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Abstract

An inequality reminiscent of Kato’s inequality is presented. Moti-
vated by this, we discuss some criteria to decide whether a singularity
of the equation ∆u = g in Ω \K comes from a Radon measure or not.
As an application, we extend a lemma of H. Brezis and P.L. Lions on
isolated singularities to the case where the singularity lies on a compact
manifold.

1 Introduction and main results

The original motivation for this work is the following remark, which is related
to Kato’s inequality (see Kato [K]). First, let us recall one of its many
versions. Consider Ω ⊂ RN an open set, and v ∈ L1(Ω) such that ∆v ∈
L1(Ω). Then

∆|v| ≥ sign(v)∆v in D′(Ω), (1)

where sign(s) = 1 if s > 0, −1 if s < 0 and zero at s = 0. If we assume in
addition that v is continuous in Ω, it is easy to verify that

∆|v| = sign(v)∆v in D′([v 6= 0]). (2)

Comparison between (1) and (2) suggests that the inequality in (1) should
be a consequence of the fact that |v| achieves its minimum on the set [v = 0],
where one has ∆|v| ≥ 0 in a suitable sense.

Motivated by this fact, Y. Li posed the following question: suppose u ∈
L1(Ω) is such that u ≥ 0 a.e. in Ω and u ≡ 0 on a compact set K in some
reasonable sense. Set g = ∆u in D′(Ω \K) and assume that g ∈ L1(Ω \K)
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(no conditions on ∆u are prescribed on the “zero set” K). Let g̃ be the
extension of g to Ω such that g̃ ≡ 0 on K. Define

µ := ∆u− g̃ in D′(Ω),

so that supp(µ) ⊂ K. Is it true that µ is a nonnegative distribution? In this
case it has to be a Radon measure supported in K (see Schwartz [S]).

We have given a positive answer to this question in the following theorem,
which includes the case where u ∈ C(Ω) and K ⊂ [u = 0].

Theorem 1 Let Ω ⊂ RN be a bounded open subset, and u ∈ L1(Ω) such
that u ≥ 0 a.e. in Ω. Let K ⊂ Ω be compact. Set

g := ∆u in D′(Ω \K).

Assume that g ∈ L1(Ω \K) and that

lim
r↓0

sup
x∈K

−
∫

Br(x)
u = 0. (3)

Let g̃ be the extension of g to Ω such that g̃ ≡ 0 on K. Then ∆u ≥ g̃ in
D′(Ω), in other words,∫

Ω
u∆ϕ ≥

∫
Ω
g̃ϕ, ∀ϕ ∈ C∞0 (Ω), ϕ ≥ 0. (4)

As we have pointed out before, the theorem above implies the following

Corollary 2 Let Ω ⊂ RN be open, bounded, and u ∈ C(Ω) be a nonnegative
function. Let K ⊂ Ω be a compact subset such that u ≡ 0 on K. Set

g := ∆u in D′(Ω \K),

and assume that g ∈ L1(Ω \K). Let g̃ be the extension of g to Ω such that
g̃ ≡ 0 on K. Then ∆u ≥ g̃ in D′(Ω), in other words,∫

Ω
u∆ϕ ≥

∫
Ω
g̃ϕ, ∀ϕ ∈ C∞0 (Ω), ϕ ≥ 0. (5)

Remark 1 We will see later that if the set K is sufficiently small and a
certain growth condition for u near K is prescribed, then one really has
the equality ∆u = g̃ in D′(Ω) (see Corollary 7). This is not the general
case, though, as one can see by very simple examples. For instance, if
u(x) := 1

2 |xN | for x ∈ RN , then ∆u = dx′ in D′(RN ), where dx′ denotes the
(N − 1)-dimensional Lebesgue measure on [xN = 0].
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Remark 2 A consequence of this theorem is that µ = ∆u − g̃ is a non-
negative distribution, and hence a Radon measure. This implies that u ∈
W 1,p

loc (Ω) for any 1 ≤ p < N/(N − 1) (see Bénilan-Brezis-Crandall [BeBrC]).

Remark 3 The same theorem holds under the weaker hypothesis that Ω is
just open, K ⊂ Ω is relatively closed, and

lim
r↓0

sup
x∈A

−
∫

Br(x)
u = 0 for all A ⊂ K compact.

In fact, for any δ > 0 set

Ω̂δ :=
{
x ∈ Ω : d(x, ∂Ω) > δ and |x| < 1

δ

}
.

Now fix δ > 0 and let ψ ∈ C∞0 (Ω̂2δ), 0 ≤ ψ ≤ 1 and ψ ≡ 1 in Ω̂3δ. We can

apply then Theorem 1 in Ω̂δ to û := uψ, K̂ := K ∩ Ω̂2δ, and conclude that
(4) holds for all ϕ ∈ C∞0 (Ω̂3δ).

Remark 4 A simple application of the Besicovitch Covering Lemma implies
that condition (3) is equivalent to

lim
r↓0

1
rN

∫
Nr(K)

u = 0, (6)

where Nr(K) denotes the r-neighborhood of K, i.e.,

Nr(K) = {x ∈ RN | dist(x,K) < r }.

The assumption required in (3) (or equivalently (6)) is probably too strong
but we do not know how to weaken it in this general setting. In the case
where K ⊂ Ω is a smooth manifold of codimension 1, we have been able to
relax the hypothesis (3) by assuming that

lim
r↓0

−
∫

Ξr(K)
u = 0,

where Ξr = Ξr(K) is the tubular neighborhood of K with radius r. In other
words, for such singular sets, one can replace the factor 1

rN in (6) by 1
r , and

still get the same conclusion of Theorem 1. More precisely,
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Theorem 3 Let Ω ⊂ RN be an open set and MN−1 ⊂ Ω be a compact,
smooth manifold, without boundary, of codimension 1. Let u ∈ L1

loc(Ω), and
assume that there exists g ∈ L1

loc(Ω) such that

∆u = g in D′(Ω \M).

If

lim
r↓0

1
r

∫
Ξr

|u| = 0, (7)

then, for each ϕ ∈ C∞0 (Ω),
1
r2

∫
Ξr

uϕ converges as r ↓ 0, and

lim
r↓0

1
r2

∫
Ξr

uϕ =
1
2

∫
Ω
u∆ϕ− gϕ, ∀ϕ ∈ C∞0 (Ω). (8)

In particular, if we suppose in addition that u ≥ 0 a.e. in Ω, then

∆u ≥ g in D′(Ω). (9)

Remark 5 As mentioned in Remark 2, a posteriori we conclude from (9)
that u ∈ W 1,p

loc (Ω) for 1 ≤ p < N/(N − 1), in which case condition (7) is
equivalent to u = 0 in M in the sense of the trace.

Next, we study the case where the singular set M is a compact manifold of
codimension k ≥ 2. It turns out that, in this case, the condition u ≥ 0 a.e.
in Ω already suffices to conclude that −∆u is a (nonnegative) measure on
M . More precisely, we have

Theorem 4 Let Ω ⊂ RN be a bounded open set and let M ⊂ Ω be a
compact, smooth manifold without boundary of codimension k ≥ 2. Let
u ∈ L1

loc(Ω), u ≥ 0 a.e. in Ω, and assume there exists g ∈ L1
loc(Ω) such that

∆u = g in D′(Ω \M).

Set
µ := ∆u− g in D′(Ω), (10)

which is a distribution supported on M .

Then
µ is a nonpositive measure on M (11)
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and, for any ϕ ∈ C∞0 (Ω), we have

〈µ, ϕ〉 =


−2(k − 2) lim

r↓0

1
r2

∫
Ξr

uϕ if k ≥ 3,

−2 lim
r↓0

1
r2| log r|

∫
Ξr

uϕ if k = 2.
(12)

We should mention that the conclusion (11) holds true in a much more
general setting. In fact, a classical result in Potential Theory states that if
in the statement above one replaces M by a compact set of zero H1-capacity
K (this includes the case of a smooth manifold of codimension k ≥ 2) then
µ, defined by (10), is a nonpositive measure on K (see L.L. Helms [H],
Theorem 7.7). We present in Section 5 a completely independent proof of
this result in our special case in order to deduce (12), which is used to prove
Theorems 5 and 6 below.

Even if we do not assume any conditions on the sign of u, we can still
characterize the case when µ is a measure in terms of the growth of |u| near
M . More precisely, we have proved the following

Theorem 5 Let Ω ⊂ RN be a bounded open set and let M ⊂ Ω be a
compact, smooth manifold without boundary of codimension k ≥ 3. Let
u ∈ L1

loc(Ω) (here we do not assume that u ≥ 0 a.e. in Ω) and assume
there exists g ∈ L1

loc(Ω) such that

∆u = g in D′(Ω \M).

Set
µ := ∆u− g in D′(Ω),

which is a distribution supported in M . Then µ is a Radon measure if and
only if

1
r2

∫
Ξr

|u| remains bounded as r ↓ 0. (13)

In this case, for all ϕ ∈ C∞0 (Ω) we have

lim
r↓0

1
r2

∫
Ξr

uϕ exists and equals − 1
2(k − 2)

〈µ, ϕ〉. (14)

Moreover,

lim
r↓0

1
r2

∫
Ξr

|u| exists and equals
1

2(k − 2)
‖µ‖, (15)
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where ‖µ‖ := sup
{ ∫

M w dµ ; w ∈ C(M), ‖w‖∞ ≤ 1
}

denotes the usual
norm of Radon measures on M .

