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1. Taylor, polynomial, and rational interpolation.
1.1. Taylor expansions.

The Taylor series expansion of a function with finite convergence domain shows “typically” almost
circular level lines of equal approximation:
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explained by a convenient representation of the error

f � z ��
 n

∑
0

ckzk � Kn � z � � z  Z � n � �
z
�����

Z
� � R � (1)

where Kn is “typically” slowly variable in n. What is meant by “typical” must be estimated on particular
classes of functions. The only general truth here is that Kn is bounded by a slowly variable1 function of n
when

�
z
�����

Z
� � R:

Kn � z � ��� Z
z � n 1

2πi ��� t � � r
f � t � zn � 1

tn � t 
 z � dt �
with

�
z
���

r
�

R, and r arbitrarily close to R. For some functions f , an infinite subset � Kni � i may be much
smaller than expected, that’s why some special classes of functions f will be described (sometimes a single
function. . . ) when accurate asymptotic estimates of (1) will be needed.

So, we stretch integration contours as far as possible, so to have smallest possible integrands, in order
to catch an idea of the integral. This is a way to cope with the additive logic of integration, where the same
result may be achieved with many terms of different phases. But if there are not many terms, each of them
has to cooperate in the same direction, more or less.

Darboux: Kn � z � depends on the behaviour of f � � t ��
 f � � t � in neighbourhoods of the singular points�
Z

of f on the convergence circle. The main part of the error integral is

zn � 1

2πi � ε

0

f � � Z �
u ��
 f � � Z �

u �� Z �
u � n � Z �

u 
 z � du� zn � 1

2πiZn � Z 
 z � � ε

0 � f � � Z �
u ��
 f � � Z �

u � � exp � 
 nu  Z � du

(Laplace transform)
For instance, if f � t �!� A � t 
 Z � α near Z,

f � z ��
 n

∑
0

ckzk � zn � 1A � 1 
 e2πiα � Zα � 1Γ � α �
1 �

2πiZn � Z 
 z � nα � 1

(Watson’s lemma for Laplace transforms).
So, refined asymptotics will have to deal with differences f � � t ��
 f � � t � on the the two sides of cuts.
For the exponential function, there is no finite convergence radius! Stretching the contour as far as

possible will put us in orbit! Of course, the size of et will now have to be considered too.

n

The error integral of zn � 1et t � n � t 
 z � � 1dt is best analysed on a contour of
radius

�
t
� � n, whence the main behaviour zn � 1 � e  n � n (when

�
z
�
is much smaller

than n). Remark the famous 100% relative error curve
�
ez � � �

z
� n � e  n � n where

zeros of the approximants can be found (Szegő).

1.2. Interpolatory (Jacobi) expansions.

We consider repeated (confluent) interpolation at a finite number of points z1
�#"$"#"%� zk, amounting in a

modified polynomial series (Jacobi expansion)
∞

∑
m � 0

dm � z � � � z 
 z1
� "#"#" � z 
 zk

� � m �
where dm is a polynomial of degree

�
k.

1slowly variable & less than exponentially variable.
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' z1

( z2)
z3

*Z

L2

L1

What we have is similar to a power expansion, with
powers of � z 
 z1

� "#"#" � z 
 zk
� . And the relevant con-

tour integral is examined after stretching the contour
so to have

� � t 
 z1
� "#"#" � t 
 zk

� � as large as possible on
it: f � z ��
 interpolant of degree n �� � z 
 z1

� "#"#" � z 
 zk
� � n + ρn � z �

2πi � C

� t 
 z � � 1 f � t � dt� � t 
 z1
� "#"#" � t 
 zk

�,� n + ρn � t �
where n - �/. n  k 0 , and where ρn is the product of
less than k factors z 
 z j. The main nth power in-

volved in the error at z is � Φ � z �
Φ � Z � � n

, with Φ � z � �� � t 
 z1
� "#"#" � t 
 zk

� � 1 1 k, and where
�
Φ � Z � � � min

�
Φ � t � �

on t 2 C. We also see that
�
Φ � t � � � �

Φ � Z � � is the
largest lemniscate L2 within the contour C.
Let L1 be the lemniscate � u :

�
Φ � u � � � constant ��

Φ � z � � � containing z. The error level lines are the lem-
niscates

�
Φ � z � � � constant.

1.3. General rational interpolation with given poles. Condenser capacity.

. . . , tout entier à une idée
qui lui était venue sur les potentiels.

Alphonse Allais (from Madrigal manqué)

At the end of this line of thought, one puts m
�

1 interpolation points on a locus E, and n poles on a
locus F .

The error at z is

f � z ��
 p � z �
q � z � � ∏ � z 
 z j

�
2πiq � z � � C

q � t � f � t � dt� t 
 z � ∏ � t 
 z j
� (2)

3 z

L

Li

4Z

Lp

involving mainly � Φ � z �
Φ � t 5 � � n

, with Φ � z � � expV � z � � exp � Vp � z ��

Vi � z � � , where Vp and Vi are the (complex) potentials of the dis-

tributions of the poles and interpolation points: Vp � z � : � � C
log

1
z 
 t

dµp � t � ,
Vi � z � : � � I

log
1

z 
 t
dµi � t � . We now have flexibility enough [10]

to make the set of interpolation points Li and the set of poles Lp

sets where Re V � log
�
Φ

�
take two constant values (Dirichlet

boundary-value problem for Re V ). Then,�
Φ � z � ��
Φ � Z � � � exp � Re � V � z ��
 � ReV on Li

�,� � exp � 
 1
cap � L � Li

� � �
where cap � L � Li

� is the capacity of the condenser � L � Li
� .

1.4. The problem of rational interpolation at m
�

n
�

1 points, orthogonal polynomials.

The rational interpolation setting above, with given poles and interpolation points, is a well-conditioned
problem, somewhat like the boundary value problems with Dirichlet data on a part of the boundary, and
Neumann data on the complementary part.
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The seemingly inocuous alternative interpolation problem, to construct a numerator of degree 6 m, and
a denominator of degree 6 n, such that the ratio interpolates at m

�
n

�
1 points, is an ill-conditioned

problem (when m and n are large), somewhat like an elliptic boundary value problem with Dirichlet and
Neumann data on the same part of the boundary.

