o dt o dt ,
(2n 1)K+/0 O] FK+ /o P + periods.

We now see in an elementary way how the Jacobi problem is solved for z,, including the
=+ sign: when n = 0, the upper sign is the obvious choice; when n = 1, take the lower sign,
the integral from 0 to z; is the opposite of the integral from 0 to zp, so z; = —zp; when
n = 2, take the upper sign again, but perform the integral to zo by adding a complete loop
about [—1, 1] weighting 4K (or add 4K to the “periods” term), etc.

With elliptic sine: z, = sn(2nK + argsnzy) = (—1)"z.

Now we deal with a symmetric set, BUT x = oo is sent to some value ¢t = —1/v, (B9) is
changed into
Ut & dt o dt
Zn/ — 1+ — == ———— + 2N,iK/,
—00 k\/ Y(t) xlz—k;_l k\/ Y(t) xlz—k_l k\/ Y(t)
—1/y

and z, = sn(an+0b), with a = leading to a true periodic sequence whether

dt
o kY ()

a/K is a rational number or not.

4. Further identities and formulas.

4.1. Hyperelliptic excursions.

So, P is a polynomial of degree 2m = 2g+2, of zeros z1, .. ., za,,. We choose a continuous

P(z) outside a system of cuts. So, instead of dealing with the two-sheeted Riemann
surface, we will sometimes emphasize a sign € in 1/ P(z), with e = +1 or —1.

Let also zp different from zi,..., z9m, and v + d(z — z9) be the two first terms of the
Taylor expansion of y/P(z) about z = z.

We look at continued fraction expansions about z of functions involving v/P. We follow

3 p. I
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Sn(2) =V P(2)

So, consider f,(z) := with polynomials S,, and R,, such that S,(z) =

(Z - ZO>Rn(Z> ’ g2 p
Y+6(2—20)+0((2—20)?, so that f,(z) = 0, %

_ S~ VPG _ (2 — =)

and the continued fraction step f,(z) := Y N R N N oy piy ppos y oy po

= the new polynomial R, 1(z),

as in (??), in p. ??7. We still have (R> (” ) Pz) = Tayl,(2) — Snﬂ(;):l(z)])(z)’ 50,
Sni1(2) = =Sn(2) + Rpy1(2)Taylory(2), Ryi2(2) = Ru(z) — Tayl, (2) Sn(?zi : i;z;;l(Z)

What about the degrees? The degree of S? — P can normally not be smaller than
2m = 2g + 2, so the smallest choice for the degrees of the R,s is degree(R,) = g.

The Rs and the Ss will be the xs and ys of the hyperelliptic billiard.

Let us choose Xy = such a polynomial of degree g, Y; of degree g + 1, with the two first
Taylor coefficients as v P: Yy(2) = v+ 6(2 — 20) + O((z — 2)?), and such that P(z) —YZ(z)
is a polynomial multiple of (z — 20)?X(2), P(2) — Y&(2) = (2 — 20)?X0(2) X1(2), according
to what has been found above about Q).

Given Xj, Y is constructed through interpolation of v/ P at the zeros xél), R xég) of Xy,
here is how any choice of g signs 1, ..., &, appears:
(7) (7)
eir/ Pleg’ —~v—6(xs’ — 2 )
Yy(2) = v4+6(2—20)+(2—20)? | polynomial interpolant of degree g — 1 of value ! ( 0( (j)W )(2 0 ) at méj)
.CEO — 20

where each €; = 41 or —1. So, there are 29 possible Yjs for a given X.
The continued fraction construction may proceed with

VP(z)+Ya(z) wvlor (z — 20)?
Xoi(z) favlor + VPE) +Yan(z)
Xn+2(z>

(Z - ZO)XnJrl(Z) Yn( ) P(Z)

VPE) +Ya(2) (2= 20)Xa(2)

The algebraic function f,, is the root of

(2 = 20)Xn(2) f(2) — 2Ya(2) fu(2) — (2 = 20) Xns1(2) = 0 (40)

vanishing at z = z;. The Xs are our object of study, they are polynomials of degree g, of
(1 ) (9)

but the use of f,(z) = — will be preferred here.

which ¢ elements are considered, such as the zeros x5, ...,z of X,. Y, is a polynomial
of degree m = g + 1 with the constraint that
V2(2) + (2 — 20)Xul(2) Xaa(2) = P(2), (41)

constraint which is satisfied if Y,,(2) = v + §(z — 20) + O((2 — 20)?). Then, Y, depends on
g elements too.
Finally, let the continued fraction step be

an(z — 29)
14 Bu(z — 20) + an(z — 20) fry1(2)

falz) = (42)



2006- — Elliptic lattices. 4 — Further: Hyperelliptic excursions — 44

The coefficients «,, and (3, are immediately related to the two first Taylor coefficients of
fn, which follow from (), knowing that f,, vanishes at zo:

fn(2) = anl(z — 29) — apfu(z — 2002 + -+ = — M(z —2) — ();;/Zl) (20)(z — 20)* +

-~ 2Y,(z0) = 2y
from (E2) fromv(m])

Billiard: first, recurrence relations from (E2):

0 e
fan(z) = fu(2)  an(z—20)  ay
(2= 2)Xa(2) 1 B
C Ya(2)— /P(z)  anl(z—2) "
_ Yo(z) + v/ P(2) (from @) + é—i—&

(2 - ZO)Xn+1(Z)

Yn+1(z> - P(Z)
(Z - ZO)XnJrl(Z)

an(z—20)

which must be

, SO

1 + ﬁn(z — ZQ)

Qn

Yota(2) = Xnta(2) = Ya(2), (43a)

and we must check EI) at the next step: Y2 ,(2) — P(2) = [(14 8n(z — 20))/ ) * X1 (2) —
2[(1+ Bz — 20))/n]Yn(2) — (2 — 20)2 X, (2), so that

2Yn(2) = [(1 + Bu(z = 20))/an] Xn1a (2)

Xnt2(2) = [(1 + Ba(z — 20)) /] (2 — 20)2 + Xn(2)
Y. (2) =Y, 11(z
=[(14 Bn(z — 20))/ ) (2) +21( ) + X, (2) (43Db)
(z — 20)
which is clearly a polynomial, as Y,, and Y,, 1 share the two first Taylor coefficients about
20
So, a x and a y of the hyperelliptic game are vectors of CY, as the zeros (x% ), e ,xSLg))

of X, and the values (g,,11/ P, ... cEng\/ Pz ©) of Y,, at the zeros of X,,.
The g choices of the es have to be made only at n = 0, all the subsequent operations
(#3al)- ([E30)) being well defined. What about other choices of the signs es? One case is clear:

when all the g signs are changed, ([E3al) at n — 1 shows that Y,, becomes the old Y;,_1, i.e.,
k

0 dt +

21
we are exploring the past! This is confirmed by (BS) in the form 0 = —2n /
20

e
Z /(J)

as the €, ; of above7) is the same thing as replacing n by —n.

dt + periods, showing that changing all the +s (are they the same thing

And here is a possible difference operator
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(Df)(xg), s 7‘77519)) =

(f(sn,l\/P(xS})),o,...,0) — f=ena(/P@),0,...,0)  £(0,...,0,60 00/ P(x)) = £(0,...,0, —£n, p(xgw)))

geeey

26,1 P(mgll)) 2en.9 P(az(lg))

which looks like a kind of gradient. Other combinations out of exterior algebra furnish
all other difference operators, such as curls, etc. (oh no, not me, please!).

And what may F(X,,Y,) be here? Considering how Y,, are obtained from X,, with the
Ends- - - En,g degrees of freedom, F' must be an enormous contraption of degree 29, but such
that equations may be solved by a sequence of quadratic operations, perhaps something
like a chain of squares (a + (b+ (c+ --+)?)?)2?

4.2. Addition and duplication formulas.

Yn+2 We start from the usual construction of {z,} and {y,} se-

quences, with F'(x,,y,) = 0, and F(z,, ypy1) = 0 = x, and z, 1
are the two roots in z of F'(z,y,11) = 0.

Yn+1 1
Yn 1
xln xnl—i-l
s . —
s We bypassed (section ZZ p. @) the ys by constructing E
Tps1 + - — = such that E(x,,x,+1) = 0. By symmetry of E, the two roots
| of E(z,,y) = 0 are y = x,41 and y = x,_1. The horizontal
Yy = Zpy1 would cut the curve F = 0 at a second point of
| : abscissa T, 2. . . If we want to see the familiar spiderweb showing
| | T, Tnil, - - - We stop the horizontal when it meets the bisector
: : x=1y.
Tn Tp41
Tpysz + — = — = — = .
But yes! Let us keep the same construction as before!
Tpyr + - - -
|
|
|
| |
| |

Let us go further: bypassing the x,1-step in (),

Tn Tp+2
2 2
" i . dLQl‘n + <2d072 + d171>1'n + d()’l - " . dO,an -+ d()’l[l?n + d070
n—1 n+l — — s n—1dn4+1 — )
da 222 + dy 22, + dp o da 22?2 + dy 22, + dp o
2 2
o4 di o, 4 + (2dp2 + dy,1)Tpg1 + do - do2;y, 1 + do1Tng1 + doo
n n+2 — — D) y Ipdn42 = D) )
dy oy + dyoTyy1 + doo da oy + dyoTyy1 + doo
2 2
diox; 1+ (2dp2 + dy1)xn—1 + doa dooxs 1 + do1Tn—1 + doo
Tpo +Tp = — y Lpn—2Tp =

2 2 )
dooxi 1 4 dioTp_1 + doo dooxs 1 4 dioTp_1 + doo
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dl,ﬂi_l + <2d0,2 + d1,1>33n—1 +do d1,2xi+1 + <2d0,2 + d1,1>33n+1 +do
Tp—2 + Tpy2 = — 2 - 2 - 2$n
da 2wy 1 + dipTp_1 + doo dy oy + dyoTyyr + doo
= —{2dy odp o’ (7% + [doa(2do 2 + diy) + dF )0 1 Zn g1 (Tn1 + Tnia)
+ (do2dr 2 + d071d272)(x%,1 + x%ﬂ) + (2dp2 + di1)dh 2%n—1Tp41
+ [(2do 2 + d11)do o + do1dy o) (Xpt1 + Tpo1) + 2do1do 2}
/[(dQ,QSUi,l + dy o1 + dO,Q)(d2,2$EL+1 +d12Tp41 + do,Q)] — 2z,

where we replace x,,_1 + 2,41 and x,_ 12,1 by the rational functions of second degree in
x,, recalled above.