Remark 6 Using a formula deduced in Section 3, we show (see Remark 9)
that (14) still holds if one replaces (13) by

lim
r↓0

1
r

∫
Ξr

|u| = 0. (16)

On the other hand, if one takes for instance the function u(x) =
x1

|x|3
in

R3\{0}, then ∆u = cDx1δ0 for some constant c 6= 0. In the notation of
Theorem 5, let M := {0}, g ≡ 0 and µ := cDx1δ0, so that µ is a distribution
of order 1 and

lim
r↓0

1
r

∫
Br

|u| > 0. (17)

The example above suggests the following

Open problem. Let M ⊂ Ω be a compact, smooth manifold without
boundary of codimension k ≥ 3. Let u and g be as in the statement of
Theorem 5, and set µ := ∆u− g in D′(Ω). If (16) holds, is µ a measure?

There is also a result analogous to Theorem 5 in the case of codimension
k = 2:

Theorem 6 Let Ω ⊂ RN be a bounded open set and let M ⊂ Ω be a
compact, smooth manifold without boundary of codimension k = 2. Let
u ∈ L1

loc(Ω) (here we do not assume that u ≥ 0 a.e. in Ω) and assume
there exists g ∈ L1

loc(Ω) such that

∆u = g in D′(Ω \M).

Set
µ := ∆u− g in D′(Ω),

which is a distribution supported in M . Then µ is a Radon measure if and
only if

1
r2| log r|

∫
Ξr

|u| remains bounded as r ↓ 0. (18)

In this case, for all ϕ ∈ C∞0 (Ω) we have

lim
r↓0

1
r2| log r|

∫
Ξr

uϕ exists and equals − 1
2
〈µ, ϕ〉. (19)

6



Moreover,

lim
r↓0

1
r2| log r|

∫
Ξr

|u| exists and equals
1
2
‖µ‖. (20)

As a consequence of Theorems 5 and 6 we have the following removable
singularity statement:

Corollary 7 (Removable singularity) Under the assumptions of Theo-
rems 5 and 6 above, we have ∆u ∈ L1

loc(Ω) if and only if

lim
r↓0

1
r2

∫
Ξr

|u| = 0, for k ≥ 3, (21)

lim
r↓0

1
r2| log r|

∫
Ξr

|u| = 0, for k = 2. (22)

Next, we give an application of Theorem 4, by extending an earlier result of
Brezis-Lions [BrL] originally concerning the study of isolated singularities:

Theorem 8 Let Ω ⊂ RN be an open set and MN−k ⊂ Ω be a compact
manifold, without boundary, of codimension k ≥ 2. Let u ∈ L1

loc(Ω \M) be
such that

∆u ∈ L1
loc(Ω \M) in the sense of distributions on Ω \M,

u ≥ 0 a.e. in Ω,
∆u ≤ au+ f a.e. in Ω \M,

where a is a nonnegative constant and f ∈ L1
loc(Ω).

Then u ∈ L1
loc(Ω), and there exist h ∈ L1

loc(Ω) and a nonnegative Radon
measure µ supported on M such that

−∆u = h+ µ in D′(Ω). (23)

Since a compact manifold M of codimension k ≥ 2 is a set of zero H1-
capacity, and also because of the linear nature of Theorem 8, the classical
result we mention just after Theorem 4 leads us to state the following

Open problem. Suppose in the statement of Theorem 8 one replaces the
smooth manifold M by a compact set K of zero H1-capacity. Can one still
conclude that u ∈ L1

loc(Ω), and that there exists h ∈ L1
loc(Ω) such that (23)
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holds for some µ supported on K? (Note that the Potential Theory would
tell us that µ is necessarily a nonnegative Radon measure).

If the open problem above is true, it will give a sort of linear version of a
general result of P. Baras and M. Pierre (see [BaPi]).

An immediate consequence of Theorem 8 is the following

Corollary 9 Let M ⊂ Ω be as above. Assume f : R+ → R is continuous
and such that

lim inf
t→∞

f(t)
t

> −∞.

Suppose u, f(u) ∈ L1
loc(Ω \M), u ≥ 0 a.e. in Ω, and

−∆u = f(u) in D′(Ω \M).

Then u, f(u) ∈ L1
loc(Ω) and

−∆u = f(u) + µ in D′(Ω) (24)

for some nonnegative Radon measure µ supported on M .

A simple application of Corollaries 7 and 9 allows us to regain the following
consequence of a removable singularity result which was originally proved
by L. Véron for the case k > 2 (see [V1]).

Corollary 10 Under the hypotheses of Corollary 9, if

lim inf
t→∞

t−
k

k−2 f(t) > 0, for k > 2,

lim inf
t→∞

e−atf(t) > 0, for k = 2, for all a > 0,
(25)

then µ = 0, i.e.,
−∆u = f(u) in D′(Ω).

Warning. The result of Corollary 10 may seem misleading at first. For
instance, assume k ≥ 3 and f(t) = t

k
k−2 . Although it implies that −∆u =

u
k

k−2 in D′(Ω), one cannot conclude solely from this equation that u is
smooth. What Corollary 10 tells us is that the eventual singularities of
u are not detectable in the distribution level. In fact, a result of Mazzeo-
Pacard [MPa] says that, given some compact manifolds in Ω (not necessarily
with the same codimension), and for certain values of p > 1, depending on
their codimension, one can construct nonnegative solutions of the equation
−∆u = u

k
k−2 in D′(Ω), whose singularities lie precisely on the prescribed

manifolds. See Véron [V2] for details.
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2 Proof of Theorem 1

In this section we shall use the following notation:

Notation. For an open set U ⊂ RN and δ > 0 we write

Uδ = {x ∈ U | d(x, ∂U) > δ},

and for any set A ⊂ RN and δ > 0 we let

Nδ(A) = {x ∈ RN | d(x,A) < δ}.

We also use the standard notation for averages:

−
∫

E
v dµ =

∫
E v dµ∫
E 1 dµ

.

Proof of Theorem 1. Take ρ ∈ C∞0 (B1) such that ρ ≥ 0 in RN and∫
RN ρ = 1. For any ε > 0, define ρε(x) := ε−Nρ(x/ε) on RN , uε := ρε ∗ u

and gε := ρε ∗ g̃ on Ωε. Using this notation, one can easily check that

∆uε = gε on Ω2ε \N2ε(K). (26)

For ε > 0, let
ηε := max

N2ε(K)
uε.

Step 1. Condition (3) implies that

lim
ε↓0

ηε = 0.

In particular, uε → 0 uniformly on K as ε ↓ 0.

Proof. For z ∈ N2ε(K), let x ∈ K be such that |x − z| ≤ 2ε. Since
Bε(z) ⊂ B3ε(x) for all ε > 0, we have

uε(z) =
1
εN

∫
Bε(z)

ρ

(
z − y

ε

)
u(y)dy

≤ C

εN

∫
Bε(z)

u ≤ C

εN

∫
B3ε(x)

u

=
3NC

(3ε)N

∫
B3ε(x)

u→ 0

9



uniformly in z ∈ N2ε(K) as ε → 0, by (3). This concludes the proof of the
claim.

Step 2. There exists a measurable set L(u) ⊂ Ω such that

[lim inf uε > 0] ⊂ L(u) ⊂ Ω \K

and ∫
Ω
u∆ϕ ≥

∫
L(u)

g̃ϕ, ∀ϕ ∈ C∞0 (Ω), ϕ ≥ 0. (27)

Proof. It follows from Kato’s inequality (with | · | replaced by sign+ in (1))
that

∆(uε − ηε)+ ≥ sign+(uε − ηε) ∆(uε − ηε)
= χ[uε>ηε]∆uε in D′(Ω2ε),

(28)

where χ[uε>ηε] is the characteristic function of the set [uε > ηε].

Since uε ≤ ηε on N2ε(K), it follows from (26) and (28) that

∆(uε − ηε)+ ≥ χ[uε>ηε]gε in D′(Ω2ε). (29)

Now, given ϕ ∈ C∞0 (Ω) such that ϕ ≥ 0, if ε > 0 is sufficiently small so that
suppϕ ⊂⊂ Ω2ε, (29) implies that∫

Ω
(uε − ηε)+∆ϕ ≥

∫
Ω
χ[uε>ηε]gεϕ. (30)

Since uε → u in L1
loc(Ω) and ηε → 0 as ε→ 0, we conclude that∫

Ω
(uε − ηε)+∆ϕ→

∫
Ω
u∆ϕ as ε→ 0. (31)

On the other hand, take a sequence εn ↓ 0. Up to a subsequence of (εn)n≥1,
we have

uεn → u a.e. in Ω,
gεn → g̃ a.e. in Ω,
|gεn | ≤ h a.e. in Ω, ∀n ≥ 1, for some h ∈ L1(Ω).

Set

L(u) := lim inf
n→∞

[uεn > ηεn ] =
∞⋃

k=1

∞⋂
n=k

[uεn > ηεn ].
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Note that, by our choice of ηε, we have K ⊂ Ω \ L(u). By Fatou’s Lemma,
which may be applied here since gεn ≥ −h a.e. in Ω, we have∫

Ω
χL(u)g̃ϕ =

∫
Ω

lim inf
n→∞

χ[uεn>ηεn ]gεnϕ ≤ lim inf
n→∞

∫
Ω
χ[uεn>ηεn ]gεnϕ. (32)

It then follows from (30), (31) and (32) that∫
Ω
u∆ϕ ≥

∫
Ω
χL(u)g̃ϕ, ∀ϕ ∈ C∞0 (Ω), ϕ ≥ 0.

Step 3. Proof of Theorem 1 completed.

Given λ > 0, let hλ ∈ C∞(RN ) be such that hλ ≡ 0 on Nλ(K) and hλ > 0
outside Nλ(K).

