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1. Taylor, polynomial, and rational
interpolation.

1.1. Taylor expansions.

The Taylor series expansion of a function with finite convergence do-
main shows “typically” almost circular level lines of equal approximation,
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1.2. General rational interpolation with given
poles. Condenser capacity.    , tout entier à une idée

qui lui était venue sur les potentiels.
Alphonse Allais (from Madrigal manqué)The error at z is
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1.3. The problem of rational inter-
polation at m
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polynomials.
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2. Known rational interpolations to the
exponential function.

2.1. Padé.

For the error ez � approximant, we have the nth powers of
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2.2. Rational interpolation at equidistant points (Iserles). [3]
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We look at the performance of some examples of the region of good
approximation in the complex plane, coloured in light gray:

exp(5(0.250z)) 
-12.6

exp(5(1.00z))
-0.0897

exp(5(2.00z))
3.84

exp(5(3.00z))
6.57

Complex rational approx. 3 – Asymptotics. – 8

3. Asymptotic features of rational
interpolation. # .

/

3.1. According to Gončar-Rahmanov-Stahl (a sloppy rendering).
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3.2. Conditions on a single arc.

Suppose that we know that
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4. Rational interpolation to exp
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This very interesting rational interpolation appears in special nonlinear
Schrödinger problems ( [6, 8] and remarks by J. Nuttall in [4]) .

4.1. The single arc case.
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4.2. First caustic.

x=0.10 , At=0.25000 x=0.10 , At=0.50000 x=0.10 , At=0.59650
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5. Best rational approximation to e � �An
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5.1. Root asymptotics.

Finally, the error decreases like ρn, with
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5.2. Strong asymptotics .
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Consider rational approximants to functions f ng, and suppose that the
Hermite-Walsh error formula can already be written as
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Aptekarev [1] established in some cases a more accurate picture Wn
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(strong asymptotics, also called first order asymptotics
by Nuttall). I give here a probably very sloppy account of Aptekarev’s
wonderful results (to be available soon):
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Moreover, the error norm is En
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