Then, why venture such dangerous hasards? Because we don’t have to look for the boundary of a region
of analyticity, we expect that the interpolant will find it through the locus of its poles! So, full interpolation
is a tool of discovery. This was expecially clear when Padé approximants (the full confluent case) were
heavily used some decades ago.

We look for pm and qn such that
pm � zi

�
qn � zi

� � f � zi
� for i � 0 �#"$"#"7� m �

n. OK, suppose the denominator qn

known (that’s the hard part), then pm interpolates qn f . But a polynomial interpolant at m
�

n
�

1 points
will normally have a degree as high as m

�
n! That the degree of pm is actually 6 m represents the set of

conditions for the denominator qn. For analytic functions, the interpolant is

pm � z � � 1
2πi � C f

qn � t � m � n

∑
j � 0

L j � z �
t 
 z j

f � t � dt � 1
2πi � C f

qn � t �98 1
t 
 z


 ∏m � n
0 � z 
 z j

�� t 
 z � ∏m � n
0 � t 
 z j

�;: f � t � dt �
where C f is a valid contour with the z j’s as interior points. So, pm is normally O � zm � n � for large z, it only

be O � zm � as it should if � C f

qn � t � f � t �� t 
 z � ∏m � n
0 � t 
 z j

� dt is O � z � n � 1 � , so, as � t 
 z � � 1 � 
 z � 1 
 tz � 2 
=<#<#< �
tnz � n � z 
 t � � 1, if � C f

qn � t � t jwn � t � dt � 0 � j � 0 �#"#"$"7� n 
 1 � (3)

where wn � t � � f � t �
∏m � n

0 � t 
 z j
� .

What we have are conditions of orthogonality, although the complex facors in (3) represent by no means
“nice” orthogonality.

2. Known rational interpolations to the exponential function.
2.1. Padé.

for ez,

� m  n� � 1
� m

m
�

n
z
1!

� m � m 
 1 �� m �
n � � m �

n 
 1 � z2

2!
� <#<$< � m � m 
 1 �><#<#< 2 " 1� m �

n � � m �
n 
 1 �><#<#< � n �

1 � zm

m!

1 
 n
m

�
n

z
1!

� n � n 
 1 �� m �
n � � m �

n 
 1 � z2

2!

?<#<#< � � 
 1 � n n � n 
 1 �><$<#< 2 " 1� m �

n � � m �
n 
 1 �><#<$< � m �

1 � zn

n!

(4)

ez den " 
 num. � � 
 1 � n� m �
1 �><#<#< � m �

n � ∞

∑
k � m � n � 1

� k 
 m 
 1 �><#<#< � k 
 m 
 n �
k!

zk� � 
 1 � n� m �
n � ! 8 � z� ∞


 � 0� ∞

� � z

0
et � z 
 t � mtn dt : (5)

Exponential behaviour of numerator and denominator has been much worked, especially the distribution
of zeros and poles. Saff & Varga remark that, when m � n, these distributions had already been examined
by Olver in a study of Bessel functions.

Integrals of the form (5) behave for large n as value at saddlepoint. With m � n, saddlepoint is a root of

1
� n

t 
 z
� n

t
� 0 � whence t � z

2

 n

�A@ z2

4
�

n2 �
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with some choice for the square root (see later), and � z 
 t � t � 2n2 B @
1
� z2

4n2

 1 C .

Denominator behaves like nth power of

1
� @

1
� z2

4n2

2
exp B 1 
 z

2n

 @

1
� z2

4n2 C � (6)

where the value of the square root is 1 at z � 0. When z increases, the value of (6) becomes very small
and must be replaced by the same formula with the other choice of the square root as soon as the new
formula has an absolute value which is larger than the former one. This happens near z  n � 1 " 3255. In the

z  n 
 plane:

2i


 2i

1 " 325the formula (6) holds with a continuous square root outside

the shown arc, which is the locus where the two formulas have the same absolute value, also the limit
of the poles of the approximant. The equation of the arc is

�
w � z � � � 1, where

w � z � � DEEEF G 1
� z2

4n2

 1G 1

� z2

4n2

�
1

exp B @
1
� z2

4n2 C � � z  2n � exp H�I 1
�

z2 �� 4n2 � J
1
� G 1

� z2

4n2

Remark the square root behaves like 
 z �� 2n � for large z in (6).

Numerator:
1
�K@

1
� z2

4n2

2
exp B 1

� z
2n


 @
1
� z2

4n2 C ,

2i


 2i


 1 " 325

Finally, for the error ez 
 approximant, the powers are

2i


 2i


 1 " 325 1 " 325

ez 1 n


 w2ez 1 n

1
� I 1

�
z2 �� 4n2 �

1 
 I 1
�

z2 �� 4n2 � ez 1 n � 2 L 1 � z2 1 � 4n2 	
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2.2. Rational interpolation at equidistant points (Iserles). [3]

As far as we only need eAz at z � z0
� z0

�
h �$"#"#"%� z0

� � m �
n � h,

eAz � � III � ∆∆∆ � � z � z0 	M1 heAz0� m � n

∑
k � 0

� � z 
 z0
�  h

k � ∆∆∆keAz0� m � n

∑
k � 0

� eAh 
 1
h � k

1
k!

� z 
 z0
� � z 
 z0


 h ��<#<#< � z 
 z0

 � k 
 1 � h � �

which we multiply by the denominator Q � z � � n

∑
j � 0

q j � z 
 z0
�><#<$< � z 
 z0


 � j 
 1 � h � , using

� z 
 z0
� � z 
 z0


 h �><#<#< � z 
 z0

 � j 
 1 � h � eAz �

eA � z0 � jh 	 m � n

∑
k � 0

� eAh 
 1
h � k � j

1� k 
 j � ! � z 
 z0
� � z 
 z0


 h �><#<$< � z 
 z0

 � k 
 1 � h � �

Q � z � eAz � eAz0
m � n

∑
k � 0

� eAh 
 1
h � k

C � k �
k!