If we apply (27) in Step 2 with the function u replaced by u+hλ (note that
condition (3) is still satisfied if we replace u by u+ hλ), we get:∫

Ω
(u+ hλ)∆ϕ ≥

∫
Ω
χL(u+hλ)(g̃ + ∆hλ)ϕ, ∀ϕ ∈ C∞0 (Ω), ϕ ≥ 0. (33)

Now, for a.e. x ∈ Ω \Nλ(K) we have (u+ hλ)εn(x) → u(x) + hλ(x) > 0 as
n→∞. By the definition of the set L(u+hλ), we conclude that x ∈ L(u+hλ)
for a.e. x ∈ Ω \Nλ(K), in other words,

χL(u+hλ) = 1 a.e. in Ω \Nλ(K).

In view of (33) and the relation above, for any ϕ ∈ C∞0 (Ω),∫
Ω
u∆ϕ ≥

∫
Ω
χL(u+hλ)(g̃ + ∆hλ)ϕ−

∫
Ω

∆hλϕ

=
∫

Ω\Nλ(K)
(g̃ + ∆hλ)ϕ+

∫
Nλ(K)

χL(u+hλ)g̃ϕ−
∫

Ω\Nλ(K)
∆hλϕ

=
∫

Ω\Nλ(K)
g̃ϕ+

∫
Nλ(K)

χL(u+hλ)g̃ϕ

=
∫

Ω
g̃ϕ+ o(1),

where o(1) is a quantity which converges to 0 as λ ↓ 0. In the expression
above, let λ ↓ 0 to finally conclude that∫

Ω
u∆ϕ ≥

∫
Ω
g̃ϕ, ∀ϕ ∈ C∞0 (Ω), ϕ ≥ 0.

�
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Remark 7 It is worth noting that the proof of Theorem 1 is somewhat
simpler if one assumes that u is continuous at each point of K. In fact, in
this case Step 1 would be unnecessary and one can apply the other steps of
the proof directly to the function u instead of to its convolution.

3 Some useful formulas

Let us recall some standard results.

Given a compact smooth manifold MN−k (with or without boundary) em-
bedded in RN with codimension k ≥ 1, we define its distance function
d : RN → R+ by d(x) := dist (x,M). The case k = N is included, i.e.,
M may be a finite collection of points. It is a well-known fact that for
δ > 0 small enough, the set Nδ(M) is a smooth manifold with boundary,
also called the δ-tubular neighborhood of M , which from now on we shall
denote by Ξδ(M), and when no confusion arises, simply by Ξδ. The distance
function d is Lipschitz in RN , it is smooth in Ξδ \M and satisfies (for the
second property see Véron [V2]):

|∇d| = 1 a.e. in RN ; (34)

∆d =
k − 1
d

+ a0 in Ξδ \M, (35)

where a0 is a bounded function in Ξδ \M .

For each x ∈ Ξδ, there exists a unique element π(x) ∈ M for which the
distance function is realized, i.e., such that |x−π(x)| = d(x). The projection
π : Ξδ →M thus defined is also smooth.

For simplicity, from now on we shall assume that Ξ2 is a smooth tubular
neighborhood of M .

Finally, let us recall that if v ∈ L1(RN ) we have by the coarea formula (see
Evans and Gariepy [EG]) ∫

Ξδ

v =
∫ δ

0

∫
∂Ξr

v dσ dr.

Lemma 11 Let Ω ⊂ RN be a bounded open set and let M ⊂ Ω be a compact,
smooth manifold without boundary of codimension k ≥ 1.

Let u ∈ L1
loc(Ω), and assume there exists g ∈ L1

loc(Ω) such that

∆u = g in D′(Ω \M).
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Set
µ := ∆u− g in D′(Ω),

which is a distribution supported on M .

For k ≥ 1 and t, r > 0 define

Gk(r, t) =


1
k

if 0 < t < r,

−k − 1
k

rk

tk
if 0 < r < t.

(36)

Then for any R ∈ (0, 1) fixed and ϕ ∈ C∞0 (Ω), all the limits below exist and:

a) if k ≥ 3 then

1
2(k − 2)

〈µ, ϕ〉 = lim
r↓0

{
− 1
r2

∫
Ξr

uϕ +

+
1
r2

∫ R

0
Gk(r, t)

(∫
Ξt

2u∇ϕ · ∇d+ uϕa0

)
dt

}
;

(37)

b) if k = 2 then

1
2
〈µ, ϕ〉 = lim

r↓0

{
− 1
r2| log r|

∫
Ξr

uϕ +

+
1

r2| log r|

∫ R

0
G2(r, t)

(∫
Ξt

2u∇ϕ · ∇d+ uϕa0

)
dt

}
;

(38)

c) if k = 1 then

−1
2
〈µ, ϕ〉 = lim

r↓0

{
− 1
r2

∫
Ξr

uϕ+
1
r

(
lim
t↓0

∫
∂Ξt

uϕ

)
+

1
r2

∫ r

0

(∫
Ξt

2u∇ϕ · ∇d+ uϕa0

)
dt

}
.

(39)

Proof. The idea of the proof is first to derive the following

Claim. For any ϕ ∈ C∞0 (Ω) the function s→
∫
∂Ξs

uϕ is C1 on (0, 1) and

〈∆u, ϕ〉 =
∫

Ξs

u∆ϕ− 2
∫

∂Ξs

u∇ϕ · ∇d+ sk−1 d

ds

( 1
sk−1

∫
∂Ξs

uϕ
)
−

−
∫

∂Ξs

uϕa0.

(40)
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Proof of (40). We first assume that u is smooth.

Fix a smooth, nonincreasing function Φ : R → R such that Φ(t) = 0 for
t ≥ 1 and Φ(t) = 1 for t ≤ 0. For ε > 0 set

Φε(t) = Φ
( t− 1

ε

)
.

Now let ϕ ∈ C∞0 (Ω) and for ε, s > 0 define

ϕs,ε(x) =


ϕ(x) if x ∈ Ξs

ϕ(x)Φε(d(x)/s) if x ∈ Ξs(1+ε) \ Ξs

0 if x ∈ Ω \ Ξs(1+ε).

Observe that ϕs,ε ≡ ϕ in Ξs and ϕs,ε ≡ 0 in Ω \ Ξs(1+ε). We now compute
in Ξs(1+ε) \ Ξs, using (35):

∆ϕs,ε = ∆ϕΦε(d/s) +
2
s
∇ϕ · ∇dΦ′

ε(d/s)

+
1
s2
ϕ
{

Φ′′
ε(d/s) +

s

d
Φ′

ε(d/s)(k − 1 + a0d)
}
.

Since ϕs,ε is an admissible test function we obtain

〈∆u, ϕs,ε〉 =
∫

Ω
u∆ϕΦε(d/s) + I1 + I2 + I3 + I4, (41)

where

I1 =
2
s

∫
Ω
u∇ϕ · ∇dΦ′

ε(d/s)

I2 =
1
s2

∫
Ω
uϕΦ′′

ε(d/s)

I3 =
k − 1
s

∫
Ω
u
ϕ

d
Φ′

ε(d/s)

I4 =
1
s

∫
Ω
uϕa0 Φ′

ε(d/s).

Next we find the limit as ε ↓ 0 of the four previous integrals. For this
purpose we compute

I1 =
2
εs

∫
Ξs(1+ε)\Ξs

Φ′
(d/s− 1

ε

)
u∇ϕ · ∇d

14



and by the coarea formula

=
2
εs

∫ s(1+ε)

s

{
Φ′
(r/s− 1

s

)∫
∂Ξr

u∇ϕ · ∇d
}
dr

= 2
∫ 1

0

{
Φ′(t)

∫
∂Ξ(1+εt)s

u∇ϕ · ∇d
}
dt.

We now let ε ↓ 0:

lim
ε↓0

I1 = 2
∫ 1

0
Φ′(t)

{∫
∂Ξs

u∇ϕ · ∇d
}
dt

= −2
∫

∂Ξs

u∇ϕ · ∇d.
(42)

We now proceed with I2:

I2 =
1
s2

∫
Ω
uϕΦ′′

ε(d/s)

=
1

ε2s2

∫
Ξs(1+ε)\Ξs

uϕΦ′′
(d/s− 1

ε

)
=

1
εs

∫ 1

0

{
Φ′′(t)

∫
∂Ξs(1+εt)

uϕ
}
dt

and integrating by parts

I2 =

[
1
εs

Φ′(t)
∫

∂Ξs(1+εt)

uϕ

]t=1

t=0

−
∫ 1

0

(
Φ′(t)

[
d

dλ

∫
∂Ξλ

uϕ

]
λ=s(1+εt)

)
dt.

Letting ε ↓ 0 we arrive at

lim
ε↓0

I2 =
d

ds

∫
∂Ξs

uϕ. (43)

The computations for I3, I4 are similar and they yield

lim
ε↓0

I3 = −k − 1
s

∫
∂Ξs

uϕ (44)

lim
ε↓0

I4 = −
∫

∂Ξs

uϕa0. (45)
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Thus, passing to the limit as ε ↓ 0 in (41) and using (42)–(45) we get

〈∆u, ϕ〉 =
∫

Ξs

u∆ϕ− 2
∫

∂Ξs

u∇ϕ · ∇d+
d

ds

∫
∂Ξs

uϕ− k − 1
s

∫
∂Ξs

uϕ−

−
∫

∂Ξs

uϕa0.

(46)

But
d

ds

∫
∂Ξs

uϕ− k − 1
s

∫
∂Ξs

uϕ = sk−1 d

ds

( 1
sk−1

∫
∂Ξs

uϕ
)
, (47)

and therefore, combining (46) with (47) we find (40).

We now consider u as in the statement of the lemma, i.e., u ∈ L1
loc(Ω) so

that µ := ∆u − g is a distribution with support in M , where g ∈ L1
loc(Ω).

