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Abstract. We show that if Ω ⊂ RN , N ≥ 2, is a bounded Lipschitz domain and
(ρn) ⊂ L1(RN ) is a sequence of nonnegative radial functions weakly converging
to δ0, then Z

Ω

|f − fΩ |p ≤ C

Z
Ω

Z
Ω

|f(x)− f(y)|p

|x− y|p ρn (|x− y|) dx dy

for all f ∈ Lp(Ω) and n ≥ n0, where fΩ denotes the average of f on Ω. The above
estimate was suggested by some recent work of Bourgain, Brezis and Mironescu [2].
As n →∞ we recover Poincaré’s inequality. The case N = 1 requires an additional
assumption on (ρn). We also extend a compactness result of Bourgain, Brezis and
Mironescu.

1. Introduction and main results

Assume Ω ⊂ RN , N ≥ 1, is a bounded domain with Lipschitz boundary
and let 1 ≤ p < ∞. It is a well-known fact that there exists a constant
A0 = A0(p, Ω) > 0 such that the following form of Poincaré’s inequality
holds : ∫

Ω

|f − fΩ |p ≤ A0

∫
Ω

|Df |p ∀f ∈ W 1,p(Ω), (1)

where fΩ := 1
|Ω|

∫
Ω

f .
On the other hand, let (ρn) ⊂ L1(RN ) be a sequence of radial functions

satisfying 
ρn ≥ 0 a.e. in RN ,∫

RN

ρn = 1 ∀n ≥ 1,

lim
n→∞

∫
|h|>δ

ρn(h) dh = 0 ∀δ > 0.

(2)
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In this case, we have the following pointwise limit (see [2], see also [6] for a
simpler proof)

lim
n→∞

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρn (|x− y|) dx dy = Kp,N

∫
Ω

|Df |p (3)

for every f ∈ W 1,p(Ω), where Kp,N = −
∫

SN−1
|e1 · σ|p dHN−1.

Motivated by this, we show the following estimate related to (1) :

Theorem 1.1. Assume N ≥ 2. Let (ρn) ⊂ L1(RN ) be a sequence of radial
functions satisfying (2). Given δ > 0, there exists n0 ≥ 1 sufficiently large
such that∫

Ω

|f − fΩ |p ≤
„

A0

Kp,N
+ δ

« ∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρn (|x− y|) dx dy (4)

for every f ∈ Lp(Ω) and n ≥ n0.

The choice of n0 ≥ 1 depends not only on δ > 0, but also on p, Ω and on
the sequence (ρn)n≥1. Special cases of this inequality have been used in the
study of the Ginzburg-Landau model (see [3,4]; see also Corollaries 2.1–2.4
below).

We first point out that (4) is stronger than (1), in the sense that the

right-hand side of (4) can be always estimated by
∫

Ω

|Df |p. In fact, given

f ∈ W 1,p(Ω), we first extend f to RN so that f ∈ W 1,p(RN ). It is then
easy to see that (see e.g. [2, Theorem 1])∫

Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρn (|x− y|) dx dy ≤

∫
RN

|Df |p ≤ C

∫
Ω

|Df |p. (5)

If N = 1, then one can construct examples of sequences (ρn) ⊂ L1(R) for
which (4) fails (see [2, Counterexample 1]). In this case, we need to impose
an additional condition on (ρn); see Theorem 1.3 below.

Theorem 1.1 can be deduced from the following compactness result :

Theorem 1.2. Assume N ≥ 2. Let (ρn) ⊂ L1(RN ) be a sequence of radial
functions satisfying (2). If (fn) ⊂ Lp(Ω) is a bounded sequence such that∫

Ω

∫
Ω

|fn(x)− fn(y)|p

|x− y|p
ρn (|x− y|) dx dy ≤ B ∀n ≥ 1, (6)

then (fn) is relatively compact in Lp(Ω).
Assume that fnj → f in Lp(Ω). Then

(a) f ∈ W 1,p(Ω) if 1 < p < ∞;
(b) f ∈ BV (Ω) if p = 1.