� z 
 z0
� � z 
 z0


 h ��<#<#< � z 
 z0

 � k 
 1 � h � �

where C � k � � n

∑
j � 0

q je
A jh � eAh 
 1

h � � j
1� k 
 j � ! is a polynomial of degree n in k, which must vanish at

k � m
�

1 � m �
2 �#"#"$"#� m �

n,

P � z � � eAz0

m

∑
k � 0

� eAh 
 1
h � k � m

k � � m �
n 
 k � ! � z 
 z0

� � z 
 z0

 h �><$<#< � z 
 z0


 � k 
 1 � h � �
Q � z � � n

∑
k � 0

� e � Ah 
 1
h � k � n

k � � m �
n 
 k � ! � z 
 z0

� � z 
 z0

 h �><#<#< � z 
 z0


 � k 
 1 � h � �
and, formally:

Q � z � eAz 
 P � z � �
eAz0 m! � 
 1 � n

∞

∑
k � m � n � 1

� eAh 
 1
h � k � k 
 m 
 1 � � k 
 m 
 2 ��<#<#< � k 
 m 
 n �

k!
� z 
 z0

� � z 
 z0

 h �><$<#< � z 
 z0


 � k 
 1 � h � �
(7)

We look at the performance of some examples of the region of good approximation in the complex
plane, coloured in light gray:
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exp(5(0.250z)) 
-12.6

exp(5(1.00z))
-0.0897

exp(5(2.00z))
3.84

exp(5(3.00z))
6.57

colouring is made with respect of the average of log
�
exp � Az �N
 P � z �  Q � z � � in the square � 
 2 � 2 �PO� 
 2 � 2 � . The degrees of P and Q are here 5 and 4. When A is small, the region is an oval around the locus

of the interpolation points (here, the interval � 
 1 � 1� shown by a thin horizontal black line).

The interpolation points should appear as bright white dots, but they are hardly visible in somewhat big
pixels, if colouring is made according to an arbitrary point of the pixel. This chosen point happens to be
an actual interpolation point only for the endpoints, whence the rightmost interpolation point looking like
a beacon in a dark environment.

Somewhat similarly poles may even enter the locus of interpolation points. Here, the poles of P  Q
(degrees 20  19) interpolating exp � 20az � , with a � 1 and a � 2:

n=20 A=1 B1= I B2=0.

+
+

+
+

+

+
+

+

+
+
+
+
+

+

+
+

+
+

+

n=20 A=1 B1= 2*I  B2=0.

+++++++

++
+

++
+

+
+

+

+
++

So, the locus of poles of P  Q of degrees m � n and n approximating exp � naz � enters the locus � 
 1 � 1�
of interpolation points when a becomes larger than a number slightly smaller than 2. Such features will be
explained.

Rough asymptotics. Let ζ : � z 
 z0

 � m �

n � h  2
nh

. Then, with m � n, we intend to follow things at

constant Ah and ζ, i.e., a fixed exponential and z expanding linearly with n, or A increasing linearly with n,
and 2n interpolating points filling a fixed segment � z0

� z0
�

2nh � . Remark that this segment of interpolation
points is 
 1 6 ζ 6 1.
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One finds that the numerator, denominator, and the error behave like the nth powers of

num. e � Az0 P � z � exp Q ζ log B eAh 1 2 γζ 
 I σ2ζ2 �
1

ζ 
 1
C � Ah

2
�

log � γ � I σ2ζ2 �
1 � R

den. Q � z � exp Q ζ log B e � Ah 1 2 γζ 
 I σ2ζ2 �
1

ζ 
 1
C 
 Ah

2
�

log � γ � I σ2ζ2 �
1 � R

err. e � Az0 � eAz 
 P � z �
Q � z � � exp Q ζ log B eAh γζ 
 I σ2ζ2 �

1

γζ � I σ2ζ2 �
1
C �

Ah
�

log B γ � I σ2ζ2 �
1

γ 
 I σ2ζ2 �
1
C R

in the convergence region

(8)

where γ � coshAh  2, σ � sinhAh  2, and where determinations of the logarithms and of the square root
have to be chosen appropriately.

At least for large z, we know that P and Q must behave like zn, possible only if different choices of the
square root are taken in the first two rows of (8), with I σ2ζ2 �

1 � σζ for P, 
 σζ for Q.
The region where the same determination of the square root holds in the asymptotic behaviours of P

and Q is simply the region of good approximation! Indeed, one finds for the ration the nth power of
exp � Ah � ζ �

1 �#� , which makes exp � A � z 
 z0
�$� .

When Ah is small, we almost have the Padé situation of the figure of p. 5 (take ζ S ∞ and σζ � z �� 2n � ).
Various interesting situations occur, the wildest situation being eAh � 
 1: we then interpolate merely

the sequence 1 � 
 1 � 1 � 
 1 �#"$"#" at z0
� z1

�#"#"$"7� zm � n by p  q of degrees m and n, without any reference to an
exponential function anymore!

Moreover, the solution of the Cauchy problem (i.e., find p and q such that q � z � f � z ��
 p � z � � 0 at
z0

�$"#"#"%� zm � n) is then immediate: q
�

p must vanish at z1
� z3

�#"#"#" , and q 
 p vanishes at z0
� z2

�#"$"#" :
p � z �
q � z � � c � z 
 z1

� � z 
 z3
��<#<#<#
 c - � z 
 z0

� � z 
 z2
�><$<#<

c � z 
 z1
� � z 
 z3

��<#<#< � c - � z 
 z0
� � z 
 z2

�><$<#< �
where one of the two numbers c or c - may very well vanish if it is the only way to achieve degrees 6 m
and n!