Using a density argument, and the fact that u ∈ W 1,1
loc (Ω \M), we deduce

that the function s 7→
∫
∂Ξs

uϕ is C1 on (0, 1) and that

〈µ, ϕ〉 =
∫

Ξs

(u∆ϕ− gϕ)− 2
∫

∂Ξs

u∇ϕ · ∇d+ sk−1 d

ds

( 1
sk−1

∫
∂Ξs

uϕ
)
−

−
∫

∂Ξs

uϕa0.

(48)

At this point we distinguish the three cases: a) k ≥ 3, b) k = 2, and c)
k = 1.

a) Case: k ≥ 3. Fix R ∈ (0, 1) and let 0 < t < R. Dividing (48) by sk−1

and integrating over s ∈ (t, R) we get

1
(k − 2)tk−2

〈µ, ϕ〉 = o(1)
1

tk−2
− 1
tk−1

∫
∂Ξt

uϕ−

−
∫ R

t

{
1

sk−1

∫
∂Ξs

uϕa0 + 2u∇ϕ · ∇d
}
ds,

(49)

where o(1) denotes a quantity that goes to zero as t→ 0. Multiplying (49)
by tk−1 and integrating over t ∈ (0, r) with 0 < r < R, we obtain

1
2(k − 2)

〈µ, ϕ〉 = o(1)− 1
r2

∫
Ξr

uϕ−

− 1
r2

∫ r

0
tk−1

∫ R

t

1
sk−1

∫
∂Ξs

v ds dt,

(50)
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where we use the notation

v = 2u∇ϕ · ∇d+ uϕa0. (51)

We now integrate by parts in the last term on the right hand side of (50):∫ R

t

1
sk−1

( d
ds

∫
Ξs

v
)
ds =

[
1

sk−1

∫
Ξs

v

]s=R

s=t

−
∫ R

t
(1− k)

1
sk

∫
Ξs

v ds

=
1

Rk−1

∫
ΞR

v − 1
tk−1

∫
Ξt

v+

+ (k − 1)
∫ R

t

1
sk

∫
Ξs

v ds.

Therefore

1
r2

∫ r

0
tk−1

∫ R

t

1
sk−1

∫
∂Ξs

v ds dt =
rk−2

kRk−1

∫
ΞR

v − 1
r2

∫ r

0

∫
Ξt

v dt+

+
k − 1
r2

∫ r

0
tk−1

∫ R

t

1
sk

∫
Ξs

v ds dt,

(52)

and changing the order of integration in the last term of (52) gives∫ r

0
tk−1

∫ R

t

1
sk

∫
Ξs

v ds dt =
1
k

∫ r

0

∫
Ξs

v ds+
rk

k

∫ R

r

1
sk

∫
Ξs

v ds. (53)

Then, (52) in combination with (53) yields

1
r2

∫ r

0
tk−1

∫ R

t

1
sk−1

∫
∂Ξs

v ds dt =
rk−2

kRk−1

∫
ΞR

v − 1
kr2

∫ r

0

∫
Ξt

v dt+

+
k − 1
k

rk−2

∫ R

r

1
sk

∫
Ξs

v ds.

(54)

Hence, using (54) in (50) we conclude that

1
2(k − 2)

〈µ, ϕ〉 = o(1)− 1
r2

∫
Ξr

uϕ+
1
kr2

∫ r

0

∫
Ξt

v dt−

− k − 1
k

rk−2

∫ R

r

1
sk

∫
Ξs

v ds

= o(1)− 1
r2

∫
Ξr

uϕ+
1
r2

∫ R

0

(
Gk(r, t)

∫
Ξt

v
)
dt,

17



where Gk is given by (36).

This establishes (37).

We now deal with

b) Case: k = 2. Note that (48) is still valid, and since k = 2 it takes the
form

〈µ, ϕ〉 = o(1)−
∫

∂Ξs

v + s
d

ds

(1
s

∫
∂Ξs

uϕ
)
,

where v is given by (51). Dividing the last equation by s and integrating
over s ∈ (t, R) we get

(logR− log t)〈µ, ϕ〉 = o(1)| log t| −
∫ R

t

1
s

∫
∂Ξs

v ds− 1
t

∫
∂Ξt

uϕ.

Multiplying by t and integrating over t ∈ (0, r) we obtain

1
2
〈µ, ϕ〉 = o(1)− 1

r2| log r|

∫ r

0
t

∫ R

t

1
s

∫
∂Ξs

v ds dt− 1
r2| log r|

∫
Ξr

uϕ. (55)

But, integrating by parts∫ R

t

1
s

∫
∂Ξs

v ds =
[
1
s

∫
Ξs

v

]s=R

s=t

+
∫ R

t

1
s2

∫
Ξs

v ds

=
1
R

∫
ΞR

v − 1
t

∫
Ξt

v +
∫ R

t

1
s2

∫
Ξs

v ds.

Hence, using Fubini we get∫ r

0
t

∫ R

t

1
s

∫
∂Ξs

v ds =
r2

2R

∫
ΞR

v −
∫ r

0

∫
Ξt

v dt+
∫ r

0
t

∫ R

t

1
s2

∫
Ξs

v ds dt

=
r2

2R

∫
ΞR

v − 1
2

∫ r

0

∫
Ξt

v dt+
r2

2

∫ R

r

1
s2

∫
Ξs

v ds. (56)

So, from (55) and (56) we infer that

1
2
〈µ, ϕ〉 = o(1)− 1

r2| log r|

∫
Ξr

uϕ+
1

2r2| log r|

∫ r

0

∫
Ξt

v dt−

− 1
2| log r|

∫ R

r

1
t2

∫
Ξt

v dt

= o(1)− 1
r2| log r|

∫
Ξr

uϕ+
1

r2| log r|

∫ R

0

(
G2(r, t)

∫
Ξt

v
)
dt,
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where G2 is given by (36) with k = 2.

This proves (38).

Finally

c) Case: k = 1. This time (48) becomes

〈µ, ϕ〉 =
∫

Ω
∆uϕ− gϕ−

∫
∂Ξs

v +
d

ds

∫
∂Ξs

uϕ.

Integrate the previous relation over s ∈ (t, λ):

(λ− t)〈µ, ϕ〉 = o(1)−
∫

Ξλ\Ξt

v +
∫

∂Ξλ

uϕ−
∫

∂Ξt

uϕ. (57)

where o(1) → 0 as λ → 0. Since v = 2u∇ϕ · ∇d + uϕa0 ∈ L1
loc(Ω), letting

t ↓ 0 in (57) we see that limt↓0
∫
∂Ξt

uϕ exists and

λ〈µ, ϕ〉 = o(1)−
∫

Ξλ

v +
∫

∂Ξλ

uϕ−
(
lim
t↓0

∫
∂Ξt

uϕ
)
. (58)

We now integrate (58) over λ ∈ (0, r) and divide by r2 to find

1
2
〈µ, ϕ〉 = o(1) +

1
r2

∫
Ξr

uϕ− 1
r

(
lim
t↓0

∫
∂Ξt

uϕ
)
− 1
r2

∫ r

0

∫
Ξt

v dt,

which concludes the proof of the lemma. �

4 Proof of Theorem 3

Set µ = ∆u − g. Suppose (7) holds. Then, since lim
r↓0

∫
∂Ξr

uϕ exists by

Lemma 11, we conclude that

lim
r↓0

∫
∂Ξr

uϕ = 0, ∀ϕ ∈ C∞0 (Ω). (59)

On the other hand, given ε > 0, (7) implies that there exists δ > 0 such that∫
∂Ξr

|u| ≤ ε, ∀r ∈ (0, δ).
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Therefore, we have∣∣∣∣∫ r

0

(∫
Ξt

2u∇ϕ · ∇d+ uϕa0

)
dt

∣∣∣∣ ≤ C

∫ r

0

(∫
Ξt

|u|
)
dt

≤ C

∫ r

0
εt dt = ε

r2

2
, ∀r ∈ (0, δ).

Since ε > 0 was arbitrary, we deduce that

lim
r↓0

1
r2

∫ r

0

(∫
Ξt

2u∇ϕ · ∇d+ uϕa0

)
dt = 0. (60)

Inserting (59) and (60) into (39) we get

1
2
〈µ, ϕ〉 = lim

r↓0

1
r2

∫
Ξr

uϕ, ∀ϕ ∈ C∞0 (Ω).

Now (8) follows since, by definition, µ = ∆u− g. This completes the proof
of the theorem. �

5 Proof of Theorem 4

We shall give a proof of Theorem 4 only for the case of codimension k ≥ 3,
the case k = 2 being entirely analogous.

Using the fact that u ≥ 0 a.e. in Ω, if Gk is the function defined by (36),
then we have∣∣∣∣∫ R

0
Gk(r, t)

(∫
Ξt

2u∇ϕ · ∇d+ uϕa0

)
dt

∣∣∣∣ ≤
≤ C

∫ r

0

(∫
Ξt

u

)
dt+ C

∫ R

r

rk

tk

(∫
Ξt

u

)
dt

≤ Cr

∫
Ξr

u+ C

∫ R

r

rk

tk

(∫
Ξt

u

)
dt, ∀r ∈ (0, R).

(61)

Choose R1 ∈ (0, R) small so that CR1 <
1
2 .