Fourth degree?

No: the denominator is the product of the four factors (x,+1 — p;) rearranged as the prod-
dog[l?i + d()’ll'n + d070
dgg%’% + dLQLL’n + do’g

uct of (21 — i) (@Tnt1 — Pi) = Tno1Tns1 — Pi(Tn_1 + Tpi1) + p7 =

diow} + (2dog + diy)Tn + dO,lpA 02— E(zn, pi)
do 222 + dipx, + dp o ' Y door? + dipx, + doo
=0

Ve

(do2p} + dyop; + dog) B2 + (di2p? + (2do2 + di1)pi + don) s + do2p? + doap; + dog <
do o2 4 dy 2xy, + do o 7
the degree of the final expression will remain 2.
doop? + do1p; + d
Remark that the new p; is pl(-Q) =— 20’2p’ + Go.1pi + do
diop? + (2doa + dia)pi + doa

After some struggle with a symbolic calculator, one has
denominator = [d31d§2 + doadopd?, + 4d%’2d22d11 ete. awful

Try again the resultant trick, from § 22k eliminate x4, from (X))
E(xn, Tna1) = doo+do1(@n+Tpe1) +doo(Tn+Tna1)? +di 120 Tpi1 +d1 2T s (Tn + Tnar) +
dQQ!E%l‘%:ﬂ = [dlgxi + dLan -+ d()’g]l‘%:ﬂ -+ [dLQl‘% + <d171 -+ 2d072)$n -+ dO,l]xnil -+ dog[lﬁi +
doaTn +doo =0, and E (249, Tpe1) = 0. I don’t even try to be bright, the resultant is

do 212 + di 0T + do 2 d1222 4 (d1,1 + 2dp 2)Tn + do 1 do 222 + do12n + doo 0
0 do 222 + di o + do 2 d1222 + (di,1 + 2do2)Ty + do 1 do 272 + do 12 + doyo
do o2 1o+ dipTnto + doo  di2x2 40+ (di1 + 2do2)Tna2 + doa do2@2 4o + do1Tnt2 + doo 0
0 do o2 1o + dioTnto + doo di 222 1o+ (di1 +2do2)nao +doy do2r?yg+doi1Tnas +doo

= (Tpto — Tp)? times

d2,2l‘i +di27n +do2 d1,2x31 + (di,1 + 2do2)xn +do d()gl‘i +do, 12y + doyo 0
0 dapx? + dy oy + doo diox% 4 (di,1 + 2do 2)xy +doy do 222 + do 12y + doo
doo(Tpto +an) +dio  dia(Tpeo +2n) +dig + 2do2 do2(Tnto +2n) +don 0
0 doo(Tpto + Tn) + di 2 dio(Tpto +an) +dig +2don  doo(Tnte +Tn) +dos
d272(8*d)2/4+d172(8*d)/2+d072 d172(8*d)2/4+(d171 +2d072)(8*d)/2+d071 d072(8*d)2/4+d071(8*d)/2+d070
0 dgvg(s—d)2/4+d1,2(8—d)/2+d0,2 dlvg(s—d)2/4+ (d171 +2d072)(8—d)/2+d071 doyg
doos +dy 2 di,25 +di,1 +2doo do,2s + do 1
0 d2,23 + d1,2 d1728 + d171 + 2d072
where s = 2,49 + 7, and d = 49 — T,. Remark that s? — d?> = 4p, where p = Z,497),.
d2,2(82 +d2)/4+d1’28/2+d072 d1,2(82 +d2)/4+ (dl,l +2d0,2)8/2+d0’1 d()72(32 +d2)/4+d0718/2+d0’0 (
0 doo(s® +d?)/4+ d1,28/2 + do 2 di2(s? +d?) /4 + (di1 +2do2)s/2+do1  doo(s? +d?)/4
da2s + di 2 di,25 +di1 +2do o do,25 + do 1 (

0 do o5+ di2 di,25+di1 +2do o do2s
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—daop + do o —dyop +do —do2p + dop 0

_ 0 —daop + do 2 —diop + do —do2p + doyp
d2728 + dLQ dLQS + dl,l + 2d072 d0728 + d071 0

0 d2728 -+ dLQ dLQS -+ d171 + 2d072 d0728 -+ d()’l

—daop+doo  dog — di2doa/dos doo — d o/ da 0

_ 0 doo — da2doo/do2 do,1 — di2do0/do2 —do2p + do g
dyps+dis  diy+2doo —di 5/do doy — doadr2/d2o 0
0 dig—dopdoa/dos  dig+2dos —dipdoi/do  do2s+doq

di 1+ 2dy o — dig/dQ,Q doq — do2di2/do o
dio— dQ,Qdo,l/do,Q dy 1+ 2dp o — d1,2d0,1/d0,2

do2 — da2doo/do 2 do — di2doo/do2
di1+ 2dp o — diz/dm doq — do2di2/do 2

do,1 — d1,2d0,2/d2,2 doo — dag/du
dig— doodoa/dos dig+ 2doo — diodos/doo
doq — di2do2/d2 2 do,o — dag/dm

do — d2,2do,0/do,2 do,1 — dl,Qdo,o/do,Q

= (d2,2p - do,Q)(do,Qp - do,o)

—(d2,2p - dO,Q)(dO,QS + do,l)

—(do25 + di2)(do2p — dop)

+(da 25 + di2)(do2s + do 1)

Hmm
With
£(2) = Sn(z) —\/P(2) _ (z — 20)
" (2 — 20)Zn(2) CZn 7: ﬂn)(z — 20) — (2 = 20) fay1(2)
- Q Z—z) — (2 — 20)°
n e ) Sel) — /P

Opt1 + Bug1(z — 29) —
+1 41 ( 0) 7 2( )
etc.

Multiplication formulas on a canonical form are investigated in § 5.2 (p.307) and appen-
dices B and C of Maillard & Boukraa’s paper [31].

Finally, I return to the birational transformation to the Weier-
strass cubic (Z0) of p. [ (x,y)n+m is the result of adding to
(z,y), m times the step (z,y)®*P?)  according to the addition
rule of elliptic curves. We go to the (&,7) plane with, say (£,7)
for (2,%9)n, and (&,1)* for (x, )6t
- 1 Xi(xn) + 2yn Xo(z4)

— S = NQX i 1 3
f= e &1 (s + 1/6) +
) QynXQ(Zi + 1/5)]7
€ = " = LX) + 280 X () = ) = (€[l +

1/€) + 298P X,y (2 + 1/€)]. The straight line n = Z* — gg + 5;_ ég meets the cubic
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v =72
7 = €P (s + 1/€) = [Z - Z] €4 = Pz)E = P'(2)€2/2 - - -

— (5*)2[)(1 (l'grsztep#)) + QySEtepJ)XQ fﬁite;w)] - 52 [Xl (l'n) + QynXQ(xn)] ’ §2+ . ~—P/(Zi)§3—
&) Pe)e = {2 = P'()/2 = P'(z)(€ +8), _

— 7 2 U /9 — Pl (EF 4+ EV/P (= M
_g[{---} P(z))2 = P'(z)(€ + ]/ P'(z) + ¢

—~

I

P"(2)€%/2 — - -+ at a third point
B Ml P S Bl S/ M

g-& - ¢ -
- Z - g[{ L2 P(2)/2)) P () + @

Whence an addition formula looking quite like the formula for the Weierstrass p function:

—

Ui

P,(Zi) i
Tm4n — Zi B
. X X i 2
(0 — 2) X (i ™) + 205 P X (a0 ™)) (@i ™Y — 20)[ X (@) + 29 X ()
(xgrsltepﬁ) — z) (w0 — xgrsltepﬂ)) (20 — 2) (2 — xsltepﬂ))

1 1
_ P"(Zz)/Q — P/(Zi> |:x(step7i) _ " }

m i Tn = Zi

_(mer'fL - Zi)Q [77* — ﬁg + é*ﬁ - 577*] - X1($m+n)

) = (@man — 2)*1 — X1(Toagn) & —¢ & =&
e 2X2 (mern) 2X2($m+n)
(44)
. (step,i) (step,i)
. P’ Zi (l’n ZZ) P(CL’m ) Tm P — Zi P T
With 2X,y = —X,+V/P, (=) = (stepyi) (step,i)y : : (st(ep z))
Tmtn — Zi (xm = Zz><xn — Tm ) (xn - Zz)(xn — T, )

P”(zi)/Q—P’(z,-){ L1 ]

xgrsltepﬂ) —z Ty — 2

(= 2P[PEE™) = PG ) + (P2 (™ — 22 1] PP

(xgrsltepﬂ') _ Zi)Q(xn _ xgsltep,i)y (ZL“n . xgsltep,i)y

() — 22 [P() = P = 2) + (P"(20)/2)(n = 2+ -]

/!
(T — 2)2 (0 — 2 PY)2 —Pi(z)/2

1 1

— P'(z : —

(2) LS}QP’” . L ZZ]
Yi(yn)
Check: from @), z,—1 = — -z, =
A

Hmm, other construction: I want x,,., to be the sum of two elements z,, and Z,, of the
same sequence. It will be more convenient to add a translation and consider x,,,,+; with
some fixed integer j (which will be set to —1 later on). From the birational transformation
sending the biquadratic on a cubic
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. 1 Xy(F) + 250 Xs(Fn
Q §n = = T = 1 )~ 22( )7
by RS Tn — 2 (Tn — 2)
' - 1 X1 (Zm) + 20m Xo (T,
\/ | bn = ———— Tl = (7 >~+ L 22(x ) Remark that (Z,,, Un+1)
| Em— 2 (Tm — i)
P+Q corresponds to (&, —7n).
(&mtntjMmtntj) is (constants times) the Weierstrass elliptic func-

tions p and @' at a(m + n + j) + b;. The constant term b;,
which we don’t have to evaluate, fortunately, depends on i as
the birational transformation contains z;. Well, if we want
a(m 4+ n + j) + b; to be the sum of two arguments with the same constant term, the
arguments must be am + (b; + aj)/2 and an + (b; + aj)/2, 50 (,,7n) = cts x p and @' at
an + (b; + aj)/2.