3. Asymptotic features of rational interpolation. #�UT
3.1. According to Gončar-Rahmanov-Stahl (a sloppy rendering).

Interpolation to fn � z � � � C f

ϕ0 � t � ϕn � t �
z 
 t

dt at z0
�#"#"$",� zm � n by pm  qn yields

fn � z ��
 pm � z �
qn � z � � ∏m � n

0 � z 
 z j
�

q2
n � z � � C f

q2
n � t �

∏m � n
0 � t 
 z j

� ϕ0 � t � ϕn � t �
z 
 t

dt �
where qn is (formally) orthogonal with respect to wn � t � : � ϕ0 � t � ϕn � t �

∏m � n
0 � t 
 z j

� on C f , as in (3).

Well, we expect that most of the poles of qn will tend to a set of arcs S, with a limit distribution µp, that
C f may be modified within the closure of the domain where ϕ0 and ϕ are analytic, so that S V C f .� � On the support of µp, qn is almost a Szegő orthogonal polynomial! which means that W qn � t � I wn � t �
has slowly varying phase and absolute value there.
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S

ρn L wn

Indeed, a monic polynomial ρn orthogonal in Szegő’s sense with respect to�
wn

�
on C f minimizes its (square) norm � C f

�
ρn � t � � 2 � wn � t � �M� dt

�
. The absolute value�

ρn L wn
�

will remain almost constant along S, but the argument of ρn L wn will
normally have fast variation. So,

�
ρ2

nwn
�
is normally not the same thing as ρ2

nwn.

S

ρn L wn

But if there is a particular C f where ρn L wn happens to be –almost– real, then
qn may be expected to be close to ρn.

Sloppy asymptotic explanation with (complex) potentials Vp � z � : � � supp µp

log
1

z 
 t
dµp � t �

and

Vi � z � : � � supp µi

log
1

z 
 t
dµi � t � (interpolation points), so that qn � z ��� exp � 
 nVp � z �#�

when z 2 supp � µp
� , ∏m � n

0 � z 
 z j
��� exp � 
 2nVi � z �#� , and qn � z ��X exp � 
 nVp Y � � z �#� �

exp � 
 nVp Y � � z �#� on supp � µp
� . Then,

qn � t � ϕn 1 2 � t �G ∏m � n
0 � t 
 z j

� X � exp � 
 nVp Y � � t �$� � exp � 
 nVp Y � � t �$� � exp � n logϕ � t �  2
�

nVi � t �#�X exp � n 8 logϕ � t �
2

� Vi � t ��
 Vp Y � � t � � Vp Y � � t �
2 : � cosn � Vp Y � � t ��
 Vp Y � � t �

i �
on S, or:

logϕ � t �  2
� Vi � t ��
 � Vp Y � � t � � Vp Y � � t �,�  2 � constant � (9)

the same real constant on all the arcs of S, has a real part smaller than this constant on C f Z S.
For derivatives: � logϕ � z �#� -  2

� V -i � z � � � S

dµp � t �
z 
 t

� 0 on z 2 S " (10)

Remark that the (complex conjugate of) the derivative � logϕ � z �$� -  2
� V -i � z �>
 V -p � z � on the two sides of

S gives the gradient of the real potential Re � logϕ � z �  2
� Vi � z ��
 Vp � z � � , and has opposite values W πiµ - � z �

on the two sides of S, from (10) and the Sokhotskyi-Plemelj formulas for V -p: symmetry property [1, 2, 9,
,etc.].

3.2. Conditions on a single arc.

Let the function (often associated to a distribution of poles) V -p � z � � � β

α

dµp � t �
z 
 t

. Suppose that we know

that � β

α

dµp � t �
z 
 t

� g � z � � (11)

with g analytic in some domain (the arc � α � β� is not yet known). The trick is to multiply V -p by a function� � z 
 α � � z 
 β � � γ 1 2 taking opposite values on the two sides of � α � β � . We consider only γ � 1 and γ � 
 1.
Also, � � z 
 α � � z 
 β � � γ 1 2 is defined to be continuous outside the arc, and behaves like zγ for large z.

The solution is

V -p � � z 
 α � � z 
 β � � γ 1 2 
 δγ Y 1 � 1
πi � β

α

g � t � � � t 
 α � � t 
 β � � γ 1 2�
z 
 t

dt � γ � W 1 " (12)

It may help to realize that the phase of
β 
 α� � t 
 α � � t 
 β � � 1 1 2� is exactly the one of

�
i on the rectilinear segment� α � β� .
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Some questions: the 
 1 in the left-hand side of (12) when γ � 1 is needed from V -p � z � � 1  z
�

O � 1  z2 �
for large z. But the two sides of (12) when γ � 
 1 should be � 1  z2 for large z, everything works only if� β

α

g � t � dt� � t 
 α � � t 
 β � � 1 1 2� � 0 � � β

α

tg � t � dt� � t 
 α � � t 
 β � � 1 1 2� � πi " (13)

The two forms of (12) then agree, either with γ � 
 1, or γ � 1. It will also be useful to check that, as (11)
is a plain integral when z � α and z � β, one has V -p � α � � g � α � , and V -p � β � � g � β � .
3.2.1. A little bit of Chebyshev polynomials calculus. N.B. Ullman

V -p � � z 
 α � � z 
 β � � � 1 1 2 is the constant term of the Chebyshev expansion of g � t � �� z 
 t � .
Let g0  2

�
∑∞

1 gnTn be the expansion of g. Remark that (13) becomes

g0
� 0 � g1

� 4
β 
 α

" (14)

We need the expansion of 1 �� z 
 t � � X0  2
�

∑∞
1 XnTn: Xn

� X0ρn, where ρ is a root of

ρ � ρ � 1

2
� 2z 
 α 
 β

β 
 α
� (15)

normally with
�
ρ
���

1, but this will have to be discussed later. The value of X0 comes from n � 0:

X0
� 8� β 
 α � � ρ � 1 
 ρ � "

Remark that � � z 
 α � � z 
 β �,� 1 1 2 � � β 
 α � 2 � 1 
 ρ2 � 2 �� 16ρ2 � , so that

V -p � z � � ∞

∑
n � 1

gnρn " (16)

The two determinations of V -p on the two sides of the cut � α � β� are obtained with the two roots ρ and 1  ρ
of (15). One checks that the arithmetic mean is indeed� V -p Y � � z � � V -p Y � � z �#�  2 � ∞

∑
1

gn � ρn � ρ � n �  2 � ∞

∑
1

gnTn
� g � z � "

As for the discontinuity along the cut,W πiµ -p � z � � V -p Y � � z � � V -p Y � � z � � ∞

∑
1

gn � ρ � n 
 ρn � � 4
β 
 α � � z 
 α � � z 
 β � � 1 1 2

∞

∑
1

gnUn � 1 � z � � (17)

it appears as a kind of harmonic conjugate to g.