Applying (37) with R := R1 and ϕ ∈ C∞0 (Ω), ϕ ≡ 1 on ΞR1 , then by (61)
and our choice of R1 we get

1
2

∫
Ξr

u− C

∫ R

r

rk

tk

(∫
Ξt

u

)
dt ≤ Cr2, ∀r ∈ (0, R1). (62)
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We shall use (62) and a bootstrap argument to conclude that∫
Ξr

u ≤ Cr2, ∀r ∈ (0, R1). (63)

In fact, since
∫
Ξt
u is uniformly bounded for t ∈ (0, R1), we have∫ R

r

rk

tk

(∫
Ξt

u

)
dt ≤ Cr, ∀r ∈ (0, R1). (64)

In particular, (62) and (64) imply that

1
2

∫
Ξr

u ≤ Cr, ∀r ∈ (0, R1),

so that ∫ R

r

rk

tk

(∫
Ξt

u

)
dt ≤ Cr2, ∀r ∈ (0, R1). (65)

Therefore, by (62) and (65), we conclude that estimate (63) holds.

It then follows from (63) and (61), with R replaced by R1, that the right-
hand side in (61) is bounded by Cr3, ∀r ∈ (0, R1). In particular,

lim
r↓0

1
r2

{∫ R1

0
Gk(r, t)

(∫
Ξt

2u∇ϕ · ∇d+ uϕa0

)
dt

}
= 0. (66)

By (37) and (66), we have

− 1
2(k − 2)

〈µ, ϕ〉 = lim
r↓0

1
r2

∫
Ξr

uϕ, ∀ϕ ∈ C∞0 (Ω). (67)

If we now apply (67) with estimate (63), we conclude that µ is a measure.
Since u ≥ 0 a.e. in Ω, then (67) implies that µ is nonpositive. �

6 Proof of Theorems 5 and 6

Proof of Theorem 5. We shall split the proof of the theorem into 3 steps:

Step 1. If
1
r2

∫
Ξr

|u| remains bounded as r ↓ 0, (68)
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then µ is a measure and

〈µ, ϕ〉 = −2(k − 2) lim
r↓0

1
r2

∫
Ξr

uϕ, ∀ϕ ∈ C∞0 (Ω). (69)

Proof. It is easy to see that condition (68) implies that

lim
r↓0

1
r2

{∫ R1

0
Gk(r, t)

(∫
Ξt

2u∇ϕ · ∇d+ uϕa0

)
dt

}
= 0,

where Gk is the function defined by (36). From the limit above and (37),
we deduce that (69) holds. In particular, it follows from (68) and (69) that
µ is a measure and

‖µ‖ ≤ 2(k − 2) lim inf
r↓0

1
r2

∫
Ξr

|u|. (70)

Step 2. If µ is a measure, then

1
r2

∫
Ξr

|u| remains bounded as r ↓ 0, (71)

and
‖µ‖ ≥ 2(k − 2) lim sup

r↓0

1
r2

∫
Ξr

|u|. (72)

Proof. In this step we shall use an estimate given in the proof of Theorem 4
and the representation of the solutions of ∆v = ν in RN when ν is a measure
in terms of the fundamental solution. More precisely, let E(x) = cN

|x|N−2 be

the fundamental solution of −∆ in RN , N ≥ 3, where the constant cN is
chosen so that −∆E = δ0. If ν is a Radon measure, then v := E ∗ ν satisfies
−∆v = ν in D′(RN ).

Now let ν := g + µ in Ω. Next, we decompose ν = ν+ − ν− in its positive
and negative parts, where ν± = g±+µ±. Let v± := E ∗ν±. As we observed
above, we have

−∆v± = ν± = g± + µ± in D′(RN ).

Moreover, note that v± ≥ 0 a.e. in RN . In particular, the functions v±

satisfy the assumptions of Theorem 4, so that (11) holds with u and µ
replaced by v± and −µ±, respectively. In other words, we have∫

Ξr

v± ≤ Cr2, ∀r ∈ (0, 1), (73)
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and

1
2(k − 2)

〈µ±, ϕ〉 = lim
r↓0

1
r2

∫
Ξr

v±ϕ, ∀ϕ ∈ C∞0 (Ω). (74)

On the other hand, it is easy to see that u = v−− v+ +w a.e. in Ω for some
harmonic function w. Since w is bounded in some neighborhood of M , we
have

lim
r↓0

1
r2

∫
Ξr

|w| = 0. (75)

In particular, (71) follows from (73) and (75). Moreover, if we apply (74)
with a test function ϕ such that ϕ ≡ 1 in some neighborhood of M then we
have:

1
2(k − 2)

‖µ‖ =
1

2(k − 2)
(
〈µ+, 1〉+ 〈µ−, 1〉+ 0

)
= lim

r↓0

1
r2

∫
Ξr

(v+ + v− + |w|) ≥ lim sup
r↓0

1
r2

∫
Ξr

|u|.

This concludes the proof of Step 2.

Step 3. Proof of Theorem 5 completed.

By Steps 1 and 2 we know that µ is a measure if and only if

1
r2

∫
Ξr

|u| remains bounded as r ↓ 0,

in which case formula (14) holds. Moreover, applying (70) and (72) we get

‖µ‖ ≤ 2(k − 2) lim inf
r↓0

1
r2

∫
Ξr

|u| ≤ 2(k − 2) lim sup
r↓0

1
r2

∫
Ξr

|u| ≤ ‖µ‖,

so that all the inequalities are reduced to equalities in the estimate above
and (15) holds. �

Proof of Theorem 6. The proof of Theorem 6 follows along the same lines
as those in the previous one and shall be omitted. �

Remark 8 Although we derived (14) in Theorem 5 through a somewhat
lengthy computation, there is a more natural approach if one assumes that
the limits involved exist. Indeed, take ϕ ∈ C∞0 (Ω). Then, using l’Hôpital’s
rule

lim
r↓0

1
r2

∫
Ξr

uϕ = lim
r↓0

1
2r

∫
∂Ξr

uϕ. (76)
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But, using formula (106) of the Appendix (with λ = 1)

lim
r↓0

1
r

∫
∂Ξr

uϕ = lim
r↓0

1
r

{
rk−1

∫
∂Ξ1

(uϕ) ◦ πr Θ(ξ, r) dσ(ξ)
}

= lim
r↓0

{
rk−1

∫
∂Ξ1

∂(uϕ)
∂ν

◦ πr Θ + rk−1

∫
∂Ξ1

(uϕ) ◦ πr
∂Θ
∂r

+ (k − 1)rk−2

∫
∂Ξ1

(uϕ) ◦ πr Θ
}

= lim
r↓0

{∫
∂Ξr

∂(uϕ)
∂ν

+
∫

∂Ξr

uϕ
(∂Θ
∂r

1
Θ

)
◦ π1

+
k − 1
r

∫
∂Ξr

uϕ

}
.

We can solve from the previous equations for lim
r↓0

1
r

∫
∂Ξr

uϕ:

lim
r↓0

1
r

∫
∂Ξr

uϕ = − 1
(k − 2)

lim
r↓0

{∫
∂Ξr

∂(uϕ)
∂ν

+
∫

∂Ξr

uϕ
(∂Θ
∂r

1
Θ

)
◦ π1

}
and, integrating by parts and using estimates in the Appendix, we find

lim
r↓0

1
r

∫
∂Ξr

uϕ = − 1
(k − 2)

〈µ, ϕ〉. (77)

Thus, (76) and (77) combined yield

lim
r↓0

1
r2

∫
Ξr

uϕ = − 1
2(k − 2)

〈µ, ϕ〉.

Remark 9 Let us mention that formula (14) in Theorem 5 holds under
weaker conditions than the one mentioned in that theorem, namely that
1
r2

∫
Ξr
|u| remains bounded as r ↓ 0 or equivalently, that ∆u = µ + g with

g ∈ L1
loc(Ω) and µ a Radon measure supported in M . For example, it is

easy to check that if

1
r

∫
Ξr

|u| → 0 as r ↓ 0, (78)

then (14) holds, i.e. (in codimension k ≥ 3),

lim
r↓0

1
r2

∫
Ξr

uϕ = − 1
2(k − 2)

〈µ, ϕ〉 ∀ϕ ∈ C∞0 (Ω).
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This suggests the following

Open problem. Let Ω ⊂ RN be a bounded open set and let M ⊂ Ω be a
compact, smooth manifold without boundary of codimension k ≥ 3. Let u ∈
L1

loc(Ω) and assume there exists g ∈ L1
loc(Ω) such that ∆u = g in D′(Ω\M).

Set µ := ∆u− g in D′(Ω). Assume that

lim
r↓0

1
r

∫
Ξr

|u| = 0.

Is µ a measure?

The requirement (78) cannot be further relaxed, for instance, by asking
instead that

1
r

∫
Ξr

|u| remains bounded as r ↓ 0. (79)

For example, if u(x) =
x1

|x|3
in R3, then ∆u = cDx1δ0 for some constant

c 6= 0, and 1
r

∫
Ξr
|u| remains bounded away from 0 as r ↓ 0. In any case, if

(79) holds, then from the formulas in Lemma 11 we see that µ has to be a
distribution of order 1.

7 Proof of Theorem 8

As in [BrL], we shall prove the following 2 steps:

Step 1. u ∈ L1
loc(Ω) and there exists a constant C > 0 such that∫

Ξr

u ≤ C

{
r2 if k ≥ 3,
r2 log 1

r if k = 2,
(80)

for all r > 0 sufficiently small.

Step 2. Set h := −∆u a.e. in Ω \M . Then h ∈ L1
loc(Ω) and∫

Ω
hϕ ≤ −

∫
Ω
u∆ϕ, ∀ϕ ∈ F , (81)

where the class F of admissible test functions is given as follows:

F :=
{
ϕ ∈ C∞0 (Ω)

∣∣∣∣ ϕ ≥ 0 in Ω,
∃λ > 0 such that ∇ϕ · ∇d = 0 on Ξλ

}
. (82)
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By Steps 1 and 2, we conclude that u ∈ L1
loc(Ω), and we can write

−∆u = h+ µ in D′(Ω)

for some function h ∈ L1
loc(Ω) and some distribution µ supported on M .