Now, (&mintj, Mmtntj) 1S the sum of (gm,ﬁm) and (gn,ﬁn) according to the addition rule
of elliptic curves. The straight line n = hn — ?mf + fnﬁNm — §m77n meets the cubic 0 =

~ ~ 9 fn - gm gn - gm
P — EP( 4 1/¢) = [Tl” - 7m] €4 Pa)E — P'(2)€22— -

gn - fm
_ {(xm — )" [Xa(Tn) +(§ini(2(zﬂ)fgél—_(:;(;mzzz g)l(xm) + 20m Xo(Tm)] 4 —P'(z)E -
P"(2)€*/2 — -+ at a third point (§,1): P'(z)¢ = { ..}* = P"(2:)/2 = P'(z:)(6n + &),

M — Thn EnTim — Emn T = T 2 1" / & c /
= — = —+ — — = = = — P i 2 - P i n+ E&n P i) +
77~ énjfmg e fn—ém[{ } (2:)/ (2:))(&n + &Em)]/ P! (2:)
én _gm
Whence

P/(Zi)
Tm4n+j — Zi

{(i“m — 2)[X1(Zn) + 20, Xa(T0)] (@0 — 2)[Xa(Em) + 2§mX2(53m)}r

(Tn — 2:) (T — T) (Tm — 21) (T — Tn)

—P”(zi)/Q—P’(zi){N R ] (45)

Tm — % Tp — 24

With 2y — —XuayP, P [ G 2)VPE) _ (Fu2) P(azm>>]2_

13//(,%)/2_13'(%){~ L, 1 ]

Tp — Zj Tm — Zj
Check: x, = sin(fy + nh), ¥, and Ypi1 = Tpg1/2 = y = xcos(h/2) £sin(h/2)vV1 — a? :
y? —2cos(h/2)ry+ 22 —sin?(h/2) = 0, P(x) = X?(x) —4Xo(2) Xo(z) = 4sin®(h/2)(1 — 2?).
With 2 = 1,

1 1 —2cos(h/2)sin(fy + nh) + 2sin(6y + (n — 1/2)h)

sin(@p +nh) — 1 - 2sin®(n/4 — 6,/2 — nh/2)’nn B (sin(@p + nh) —1)?



|
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(singp — 1)[—2cos(h/2)sinf + 2sin(6 — h/2)]

—2sin(h/2) cos(fy + nh) —sin(h/2) cos(n/4 — 60y/2 —nh/2) .
- : =14 h/2)E4(1 —
(sin(0p + nh) — 1)2 sin(n/4— 0p)2 —nhj2) sin (h/ N)’f (
7?) = 4sin?(h/2)E41 — (1 + 1/€)?] = 4sin?(h/2)€%3(—2¢ — 1). Also, let &, = sin(fy + nh).
~ ~ /
Let 0 = 6y + nh and ¢ = 6y + mh, then we expect T4, = sin(f + ¢). Is Lml =
Tmyn —

8sin®(h/2)
1 —sin(6y + (m + n)h)

the right-hand side of [#X)? The big square above is

(sinf — 1)(sin ¢ — sin ) a (singp — 1)(sinp — sin )
4sin®(h/2) {

—cosf(sing — 1) cos p(sinf — 1) 2
(sinf — 1)(sinyp —sinf)  (sinp — 1)(sinp — sin6)

_ flsinQ(h./Z) —(sin@f 1)(sinp — 1)? B (singpf 1)(sinf — 1)? — 9cosfcos
(sinp — sin6)? sinf — 1 singp — 1
_ 4sin®(h/2) _s?n6’+ 1 tog 60520—20059095¢+0052¢ B s%ngp+ 1
sinf — 1 (siny — sinf)? sinp — 1

1 1 1
o +

(sinf — 1)[—2cos(h/2) sin ¢ + 2sin(p — h/2)] 2

1

to which we add —P"(z;)/2—P'(2;) [ = 4sin®(h/2)+8sin’(h/2)

Tn— 2 T — Zi
cos? 6 — 2cos f cos p + cos? :4Sin2(h/2)2—'2005(9'—<p) _
(sinp — sinf)?

. .92
which makes 4 sin“(h/2) [1 + (Sinp —sin6)?

.2 .2 .2

4281I1 (h/2) __8sin (h/2) _ §51n (h/2) 5o that fo + (m + n)h =
cos?((0 + ¢)/2) 1+ cos(6 + ¢) 1 —sin(@+¢—7/2)

200 + (m + n)h — /2. Where is this 7/2 coming from??

Ooh, that’s because the addition formula associated to the straight line in the (&, )
plane is related to the Weierstrass function which has a double pole at the origin. So, we
must choose the parameter in £ = (z — z;)~! such that the origin of the parameter occurs
at © = z;. This means here z = sin(r/2 + (0 — 7/2)), so that § — 7/2 is the parameter of
interest. YES! Then, &, = sin(fp+nh) = sin(6y/2+7 /4+nh) = sin(r/2+ (0 /2—7 /4)+nh)
and, indeed, 6y + (m + n)h — w/2 is the sum of 6y/2 + mh — 7 /4 and 0y + nh — 7 /4.

Return to (BH) with a generic polynomial P.

Let n9 be such that Z,» = z;. The natural parameter with respect to the addition rule
is then n—n®, so m+n—n® = [m—n /2]+[n—n® /2], and we have Z, = T, n /2] =
Tyi) o4y Actually, one must write 7. as this construction depends on ¢. But how is it
done? ‘

We don’t need n¥, just that :fc((f) produces g by duplication: Zo = ()1 [_n) 9 duplicates
INbO Z,,(i) yo[_n( /9] = To Of course.

A wonderful simplification holds when m = n. Then, \/P(Z,,) = \/P(Z,)
+ (T — Tp) P (T0)/(24/ P(Z)) + - -+, and
Pllz)  _|2v/P(@)  P(3n) Q_P”(zi) C2P'(z) _ 4P(@) _2P’(:Z’n) + P'(z;)
Tontj — Zi Tn — % 2/ P(%n) 2 Tn—2zi  (Tn— 2)?
(P'(&n))* _ P"(z)
4P(i,) 2

i'n_zi

|sinf — 1 * sinp — 1
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In the (¢,n) plane: the tangent to the cubic n? = Py(€) at (&,,7,) meets the curve at

n PUE) e )t o poe o (PUED
(Eantir —M2ntg): N =1 + 2\/% o, (€ —&) n €)= ——4 4P3(€n> (= én)
Py(En) (€= &) +1Tn — (P /6)(€ = &)* = (PY(50) /2)(§ = €)* = P3() (€ — &) — Po(&) = 0 =

by = o+ | L0 (162 >] fEpfe) = St G I g, o

463 4 402 + 46E, + 4y
ch 9362 _@~vE 4+ 32— 4
g@ Béﬁ 7§~+6 Oé:)/ if Pg(l') :ZC3+O&C2+6$+77
463 + 42 + 436, + 4y = 472
does not look like a square, BUT(2 Jan. 2012)

b G2 —8E P —day | € — (J0d 4 20)E — (49) 4 81)n + 5 — day — 1)
T UG 4 4082 + 4P, + 4y = 40P 42
2 _ 9N\, — 202 — 20\ — 3)?
_ S i ad = B 4 AN(2N? 4200+ 3) = —4BA—8v and (2A*+2a)\+ ) =
2
B2 —day—4y) & Ps(\) =0 )= Aiy = —1/(z;— some other z;) < Tontj = Zi_
N 1 o oo — (zi — 21) (€2 — 20\E, — 202 — 20\ — 5)
e L (€2 — 20, — 202 — 20\ — B)? " Apn i TP
T i — 472

It figures: from 1) p. [ ¢ is a Weierstrass o function, and the three differences
o —er = & — Ay are the squares of the fundamental elliptic functions of Halphen (see
Appendix C of Robert Conte & Micheline Musette’s The Painlevé Handbook, Springer
2008).

) Strange: squares are recovered with o, ; — 2k, k # i, although &9 = (Tony; — 2:) 7,
&, and (o, 3,7) = (P"(z)/2, P"(2)/6, P""/24)/P'(z;) depend on i. Incidentally, 2\? +
20\ + = = — 2v/ X = [~ P"(2:)/6 — 2P"" /(24\i )]/ P’ (2:) = |4z + 31 20 + 2(2 —

1

ze)l/ (i = 2) (2 — 2m) (20 — 2p)) = [—2i — 2 + 2m + 2] /(20 — 26) (2 — 2m) (2 — %)), Where
k,m,p are the three indexes # 1.
- o F2 _9\E _9)\2 _ _ A)2
Tontj — 2k _ (zi — z1) (&2 2)\§n~ 207 —2a\ — f3) Cwith A= Ay = 1
Toptj — Zi 4n2 ' Zh — %

Tont; — 26 (i~ 2)(E2 — 2\inn — 2X7) = 2a\i — B)°

Toan+tj — Zm (Zi - Zm><£7% - 2)\z,m€~n - 2)\12,777, — 2a>\i,m - ﬂ)Q
Pl~n Pl~n2 s 7

sy = i = Tyl \ KBS (puy )| 121 1),

Yl(y2n+j+1)

Yo (Yontjt1)

For any ke {1727374}7 Tontj+1 — Rk = —

From @), z2p4j41 = — — Ton+j

Y1(Yontj+1) + 2Yo(Yontj+1) 2k
Yo(yon+jt1)

- (xQn-i—j - Zk) =

Yo(Wantji1) + Yi(Wontji1) 2k + Yo(yoniji1) 2%
Yo (yontit1)(Tonts — 2k)

I

Hmm, 22,1 follows from x5, ; by adding the step in E2a)- (ITZH) p.B2 so (§2n+]+1, Nontj1) =

(€2n+]; 772n+]) (gstepa 775tep> <§n> nn) <§na etan> <§step> nstep) <§na nn) (gn—&-l; nn—l—l)
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~ ~ ~ ~ 2
Tn+1 — Tn _n2n+j+1 —Tin ( 2 ~ nn—i-l Tin
= > = =, (M2ntj+1)° = P3(&antjr1) = {Un + (Sontjr1 — &)7
§n+1 - fn £2n+j+1 - gn ’ ’ ’ §n+1 - fn
1 Th+1 — n 2 e e

n+j = e _PN 2 =~ — Sn —Sn
52 +j+1 Pé”/G [ ( )/ + (5 én) g +1 é

%1507 (fn+1aﬁn+}) = (gnaﬁn) (gstepanstep):

N — nstep —TNn+1 — nstep

én - gstep én—l—l - éstep

No, there is nothing strange: @ — e; is the square of an elliptic function because it has
a double zero AND a double pole. Now, w3,; — 2; has a double zero, but... Ah, when
xr — o0, and F(z,y) = Ya(y)r* + Yi(y)x + Yo(y) = 0 = y = the roots u and v of Y(y) = 0.

