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Abstract. One examines strategies of pollution control through choices between taxes and
tradable permits, supposed to be decided at several time periods t1, t2, . . . , tI . At each of these
time periods, the choice depends on the solution of a dynamic programming problem involving the
expectations of the polluting factor of production function z(t) and the pollutant stock function
S(t). According to coefficients of these two functions in the dynamic problem, it is shown under
a broad functional setting that permits are decided for a while, followed by decisions of taxes for
all the remaining periods. Finite (I < ∞), as well as infinite (I = ∞) horizon is considered.

Introduction

Taxes and quotas of tradable pollution permits are two important and intensively studied
economic instruments for pollution control. These paper is concerned with the comparison of taxes
and permits when the regulatory authority and the polluters have asymmetric information about
abatement costs, and when environmental damages are due to a pollutant that accumulates. At
each period of time, the regulator chooses the type and the level of the instrument that maximises
a welfare functional depending on the expected flow of production minus damage costs, taking in
account the expected answer of the polluters to the chosen environmental policy.

We depart from the literature concerned by this subject (a.o. Hoel and Karp [2,3], Newell and
Pizer [4], Pizer [5]) by allowing the possibility of switching between instruments at each period,
by considering finite as well as infinite horizon frameworks, and by considering a more general
formulation of the regulator’s objective and of the pollutant accumulation.
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Poles, both initiated by the Belgian Science Policy. The scientific responsibility rests with its authors. The authors
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We do not restrict ourselves to the infinite horizon case studied in the above mentioned literature
where the choice of the instrument appears to be constant through time, and we show in the
finite horizon case that permits are decided for a while, followed by decisions of taxes for all the
remaining periods.

1. The model

The model has both continuous and discrete time features. t is the continuous time variable
(0 ≤ t ≤ H), which is divided in periods of length h, which are indexed by the discrete time
index i (i ∈ {1, 2, ..., I} , with h = H/I). The regulator chooses the instrument and its level at
the beginning of each period i, and keeps this level constant for the whole period.

To this end, one must estimate the reaction of the polluting firms:

1.1. The polluting firm reaction.

At each step i, the representative polluting firm is assumed to maximise a quadratic profit
functional involving

aiz(t) − b

2
z2(t) − τiz(t), [i − 1]h 6 t 6 ih, (1)

in which az−bz2/2 is the firm’s production function, where z is the polluting factor of production
(for example, emissions linked to energy), ai is the realization at period i of a, a discrete i.i.d.
random process with mean µ and variance σ2, and b is a positive constant. τi is either the level
of the tax chosen by the regulator, or the observed price of permits at period i. In problem (1),
it is assumed that the representative firm does not take account of the future, because it is too
small to influence the aggregate stock of pollutant, and thus has no power to influence the future
environmental policy. The firm is thus unable to manipulate the future decisions of the regulator,
so that its profit maximisation problem is solved at any time by

z(t) = zi :=
ai − τi

b
, [i − 1]h ≤ t ≤ ih (2)

If the chosen instrument at step i is a tax, the behaviour of the firm is described by (2). If the
chosen instrument are permits, then whatever the random shock ai, their price will adjust so that
the demand of permits by polluters equals the quantity of permits supplied by the regulator, xi.
In that case,

z(t) = xi, [i − 1] h ≤ t ≤ ih (3)

Remark that the values of τi or xi will be determined by the regulator as solutions of an
optimization problem. And the decision to order tax or permits is also a part of the solution.

Let ξ be a binary decision variable determining the type of the instrument (tax or permits),
with ξ = 0 if permits are chosen and ξ = 1 if a tax is chosen. Let x = E {z} be the expectation
of z. Given (2) and (3), x can be taken as the decision variable determining the level of the
instrument (the level of the tax or the quantity of permits), whether this instrument is a tax or
a quota.

We summarize both (2) and (3) as

z(t) = xi + ξi

[

ai − µ

b

]

(4)

where the unknowns for the ith period are ξi and xi. If ξi = 0 (permits), xi must be understood

as xi; if ξi = 1 (tax), xi means
µ − τi

b
, i.e., τi will be recovered as µ − bxi.
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1.2. The stock of pollutant.