Since u ≥ 0 a.e. in Ω, we deduce from Theorem 4 that µ is a positive
measure (note the change of sign in the definition of µ). In other words, in
order to show that Theorem 8 holds, it suffices to prove Steps 1 and 2.

The details go as follows:

Proof of Step 1. Consider the function

ū(r) =
1

rk−1

∫
∂Ξr

u dσ =
∫

∂Ξ1

u ◦ πr Θ(σ, r) dσ, 0 < r < 1,

where Θ is a smooth function defined on ∂Ξ1 × [0, 1] which arises from the
change of variables (see (107) and Lemma 12 in the Appendix), and πr is
defined by

πr(x) = π(x) + r
x− π(x)
d(x)

, x ∈ Ξ2 \M.

We will use the function ū to prove (80) in a similar way as in Brezis-
Lions [BrL]. In order to get some of its properties, suppose for a moment
that u ∈ C∞(Ω \M); then

dū

dr
(r) =

∫
∂Ξ1

∂u

∂ν
◦ πr Θ(ξ, r) dσ(ξ) +

∫
∂Ξ1

u ◦ πr
∂Θ
∂r

(ξ, r) dσ(ξ).

Hence, by Corollary 13,

rk−1dū

dr
(r) =

∫
∂Ξr

∂u

∂ν
dσ + rk−1

∫
∂Ξ1

u ◦ πr
∂Θ
∂r

(ξ, r) dσ(ξ),

and integrating by parts

= −
∫

Ξr0\Ξr

∆u+
∫

∂Ξr0

∂u

∂ν
dσ+

+ rk−1

∫
∂Ξ1

u ◦ πr
∂Θ
∂r

(ξ, r) dσ(ξ),

for any r0 > 0 small enough. Throughout the step, we will always denote
by ν the unit normal vector to Ξr, pointing out of Ξr (which explains the
minus sign in front of

∫
Ξr0\Ξr

∆u in the expression above).
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For a general u ∈ L1
loc(Ω \M) with ∆u ∈ L1

loc(Ω \M), by using Fubini’s
Theorem and the fact that u ∈ W 1,1

loc (Ω \ M), it follows by density that
ū ∈ C1(0, 1), dū/dr is absolutely continuous on (0, 1), and

rk−1dū

dr
(r) = −

∫
Ξr0\Ξr

∆u+
∫

∂Ξr0

∂u

∂ν
dσ + rk−1

∫
∂Ξ1

u ◦ πr
∂Θ
∂r

(ξ, r) dσ(ξ),

is still true for a.e. r0 > 0 small (which will be fixed later).

We now proceed with the main computation. The next formulas hold for
a.e. r ∈ (0, 1).

1
rk−1

d

dr

(
rk−1dū

dr

)
=

1
rk−1

∫
∂Ξr

∆u

+
1

rk−1

d

dr

{
rk−1

∫
∂Ξ1

u ◦ πr
∂Θ
∂r

(ξ, r) dσ(ξ)
}

=
1

rk−1

∫
∂Ξr

∆u+
k − 1
r

I1 + I2,

(83)

where

I1 =
∫

∂Ξ1

u ◦ πr
∂Θ
∂r

(ξ, r) dσ(ξ) =
1

rk−1

∫
∂Ξr

u
( 1

Θ
∂Θ
∂r

)
◦ π1

and

I2 = rk−1 d

dr

∫
∂Ξ1

u ◦ πr
∂Θ
∂r

(ξ, r) dσ(ξ)

= rk−1

∫
∂Ξ1

∂u

∂ν
◦ πr

∂Θ
∂r

+ rk−1

∫
∂Ξ1

u ◦ πr
∂2Θ
∂r2

=
∫

∂Ξr

∂u

∂ν

( 1
Θ
∂Θ
∂r

)
◦ π1 +

∫
∂Ξr

u
( 1

Θ
∂2Θ
∂r2

)
◦ π1.

At this point it is convenient to introduce some notation:

ϑ(i)(x) =
1

Θ(π1(x), d(x))
∂iΘ
∂ri

(π1(x), d(x)), i = 1, 2.

Then we can rewrite I1 and I2 as

I1 =
1

rk−1

∫
∂Ξr

uϑ(1), (84)

I2 =
∫

∂Ξr

∂u

∂ν
ϑ(1) +

∫
∂Ξr

uϑ(2).
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Integrating by parts the expression for I2, we get

I2 = −
∫

∂(Ξr0\Ξr)
u
∂ϑ(1)

∂ν
+
∫

Ξr0\Ξr

u∆ϑ(1) −
∫

Ξr0\Ξr

∆uϑ(1)

+
∫

∂Ξr0

∂u

∂ν
ϑ(1) +

∫
∂Ξr

uϑ(2). (85)

From Corollary 13 in the Appendix (in combination with the lower bound
for Θ of Lemma 9) we obtain the following estimates for ϑ(i)

|Djϑ(1)| ≤ Cdk−j−1, j = 0, 1, 2; (86)

|ϑ(2)| ≤ Cdk−2. (87)

Therefore

I1 =
1

rk−1

∫
∂Ξr

uϑ(1) ≤ C

∫
∂Ξr

u (88)

and

I2 ≤ C

∫
∂Ξr

u+ C

∫
Ξr0\Ξr

udk−3 −
∫

Ξr0\Ξr

∆uϑ(1) + C. (89)

Combining (83), (88) and (89) we find

1
rk−1

d

dr

(
rk−1dū

dr

)
≤ 1
rk−1

∫
∂Ξr

∆u+
C

r

∫
∂Ξr

u+ C

∫
∂Ξr

u+

+ C

∫
Ξr0\Ξr

udk−3 −
∫

Ξr0\Ξr

∆uϑ(1) + C.

Then, multiplying the last inequality by rk−1 and integrating with respect
to r yields

rk−1
0

dū

dr
(r0)− rk−1dū

dr
(r) ≤

≤ C

∫ r0

r
sk−2

∫
∂Ξs

u dσ ds+ C

∫ r0

r
sk−1

∫
∂Ξs

u dσ ds

+ C

∫ r0

r
sk−1

∫
Ξr0\Ξs

udk−3 dσ ds

+
∫ r0

r

∫
∂Ξs

∆u dσ ds−
∫ r0

r
sk−1

∫
Ξr0\Ξs

∆uϑ(1) dx ds

+ Crk
0 .

(90)
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We now estimate each term on the right-hand side of (90). We start with∫ r0

r
sk−2

∫
∂Ξs

u dσ ds ≤ rk−2
0

∫ r0

r

∫
∂Ξs

u dσ ds ≤
∫ r0

r
sk−1ū(s) ds. (91)

Similarly,∫ r0

r
sk−1

∫
∂Ξs

u dσ ds ≤
∫ r0

r
sk−1ū(s) ds. (92)

The third term on the right-hand side of (90) is, using Fubini,∫ r0

r
sk−1

∫
Ξr0\Ξs

udk−3 dσ ds =
∫ r0

r

∫ r0

s

∫
∂Ξλ

sk−1uλk−3 dσ dλ ds

=
∫ r0

r

∫
∂Ξλ

uλk−3

∫ λ

r
sk−1 ds dσ dλ

≤ C

∫ r0

r

∫
∂Ξλ

uλ2k−3dσ dλ

≤ C

∫ r0

r
sk−1ū(s) ds,

(93)

since λ2k−3 ≤ 1, for 0 < λ ≤ r0 ≤ 1. We now estimate the fifth term in (90)
using Fubini again:∫ r0

r
sk−1

∫
Ξr0\Ξs

∆uϑ(1) dσ ds =
∫ r0

r

∫ r0

s

∫
∂Ξλ

sk−1∆uϑ(1)λk−1 dσ dλ ds,

=
∫ r0

r

∫
∂Ξλ

∆uϑ(1) λk−1

∫ λ

r
sk−1 ds dσ dλ

=
∫ r0

r

∫
∂Ξλ

∆u O(r2k−1
0 ) dσ dλ,

where O(r2k−1
0 ) denotes a function bounded by Cr2k−1

0 . Hence the fourth
and fifth terms of (90) combined yield∫ r0

r

∫
∂Ξs

∆u dσ ds−
∫ r0

r
sk−1

∫
Ξr0\Ξs

∆uϑ(1) dσ ds =

=
∫ r0

r

∫
∂Ξλ

∆u
(
1 + O(r2k−1

0 )
)
dσ dλ.
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We now fix r0 > 0 small enough so that 1/2 ≤ 1 + O(r2k−1
0 ) ≤ 3/2. Since

∆u ≤ au+ f a.e. in Ω \M , we conclude that∫ r0

r

∫
∂Ξs

∆u dσ ds−
∫ r0

r
sk−1

∫
Ξr0\Ξs

∆uϑ(1) dσ ds ≤

≤ C

∫ r0

r

∫
∂Ξλ

au+ f dσ dλ

≤ C

∫ r0

r
sk−1ū(s) ds+

∫
Ξλ

f

(94)

(in the hypotheses of the theorem, after replacing f with f+ we may assume
that f ≥ 0 a.e. in Ω). Hence, from (90)–(94), we get the estimate

−rk−1dū

dr
(r) ≤ C

∫ r0

r
sk−1ū(s) ds+ C.

We now proceed exactly as in [BrL]. Let 0 < R < r0 to be chosen later and
define

ψR(r) :=
∫ R

r
sk−1ū(s) ds, 0 < r < R.