5. General difference operator

_ fW(x)) = fo(x))
I = 70w o)
must be a rational function of degree 2 for f(z) = 1/(z + ¢):

1

(U(x) + ) (p(z) +¢) Y(x)p(x) + c(P(x) + o(x)) +

New notation: F(x,y) = Xa(z)y* + Xi(x)y +
Xo(x) = 0, where the X’s are polynomials of degree
< 2. SO, QO—’—?,ZJ = —Xl/XQ and QD’Qb = Xo/XQ = a
(nonsymmetric) biquadratic relation between x and

Y(() =y(s +1) | | an
U | o(x) or (x). We now are sure to have two elliptic
o(z(s)) = y(s) + | lattices for the z’s and the y’s.

z(s) x(s I—i— 1)

—_

Relation between vy, and y,,1: use y, + Yny1 = —X1(xn)/Xo(z,) and ypy,i1 =

Xo(xn)/Xa(z,), and consider the resultant of the two polynomials in z,,
(Yn + Y1) Xo(20) + X1 (25) and ypyns1Xa(zn) — Xo(zn),
which is the full symmetric biquadratic relation between ¥, and ,1.

Of course, the same holds for z,, and ,,, just by considering F(z,y) = Ya(y)z? +
Yi(y)x + Yo(y). The polynomials are now
(xn + l'njtl)YvQ(ynJrl) + }/l(ynjtl) and $n$n+1Y2(yn+1) Yb(yn+1)~

Exemple: with F(z,y) = (2%/2 4+ 2+ 1)y* + (22 — 22 — 3)y + 2® + v + 1, one has

Xo(x) Xi(z)

(49/4%22 | +59/2%xy 1 +T1/4) 522 +(59/2%22 | +85/2%xpq1 +17/2) %@y, +T1/Adxa2 | +17/253511 +1
and (37/4 % y2 1 + 3% Yni1 + 1/4) % y2 + (35 y2 1 —55/2 % Ypy1 — 9/2) sy + 1 /4% y2 1 —9/2 %y iy + 21

Recurrence relations of the x’s and the y’s:
Yi(yn)  Yi(ynt1)

so, a rational function of x,,.

Tp1+22,+Tpy1 = — is a symmetric rational function of y,, and y,11,
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X1 (- Xi(xy) . . : .
For the y’s: Yn_1 4+ Yn + Yni1 = — H(Tn) — i is a symmetric rational function
Xo(Tn1)  Xa(zn)

of z,_1 and x,, so, a rational function of y,.
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6. Recurrences of biorthogonal rational functions.

From excerpts of Spiridonov & Zhedanov [57], also

A. Zhedanov, Biorthogonal rational functions and generalized eigenvalue problem, J.
Approx. Theory 101 (1999), no. 2, 303-329, and [70].

Also Brezinski, Iserles, Ismail, Masson, Norsett.

6.1. Padé and interpolatory continued fractions.

« ) .
6.1.1. Padé. 0 an matches a given Laurent expansion c¢q/x+
x— o+
v 61 + +M
T — Bn—l
ci/z? + -+ at oo up to the cg,_1/2*® term. Numerators and denominators satisfy the

recurrence relation P, (z) = (x—f,)P.(2) +a, P,—1(2), suggesting some kind of (formal?)
orthogonality. This is even more obvious in the matrix-vector setting

Bo Vo Py(r) Py()
V=0 I3} AVamie%) Py (x> P1<35)

If one wants to approximate a Taylor expansion about the origin, just take z = 1/x and
rewrite the continue&i graction as
0 which matches a given Taylor-Maclaurin expan-

ay 22

1—2z0 +
1—612’+

122
1- ﬂn—lz
sion up to the z?" term.

A slower progression is achieved with the corresponding continued fraction to a given
expansion

6.1.2. Interpolation. Rational interpolations to a given set of values at x = yo,y1, ... (yes,
the relevant set will be a y—lattice) are achieved by
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(Thiele) which agree with a given set up to = y,.

Remark that the degrees are n/n for qo,/pon, (n+ 1)/n for goni1/pons1. Contract the
recurrences

Pan(T) = a9, pan—1(2)+(T—Y2n—1)P2n—2(2), Pant1(T) = A%y 1P20 (%) +(X—Y20)P20-1(2), P2nt2(T) =
O/2n+2p2n+l(l‘) + (ZE - y2n+1>p2n(x>>

)pan(x) — (& — Yon—1)P2n—2(x)

/ +(l._anJrl)an(l')a
aQn

INto pont2 () = Ay, [@énﬂp%(%’) + (7 — yan

S0, a recurrence relation for P, = const. pa,:

Pn+1(l') = (l’ - ﬁn)Pn(x) + O‘n(l. - y2n71)(‘7} - y2n)Pnfl(x)-
Py(z) ,

(= y2) (@ —ya) - (T —Y2n)

(= Yont2) Ru1 () = (. — Bn) Ru(x) + an(® — y2n—1) Rn_1(x),

so that the matrix-vector setting is now

Consider now rational functions R,(z) =

50 —Y2 Ro(ll?) 1 -1 Ro(ZE)
ayr b~ Ry () a1 -1 Ry ()
.. .. . : =X . . . :

So, {Ro, Ry, ...} is a right eigenvector which is in some way biorthogonal to the set of
left eigenvectors {71y, T1, ...} satisfying the recurrence

n11(T = Y2ni1) Toi1(2) = — (2 = B2)To(@) + (2 — y20) T (@),
which is of the same structure that the recurrence of the R,’s, but with the odd z’s
interchanged with the even z’s. Actually, T, (z) is a constant times the same P, (z) as
before, divided by (x —y1)(x —y3) ... (x —y2,—1). Pn(x) is a constant times the determinant

r—0  —(x—)
a(z—y) -0 —(r—ys)

an—l(x - an—?)) T — ﬂn—l
6.2. Biorthogonality and orthogonality.

But what is the bilinear form exhibiting the biorthogonality condition? Could it be a
linear form .Z applied to a product? Let us try, for k& < n,
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(@ —y2).. . (=) (@ —11) ... (& — yar-1)
_ Po(2) Pre() (% — yory1) - - - (T — Yon—1)
_iﬂ( ( —y)(® —y2) ... (T — yan) )

0=Z(R.T}) =$< Fu() Pi(z) )

showing that P, is plainly orthogonal with respect to the scalar product

. ((w e y%)) '

Confirmation: as @,,/P, interpolates f at yo, ..., Y2n,

P.(z)f(x) — Qun(z) =0 at yo,...,Yon

Pu(z)g(x)f(z) — g(z)Qun(x) =0 at yo,...,Ym

for any polynomial g of degree < n. Perform the divided difference of order 2n on yo, . . ., yon:

[Y0s - -, Y2nlPogr = 0, V polynomial g of degree < n.

2n
The divided difference is Z Pul;)o(y;) F(y;)

, where wo, () = (x — yo) . .. (T — Yan).

: W (Y5)
]:0 2n J
If f is holomorphic in a domain containing o, . . ., ¥2,, the divided difference is
[ B(t)g(t) f() dt
210 Jo (t—yo) .. (t — yan)
N-1 p
Even simpler: if f(z) = b
ven simpler: if f(z) Z .

N-1
(91, 92) = Z prg1()ga(x),).
0
6.3. Example: the exponential function (Iserles).

Rational interpolations to e** at x =0, h, 2h, . ..
e =ai/(14+---)atx=0:0q0) =1,

e =1+ajz/(1+---)atx =h:a) = (e ~1)/h, 7%&“1:14‘@/2(35_@ at
eax_
1_€—ah
—%hia,=—— "
. @2 h(1 + e—ah)’

1 — eah , eah(eah _ 1)

/ _ .
C TG jem) (Lt em) Y T R — 1+ jemh) (1 + eon)
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7. Elliptic Riccati equations.

An elliptic Riccati equation is

o) TR )0 (00 + clo) Fo(0)) + S0 + ) (10

with ¢ and ¥ as in § Bl p. B2 and where a, b, ¢, and d are rational functions.

We consider now rational interpolation according to the setting of § above. Why is
this relevant?

A first-order difference equation of the kind (H@) relates f(yo) to f(y1) when x = x;
f(y1) to f(y2) when = = xy, etc. So, we have information to introduce in the interpolation:

from fof@) = af, + % falpn) = 0% and falpass) = 0%+ (s = g/, 50
s = Qs = )/ Urisn) = Folo):
Now, from [{H) at z = z,, so p(z) = y, and P(x) = Yn1, M = bp(xn)a, {a; + %ZJ] +
n+1 n+1
cn(Tn) {2041 + M] + dy(2y), or
At
O‘/n+1 _ an(xn> - (yn—H — yn)(a;bn(xm + Cn(xn>7 n=0,1,... (47)

bo(n) 2 + 2¢, ()0, + dyy (24,)
In [39] (Luminy 2007), I considered rational approximants to

foltr) = Py
ot + By — ( y1)( y2)

(2 — Yon—3)(T — Yon—2)

Oy 1T + ﬂn—l + -

making clear that the n'' approximant (stopped at, and including the o, 12 + 3,4
term) is the rational function of degree n interpolating fo at = = yo,y1,...,Yan. SO,

Qp—2X + Bn—? +

T — Yan . . .
falz) = , @ + [, is the polynomial interpolant of degree
anT + ﬂn - (l‘ - y2n+l)fn+l(x>

Lto (z — y2n)/ fa(x) at yani1 and yon4o.

Furthermore, the Riccati form is well suited to continued fraction progression:

from the Luminy paper [39]:

Let fo(z) = f(x)—f(yo) be expanded in an interpolatory continued fraction (R;;—fraction
[24,25,59,69], or contracted Thiele’s continued fraction [41, Chap. 5])

fo(x) _ T — Yo
ot + o — (z —y1)(@ — yo)

(T — yan—3) (¥ — Yan—2)
Qp_1X + ﬂn—l + .-
making clear that the n'® approximant (stopped at, and including the a,,_12+ 3, term)
is the rational function of degree n interpolating fo at x = yo, y1, .- -, Yon-

Qp—2X + ﬁn72 +
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Let p, be the denominator of this n'" approximant. If f is a Stieltjes transform, it is
known [25,59] [69, § 5] [70] that {p,(x)/((z —yo)(x — y2) ... (x — y2,) } and {py(z)/((z —
y1)(x —y3) ... (z — Yam+1)} are biorthogonal sequences of rational functions.

From f,(z) = T Yon
and + ﬂn - (ZE - y2n+l)fn+l(x>
degree 1 to (x —y2,)/ fu(x) at yon11 and ya,i2, so we need fr,(yont1) and fr,(Yoni2) in order
to find «,, and £,.

