Seminar series on

Rational approximationsand systemstheory.
February-March 2002

Asymptotic convergence rates of rational interpolation to
exponential functions.

The present slides file is

http://www.math.ucl.ac.be/ magnus/num3/rslides.ps and pdf
For more, see

http://www.math.ucl.ac.be/ magnus/num3/rsummary.ps and pd
http://www.math.ucl.ac.be/ magnus/num3/m3xxx00.pdfand ps
and references therein.

Alphonse Magnus,
Institut de Mathématique Pure et Appliquée,
Université Catholique de Louvain,
Chemin du Cyclotron,?2,
B-1348 Louvain-la-Neuve
magnus@anma.ucl.ac.be, http://www.math.ucl.ac.be/ magnus/

Complex rational approx. 1 - Taylor & polynomial & rational. — 2
1. Taylor, polynomial, and rational
inter polation.

1.1. Taylor expansions.

The Taylor series expansion of a function with finite convergence do-
main shows “typically” almost circular level lines of equal approximation,

explained by a convenient representation of the error

n Zn+1
% t| rf(t)m dt, @)
z| < IZI =
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1.2. General rational interpolation with given

poles. Condenser capacity. ., tout entier & une idée

qui lui était venue sur les potentiels.
Alphonse Allais (from Madrigal manqué)

_ Nlz-1z) q(t) f(t) dt
a(z)  2mqg(z) /C(t—z)ﬂ(t—zj) (2)

ing mainly (MY with ®(z) = exp V(z) =

®(2)
exp[Vp(z) — W (z)], where V}, and 14 are

the (complex) potentials of the distribu-
tions of the poles and interpolation points:

Wil / log—dup, B.

2) =exp[Re (V(z) — (ReV on Lp)] =exp (m> :

The error at z is
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1.3. The problem of rational inter-
polation at m+n+ 1 points, orthogonal
polynomials.

Numerator interpolates qn f at m+n+ 1 points: pm(z) =

1 1 Mo "(z=2z)
Zt—zj ~om qn()[t—z (t—2) 0" (t—z) o
So, pmisonly O(z™) as it should if o T 2) |'(|t")‘+frgtt) 2 dtisO(z~"-1),
0
so,as (t—z)"t=—z1-tz2—.. +t”z—”(z t)~L, if
/qn(t)tjwn(t) dt=0, j=0,..n-1, @)
Cs

= m: formal orthogonality!
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2. Known rational interpolationsto the
exponential function.
2.1. Padeé.

For the error e?— approximant, we have the nt" powers of

—1.325
14+/1+22/(4n e?/n— A/W
1—+/142%/(4n )

1.325

1-k+/1+#/(4n2)
—2i
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exp(5(0.2502))
-12.6

41

\/L + 22/ 4n2) ez/n+2\/1+22/(4n2)

2.2. Rational interpolation at equidistant points (Iserles). [3]

Interpolation of exp(Az) at zg,zo+h, ..., 20+ (M +n)h:

Rough asymptotics.

If m ~ n, one finds that the numerator, denominator, and the error
behave like the n'" powers of

exp lUOg ( Ah/ZVZ \/ 0-212 ) + 4 |Og(y+ /0-212_*_1)

2
exp ll log (e‘Ah/ZyZ — Z fzfz + 1) - A?h +log(y+ /0202 +1)

og A8 VO P+ (YO
o [Z > (e Y ++/0%2%2+1 AT y—+/022+1

where { = [2(z—z0)/((m+n)h)] — 1, y=coshAh/2, o = sinhAh/2.