With this notation we have

−rk−1dū

dr
(r) ≤ C ψR(r) + CR,

where CR is a constant that depends on R, but C is independent of R. After
integration we find

ū(r)− ū(R) ≤ C

∫ R

r

ψ(s)
sk−1

ds+ CR

∫ R

r

ds

sk−1
,

and therefore

ū(r) ≤ C

∫ R

r

1
sk−1

ψR(s) ds+ CR

(
1 +

1
rk−2

)
(95)

if k ≥ 3 and, in the case k = 2, we have to replace 1/rk−2 by | log r| in the
second term on the right-hand side. Since ψR is nonincreasing we obtain
thus

rk−1ū(r) ≤ CRψR(r) + CR.

Integrating once more we get

ψR(r) =
∫ R

r
sk−1ū(s) ds ≤ CR

∫ R

r
ψR(s) ds+ CR

≤ CR2ψR(r) + CR.

(96)
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We now choose 0 < R < r0 such that (1 − CR2) ≥ 1/2, so that from (96)
we see that

ψR(r) ≤ C,

with C independent of r ∈ (0, R). By letting r → 0 we conclude that
u ∈ L1

loc(Ω). Moreover, from (95) we see that

ū(r) ≤ C


1

rk−2
if k ≥ 3,

| log r| if k = 2,

which implies the estimate∫
Ξr

u =
∫ r

0
sk−1ū(s) ds ≤ C

{
r2 if k ≥ 3,
r2| log r| if k = 2.

This concludes the proof of the first step.

Proof of Step 2. First, note that to prove the whole statement of Step 2, it
is enough to show that (81) holds. In fact, suppose that (81) has already been
established. By the assumptions of the theorem, we know that h ≥ −au−f
a.e. in Ω, and au + f ∈ L1

loc(Ω) by Step 1. If we take an admissible test
function ϕ ∈ F such that ϕ ≡ 1 in some small neighborhood of M , then we
have

0 ≤
∫

Ω
(h+ au+ f)ϕ ≤ −

∫
Ω
u∆ϕ+

∫
Ω
(au+ f)ϕ <∞,

which implies that h ∈ L1
loc(Ω).

We now proceed with the proof of (81).

Let ϕ ∈ F . Since (81) is trivially satisfied if ϕ ≡ 0 near M (in fact, we have
equality in (81) in this case), there is no loss of generality if we assume that
suppϕ ⊂ Ξ1 and ϕ 6≡ 0 near M . Next, fix a λ > 0 such that ∇ϕ · ∇d = 0 in
Ξλ.

Let Φ ∈ C3(R) be a convex function such that Φ(t) = 0 for t ≥ 1, and
Φ(0) = 1, to be given explicitly below.

For 0 < ε < 1, and if k ≥ 3, define

ϕε(x) :=

ϕ(x) Φ
(

εk−2

d(x)k−2

)
if x ∈ Ξ1 \ Ξε

0 otherwise
;
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if k = 2, we let

ϕε(x) :=

ϕ(x) Φ

(
log 1

d(x)

log 1
ε

)
if x ∈ Ξ1 \ Ξε

0 otherwise

.

By construction, we have ϕε ∈ C3
0 (Ω) and ϕε ≡ 0 on Ξε. In particular,∫

Ω
hϕε = −

∫
Ω

∆uϕε = −
∫

Ω
u∆ϕε. (97)

In the argument that follows, we assume k ≥ 3, the proof of (81) when k = 2
being entirely analogous.

If we compute ∆ϕε explicitly on Ξ1 \ Ξε, and using (34) and (35), we get
(recall that ϕε ≡ 0 outside this set)

∆ϕε = ∆ϕΦ
(
εk−2

dk−2

)
− 2(k − 2)∇ϕ · ∇dΦ′

(
εk−2

dk−2

)
εk−2

dk−1
+

+ ϕ
εk−2

dk−1

{
(k − 2)2Φ′′

(
εk−2

dk−2

)
εk−2

dk−1
+ Φ′

(
εk−2

dk−2

)
O(1)

}
,

(98)

where O(1) is a quantity which remains bounded as ε ↓ 0.

Note that

Φ
(
εk−2

dk−2

)
→ Φ(0) = 1

and

Φ′
(
εk−2

dk−2

)
εk−2

dk−1
→ 0,

both limits being uniform in any compact subset of Ω \M as ε ↓ 0.

Since ∆ϕΦ
(

εk−2

dk−2

)
is uniformly bounded and∇ϕ·∇d = 0 on Ξλ, we conclude

that∫
Ω

[
∆ϕΦ

(
εk−2

dk−2

)
− 2(k − 2)∇ϕ · ∇dΦ′

(
εk−2

dk−2

)
εk−2

dk−1

]
u −→

−→
∫

Ω
u∆ϕ as ε ↓ 0.

(99)
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Next, we shall analyze the behavior of the term between brackets in (98).
Before that, let us make a special choice of the function Φ.

Let a ≥ 3 be a number sufficiently large to be chosen below. Take Φ : R → R
to be defined as

Φ(t) :=

{
(1− t)a+1 if t ≤ 1
0 otherwise

.

In particular, Φ ∈ C3(R), Φ(t) = 0 for t ≥ 1, and Φ(0) = 1.

For x ∈ Ξ1 \ Ξε, we have

εk−2

dk−1

{
(k − 2)2Φ′′

(
εk−2

dk−2

)
εk−2

dk−1
+ Φ′

(
εk−2

dk−2

)
O(1)

}
=

= (a+ 1)
εk−2

dk−1

(
1− εk−2

dk−2

)a−1{
a(k − 2)2

εk−2

dk−1
−
(

1− εk−2

dk−2

)
O(1)

}
= (a+ 1)

εk−2

dk−1

(
1− εk−2

dk−2

)a−1{
εk−2

dk−1

(
a(k − 2)2 +O(1) d

)
−O(1)

}
.

Now choose K > 0 and then a ≥ 3 both large enough so that

a(k − 2)2

2
≥ K ≥ |O(1)|, for 0 < ε < 1.

Then we get

εk−2

dk−1

{
(k − 2)2Φ′′

(
εk−2

dk−2

)
εk−2

dk−1
+ Φ′

(
εk−2

dk−2

)
O(1)

}
=

≥ (a+ 1)
εk−2

dk−1

(
1− εk−2

dk−2

)a−1{
a(k − 2)2

2
εk−2

dk−1
−O(1)

}
=: H.

Next we split the estimate for a lower bound of H into 2 cases, depending
on how near the point x is with respect to the singular set M :

Case 1.
a(k − 2)2

2
εk−2

dk−1
≥ K.

In this case, by our very choice of K, the expression defining H must be
nonnegative, i.e., H ≥ 0.

Case 2.
a(k − 2)2

2
εk−2

dk−1
< K.
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If the inequality above holds, we have

H ≥ −(a+ 1)
εk−2

dk−1

(
1− εk−2

dk−2

)a−1

K

≥ −(a+ 1)
2K

a(k − 2)2
K > −8

3
K2 =: −C.

In both cases, we have
H ≥ −C, (100)

for some constant C > 0 independent of ε and ϕ.

It now follows from (98)–(100) and Fatou’s Lemma (recall that h ≥ −au−
f ∈ L1

loc(Ω)) that, if we let ε ↓ 0 in (97), we get∫
Ω
hϕ ≤ −

∫
Ω

∆uϕ+ C

∫
Ω
uϕ, ∀ϕ ∈ F , (101)

which is “almost” the inequality we want to prove. In any case, the same
argument we presented in the beginning of this step, applied to (101), al-
ready gives that h ∈ L1

loc(Ω). Next, we show how the constant C > 0 above
can be removed.

Given any δ > 0 small, let ηδ ∈ C∞0 (Ξδ) be such that 0 ≤ ηδ ≤ 1 and ηδ ≡ 1
on Ξδ/2. Note that ϕηδ still belongs to F so that, after replacing ϕ in (101)
by ϕηδ, we get ∫

Ω
hϕηδ ≤ −

∫
Ω
u∆(ϕηδ) + C

∫
Ω
uϕηδ.

On the other hand, since ϕ(1− ηδ) ∈ C∞0 (Ω \M),∫
Ω
hϕ(1− ηδ) = −

∫
Ω
u∆(ϕ(1− ηδ)).

Now adding both relations, we obtain∫
Ω
hϕ ≤ −

∫
Ω
u∆ϕ+ C

∫
Ω
uϕηδ.

If we let δ ↓ 0 in the inequality above, we get (81), as claimed. This concludes
the proof of Step 2.
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8 Proof of Corollary 10

Let u ∈ L1
loc(Ω), u ≥ 0 a.e. in Ω, be as in Corollary 9. Since f(u) ∈ L1

loc(Ω),
(25) implies that

u ∈ L
k

k−2

loc (Ω) if k > 2, (102)

eau ∈ L1
loc(Ω) if k = 2, for all a > 0. (103)

If k > 2, we apply Hölder’s inequality to conclude from (102) (using the fact
that |Ξr| ∼ rk as r ↓ 0) that

lim
r↓0

1
r2

∫
Ξr

u = 0.

By Corollary 7, we must have µ = 0 in (24), which proves the result in the
case k ≥ 3.

Let us now suppose k = 2. For a > 0 fixed, we have by Jensen’s inequality
and (103) that

e
1

|Ξr |
R
Ξr

au ≤ 1
|Ξr|

∫
Ξr

eau ≤ Ca

|Ξr|
, ∀r > 0 small,

where Ca > 0 is a constant depending on a. We conclude that

1
|Ξr|

∫
Ξr

au ≤ log
Ca

|Ξr|
. (104)

Let 0 < α1 ≤ α2 be such that α1r
2 ≤ |Ξr| ≤ α2r

2 for all r > 0 small. From
(104) we get

1
α2r2 log 1/r

∫
Ξr

au ≤ log (Ca/α1r
2)

log 1/r
= 2 +

log (Ca/α1)
log 1/r

.