If f,, satisfies a difference equation of first order F, (x, f,.(¢(2)), fu(¥(z))) = 0, we find
fn(Y2ni1) from the equation at xz,, as ©(Tan) = Yon, Y(T2n) = Yo2nt1, and fr(yen) = 0.
Next, the equation at = xg,41 yields f,(yani2)-

As seen in the section 7?7 on the Pearson equation, a linear difference equation of first
order easily involves a weight function useful in orthogonality considerations. However,
Riccati equations are better suited to continued fraction constructions [21,34]. Of course,
linear difference equations of first order are special cases of Riccati equations, that is why
the coefficients in (??) are written a(z),c(x), and d(x), whereas b(zx) is the coefficient of
the nonlinear part of a Riccati equation.

So, if f,, satisfies the Riccati equation

[n(W(@)) = fulep(x))
() — p(x)

, T + (3, is the polynomial interpolant of

= bu () fu(p(2)) fu(¥(2))
+ () (fu(0(2)) + fu(P(2))) + dn(2), (48)

one finds at * = w9, p(z) = yon, ¥Y(r) = Yoni1, and knowing that f,(y2,) = 0,

()

. dp(x
a”(xQ")M = cn(@2n) fu(Yon+1) + dn(2n) yields fo(yani1) = n(72)
Yont+1 = Y2n an (Ton)
—  — Cp (xQn)
Yon+1 — Yon
and
Yont1 — Yo @n(T2n) — (Y2nt1 — Y2u)Cn(T20)
oY+t + o = = : 49
o fn(anJrl) dn(:cgn) ( )
Yont2 — Yon  Yont1 — Yom
and at £ = Tontl, an(xQn.t,_l) Onlont2 + 6n OpYon+1 + ﬁn _
Yan+2 — Y2n+1
bn(«TUQnJrl) Yonia — Yo Yonil — Yo ‘|‘Cn(3}2n+1) Yotz — Yo Yonil 7 Yon ‘|‘dn(l'2n+1)7

AnYan+2 + 5n AnlYon+1 + Bn AnYon+2 + Bn AnYon+1 + Bn

or

CLn(SUQnH)(Oénan + 5n) = bn(9€2n+1)(y2n+2 - y2n)(y2n+1 - y2n)
+ cn(@on+1) [(Yont2 — Yon) (QnYant1 + Bn) + (Yant1 — Yon) (@nY2nt2 + On)]
+ dn(x2n+l><any2n+l + ﬂn)(any2n+2 =+ ﬂn> (50)

which shows how to extract o, and 3, from a,,... at zs, and x9, 1.
Remark also that at = xg,_1, knowing that f,(¥(xe,-1)) = fu(y2n) = 0, ) yields

An (xQn—1>

+ea(Tan-1)| falyon1)  +  du(w2n-1) = 0. (51)
Yon — Yon—1

And here is how the Riccati form is well suited to continued fraction progression:
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7.1. Theorem.

If f,, satisfies the Riccati equation ([{]) with rational coefficients a,, by, ¢,, and d,,, and if

fn(x) _ T — Yon
and + ﬂn - (ZE - y2n+l)fn+l(x>
(degree of the rational functions) of its coefficients.

(Actually, the degrees of a,, etc. will at most exceed the degrees at n = 0 by 3 units).

, then f, 1 satisfies an equation of same complexity

Proof. Let us start with @) at n = 0 with polynomial coefficients ao, by, ¢y, and dp.
Suppose that, at the n'" step, a,, etc. are polynomials with b, and d, containing the
factors Xy and = — z9,_1, and ¢, containing the factor X, (from Ha) and [{H), X, is a
polynomial of degree < 2).

Of course, if the initial coefficients ag, etc. do not contain such factors, we may have to
multiply the four coefficients of #S) at n = 0 by one or several factors of (v — x_1)Xs(z),
that’s why the degrees are liable to have to be augmented by up to 3 units, but this
operation has to be done only at n = 0. 3

We suppose therefore that b,(x) = (z — z9,-1)Xo(2)bn(2), cn(x) = Xo(x)é,(x), and
dy(2) = (x — Tan_1) Xo(2)d,(x) in @X), where by, &,, and d,, are polynomials, so that (@)
is now

lb@) = fulol@) _
G ~ T REREAGERE)

+ Xo(2)én(2) (fulp(2) + fu((2))) + (2 = w2n 1) Xo(x)dn(2), (52)

T — Yon

an + B — (= yoni1) forr(x)
After multiplication by (w0 + Bn — (¢ — Yon+1) fror1(@)) (@ + Bn — (¥ = Yont1) frs1 (¥)):

in which we enter f,(x) =

(¥ = yan)[an® + Bn = (¢ = Yant1) far1(9)] = (¢ = y2u)[an?) + Bu = (¥ = Yont1) frur1 (V)]

o v—¢
(an + y2n+l)(90 + dj)
2

fn—&-l(w) B fn—i-l(SD)
Y=

= Gp [Oénan + ﬂn + (@@ZJ - + anan—i-l)

P ) i)
= <l‘ - ZEQn—l)XQEn(SD - an)(w B y2”>
o+ X8 (10— an) [@n+ B = (= Yon 1) s (9] (9= o) [0nth + B — (8= 1) s ()]

+ (l‘ - xQn—l)Xan[anSO —+ 5n - (90 - y2n+1>fn+1(90)“an¢ + 571 - (dj - an-&-l)fn-&-l(w)]
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S (V) = fara(e)

which is the Riccati equation for f,. 1, dni1 m = l;n+1fn+1(go)fn+1(?,b) +
) -y

Cni1(fas1(@) + fas1(¥)) + dpy1, where a,41 etc. are symmetric functions of ¢ and 1, so

are rational functions thanks to (@) (where v, = ¢(z,) and y,+1 = ¥(x,)):

A n + n + n - n ~
Apy1 = (Wﬁ - (9 Y2 ;1)@ V) + y2ny2n+1> an + W(w - @)2X2Cn
+ M(w _ @2(;,; — Top_1)Xod,, = G,
2 X
+ [y2n+1 - an}én + (Oény22n+1 + ﬁn)(x - xanl)dn ‘Xl2 _;XOXQ (538,)
2

b1 = (7 — Tan—1) Xodn (0 — Yons1) (¥ — Yons1) = (& — Tan—1)dn(Xo + Yons1 X1 + Yans1X2)
(53b)

én—l—l = _(an—i—l - y2n>an -

n T Yon + o
(gp@/} - (y2 Y2 ;1)“0 dj) + anan-i-l) XQCn

- (Oén <()0w — Yon+1 4 ; 1/)> ﬁn (M - y2n+1>> («75 - x?nfl)XQJn

n + n X ~
(Xo + (2 y22 )X + y2ny2n+1X2) Cn

— ( (Xo + y2n+1X ) Bn (— + yzn+1X2)) (x — xQn—l)Jn (53c)

o1 = — (Yo + Ba)an + (& — T20-1) Xabn (9 — Y2n) (¥ — Yon)
+ XoCn[(Y — yan)(@np + Bn) + (¢ — y2u) (and + 5)]]
+ (z — $2n71)XQCZn(OénSD + Bn) () + 5y)
— (Yo + Bn)an + (& = Tan-1)bn (Xo + 12 X1 + 13, X5)

+ Cn[0 (2X0 + Y20 X1) — B (X1 + 2y2, Xo)] + (2 — xQn—l)Jn(a%XO — o, B, X1 + ﬂ3X2>
(53d)

The first coefficient @, is not a polynomial, but a rational function of denominator Xs.
We recover polynomials by multiplying the four coefficients a1, an, Cni1, and dn+1 by
X5. Moreover, this already restores the factor X5 in ngnH, XoCpi1, and chZnH

However, the degrees of the new coefficients are higher than before. The problem is settled
by seeing that the four polynomials Xsa,, 1, an, Cna1, and dn+1 vanish at ¢ = 9,1 and
at * = xa,. Then, we will simply divide the four of them by (z — x9,_1)(z — x2,).

(1) The most obvious case is (B3H): byy1(z) = (z — xgn_l)cin~(x)(X0(x) + Yonr1 X1 (x) +

Y1 X2(2)) = (2= 220-1)dn(2) F (2, Yons1) = (2= Ton_1)dn (2) Y2 (Y2ns1 ) (3 — 220) (2 —
Tony1), shows indeed the factors © — 9,1 and x — 9, as well as x — xy,,1, so that

b En—&-l(x) B
+1( ) (g; — xanl)(J} — xQn)(l’ _ x2n+1) 2(y2 +1> ( )
(2) NeXt, fI‘OIH (M)y dn-i—l (xQn—l) = <any2n+ﬂn>[_an(l‘2n—l)_(an_an—l>Cn(x2n—l)} -
0 from (BIl), knowing that d,,(z2,-1) = 0,

_(y2n+1 - an)an -




2006- — Elliptic lattices. 8 — Classical? — 61

dn-i—l(xQn) - <any2n +5n) [_an(xQn) + (y2n+1 - an)Cn (xQn) + (any2n+l +5n)dn (xQn)} =

G, (xQn) dn (xQn)
AnlYon +ﬁn Yon+1 —Yon B — Cn\Ton +
( s ) Yon+1 — Yon (720) Jn(Y2nt1)

tor is the Riccati equation ) at © = x,, divided by f,(yan+1) (see also [E)).

dni1(Tont1) = —(nyon + Bn)an(Tont1) + bn(@ont1) (Y2nt1 — Yon) Yant2 — Yon) +
Cn(C2n11) [(Y2nr2—Y2n) (OnY2n11+0n)+ (Y2n11=Y2n) (@nYon2H00) [ +dn(T2n 1) (nyan 1+
Br)(nYantae + Bn) = 0, from (B0).

(3) In order to show that G, and ¢,,; both vanish at x = 3,1 and xs,, we consider
an, L. ny1(T)

V- " ) - o)
(o(r)—y2nt1) [(w(%’) — Yon) (% - Cn(x)> — (ap¥(z) + Bn)dn(x } vanishes

at © = Iy, as the big factor is a, (z2,) — (Y2n+1—Y2n) Cn(T2n) — (nYon+1+6n) dn(T2n) =
0 from (). At x = x9,_1, we already encountered the condition a,(z2,-1)+ (y2n —
Yon—1)Cn(T2n—1) = 0 from ([EI) and d,,(x2,—1) = 0.