3.2.2. Check with (8).

From (8),
 Vp � z � � lim
n [ ∞

logQ � z �
n

� ζ log B e � Ah 1 2 γζ 
 I σ2ζ2 �
1

ζ 
 1
C 
 Ah

2
�

log � γ � I σ2ζ2 �
1 �� ζ log

1 
 ie � Ah 1 2ρ
1 
 ieAh 1 2ρ


 Ah
2

�
log � γ � � ρ � ρ � 1 � �� 2i ���

where ζ is basically our z (managed so that the interpolation points are in � 
 1 � 1� ), and where ρ � ρ � 1 �
2iσζ. Then, the derivative in ζ simplifies into

dVp � z �
dζ

� 
 log
1 
 ie � Ah 1 2ρ
1 
 ieAh 1 2ρ
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This matches (15) provided α � 
 β � i  σ � 2i  � exp � Ah  2 �\
 exp � 
 Ah  2 � � so that
dVp � z �

dζ
� log

1 
 ie � Ah 1 2ρ
1 
 ieAh 1 2ρ� 
 ∞

∑
n � 1

in � e � nAh 1 2 
 enAh 1 2 �
n

ρn " Remark that g1
� 
 i � e � Ah 1 2 
 eAh 1 2 � � 2iσ � 4 �� β 
 α � as it should.

3.3. Strong asymptotics (Aptekarev).

Aptekarev [1] has the following accurate asymptotic formulas for formal orthogonal polynomials:
Let the set of complex functions wn � z � : � w̃n � z � exp � 
 2nQ � z �$� , with w̃n S w̃∞ when n S ∞ be such

that the boundary value problem for complex potentials

Q � t � � � Vp Y � � t � � Vp Y � � t � �  2 � Γ � t 2 S

where Γ is a constant, has a solution with S � a single analytic arc of endpoints α and β. Then the monic
formal orthogonal polynomials related to wn on S satisfy

qn � z �!� CnΦn � z � ψ � z � � z 2 S �
when n S ∞, where Φ � z � � exp � 
 Vp � z � � Γ � , ψ is analytic nonvanishing outside S such that

ψ � � t � ψ � � t � w̃∞ � t � � iI � t 
 α � � t 
 β � � � t 2 S �
and Cn

� � enΓψ � ∞ �,� � 1. This is exactly the extension of the famous Szegő’s theory. Also,

qn � z �!� Cn � Φn� � z � ψ � � z � � Φn� � z � ψ � � z � � on S. For the functions of the second kind Rn � z � : � 1
2πi � S

qn � t � wn � t �
t 
 z

dt,

Rn � z �P� iCn

Φn � z � ψ � z � I � z 
 α � � z 
 β �
for z 2 S, and up to the interior of S.

There are also accurate uniform estimates on the whole arc S if the product µ -p � t � I � t 
 α � � t 
 β � is
known to be regular.

4. Rational interpolation to exp ] nB1z ^ nB2z2 _ .
This very interesting rational interpolation appears in special nonlinear Schrödinger problems ( [8, 6]

and remarks by J. Nuttall in [4]) .

4.1. The single arc case.

Let the interpolation points be equidistant on � I1
� I2

� . Then,

g � z � � � I2

I1

� I2

 I1

� � 1 dt
z 
 t


 B1

2

 B2z � log

z 
 I1

z 
 I2

I2

 I1


 B1

2

 B2

� β 
 α
2

2z 
 α 
 β
β 
 α

� α � β
2 � (18)

The logarithms have the expansions

log � z 
 Ik
� � log

α 
 β
4ρk


 2
∞

∑
1

ρn
k

n
Tn

�
where ρk is now a root of

ρk
� ρ � 1

k

2
� 2Ik


 α 
 β
β 
 α

� k � 1 � 2 � (19)
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where
�
ρk

�U�
1 should be the orthodox choice, but which will not be kept in the final formula. Precisely,

the closed form is now

V -p � z � � ∞

∑
1

gnρn � 2
I2


 I1
log

1 
 ρ1ρ
1 
 ρ2ρ


 B2
β 
 α

2
ρ � (20)

with the conditions (14) on g0 and g1

log � ρ2  ρ1
�

I2

 I1


 B1

2

 B2

α � β
2

� 0 � (21)

g1
� 2

ρ2

 ρ1

I2

 I1


 B2
β 
 α

2
� 4

β 
 α
� (22)

We integrate (20) along the lines suggested by the exercises of section 3.2.2, p. 10:

Vp � z � � 2
I2


 I1 � � z 
 I1
� log � 1 
 ρ1ρ ��
 � z 
 I2

� log � 1 
 ρ2ρ �,�`
 ρ1ρ2
�

1
ρ1ρ2


 1
ρ2

2

 logρ " (23)

The difference of the two determinations of V -p must be W 2πiµ - :W 2πiµ - � z � � 2
I2


 I1

8 log
1 
 ρ1ρ

1 
 ρ1  ρ

 log

1 
 ρ2ρ
1 
 ρ2  ρ : 
 B2

β 
 α
2

� ρ 
 ρ � 1 � � (24)

(Nuttall’s ∆Ψ2)
and the cut itself is the locus � z : µ - � z � dz real � , which is integrated as � z : Vp Y � � z �!
 Vp Y � � z � pure

imaginary � ,

2
I2


 I1

8 � z 
 I1
� log

1 
 ρ1ρ
1 
 ρ1  ρ


 � z 
 I2
� log

1 
 ρ2ρ
1 
 ρ2  ρ : 
 ρ1ρ2

�
1

ρ1ρ2

 1

ρ2 
 ρ � 2

2

 2logρ pure imaginary "