We suppose that the evolution of the stock of pollutant S(t) is given in t ∈ [(i − 1)h, ih] by

S(t) = α(t − [i − 1]h)Si−1 + β(t − [i − 1]h)zi, (5)

where Si−1 is the value S([i−1]h), and zi is the value seen above of the piecewise constant function
z(t) on ([i − 1]h, ih). α and β are continuous functions, and α(0) = 1, β(0) = 0.

A typical instance of (5) results when S(t) is a solution of the differential equation

dS(t)

dt
= z(t) − δS(t), S(0) = S0 given (6)

where δ is the rate of decay of the stock of pollution (δ > 0) and where the number of firms has
been normalized to 1. As z(t) is the constant zi on ([i − 1]h, ih), we solve immediately (6) as

S(t) =
zi

δ
+

[

Si−1 −
zi

δ

]

exp(−δ(t − [i − 1]h)),

whence

α(t) = exp(−δt) , β(t) =
1 − exp(−δt)

δ
. (7)

1.3. The regulator’s decision.

The stock of pollutant S(t) results in damages to society that are equal to πS 2(t)/2, where π
is a positive parameter.

At the beginning of each step i (i.e. when t = [i − 1]h), that is before observing the current
and future random shocks aj (j = i, ..., I), but knowing however their mean and variance, the
regulator chooses the type and the level of the instrument that maximise the expected flow of
payoffs defined as the difference between production and damages πS2/2, subject to the behaviour
of the polluters (described by (2) or (3)) and to the stock equation (6). At step i, the regulator
solves the following dynamic programming problem :

Vi(Si−1) = max
ξi,xi

E

{

Fi

(

a(t)z(t) − b

2
z2(t) − π

2
S2(t)

)}

, (8)

subject to (5), and to (4) giving z(t) in the ith period, with VI+1(SH) = 0 and where Sj := S(jh),
and where we only require Fi to be a linear positive functional involving functions on [i − 1]h <
t < H, and submitted to the condition (10) below.

A typical example of what we have in mind is an integral

Fi(f) =

∫ H

[i−1]h
f(t) exp(−r(t − [i − 1]h)) dt, (9)

where r is the exogeneous (positive) discount rate, but other forms have been considered (see
examples later on).

We also suppose that the functionals Fi and Fi+1 are related by

Fi(f) = F(f(t + [i − 1]h)) + εFi+1(f), (10)

where F involves functions defined on t ∈ [0, h].

Remark that Fi(f) =
I

∑

j=i

εj−iF(f(t + [j − 1]h)).
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In our example (9), F(f) =

∫ h

0
f(t) e−rt dt, and ε = e−rh. We then have F(1) =

1 − e−rh

r
,

from (7), F(α) =
1 − e−[r+δ]h

r + δ
, F(β) =

1 − e−rh

rδ
− 1 − e−[r+δ]h

[r + δ]δ
, etc. Using such expressions

in the subsequent discussions should soon be an absolute nightmare. That’s why we shall keep
the F notation in further calculations as far as possible. Our theory is therefore able to cope
with several formulas. As a second example, Hoel and Karp use in [2] an elementary integration

formula F(f) =
1 − e−rh

r
f(0), therefore, their Fi(f) is

1 − e−rh

r

I
∑

j=i

e−r[j−i]hf([j − 1]h).

2. Optimal solution.

Theorem. For any set of functionals Fi satisfying (10), the problems (8) are solved with values
ξi = 0 (permits) or ξi = 1 (tax) determined whether the ratio π/b is larger or smaller than a
computable value ηi. Moreover, η1 < η2 < · · · < ηI .
If H → ∞ (infinite horizon), η1, η2, . . . tend towards a same limit η∗.

This means that,

(1) if π/b < η1, taxes will be chosen for all periods,
(2) if π/b > ηI , quotas will be chosen for all periods,
(3) if η1 < π/b < ηI , quotas will be chosen while π/b > ηi, and taxes later on.