The obvious vanishing of the first factor at * = 25,41 will allow the same con-
dition at Zop11: ant1(Tant1) + (Yont2 — Y2n+1)Cns1(T2n41) = 0, and this will imply
frnt1(Y2ns2) = 0 at the next step.

= 0, as the last fac-

+ énJrl (CL’) =

n (2 —¢C T) =
(4) ] w1 (2)

Y(x) —p(x
(V(*) = Yont1) {(90(95) — Yon) (ﬁ + Cn(:l:)> + (anp(x) + By)dn(x)| obvi-

ously vanishes now at x = x9,; at * = 9,1, the big factor is —a,(x2,—1) — (Yon —
Yon—1)Cn(T2n—1) = 0 as already encountered (in (BI), together with d,(z2,-1) = 0).

Xo(x)ay, Xo(x)by,
We proceed therefore with a,,1(z) = @ ;(x)a)(;l(x)x 7’ bus1(z) = @ ;(az) )(J; (x>x 7
— 42n-1 — 42n - 42n-1 — 42n
Xo(@)Cns1 (@) i (2) = Xo(@)dni1 () —

CTL+1(‘7}) = (

T — Top_1)(T — T2,) (2 — 29 1) (x — w20)

A very interesting identity is d?t+1 - (1 — )22 = (¢ — y2n) (¥ — Y2n) (0 — Yans1) (¥ —
y2n+1A> (= (W —=p)?ch) = (= ¢)?bnia[dngr = (0 = Y2n) (Y = Y20) 0], o1 @ — (V= 0)*(Eh 1y —
bnt1dns1) = (9 = Y2) (¥ = Y20) (= Y2011) (¥ = Y2ns1) (a7 — (1/)2— ©)*(ch — budy)),

_ XQ(x) F(CL’, an) F(l’, y2n+1) 2

a2y — (0 — @) (A 1y — bnprdngr) = [(:p e pe x%)] o (a) ) a;

(6 = 9)(€2 = buda)) = V() Valtnsn) T2 a2 = (6 = 9)*(c = bud),

- 42n—-1

C,QL(ZU) - bn(x)dn(x) P(CC) — a2 (1’) =C,

XQQ(:E> r—T_q

2

T — Ton—1 [ g(x) — bo(x)do(7) 2

P(z) — 4

A0 by — )] 5

where C,, = Ya(v0)Ya(v1) - - - Yo(Yon—2)Y2(y2n—1) ((probably a) mistake in [39, p. 800, after
(23)], and P from (8).
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8. Classical?

a, is a cubic polynomial, so is determined through the four values a,(z;), i = 1,...,4,
at the zeros z1,..., 24 of P.

ellhyper TuelOMay2011

k= 0.5 ; P= x"4 - 5.0xx"2 + 4.0 ; z0= 2.005000 ;

z= [-2.000000, -1.000000, 1.000000, 2.000000]~

F= (-0.001251562*y"2 + 0.7550062)*x"2 - 1.503750*y*x + (0.7550062*xy~2 - 0.005006250)

X0= 0.7550062*x"2 - 0.005006250 ; X1= -1.503750*x ; X2= -0.001251562*x"2 + 0.7550062 ;

YO= 0.7550062*y~2 - 0.005006250 ; Y1= -1.503750*y ; Y2= -0.001251562%y~2 + 0.7550062

zprime=[-2.0201569, -0.9900209, 0.9900209, 2.020159] X2Y2zi=[0.5624812, 0.5681508, 0.5681508, 0.5624812]
zeros X2=[-24.56117 + 0.E-404x*I, 24.56117 + 0.E-404*I]~

x0= 0.08142935 , x-1= -0.08142935 y0=0 y-1=-0.1621851

{Zns Yny an(21), ..., an(z4)} for n =1,...,50:

200 7 ‘e 0. .0. o. ° .o .. o an(z4)
100 1 . d .

10e,, 20 *30 " .
'0000..0°... ...:::E::::.... ...."°':' Cln(Zl)

¢ ® CL,L(Z3)

—100 ¢

—200 1 .
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at x = z; where P(z) = X{(z) — 4Xo(2)Xa(z) = 0, F(z1,y) = Xo(z) + Xa(z)y +
Xi(z 2X0o(2;
X5(z)y? = 0 has a double root y = ¢(z;) = ¥(z) = —QXI((Z;) = — XO((;)).
2(2i 1(Zi
(Yon + Yony1) X1(2)

Xo(2i) + 5 + YanYont1X2(2i)
ant1(z) = N0 an(i)
LX) Xi(2i) | Xo(w2n) .
_ (XO(ZZ) 2X2(l‘2n> + XQ(:EQn>X2( Z)) . (Z) _ F(xgn,@(zi))a (Z)
X2(2i> , n\<i X2($2n> n\%i
- }é(gp(zi))(i?"(; Z’; (220 = Zi)an(zz‘) from (@) with “y,” = ¢(2), so that “z,,” and “x,_,” are 2,
i1 (%) = Xo(2i)anta(2) _ Xa(2:)Ya(p(2i)) (2 — $2n>a (1)
R (2i — Ton—1)(2i — T2n) Xo(w2n)(2i — T2n-1) e

The a,,(z;) of the picture above are a,(z;)/v/Y2(y0)Y2(y1) - - - Ya(yan—1)
(1) Gauss hypergeometric ratio and classical orthogonal polynomials.

olz) = $(z) = 7,
an(x) = 2(1 —ax), b, = by — n, d,(x) = —a,byz,
Cn(2) = [=a/4+ (g + a/4)(=1)"]x + bn /2,
Qpy1 = [a + apby, + 27, /bnia.
Orthogonal polynomials (Jacobi, etc.) are P, (1/x).
(2) Discrete orthogonal and bi-orthogonal polynomials.
p(r) =z, ¥(z) =z +h,
(a) Orthogonal: limit case ygp = y; = -+ = 00,
(b) Bi-orthogonal y; = jh
(3) aSkey-Nikiforov-s Uslov-U varov-wiLson.
(4) And now?

We try to keep the degrees as low as possible.
8.1. “Elliptic logarithm”.

rT—a a—>b
hich satisfies /() = — —
——, Whic satisfies f'(x) a0

function whose divided difference is a rational function of low degree.
Answer: work out the difference of

We extend f(x) = log by looking for a

=y,
where y,, = y(s1+k) is an elliptic lattice in the same family, but with s; — sy not an integer.
Simplest way to look at the difference is to suppose that x is some x,,. Then,

Ay(z) = -2 (55)

N

DAy () = AN (Yni1) : A (yn) _ _Z — 1 —,
Yn+1 Yn 0 (yn yk)(yn+1 yk)

As y, and y,41 are the two ordinates associated to @, Yy + Ynt1 = —X1(xn)/Xo (),
YnYn1 = Xo(@n)/ Xo(0), (Y= Y1) Unt1 Y1) = (Xo(2n) + X1 (20)yh+ Xo(2)yid) [ Xo(2) =
F(n, yp,) [ Xo(zn) = Yao(yp) (@0 — ) (20 — @)/ Xo(22),
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N
P/ Ya(yi)
DAN(xn) = —XQ(ZUn)
20: (@n — 2} _y) (w0 — )
Po Nl Pk+1 _ Pk PN
~ Xo(m) (o — 21 )Ya(v0) 3 (Thy —2p)Yo(Yhry) (0 — 7 )Ya(yy) (2l — 2y 1) Ya(yy)
2 T, — 5 T = T} Tn = Ty
so that, when py = (2}, — 2}_1)Ya(y;,),
(z7, — 2ly) Xo(2) Xo(aly)  Xo(aly)
DA = = (2, -7 — :
v () (x — ' )(x —2y) (v = wy)eaz + r—a ., x—ay
1
We can solve D f(z) = 7 with f(yo) = 0, if an infinity of /s, starting with 2’ | = A,
x J—
come as close as we want to a zero, say (, of Xy, then
Co Q(A — C) 1 .
== (1 — lim [A —A

Here is an example where f(1) is estimated whenever 2’ comes close to ¢ which happens
to be —2.529822 here:
F(x,y) = —0.31252%y* + 22% — 2.25zy + 2y* — 1.25, A = -7,

n x’ y’ res (1)

-1 -7 -2.168439

0 2.006819 3.3515638 1.021789 -0.02471402
1 -19.96266 2.738246 -0.5662515  0.09425273
2 -2.068051 -2.371686 -0.3255921 0.1349691

3 4.274935 -4.641409  2.254690 0.04885997
4 2.433328 2.049464 0.09509338 0.004647754
5 -2.642949 34.53302 -141.3408 0.1267041

13 -2.560190 -2.024363 -0.06545824 0.1276923
56 -2.525475 -2.029866 -0.07278552 0.1281233

238 -2.536399 550.1306 -35945.00 0.1279866

which is easy to check, as 1 is itself close to an infinity of ys, so that we estimate a value

of f by running the difference equation in the form f(yn11) = f(yn) + % :
n bie y f
0 0.7905694 O 0
1 0.5167233 0.9856450 0.1265177
2 -0.9529158 -0.3790235 -0.05503327
3 -0.1575301 -0.8702581 -0.1362682
4 0.9994804 0.6923469 0.09210034
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= O O 00 N O O

=

69 0.6604197 O.
431  0.6621363 0.

793 0.6638488

-0.2301987 0.
-0.9309638 -0.
0.5766530 -O0.
0.7466518 0.
-0.8303816 -0.
-0.4536000 -O0.
0.9706641 0.

0.