(25)
Writing (25) as a function of ρ (using (15) and (19)), we have

F � ρ � � 2� ρ2

 ρ1

� � 1 
 1 �� ρ1ρ2
�$� 8 � ρ 
 ρ1

� � 1 
 1
ρρ1 � L1


 � ρ 
 ρ2
� � 1 
 1

ρρ2 � L2 : 
 ρ1ρ2
�

1
ρ1ρ2


 1
ρ2 
 ρ � 2

2
�

with L1
� log

1 
 ρ1ρ
ρ 
 ρ1

� L2
� log

1 
 ρ2ρ
ρ 
 ρ2

� and where, for given B1
� B2

� I1
� I2, one must determine ρ1 and

ρ2.

4.2. First caustic.

The present setting of the limit set of poles as a single arc joining z � α to z � β (or ρ � 
 1 to ρ � 1)
holds as long as µ -p � z � dz remains positive on the cut. A critical situation occurs when µ -p happens to vanish
right on the cut, i.e., if dF  dz vanishes at a point where the real part of F vanishes too.
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x=0.10 , At=0.25000 x=0.10 , At=0.50000 x=0.10 , At=0.59650

The locus of � x � At � with B1
� π 
 2ix, B2

� 
 2iAt, where this happens is called the (first) caustic in [8].
We then have ρ1

� R � 1 1 2eiθ, ρ2
� 
 R1 1 2eiθ, with real R and θ. For a trial value of At, we look for R and

θ such that � R �
1  R �  2 � 2At  sin2θ 
 1 (from 2x � logR

� � 1  R 
 R � sin2 θ ). Knowing ρ1 and ρ2, one
looks for the zero of the analytic function dF  dz, or dF  dρ. This yields the equation µ -p � 0 in (24) as

L1

 L2

��� 1
� 1

ρ1ρ2 � � ρ2

 ρ1

� ρ 
 ρ � 1

2
" (26)

One then manages to have the real part of F � 0 as well.
Some values:

x At sinθ ρ2 R � 
 ρ2  ρ1 ρ F
0.001 0.500973 0.6990 -0.749 -0.733 i 1.098 -1.27846 -0.24352 i 6.282 i
0.010 0.509711 0.6781 -0.854 -0.788 i 1.350 -1.52506 -0.51989 i 6.261 i
0.100 0.596697 0.5838 -1.324 -0.952 i 2.660 -2.06555 -1.23283 i 5.922 i
0.500 1.009193 0.3636 -2.919 -1.139 i 9.817 -2.98988 -2.26747 i 4.371 i
1.000 1.672677 0.2167 -5.311 -1.179 i 29.600 -3.78112 -2.72755 i 2.923 i
2.000 4.344519 0.0798 -14.669 -1.174 i 216.553 -4.47798 -2.79719 i 1.175 i
3.000 11.684073 0.0294 -39.858 -1.171 i 1590.003 -4.58262 -2.77939 i 0.439 i
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We see that θ S π  4 when x S 0, and that θ S 0 when x S ∞, but many features are still unexplained. . .
Here is a tentative explanation of the behaviour for large x: as it seems that

�
ρ1

�U�a�b�
ρ
�c�a�b�

ρ2
�
, the

logarithms are approximated by L1
X ρ1 � ρ � 1 
 ρ �!
 logρ, L2

X � ρ 
 ρ � 1 �  ρ2
�

logρ, the equation (26)

becomes
logρ

ρ 
 ρ � 1
X iξ, with ξ � θ L R  2. Also, F  θ X � ρ 
 ρ � 1 � � i � ρ � ρ � 1 �  2 
 ξ � 1 
 2ξ� must be pure

imaginary, making a second equation for ξ and ρ, whence fixed solutions. And

At
ex

X θR  4L R exp � 
 θ2R  2 � � ξ
2

exp � 2ξ2 � "
Script V1.1 session started Thu Feb 17 11:24:23 2000

C:\calc\pari>gp
GP/PARI CALCULATOR Version 2.0.12 (alpha)

Copyright (C) 1989-1998 by
C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier.

? \r expcaus2
...

rho=-4.59885439353246016460 - 2.77599828040642492631*I

F/theta= -1.14496588753536343500 E-40 + 14.9829543045360004158*I
? xi 0.585318492448534646977
? (xi/2)*exp(2*xi*xi) 0.580682668039111487078
? quit

C:\calc\pari>exit Script completed Thu Feb 17 11:29:16 2000

5. Best rational approximation to e

 � An

�
B � z on a real interval

Best rational approximation to exp � 
 z � on a given real interval, say � 0 � c� has a strict equioscillating
error function, as seen here with ez 
 pn � z �  qn � z � on � 0 � 1� , for n � 1 � 2:

0 " 00158

1 " 64 10 � 6

y
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 5

5

d 1

e 2f 2

g 3

h 3

i 3

j 4

k 4

l 4m 4

n 5

o 5

p 5 q
5

r 5

For varying degrees, we have a now familiar scaling effect best seen through the
poles:

Sets of poles expand and tend to follow the Padé poles; errors decrease factorially

fast with n( here, the error is about
e � 1 1 2n! � n 
 1 � !

42n � 1 � 2n
�

1 � ! � 2n 
 1 � ! . For an accurate asymp-

totic picture, see Braess’ proof of Meinardus’ conjecture).