When the horizon is infinite, we have taxes or permits for all the periods, depending only on the
ratio π/b, whether it is smaller or larger than η∗.

Proof.

(1) We first look at how the decision has to be taken with respect to the last period i = I.
We perform the calculation of (8), using (5), and knowing that a and x (and therefore z)
are constants on (tI−1, tI) = (H − h,H):

FI

(

aIzI −
b

2
z2
I − π

2
[α(t − [I − 1]h)SI−1 + β(t − [I − 1]h)zI ]

2

)

= F
(

aIzI −
b

2
z2
I − π

2
[α(t)SI−1 + β(t)zI ]

2

)

from (10)

=

(

aIzI −
b

2
z2
I

)

F(1) − π

2
[S2

I−1F(α2) + 2zISI−1F(αβ) + z2
IF(β2)]

which shows already that the result will be a quadratic polynomial in SI−1.
We now compute the mathematical expectation in (8), knowing that aI is a value of a
random variable of mean µ and variance σ2, and, from (4), E{zI} = xI , E{aIzI} =
E{aIxI + ξI(a

2
I −µaI)/b} = µxI + ξIσ

2/b, and E{z2
I } = E{x2

I +2ξIxI(aI −µ)/b+ ξI(aI −
µ)2/b2} = x2

I + ξIσ
2/b2. So,

E

{

FI

(

aIzI −
b

2
z2
I − π

2
S2(t)

)}

=

(

µxI + ξI
σ2

b
− b

2
x2

I −
ξIb

2

σ2

b2

)

F(1)

− π

2

[

S2
I−1F(α2) + 2xISI−1F(αβ) +

[

x2
I + ξI

σ2

b2

]

F(β2)

]

= ξI
σ2

2b
F(1) − π

2
S2

I−1F(α2) − ξI
π

2

σ2

b2
F(β2) + [µF(1) − πSI−1F(αβ)]xI − [bF(1) + πF(β2)]

x2
I

2
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Maximizing with respect to xI , i.e., by putting

xI =
µF(1) − πSI−1F(αβ)

bF(1) + πF(β2)
, (11)

one finds the required quadratic polynomial in SI−1

ξI
σ2

2b

[

F(1) − π

b
F(β2)

]

− π

2
S2

I−1F(α2) +
[µF(1) − πSI−1F(αβ)]2

2b[F(1) +
π

b
F(β2)]

. (12)

The complete solution of (8) at the final period is

VI(SI−1) = −π

2
S2

I−1F(α2) +
[µF(1) − πSI−1F(αβ)]2

2b[F(1) +
π

b
F(β2)]

+ ξI
σ2

2b

[

F(1) − π

b
F(β2)

]

. (13)

We emphasize the quadratic character of the function VI by writing (13) as

VI(SI−1) = ρ
(I)
0 + ρ

(I)
1 SI−1 +

ρ
(I)
2 π

2
S2

I−1, (14)

(borrowing a notation of [2]).

Remark that ρ
(I)
2 = π

F2(αβ) −F(α2)F(β2) − [b/π]F(1)F(α2)

bF(1) + πF(β2)
is negative: as F is a pos-

itive linear functional, F(αβ) is a scalar product.
The sign of the coefficient of ξI in (13) tells if tax or permit will be decided for the last
period, i.e., whether

ηI =
F(1)

F(β2)
≶

π

b
. (15)

In the simple case where F(f) = f(h) and β(t) = t, the result is 1/h2. If F(f) =

∫ h

0
f(t) dt,

ηI = 3/h2. And if F(f) = f(0), ηI = ∞ (always tax during the last period).
(2) We come now to the general problem (8) for an intermediate period ([i − 1]h, ih).

We will show by induction that a quadratic expression similar to (14), i.e.,

Vi+1(Si) = ρ
(i+1)
0 + ρ

(i+1)
1 Si +

ρ
(i+1)
2 π

2
S2

i , (16)

holds at the i + 1th period. Therefore, using (10),

Fi

(

a(t)z(t) − b

2
z2(t) − π

2
S2(t)

)

= F
(

aizi −
b

2
z2
i − π

2
S2(t + [i − 1]h)

)

+ εVi+1(Si),
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as all the parameters have been settled in Fi+1.
Assuming (16), we proceed as above in looking for the maximum of E{Fi}.