Complex rational approx. 2 — Exponential function. — 7

We look at the performance of some examples of the region of good
approximation in the complex plane, coloured in light gray:

E3><ID(5(1 002))

exp(5(2.002))
0.0897 3.84

exp(5(3.002))
6.57
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3. Asymptotic features of rational
inter polation. #)

3.1. According to Goncar-Rahmanov-Stahl (a sloppy rendering).

do(t)$"(t)

Interpolation to fh(z) =
P n( ) Ct z—t

dtatzo,...,Zm+n by pm/dn yields

Pm(z) _ Mo "(z—2j) galt)  do(t)e"(t)
fn(2) = an(z) i qa(2) | /Cf |_|m+n(t_Z ) -t a

¢o( J9"(t)

on Cg, as in (3).
Well, we expect that most of the poles of g, will tend to a set S C Cy.

where g, is (formally) orthogonal with respect to wy(t) :=
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o On the support of Hp, On is almost a Szegd orthogonal polynomial!

which means that +qn(t)\/Wn(t) has slowly varying phase and absolute
value there.

Ony/Wn
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ant) 20 e (n [% o) - Tl ! q/p,—(t)])
(-2

cosn ( Vo4 (t) —

rVuo,—(t)>

onS, or:
logd(t)/2+ U(t) — [Vp,+(t) + Vp,—(t)]/2 = constant, (4)

the same real constant on all the arcs of S, has a real part smaller than this
constant on Cs \ S.
For derivatives:

(10g8(2))'/2+ 1)+ . —oonzes. ©
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3.2. Conditions on a single arc.

Up)

Suppose that we know that ][ = g(z), with g analytic in some

domain (the arc [a, B] is not yet known)
3.2.1. Alittle bit of Chebyshev polynomials calculus. N.B. Ullman
Vpl(z—a)(z— B)]~Y2 is the constant term of the Chebyshev expan-

sion of g(t)/(z—1t).

Let go/2+ 37 OnTn be the expansion ofg. go=0, g1 = [31%
Vp(2) = Z OnP". 6)
p+p—1_2z—a B .
2 B—a '’
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4. Rational interpolation to exp(nByz+ nB,7?).

This very interesting rational interpolation appears in special nonlinear
Schrodinger problems ( [6, 8] and remarks by J. Nuttall in [4]) .

4.1. The single arc case.

PPt 2k—oa—B
2~ B_a k=1,2, 8
T(z) = L1 [(z—11)log(1— p1p) — (z—I2) log(1 — p2p)]
_P1p2+1 P ®)

—logp.
Tpwpa_12 9P
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4.2. First caustic.

<=0.10 , At=0.25000 x=0.10, At=0.50000 x=0.10, At=0.59650
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5. Best rational approximation to e~ (A"tB)Z on g
real interval

Best rational approximation to exp(—z) on a given real interval, say
[0,c] has a strict equioscillating error function, as seen here with e* —

pn(Z)/qn(Z) on [O, 1], forn= 1, 2: 0.00158
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1.64107°

5.1. Root asymptotics.
Finally, the error decreases like p", with

1 ay(K—E)(K' —E')—EF’

log— =Tt 10
95" oy DEK-B) o

5.2. Strong asymptotics .
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Consider rational approximants to functions f"g, and suppose that the
Hermite-Walsh error formula can already be written as

n z n - d
(o)~ S0 ~ e [ Fgie M0

Aptekarev [1] established in some cases a more accurate picture W, =

2nYV 4+ vV 4 o(1) (strong asymptotics, also called first order asymptotics
by Nuttall). 1 give here a probably very sloppy account of Aptekarev’s
wonderful results (to be available soon):

Also sprache Aptekarev: Vis (multivalued) analytic outside
E UF, witha period 2rd about F, and —271 about E, correspond-
ing to a positive unit charge on F, and a negative unit charge on

E, with 7, + 7 constant on E, V(z)+ + V(z)- +2logg(z) =

~

another constant on F, and finally 7/(z) = const. 4+0(1) when
z — oo (if E and F are bounded).
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B Moreover, the error norm is En ~ 2p"p, where 2logp =
Re{(V(2) + V- (2))e - [V4(2) + V- (2) + 2log g(2)]f }.

K’ 2B 2B
Po = exp <_§ V) . AndforanyB, 15 = K‘V—i— (1— K) T4 does
the trick, see Meinguet [7] for such relations. So,
ps = pB/Apl /M |

and we just havg to get po = exp(—1/C), where C is the plain condenser
capacity of (E,F).
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