By letting r ↓ 0 we deduce that

lim sup
r↓0

1
r2| log r|

∫
Ξr

u ≤ 2α2

a
, ∀a > 0.

If we take a ↑ ∞, then we have

lim
r↓0

1
r2| log r|

∫
Ξr

u = 0.

We now invoke Corollary 7 to get the result in the case k = 2. �
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Appendix

In the sequel, we shall assume that Ξr is a tubular neighborhood of MN−k

of radius r, where MN−k is a compact manifold without boundary in RN

of codimension k ≥ 1. We use here the same notation as in Section 3.
Before stating the lemma below, let us recall the definition of the projection
πr : Ξ2 \M → ∂Ξr :

πr(x) := π(x) + r
x− π(x)
d(x)

.

Note that, if 0 < r, λ ≤ 2, then πr|∂Ξλ
: ∂Ξλ → ∂Ξr is a smooth diffeomor-

phism between the manifolds ∂Ξλ and ∂Ξr.

Throughout the Appendix, we will use the notation

Θ(x, r) :=
1

rk−1
J(πr|∂Ξλ

), x ∈ ∂Ξλ, r, λ ∈ (0, 2], (105)

where J(πr|∂Ξλ
) denotes the Jacobian of the map πr|∂Ξλ

, so that∫
∂Ξr

v =
∫

∂Ξλ

v ◦ πr(ξ) Θ(ξ, r)rk−1 dσλ(ξ), ∀v ∈ L1(∂Ξr) (106)

or equivalently, by the coarea formula,∫
Ξr

v =
∫ r

0

∫
∂Ξλ

v ◦ πs(ξ) Θ(ξ, s)sk−1 dσλ(ξ) ds, ∀v ∈ L1(Ξr). (107)

We should remark at this point that the choice of the normalization factor
1

rk−1 comes from the degeneracy rate of J(πr|∂Ξλ
) as r ↓ 0, as we shall see

in Lemma 12.

In the next lemma we present some properties of this function, which were
used in some of the main results in this paper. We handle only the case of
codimension k ≥ 2. Since we are mostly interested in the limit behavior of
Θ(·, r) as r ↓ 0, we shall consider Θ as a function defined on ∂Ξ1 × (0, 2],
i.e., we take λ = 1 in equations (106) and (107).

Lemma 12 Suppose M ⊂ RN is a compact manifold, without boundary, of
codimension k ≥ 2. Then Θ ∈ C∞(∂Ξ1 × [0, 2]) and satisfies:

(i) there exists a > 0 such that Θ ≥ a > 0 on ∂Ξ1 × [0, 2];
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(ii) there exist smooth functions α, β defined on ∂Ξ1 such that

Θ(ξ, r) = α(ξ) + rkβ(ξ), ∀(ξ, r) ∈ ∂Ξ1 × [0, 2]. (108)

Proof. Instead of computing J(πs|∂Ξ1) directly in (105) to get the desired
properties of Θ, we shall try to find another representation for the function
Θ. We proceed as follows:

Given a small geodesic neighborhood U ⊂ M , let h : U × Bk
2 → π−1(U) ×

int Ξ2 be a diffeomorphism such that h(z1, 0) = z1, π(h(z1, ·)) = z1, and
h(z1, ·) is an affine linear isometry for each z1 ∈ U .

Using the parametrization of Ξr induced by h and the coarea formula, we
have∫

Ξr∩π−1(U)
v =

∫
U

∫
Bk

r

v ◦ hJh

=
∫ r

0

∫
U

∫
∂Bk

s

v ◦ hJh dσsdz1ds

=
∫ r

0

∫
U

∫
Sk−1

v(h(z1, sζ)) Jh(z1, sζ)sk−1 dσ(ζ)dz1ds

=
∫ r

0

∫
U

∫
Sk−1

v ◦ h ◦ js(z1, ζ) Jh ◦ js(z1, ζ)sk−1 dσ(ζ)dz1ds,

where js(z1, ζ) := (z1, sζ).

Therefore, we get the following expression for the integral of v on Ξr ∩
π−1(U):∫

Ξr∩π−1(U)
v

=
∫ r

0

∫
∂Ξ1∩π−1(U)

v ◦ πs

[
Jh ◦ js ◦ h−1 J(h−1|∂Ξ1)

]
sk−1 dσds,

(109)

where we used the fact that, by our very choice of h, we must have πs =
h ◦ js ◦ h−1 on ∂Ξ1. If we compare the identities (107) and (109), we then
conclude that

Θ = Jh ◦ jr ◦ h−1 J(h−1|∂Ξ1) on
(
∂Ξ1 ∩ π−1(U)

)
× (0, 2]. (110)

Since U was an arbitrary small geodesic neighborhood of M and h was a
diffeomorphism, (110) immediately implies that Θ ∈ C∞(∂Ξ1 × [0, 2]) and
Θ > 0 on ∂Ξ1 × [0, 2], so that (i) must hold.
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In order to prove (ii), we first rewrite (110) as

Θ(h(z), r) = Jh(z1, rz2) J(h−1|∂Ξ1)(h(z)),

∀(z, r) ∈
(
U × Sk−1

)
× [0, 2].

(111)

By choosing a smaller open subset of U if necessary, we may assume we have
a parametrization p : RN−k → U . Next, define h̃ : RN−k × Bk

2 → Ξ2 by
h̃(y1, y2) := h(p(y1), y2), so that

Jh̃(y1, y2) = Jh(p(y1), y2) Jp(y1). (112)

In view of (111) and (112), in order to show that Θ may be written as (108),
it suffices to prove the following decomposition for Jh̃:

Jh̃(y) = α̃(y1) + β̃(y), ∀y = (y1, y2) ∈ RN−k ×Bk
2 , (113)

where α̃, β̃ are smooth and β̃(y1, y2) is a homogeneous polynomial of order
k with respect to the y2-variable, for each y1 ∈ RN−k.

From the properties of h, we may write it more explicitly as

h(z1, z2) = z1 + T (z1)z2, ∀(z1, z2) ∈ U ×Bk
2 ,

for some linear isometry T (z1) : Rk → RN−k, z1 ∈ U , so that

h̃(y1, y2) = p(y1) + T (p(y1))y2 =: p(y1) + T̃ (y1)y2,

which implies

Jh̃(y1, y2) = det
(
Dp(y1) +DT̃ (y1)y2, T̃ (y1)

)
= det

(
Dp(y1), T̃ (y1)

)
+ det

(
DT̃ (y1)y2, T̃ (y1)

)
.

Now (113) follows if we take

α̃(y1) := det
(
Dp(y1), T̃ (y1)

)
,

β̃(y1, y2) := det
(
DT̃ (y1)y2, T̃ (y1)

)
.

In particular, note that β̃(y1, ·) is a homogeneous polynomial of order k.
As we already remarked before, (111), (112) and (113) imply (ii). This
concludes the proof of the lemma. �

The following corollary gives some estimates we needed in the proof of The-
orem 8:
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Corollary 13 For any j ≥ 0 and x ∈ Ξ1 \M ,

Dj
x

[
∂iΘ
∂ri

(π1(x), d(x))
]

=

{
O(dk−i−j) if 1 ≤ i ≤ k

0 if i > k
. (114)

In particular, estimates (86) and (87) hold.

Proof. Firstly, we see from (108) that we only need to prove (114) for
1 ≤ i ≤ k. If we differentiate (108) with respect to r and evaluate the
resulting expression at the point (ξ, r) = (π1(x), d(x)), for some x ∈ Ξ2 \M ,
we get

∂iΘ
∂ri

(π1(x), d(x)) =
k!

(k − i)!
d(x)k−iβ(π1(x)). (115)

In particular, (114) with j = 0 (and any i ≤ k) follows from the expression
above.

Next, we assume j ≥ 1. Instead of differentiating (115) directly with respect
to x, we shall write it in terms of local coordinates conveniently chosen, as
we did in the proof of Lemma 12.

For a sufficiently small geodesic neighborhood U ⊂ M , we can find a
parametrization p : RN−k → U and a diffeomorphism h : U × Bk

2 →
π−1(U) ∩ int Ξ2 such that h(z1, 0) = z1, π(h(z1, ·)) = z1, and h(z1, ·) is
an affine linear isometry for each z1 ∈ U .

Define h̃(y) := h(p(y1), y2), y ∈ BN−k
10 × Bk

2 , so that h̃ is a diffeomorphism
between BN−k

10 ×Bk
2 and π−1(p(BN−k

10 ))∩ int Ξ2 =: V; moreover, the deriva-
tives of h̃ and h̃−1 are bounded (which explains why we defined h̃ using
BN−k

10 , instead of RN−k).

Given x ∈ V \M , let y ∈ BN−k
10 × Bk

2 \ {0} be such that h̃(y) = x. Using
the properties of h̃ (or rather of h), we may write (115) as

∂iΘ
∂ri

(π1(x), d(x)) =
k!

(k − i)!
|y2|k−iβ(π1(h̃(y)))

=
k!

(k − i)!
|y2|k−iβ(h̃(y1,

y2

|y2|
))

=:
k!

(k − i)!
|y2|k−iβ̃(y1,

y2

|y2|
) =: Fi(y).

(116)

One can now check that the derivatives of F satisfy

|DjFi(y)| ≤ Cij |y2|k−i−j , ∀y ∈ BN−k
10 ×Bk

2 \ {0}, ∀j ≥ 1.
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If we now apply the chain rule to (116), then the estimates above and the
boundedness of the derivatives of h̃−1 will imply that (114) holds for j ≥ 1.

Finally, estimates are readily checked using (114) and the fact that Θ ≥ a >
0 on ∂Ξ1 × [0, 1]. �
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aires. J. Differential Equations 41 (1981), 87–95.
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