E {Fi} =

(

ξi
σ2

2b
+ µxi −

b

2
x2

i

)

F(1) − π

2
[S2

i−1F(α2) + 2xiSi−1F(αβ) +
ξiσ

2

b2
F(β2) + x2

iF(β2)]

+ ερ
(i+1)
0 + ερ

(i+1)
1 [α(h)Si−1 + β(h)xi] +

ερ
(i+1)
2 π

2

[

[α(h)Si−1 + β(h)xi]
2 + β2(h)ξi

σ2

b2

]

=
ξiσ

2

2b
F(1) − π

2
S2

i−1F(α2) − π

2

ξiσ
2

b2
F(β2)

+ ερ
(i+1)
0 + ερ

(i+1)
1 α(h)Si−1 + ε

ρ
(i+1)
2

2
πα2(h)S2

i−1 + εξi
ρ
(i+1)
2 πβ2(h)σ2

2b2

+[µF(1)−πSi−1F(αβ)+ερ
(i+1)
1 β(h)+ερ

(i+1)
2 πα(h)β(h)Si−1]xi−[bF(1)+πF(β2)−ερ

(i+1)
2 πβ2(h)]x2

i /2,

Maximum is reached at

xi =
µF(1) − πSi−1F(αβ) + ερ

(i+1)
1 β(h) + ερ

(i+1)
2 πα(h)β(h)Si−1

bF(1) + πF(β2) − ερ
(i+1)
2 πβ2(h)

, (17)

resulting in

ξiσ
2

2b
F(1) − π

2
S2

i−1F(α2) − π

2

σ2

b2
F(β2)

+ ερ
(i+1)
0 + ερ

(i+1)
1 α(h)Si−1 + ε

ρ
(i+1)
2

2
πα2(h)S2

i−1 + εξi
ρ
(i+1)
2 πβ2(h)σ2

2b2

+
[µF(1) − πSi−1F(αβ) + ερ

(i+1)
1 β(h) + ερ

(i+1)
2 πα(h)β(h)Si−1]

2

2[bF(1) + πF(β2) − ερ
(i+1)
2 πβ2(h)]

,

We confirm therefore the inductive step from (16)

Vi(Si−1) = ρ
(i)
0 + ρ

(i)
1 Si−1 +

ρ
(i)
2 π

2
S2

i−1, (18)

where we only look at the ξiσ
2 terms in ρ

(i)
0 = ξi

σ2

2b
Ri(π/b) + · · ·:

Ri

(π

b

)

= F(1) − π

b
F(β2) + ε

π

b
ρ
(i+1)
2 β2(h), (19)

so that we also will have to care for ρ
(i)
2 :

ρ
(i)
2 = −F(α2) + ερ

(i+1)
2 α2(h) + π

[−F(αβ) + ερ
(i+1)
2 α(h)β(h)]2

bF(1) + πF(β2) − ερ
(i+1)
2 πβ2(h)

, (20)

which shows that the ρ2’s, and therefore the Ri’s in (19), are rational functions of π/b.
(3) We proceed now with a close inspection of (20) in order to discuss the positive root ηi of

Ri(π/b) = 0, so to determine the value of the ratio π/b which will trigger tax or permits
during the ith step:

(a) We work (20), showing that ρ
(i)
2 is actually a rational function of first degree of ρ

(i+1)
2 :

ρ
(i)
2 =

π

b
[ερi+1

2 F(γ2) + F2(αβ) −F(α2)F(β2)] + εα2(h)F(1)ρ
(i+1)
2 −F(1)F(α2)

F(1) +
π

b
[F(β2) − εβ2(h)ρ

(i+1)
2 ]

, (21)
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ρ
(I)
2ρ

(I−1)
2ρ

(−∞)
2 ρ

(i+1)
2

ρ
(i)
2

ρ
(I−1)
2

ρ
(I−2)
2

Figure 1. Successive values of ρ
(i)
2 .