6400372  0.08556120
9011730 -0.1420984
3102076 -0.04472454
9944962  0.1274760
07436214 -0.01050081
9726185 -0.1560943
4453679 0.06051121
9999706  0.1280656
9999845 0.1280671
9999940  0.1280681

We therefore start the process with ag(x) = (z—xf)(z—2'y), bo = ¢o = 0, do(z) = Xa(x).
Managing to keep polynomszals, it appears that b, ¢,, and d,, are X5 times a polynomial
of degree 1 or 2, whereas a,, has degree 3 or 4.
Here is an example with

F = (2%/2 D+ (222 — 22— 3 2 1
(x,y) = (x*/2 4+ x + 1)y" + (2« T Yy +a+x+1,

XQ(]Z) Xl(x)

and starting at x_; = —0.45:
k -1 0 1 2 3 4 5 6 7 8 9
x| -0.45000 | 0.36869 | -0.48027 | 0.42834 | -0.50390 | 0.47655 | -0.52104 | 0.51127 | -0.53184 | 0.53096 | -0.53639
Yk 2.0348 | 0.56784 1.8444 | 0.64066 1.6551 | 0.72731 1.4731 | 0.82873 1.3027 | 0.94572 1.1465

: : Xo(x
The function f satisfies Df(x) = ,2( ) —, where x(, now starts at 0.25:
(z — zp)(z — xp)

k 0 1 2 3 4 5 6 7 8 9
x;. | 0.25000 | -0.38410 | 0.17205 | -0.33547 | 0.091968 | -0.28000 | 0.012074 | -0.21798 | -0.065644 | -0.14992
v, | 2.1599 | 0.47429 | 2.3339 | 0.43380 2.4852 | 0.40394 2.6034 | 0.38414 2.6800 | 0.37399

The first polynomial ag is (v — z{)(z — x3), then

Remark that by, bs,...are scalar multiples of X.
Remark also that ajy,; = o0, as it should: the rational function f of degree N is
recovered exactly as qan /pan-

9. Linear difference relations and equations for the
numerators and the denominators of the
interpolants.

I try to reproduce (?7?), the recurrence relations for p, and ¢, being now (§ T2, p. B)
O‘;H-lpn(x) + (SU - yn)pnfl(x)a

We now consider the linear recurrence satisfied by combinations of such products, i.e.,
by combinations of

()P0 (), Pr(P)@n-1(¥); Gn1(9)Pn(¥), and gn1(p)gn-1(1).

Pn+1 (:C) =
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We just have to consider a product r,s,, kowing that r,41 = ol 17y, + (¢ — Yn)7s—1, and
Spt1 = Ql, 41180+ (¥ — yn)Sn—1. Simplest is to write it as matrix-vector recurrence (doesn’t

it ing a bell?)

T'nSn+1
T'n+15n

TnSn

L "n+1Sn+1

slightly closer to (?7?) if the latter is put in the form

1 any1 _ 4
— Cn+1
C—Yn [V —p
1 Eln-ﬁ-l ~
+ Cn+1
Y —yn L/J -
gn-&-l

_O‘;H-l((p - yn) O‘;H-l(z/) - yn) (()0 - yn)(w - yn) Qi ]

Y = Yn-1

L~ afn(@ - yn—l)

’l/) — Yn-1

04;1(111 - yn—l)

_(QD - yn—l)(w - yn—l) —y

/
an+1

/
an+1

2

to do: curb sign errors etc. get difference relations & eq. for p,, ¢,.

From:

10. Hypergeometric expansions.

T'n—15n

T'nSn—1

Tn—18n—1

David R. Masson: The last of the hypergeometric continued fractions, Report-no: OP-SF

12 Sep 1994 http://arxiv.org/abs/math.CA/9409229

Dharma P. Gupta; David R. Masson: Contiguous relations, continued fractions and
orthogonality Trans. Amer. Math. Soc. 350 (1998), 769-808. This article is available free
of charge http://www.ams.org/tran/1998-350-02/S0002-9947-98-01879-0/home . html

L. M. Milne Thomson: The Calculus Of Finite Differences, Macmillan And Company.,

Limited, 1933

10.1. Gauss hypergeometric ratio.



http://arxiv.org/abs/math.CA/9409229
http://www.ams.org/tran/1998-350-02/S0002-9947-98-01879-0/home.html

f(x)
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also in Perron [51, chap. 8], Wall, etc. Consider the Taylor-Maclaurin expansion about
the origin of

ab+1) , ala+1)b+1)(b+2) ,

_f(x)_x2F1(a,b+1;c+1;x)_gﬁL c+r1 " 2(c+ )(c +2)
IR oFi(a,bycx) ab  ala+1)b(b+1) ,
1+—z+ T
c 2c(c+1)
_ a(c—10b) 5 a(c—b)(ac+bc+c—2ab) 4
e )t YT e nery U T
x
- - — Dic—a+1 58
1_(1(6 b)x_a(c b)(b+1)(c—a+ )x2+--- (58)
c(e+1) cle+1)2%(c+2)
x
a(c—b)x
1 c(e+1)
(b+1)(c—a+1)
1 (c+1)(c+2)
1—-..
—b
This nice continued fraction goes further with ag, 1 = — (c(cf_QZ)) (<§+ 27j_+n)1)x7 Qopio =

b 1)(ec— 1
—( tntlle—atnt )ZE, (n = 0,1,...) The secret is in contiguity relations relat-
(c+2n+1)(c+2n+2)

ing oF(a,b;c;x) to oF (" + 1,0;¢ + 1;x), where (a/,0') = (a,b) or (b,a). Then, using
a---(a+n—1b---(b+n—-1) (d+1)---(d+n)b - (b +n-1)

c-o(c+n—1) (c+1)---(c+mn)
_(a,_c)n(a’+1)---(a’+n—1)b’---(b’+n—1)
B c---(c+mn) ’
(@' —c)V'x
oF1(a,b;c;2) — o Fy (' + 1,V ;e + 1;2) = et 1) oFi(a+1,b+ 1;¢4 2;x),
or
2F1(0/*|>1,b/;6+ 1,5(}) . 1
o F (a,b; c; x) N 14 (@ =)z oFi(a+1,b+ 1;¢+ 2;2)

c(c+1) oFi(a + 1L,V c+ 1;2)

2F1(ans1, bpyric+n+1;1)
so that f,(z) =z Fy (@b o £ 7)
a+[n/2],b, =b+ [n/2].

Riccati: from Abramowitz 15.2.7, (1—x)F' = a, F—a!,(1-V,, /c,) F (an+1, bot1; c+n+1; ),
where (a,,, b)) = (an,by,) if an41 > an. So,

,withag =a1 =a,as =a3=a+1,...:0a, =

fn(x) F’
(1 — ¢ . —d —(1— 4
R L A
and use the hypergeometric differential equation x(1—z)F"+[c,— (ap+b,+ 1)z F'—a,b, F =
0 (15.5.1):

to continue



2006- — Elliptic lattices. 10 — Hypergeometric? — 68

10.2. Elliptic hypergeometric expansions.

Let

Vulz) = (z —y) - (T = yn) Py (=) (v =2 ) 2?( ) — (x—xo)‘“(x—xn_ﬁ.

A P T Ml Al s poy s S

See that DY, () = Cp Xo(x) X1 ()

Indeed, (¢(z)—=yo)((z)—y1) - (p(2) —Yn-1)
both vanish at x = g, z1, ..., x,_2; (p(z) — )E

s - -5 Ty, whereas (¢(2) —yo) (¥ (x) =91 -
1 X
Simple fractions give D =— 2(7) —, as seen earlier.

-y Ye(y)(w—ap_y)(z — )
The constant C,, is found through particular values of x, either x_; or x,,_i:

and ((2) =yo) (V(2) —y1) - -+ (V(2) — Y1)
(x)—vyy) - (p(z) —yl,_,) vanishes at x =

¥
Y(x)—yl,_,) vanishes at v =2’ |, ..., 2} _,.

In(p(z-1) = y-1)
(Yo — y—1)Xo(z_ 1)Xn 1(z-1)
yn(d}(xn—l) _gn)

(Yn = Yn-1)Xa(Tn-1)Xn-1(Tn1)

Cp=—

T =Y Yo — Yo (Yo — yo) Xa(z)
Of course, Cy = 0). Check Y (z) = - =1+ = DY ; ; ;
( 0= 0) ChedeNla) = 3 =1y = P = S = o ) e — )

so that C; = — o to be compared with
Y2(yo) , ,
_ Vi (y-1) I el ) G B D e e VR Fr_1,y) _
(yo — y71)X2(iE 1)Xo(56 1) (y—l - y(/))(yO - y—1>X2(fE—l) (y—l - y(/))YQ(y(/))XQ(x—O

(yo yl)(% )
e 0%

Also,
(p(x) = yo)(p(x) = 31) - - (p() = Yn-1) +( () —yo)(h(x) —y1) - (Y(@) = Y1)
(p(z) —y5) -+ (p(z) —yp) () = yh) (W) —yy) -~ (Y(x) — )

(z —xo)(@ —a1) -+ (¥ — Tp2)

(@ —ap) (2 — @) - - (& — a7)

= D,(z) ,
where D,, is a polynomial of degree 2.

same with DT

Riccati and 2" order linear differnce eq.

f(ym+1) _ f(ym) = b(xm)f(ym+1)f(ym) + C(l’m)(f(ym+1) + f(ym))) + d(CL’m),

Ym+1 — Ym

- (2% b)) £00) + dlan)

From a(z,,)

Ym+1 — Ym

f(ym—H CL(:C )
— T — c(zm) = b(m) f(Ym)

Ym+1 — Ym
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aQ(xm) T ) — Az
- _ 1 < a(l'm) + C(l'm>> + 1 (merl — ym)2 i b( m)d( m> ( m)
) \ gt — o o) 28— ) — b))
% — c(@mt1) = 0(@ms1) f (Y1) = Am + a(zpm) P ’
m+2 — Ymt1 m —c(xm) = b(@m) f (Ym)

10.3. Expansion for elliptic logarithm.

Expand (BH) satisfying
(2, — #) Xs (@)

DA = G o= o)
N+1 N+1 R S(z
as Z f)/nyn(x) Z fYnCnXQ(x)‘)?nfl(x) = (prill'll;z;z)f SSIJV)) 7

w Xno1() aly —aly
/

nCn
0r21:7 e

Residue at o'y : yw1Cnvi1 Xn(2y) = 2’ — 2ly;

at oy 1 YNCONAN—1 (T 1)+ v 1COnpa (o Z o) o (@ — on) = INONAN 1 (Ty_1)

- - (T —xp) - (2 — xlN—Q)(xlN—ll_ lJN) -
Tn_o —TN-2
— 0 at 2 . On OyN=2 =72
N =) ~ LA N NN NN

Tn_9g —IN2)\Tn_9g — TN-1

YN+1CON+1 (:]UV, 2 — )(;CV, 2 ) =0, etc.
N-—-2 N—-1 N-—-2 N

/ Y
n—1 T— Ty

/

T — TN_
, N—-1 N—-1
YN41On 1 XN 1 (2y_p)

(271 = &n 1) (@y = @n) (@ — Tnya) -+ (@ — TN) (21 — &na) (2l — @)

C, = C =
o Wy —ap )y —ah) @y —ayy) T Ty~ ) A (@)
N+1 / / / / /
v o) (o) (W — )y — ) a—a
Proof: let S; = A ( ; = : s = . +
’ Z( ) Ty =) (aly — )y = gen) @ = 2l (e — )
e Then, Sy — — 1 gu = Ty_1 — TN-1 (@y —an)(@ —an—1)(@y — Ty_y) _
’ T -y’ (z =2y )@y —ona) (2 =2y )(@ —2))(@y —ona)(@y — 2N)
2 T I (x —ana)(@y — 2y )
1~ 4N-1
N=t r— Ty 1 ‘
(x — 2y )@y —zN-1) T — Ty

Show that Si:Si+1,’i:N—1,N—2,...,O.