 1

1

s1

t 2

u 2

v3

w 3

x 3 y 4

z 4

{ 4

| 4

}5

~ 5

� 5

� 5

� 5

We find a stable picture if we look at the poles of the best approximants
of degree n to exp � 
 nz � . Moreover, the norms En of the errors tend to
decrease in an exponential way with n:

n � 1 2 3 4 5 6
1.58 E-3 3.197 E-5 5.921 E-7 1.068 E-8 1.91 E-10 3.383 E-12

The ratio of two successive errors seems to tend towards a limit of
about 1  60. The exact value, as it will be shown later (in (36), p. 18), is
ρ � 1  57 " 0699681 <#<$< . Could we have En

� Cρn, and what is the value
of C? I can’t wait: here are the products Enρ � n:

n � 1 2 3 4 5 6
0.090 0.104 0.110 0.113 0.116 0.117

Hmmm, what could it be? The numbers follow the approximate for-
mula 0 " 125 
 0 " 05 �� n �

1  2 � . The limit 0 " 125 is reasonably close to an
estimate which will be given in § 5.2.

Ah, an obscure insight (hindsight?) coming from long and painful ex-
periments with the - 1  9 - problem tells me to try exp � 
 � n �

1  2 � z � instead
of exp � 
 nz � , and to multiply the errors by ρ � n � 1 1 2:

n � 0 1 2 3 4 5 6
0.197 4.161 E-3 7.610 E-5 1.356 E-6 2.406 E-8 4.244 E-10 7.470 E-12
1.488 1.794 1.872 1.904 1.928 1.941 1.950

Aha! Now, the limit seems to be 2. This phenomenon will also be
explained in § 5.2.

5.1. Root asymptotics.

We expect the poles to tend to be ultimately distributed on a fixed arc F with a limit distribution dµp,
and the interpolation points on E � � 0 � c� with a limit distribution dµi, so that the complex potential

V � z � � Vp � z ��
 Vi � z � : � � F
log

1
z 
 t

dµp � t ��
 � E
log

1
z 
 t

dµi � t � (27)

satisfies (9) with ϕ � z � � exp � 
 Az � :� V � � z � � V � � z �#�  2
� Az

2
� a real constant � σ on F � (28)
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and equioscillation on E: � V � � V � �  2 � another real constant � ρ on E � (29)

� E
dµi � t � � � F

dµp � t � � 1 (30)

(charges on E and F), equivalent to V bounded at ∞, actually, V - � z ��� constant z � 2 for large z, and� C

∂V � t �
∂n

�
dt

� � 
 2π on any contour containing F but not E, or also, that the imaginary part of V increases

by π on � 0 � c � .
From (10), V - � A  2 takes opposite values on the two sides of F, and also

V - � z � � 
 � E � F

dµ � t �
z 
 t

� 
 � E � F

dµ � t �
z 
 t

W πiµ - � z � (31)

when z tends to a point of E or F , and where � is the Cauchy principal value. We therefore have� E � F

dµ � t �
z 
 t

� � F

dµp � t �
z 
 t


 � E

dµi � t �
z 
 t

� A
2

� z 2 F � (32)

which is an integral equation for the distribution µp, to be considered with (29) as another equation for µp

and µi. . .
Now, there are various ways to go further, and to conclude with more or less neat expressions. There

may be wrong turns, which may however yield a useful piece of information.
We turn to a classical way to deal with the Sokhotskyi-Plemelj formulas (31)-(32) in the z 
 plane, by

considering I z � z 
 c � � z 
 a � � z 
 b � V - � z � which is meromorphic outside F, even holomorphic, as the
product remains bounded near 0 and c. Best combination is

z � z 
 c �� z 
 a � � z 
 b � V - � z � � A
2πi � b

a

t � t 
 c �� t 
 a � � t 
 b � dt
z 
 t

� (33)

where one not only got rid of unwanted constants, but, as V - � z � is only O � z � 2 � at ∞, leaves� b

a

t � t 
 c �� t 
 a � � t 
 b � dt � 0 (34)

as a bonus!! (34) gives one equation for a and b, knowing c (and another equation will be worked later on,
from the unit charge condition (30)). For instance, when c � 0, we have indeed a vanishing integral of an
odd function if a � 
 b, but, as we know (or suspect) that a and b are complex conjugates, we see that a
and b must be opposite pure imaginary numbers, as they are indeed in the Padé case. To work (34) a bit
further, we see that it is a complete elliptic integral of the third kind (complete because one integrates on
a arc joining two branchpoints; of the third kind because the incomplete integral behaves like a logarithm
somewhere [near ∞, the square root is 1

� � a �
b 
 c � �� 2t � � <#<#< ]).

A convenient transformation sending the four branchpoints 0, c, a, and b on and from a symmetric set
is

t � α �
iv

1
�

iγv
"

So, v � iα is mapped on t � 0, one must have, for v � 
 iα,
2α

1
� γα

� c, and
α W iβ
1 W iγβ

� a � b. As neither a

nor b is known, we may as well take α and β, keeping in mind that γ � 2
c


 1
α

(for given α, a and b are on

a circle of diametral points α and 1  γ).
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b � v � β �
a � v � 
 β �

0 � v � iα � c � v � 
 iα �
α

1  γ


 iα

iα


 β β

The z 
 plane and the v 
 plane.

complete elliptic integrals of first and second kind: � � � α2 � β2 � 1 1 2 � β

0

dv� � v2 � α2 � � β2 
 v2 � � 1 1 2
,� � α2 � α2 � β2 � 1 1 2 � β

0

1
v2 � α2

dv� � v2 � α2 � � β2 
 v2 � � 1 1 2
� � α2 � β2 � � 1 1 2 � β

0

8 v2 � α2

β2 
 v2 : 1 1 2

dv "
Ac � π2� 1

αγ

 αγ � � ��� 
 � � (35)

which, together with (34), gives α, γ, � , etc., from Ac (no wonder that everything depends essentially on
the product Ac: remember that we approximate exp � 
 nAz � on 0 6 z 6 c, equivalent up to a scaling to the
approximation of exp � 
 nAct � on � 0 � 1 � .

Check: when c S ∞, αγ � 
 1
�

2α  c S 
 1, 1 �� αγ �N
 αγ ��
 4α  c, and we should check that
 4α
� �%� 
 � � S π2. Yes:

�
a
� 2 � ab � α2 � β2

1
� γ2β2 S α2, and we know that

� S��� 2 when c S ∞, so

that the limit of (35) is
�
a
� � 2 � π2, confirmed by

�
a
� � π  ω of [5, § 3.4, eq. (34)].