where the function γ is γ(t) := β(h)α(t)−α(h)β(t). We already see that all the ρ
(i)
2 ’s

are negative when i 6 I, as ρ
(I+1)
2 = 0, and as the numerator of (21) is negative

(F2(αβ) 6 F(α2)F(β2), and F(1)F(α2) > 0).
(b) We now proceed with the simple fraction expansion of (21):

ρ
(i)
2 = −F(γ2)

β2(h)
− b

π

α2(h)

β2(h)
F(1) +

b

πβ2(h)

[

α(h)F(1) − π

b
F(βγ)

]2

F(1) +
π

b
[F(β2) − εβ2(h)ρ

(i+1)
2 ]

, (22)

showing (see fig.1) that ρ
(i)
2 is an nondecreasing function of ρ

(i+1)
2 . Therefore, the

sequence 0 = ρ
(I+1)
2 > ρ

(I)
2 > ρ

(I−1)
2 > · · · is a nonincreasing nonpositive one, con-

verging through an elementary iteration process towards the negative root ρ
(−∞)
2 of

π

b
εβ2(h)ρ2

2+
[π

b
[εF(γ2) −F(β2)] − [1 − εα2(h)]F(1)

]

ρ2−
π

b
[F(α2)F(β2)−F2(αβ)]−F(1)F(α2) = 0.

(23)
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π/b

R

Ri+1(π/b)

ηi+1

Ri(π/b)

ηi

F(1)

Figure 2. Zeros of two successive R functions.

If needed, we can get a more quantitative description of the sequence of the ρ
(i)
2 ’s.

Indeed, with (22) written as ρ
(i)
2 = −A +

B2

C − ρ
(i+1)
2

,

ρ
(i)
2 + A =

B2

C + A − B2

C + A − B2

C + A
. . .

C + A − B2

C
Such continued fractions with constant elements are easily evaluated through powers
of the roots of r2 − (C + A)r + B2 = 0 [1, § 123, p. 501], say, r1 and r2. Then, the
relevant combination is soon found to be

ρ
(i)
2 + A = B2 rI−i+1

1 − rI−i+1
2 − A[rI−i

1 − rI−i
2 ]

rI−i+2
1 − rI−i+2

2 − A[rI−i+1
1 − rI−i+1

2 ] = C[rI−i+1
1 − rI−i+1

2 ] − B2[rI−i
1 − rI−i

2 ]

whence ρ
(i)
2 =

(B2 − AC)[rI−i+1
1 − rI−i+1

2 ]

C[rI−i+1
1 − rI−i+1

2 ] − B2[rI−i
1 − rI−i

2 ]

As r1 and r2 are positive and unequal4, ρ
(i)
2 tends exponentially fast towards ρ

(−∞)
2

when i → −∞.

(c) We now return to (21) in order to show that each (π/b)ρ
(i)
2 (π/b) is a nonincreasing

function of π/b: indeed, it is true for ρ
(I+1)
2 ≡ 0; if it is true for (π/b)ρ

(i+1)
2 (π/b), the

denominator of (21) is a positive nondecreasing function, and the numerator times
π/b is a nonpositive nonincreasing function.
Therefore, from (19), Ri(π/b) is a nonincreasing function of π/b too, which must
vanish for one positive value ηi of π/b (as Ri(0) = F(1) > 0, and Ri(∞) = −∞ if
i < I).
Finally, as Ri < Ri+1, ηi < ηi+1, (see fig.2), which ends the proof of the theorem.

4One finds [
√

r1 ±
√

r2]
2 = A + C ± 2B =

bF(1)

πβ2(h)
[ε−1/2 ± α(h)]2 +

1

β2(h)
[ε−1/2

β ∓ γ]2 > 0.
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3. Examples.

With the integral form of F from (9) above, and δ = 0.005, r = 0.03 (found in [2]) in (7), we
are able to compute some values of Ri(π/b) (actually, Ri/F(1)) when h = 10. Recall that Ri < 0
means that permits will hold for the period (i − 1)h < t < ih, and that tax will be chosen if
Ri > 0.