P et RN [ ) P ) RS S
Tl —e) oy —e) T @y e o
And from C,, = — Vn(y-1) —

(Yo — y—l)XQ(ﬂUfl)an(11071)7
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O G [ e O e y1)Xa(z 1) X (2 1)
" (T — Tn-1) X1 (Tly) Ynly-1)

(@ —aly) - (W =@ o) (T —@0) (T 0 = Tn2)(y1 —40) -~ (Y1 — Yoo

(@y —@0) (@ — Tp1) (@ —2y) (@ — 2 ) (Y1 — 1) (Y1 — Y1)

= (Tp1—25,_1) Xo(2 1)

Y1/ (Tn — 77) _ (zy — 2 1) (@1 — Tn1) (y—1 — ¥p)
Yo/ (Tn-1 = T3_1) (@ = xn) (@1 — 27,)(y—1 — ¥n)
1
Return to Df (z) = I ¥ =A, f(y) =0,

xls, starting with 2, = A, come as close as we want to a zero, say (, of Xy(z) =

c22(x — () (xr — ('), then

fla) = =225 =) + s lim (o) = AwCoo)
1/(¢—A4)
with the ~,s above, with 2’y replaced by (.
— _lmomm)@h =) (o —y-)Xa(e )y —wo) (o — 20)(A = ) Yalyp)
¢ — o (x-1 = A) (w1 — 2)(y-1 — o) ¢ — o Yo — Yo

So, the expansion of f is

> Tn CQ,Q(A_C) /
> st - ek 20

(using the formal sum = = yo + > ;" (Yn — Y1) Vu()).

Check n = 1:
Mmoo ca(A=() (1 — o) (f(y1) = Fwo) _ 91 — %

XQ(A) XQ(A) (yl - yO) - Y1 — Yo To — A

10.4. Convergence.

n n

Average behaviour: H(x—xk) = H(x—E(ak—O—b)) ~ ®(x)". What is ®(x) = exp Vi (z)?

1 1
Let a be a real irrational multiple of a period w, then the same factors reappear ap-
proximately in the product after N steps if aN is close to an integer times w. ®(x) is the
limit of the N*® roots of such products. The various ak, for k = 1,2, ..., N, modulo w, fill
uniformly the segment [0, w]:
for any j in {1,2,..., N}, there is a k such that ak is close to jw/N modulo w. Indeed,
let aN be close to Myw, with ged(N, My) = 1.Then,

jw a MN k‘MN —j
k—— = ——— )k —_—
¢ “ (w N ) L
to any j, there are integers k and m such that kMy — mN = j (Bezout).

N 1/N
1 w

So, we rearrange the product as ®(x) ~ [H(az —E(jw/N + b))] ~ exp {— / log(z — E(u+0b)) dul.
wWJo

J=1
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13

As £ is the inversion of an elliptic integral of the first kind, u + b = we have

dv
VP(@)
1 1 —v)d
d(z) = exp —/ log(w —v)dv , where {x,} is the locus of the z,s = {E€(u+b)},u €

W Han) P(v)
dv

feat V/P)

[0,w]. The constant 1/w is such that ®(z) ~ z for large z: w =

1 1 —v)d
So, let the complex potential V, (z) = —/ og(x#(v;v,
W S {wn} v

(V- will be used with the 7 s)

1 d
derivative: V' (z) = — —U,
W San} (x = v)y/ P ()

1 P(v)d
P(z)V' (z) = polynomial + — @7
W 2,y T

1 P
(P(z)V\.(z))" = (another) polynomial + _/{ . (v) dv

V) P(v)

w
Finally
P(z)V!(z) + P'(z)V! (z)/2 = (still another) pol.
/ pol.
(VP(x) Vi(x)) =
P(x)
so, V! () = an incomplete elliptic integral of the second(?) kind divided by /P(z).
With € such that z = £(§),dx/d§ = \/P(x):

d*V. (z)
dg?
What is this polynomial, by the way? V' (z) = ™' + (p41/p4.0)3 2 + (42/ph40)T 7% +
o P(x)=mex? + mr +mo+ -,
the pol. is

=apol. (inz = E&(¢))

(mox® + M + 72 -+ ) [wo — (2 A 71 (b1 / f14.0) + To(py 2/t 0))a ™2 -]
= moa? + mmor + mamo — mo (2 + w1 (g 1/ h.0) + To(kr 2/ Heh.0))
k
v* dv

where pyp = /
{en} VP (v)

is

is the £ moment of the contour drawn by the z,s. The result

2= /P(v)-0(1
ngQ + T mox + Ty — o T2 MUt Tov (v) (1/v) dv
0 Sz P(v)

The contour integrals on the z/s are the same(?? yes, see later on), so, at last

d*V(z)
dé2

=0,

where V=V, —V_.
11

Jump of V'(x) when x crosses the x,, line: V'(2)average &= Ti————, or in &:
p of V(@) (v £ 71— o i
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ay 1
( dé ) average " w

Forget it! A much faster and more complete derivation: V. (x) and V_(z) are contour

integrals on the locii filled by {z,} and {z/,} drawn by £(an + b) and E(an + V). If = is
dv

(z —v)y/P(v)

between these two locii, the two contour integrals of are the same for V! (z)

and V' (z), up to the residue at v = x:

) =V () — V() — 271 dV(z)  2mi
Vi@) =Vi(o) = V(@) = wy/ P(x) ~ ¢ w
(Y dn (@) ~
((—ay) - (( =) (@ —20) - (1 = Tp2) (Y1 —40) (Y1 — Yp_1) (x—yo)"'(x—ynﬁ)l/"
(C=mo) - ((—ap1) (g —aly) - (21 — 2 _4)

G =y1) - (Y1 = Ynt) (€ = 90) - (2 = y5i)
~exp[V(z-1) = V(C) = W(y-1) + W(z)]

Towards a conjecture on rate of convergence:
If the step a in x, = & (an+b), z), = E(an+ 1), is a real

irrational multiple of a per1od w, of bounded Lagrange-
Markov constant( see papers and book by S.Khrushchev),

(@) — exp(=2md()/|w]),
where d(x) is the distance of £ to the line {an + b'}.

1
y Df(z) = p—] with f(yo) =0, ¢ = —2.529822, F(z,y) = —0.31252%y? + 22 — 2.25zy +
x J—
%2 — 1.25, A = —7,

kK x(k) vk  x (k-1) y (k-1) gk term £(1)
1 0.51672 0.98564; 2.0068 3.3515 ;-0.05542 0.02356958 0.1285033 -0.00453082
2 -0.95291 -0.37902;-19.9626 2.7382 ;-0.21650 -0.00076035 0.1277430 -0.00000099
3 -0.15753 -0.87025; -2.0680 -2.3716 ; 0.30473 0.00043771 0.1281807 0.01064768
4 0.99948 0.69234; 4.2749 -4.6414 ;-0.23940 -0.00011400 0.1280667 0.00696292
5 -0.23019 0.64003; 2.4333 2.0494 ;-0.05303 0.00000740 0.1280741 0.00664251
6 -0.93096 -0.90117; -2.6429 34.5330 ;-4.06650 -0.00000609 0.1280680 0.00686082
7 0.57665 -0.31020; -3.5481 -2.0143 ; 0.77233 0.00000073 0.1280687 0.00688667
8 0.74665 0.99449; 2.1363 6.1416 ;-0.07636 0.00000002 0.1280687 0.00688892
9 -0.83038 -0.07436; 9.3362 2.2354 ;-0.13154 -1.411 E-10 0.1280687 0.00689104
10 -0.45360 -0.97261; -2.0003 -3.0677 ; 0.36320 1.029 E-10 0.1280687 0.00688980
15 0.90479 0.92787; 2.5007121.2785 ;-0.11543 1.975 E-15 0.1280687 0.00689019
20 -0.98422 -0.50887; -8.1267 3.1850 ;-0.28273 -2.400 E-19 0.1280687 0.00689019

Here, b =0, w = 4K, i/ = iK', k = 1/2: K = 1.68575, K’ = 2.15652,
rate of convergence at x = 1 is exp(—nK'/(2K)) = 1/7.459 = 10708727,

+ o+ F o+ o+ o+ F o+ o+~

[WH

O OO OO OO OO O O O Wv

.120119(
.149588¢
.135781¢
.1368071
.1371257
. 1382964
.138163¢
.138163¢
.138162¢
.138161¢
.138162¢
.138162¢
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11. Interpolatory continued fraction.

Olo(l”—yo)
a1 (z —y1)(z — o)

1+ Bo(x —y1) +

&n41(17—'y2n73)($ _'y2n72)
L+ Boa(z = yan—1) + -+

1+ Bpo(® — yon—3) +

a(k-1) b(k-1)
.02342657 0.3064279
.02442157 -0.5755228
.2808405  0.5023201
.02875770 0.3488815
.002774129 0.6898141
.635035 3.609245

O O O O

O OW 0O ~NOO P WwNN -~ w
1
N O

0.05390936 0.7862154

0.001055843 0.2904550

0.01638600 -0.8421168
10 0.4162262 0.5008208
13 -2.667423 1.473576
14 3.576408 0.6620672
16 0.01282034 -5.278312
17 3.286337 0.6235315
24 -1.406951 1.290914
31 2.713400 -4.291244
41 0.01600274 2.476500
42 -2.045183 0.8222617
49 -3.308682 4.687681
56 -1.128588 0.1804773
57 1.869775 0.6528640
59 0.01285615 -8.095352
60 5.162988 0.6383966

Hope to connect to the current theory of elliptic hypergeometric expansions [53-59,69-71]
some day...

Remarks on this biquadratic calculus:
Titre du document / Document title Modular invariance in lattice statistical mechanics
Auteur(s) / Author(s) MAILLARD J.-M. (1) ; BOUKRAA S. (2) ; Affiliation(s) du ou des auteurs / Au-
thor(s) Affiliation(s) (1) LPTHE, Tour 16, ler étage, 4 Place Jussieu, 75252 Paris, FRANCE (2) Institut
d’Aéronautique, Université de Blida, BP 270, Blida, ALGERIE
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