Now, (34) becomes � β� β

1� 1 �
iγv � 2

α2 �
v2

β2 
 v2 dv � 0.

Some points of the locus:

a  c � b  c α  c β  c γc

0 " 023671 
 0 " 0280i 
 0 " 0390 0 " 0809 27 " 614
0 " 061784 
 0 " 0757i 
 0 " 1159 0 " 2206 10 " 628
0 " 091190 
 0 " 1152i 
 0 " 1910 0 " 3385 7 " 2343
0 " 114713 
 0 " 1488i 
 0 " 2647 0 " 4412 5 " 7773
0 " 134055 
 0 " 1781i 
 0 " 3371 0 " 5327 4 " 9659
0 " 150306 
 0 " 2040i 
 0 " 4084 0 " 6156 4 " 4482
0 " 204616 
 0 " 3022i 
 0 " 7512 0 " 9493 3 " 3310
0 " 241306 
 0 " 3830i 
 1 " 1399 1 " 2531 2 " 8772
0 " 358549 
 0 " 8401i 
 6 " 3630 3 " 7085 2 " 1571
0 " 406333 
 1 " 3084i 
 20 " 529 7 " 8098 2 " 0487
0 " 425044 
 1 " 6475i 
 39 " 115 11 " 848 2 " 0255
0 " 439587 
 2 " 0532i 
 73 " 476 17 " 878 2 " 0136
0 " 445607 
 2 " 2839i 
 100 " 04 21 " 890 2 " 0099

0 " 5 1

c � 1

c � 2 c � ∞

For each c, the locus of a is a curve with ver-
tical asymptote of abscissa c  2, and of tan-
gent at the origin matching the c � ∞ locus,
given by arg a � 
 0 " 860274 "#"$" (see [5, end
of § 3.2]).
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Finally, the error decreases like ρn, with

log
1
ρ

� π
αγ �%� 
 � � ��� - 
 � - ��
 �!� -� αγ 
 1 � � �%� 
 � � (36)

5.2. Strong asymptotics .

Consider rational approximants to functions f ng, and suppose that the Hermite-Walsh error formula can
already be written as

f n � z � g � z ��
 pn � z �
qn � z � � eWn � z 	 1

2πi � C
f n � t � g � t � e � Wn � t 	 dt

z 
 t
�

where Wn is a “smoothed” approximation of the discrete potential created by the poles and the interpola-
tion points. The function exp � Wn

� (corresponding to Nuttall’s χ1 and/or χ2 [4]) has branch points, even
if f and g are entire. What is this function? The influence of f is overwhelming in the determination of
the branchpoints and other main features when n is large. So, we solve first with f , and find the active
part F � C and the main behaviour � exp � Wn

�$� 1 1 n S exp � 2V � (root asymptotics, also called zero order
asymptotics by Nuttall).

Aptekarev [1] established in some cases a more accurate picture Wn
� 2nV ���V �

o � 1 � (strong asymp-
totics, also called first order asymptotics by Nuttall). I give here a probably very sloppy account of
Aptekarev’s wonderful results (to be available soon):

Also sprache Aptekarev:
�V is (multivalued) analytic outside E � F , with a period 2πi about

F , and 
 2πi about E, corresponding to a positive unit charge on F , and a negative unit charge

on E, with
�V � � �V � constant on E,

�V � z � � � �V � z � � �
2logg � z � � another constant on F , and

finally
�V � z � � const.

�
o � 1 � when z S ∞ (if E and F are bounded).

Moreover, the error norm is En
� 2ρnρ̃, where 2log ρ̃ � Re ��� �V � � z � � �V � � z �#� E


 � �V � � z � ��V � � z � � 2logg � z � � F � .

This means also that
�V - is analytic outside E and F, taking opposite values on the two sides of E, and

with
�V - � g - � z �  g � z � taking opposite values on the two sides of F .

Important special case: if g � L f , the conditions on
�V are exactly the conditions (29)-(30) which we

already saw for V itself! So,
�V � V , and ρ̃ � L ρ in this case.

Remark: the real part of
�V �

logg need not, and will normally not be a constant on F. However, the cut

on which the boundary conditions for
�V are set may be modified (keeping the endpoints as the endpoints

of F), and one may dream to find the locus �F where
�V �

logg has a constant real part. The use and even
the existence of �F seem questionable (Aptekarev). It may be wiser and more useful to look for a locus Fn

where the whole complex potential Vn
� 2nV � �V �

n log f
�

logg has a constant real part, as this locus
may be a fair approximation to the set of poles for a given value of n (Nuttall).

Application to best approximation to exp � 
 � nA
�

B � z � on � 0 � c � :
En

� 2ρnρB, where 2logρB
� Re �>� VB Y � � � z � � VB Y � � z �#� E


 � VB Y � � z � � VB Y � � z � �
2Bz� F � , V -B � �V -

being analytic outside E � F, taking opposite values on the two sides of E � � 0 � c� , V -B � z � �
B taking

opposite values on the two sides of F , or any arc of endpoints a and b, and corresponding to a positive unit
charge on F , and a negative unit charge on E, and finally V -B � z � � const. z � 2 � <#<#< when z S ∞.

The problem is solved by VA 1 2
� V if B � A  2.
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And if B � 0? Then, V -0 is the simple algebraic function V -0 � z � � constantI z � z 
 c � � z 
 a � � z 
 b � associated

to the potential of a plain (and plane) condenser � E � �F � , although we do not need to know what �F is. The
capacity is 2 ���� π � - � , and

ρ0
� exp � 
 π

2
� -��� .

And for any B,

VB
� 2B

A
V � � 1 
 2B

A � V0 (37)

does the trick, see Meinguet [7] for such relations. So,

ρB
� ρB 1 Aρ � 1 � 2B 1 A 	

0
"

and we just have to get ρ0
� exp � 
 1  C � , where C is the plain condenser capacity of � E �;�F � .
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