π/b R−∞ RI−3 RI−2 RI−1 RI

0 1 1 1 1 1
η∗ = 0.0102390619 0 0.00175409676 0.0150992067 0.122913662 0.695404832

ηI−3 = 0.0102631672 -0.00174275376 0 0.0133000540 0.121058490 0.694687740
ηI−2 = 0.0104418439 -0.0146311280 -0.0129701024 0 0.107330730 0.689372401
ηI−1 = 0.0118571462 -0.115019270 -0.113880153 -0.103281030 0 0.647269499
ηI = 0.0336153131 -1.47231842 -1.47231520 -1.47201966 -1.44479355 0

0.0600374213 -2.95549322 -2.95549322 -2.95549322 -2.95549322 -0.786014045

The strange phenomenon of the last row occurs at π/b = α(h)F(1)/F(βγ) where all the Ri’s
have the same value, from RI−1 downwards.

We now look at values of ηi, i.e., the ratio π/b separating permits from tax, for various values
of h. The value η∗ corresponds to infinite horizon. We also show η∗(HK) as calculated by Hoel
and Karp [2, formula (15) p.377].

h η∗(HK) η∗ ηI−3 ηI−2 ηI−1 ηI

100 0.00199 0.000839 0.000839 0.000839 0.000839 0.000991
10 0.00897 0.010239 0.010263 0.010441 0.011857 0.033615
1 0.53543 0.645472 0.655971 0.696356 0.886452 3.033980

0.1 50.3504 61.00348 62.21340 66.55009 86.00395 300.3377

For an empirical illustration of pollution control in the framework of climate change, Hoel and
Karp [2] give two estimates of π/b which are 0.0000137 and 0.00002. For all the values of h, r, and
δ considered here, the tables above show that these estimates are largely lower than η∗, indicating
that the regulator will choose the tax in all cases.

It is interesting to look at analytic formulas for small h, as done by Hoel and Karp [2]. Then,
α(t) ≈ 1 and β(t) ≈ t, so, F(1) and F(α2) ≈ h, F(β2) ≈ h3/3, etc.

from (20), ρ
(i)
2 ≈ −h + ρ

(i+1)
2 + π

[

−h2

2
+ hρ

(i+1)
2

]2

bh + π
h3

3
− πh2ρ

(i+1)
2

: ρ
(I+1)
2 = 0, ρ

(I)
2 ≈ −h

1 +
π

b

h2

12

1 +
π

b

h2

3

, . . . con-

verging towards ρ
(−∞)
2 ≈ −

√

b

π
+

h2

12
;

RI(π/b) ≈ h[1 − (h2/3)(π/b)], RI−1(π/b) ≈ h
1 − h2(π/b) − (7h4/36)(π/b)2

1 + (h2/3)(π/b)
, . . .

R−∞(π/b) ≈ h[1 − (h2/3)(π/b) − h
√

π/b + (h2/12)(π/b)2 ];

ηI ≈ 3/h2, ηI−1 ≈ 6/(7h2), . . . η∗ ≈ 6[5 − 2
√

6]/h2 ≈ 0.6/h2.

With simpler formulas, such as in [2], F(f) = F(1)f(0), then F(β) = F(βγ) = 0, F(γ2) =

F(1)β2(h), ρ
(I)
2 = −F(1), RI(π/b) = F(1), RI−1(π/b) = F(1)[1 − εβ2(h)π/b], . . .

ρ
(−∞)
2 = F(1)

1 − εα2(h) − εβ2(h)π/b −
√

[1 − εα2(h) − εβ2(h)π/b]2 + 4εβ2(h)π/b

2εβ2(h)π/b

9



ηI = ∞, ηI−1 = 1/(εβ2(h)), . . . , η∗ = η−∞ = [2 − εα2(h)]/[2εβ2(h)], in agreement with [2,
formula (15) p.377], with ε = exp(−rh), α(h) = exp(−δh), and β(h) = h.
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