In both cases, we have
∫

Ω

|Df |p ≤ B

Kp,N
, where B is given by (6).
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This result was already known under the additional assumption that ρn

is radially nondecreasing for every n ≥ 1 (see [2, Theorem 4]).

We now consider the case N = 1.
Given ρn ∈ L1(R), we shall assume that ρn is defined for every x ∈ R in

the following way

ρn(x) =

 lim
r→0

1
2r

∫ x+r

x−r

ρn if x is a Lebesgue point of ρn,

+∞ otherwise.

Given θ0 ∈ (0, 1) we define

ρn,θ0(x) := inf
θ0≤θ≤1

ρn(θx) ∀x ∈ R.

By construction,

ρn,θ0(x) ≤ ρn(θx) ∀x ∈ R ∀θ ∈ [θ0, 1]. (7)

We then have the following result :

Theorem 1.3. Let (ρn) ⊂ L1(R) be a sequence of functions satisfying (2).
Assume there exist θ0 ∈ (0, 1) and α0 > 0 such that∫

R
ρn,θ0 ≥ α0 > 0 ∀n ≥ 1. (8)

If (fn) ⊂ Lp(0, 1) is a bounded sequence such that∫ 1

0

∫ 1

0

|fn(x)− fn(y)|p

|x− y|p
ρn (x− y) dx dy ≤ B ∀n ≥ 1, (9)

then (fn) is relatively compact in Lp(0, 1).
Moreover, all the other statements of Theorems 1.1 and 1.2 are also valid.
In particular, inequality (4) holds with Ω = (0, 1).

Most of the results in this paper were announced in [9].

2. Some examples

We now state some inequalities coming from Theorems 1.1 and 1.3. We
denote by Q = (0, 1)N the N -dimensional unit cube. In all cases, condition
(2) is satisfied for N ≥ 1; it is also easy to see that (8) holds when N = 1.

For every N ≥ 1 we then have the following corollaries :

Corollary 2.1 (Bourgain-Brezis-Mironescu [3]).∫
Q

|f − fQ|p ≤ Cs0(1− s)p
∫

Q

∫
Q

|f(x)− f(y)|p

|x− y|N+sp
dx dy ∀f ∈ Lp(Q),

for every 0 < s0 < s < 1.
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This inequality takes into account the correction factor (1 − s)1/p we
should put in front of the Gagliardo seminorm |f |W s,p as s ↑ 1. In [3],
the authors study related estimates arising from the Sobolev imbedding
Lq ↪→ W s,p for the critical exponent 1

q = 1
p −

s
N ; see also [7] for a more

elementary approach.

Corollary 2.2 (Bourgain-Brezis-Mironescu [4]).∫
Q

|f − fQ|p ≤ Cε0

1
| log ε|

∫
Q

∫
Q

|f(x)− f(y)|p

|x− y|p
dx dy

(|x− y|+ ε)N

for every f ∈ Lp(Q) and 0 < ε < ε0.

A stronger form of this inequality is the following

Corollary 2.3.∫
Q

|f − fQ|p ≤ Cε0

1
| log ε|

∫
Q

∫
Q

|x−y|>ε

|f(x)− f(y)|p

|x− y|N+p
dx dy ∀f ∈ Lp(Q),

for every 0 < ε < ε0 � 1.

We have been informed by H. Brezis that Bourgain and Brezis [1] have
proved that∫

Q

|f − fQ|p ≤ Cε0

1
| log ε|

∫
Q

∫
Q

|f(x)− f(y)|p

(|x− y|+ ε)N+p
dx dy ∀f ∈ Lp(Q),

for every 0 < ε < ε0, using a Paley-Littlewood decomposition of f . Note
that this estimate can be deduced instead from the corollary above.

Here is another example :

Corollary 2.4.∫
Q

|f − fQ|p ≤ Cε0

N + p

εN+p

∫
Q

∫
Q

|x−y|<ε

|f(x)− f(y)|p dx dy ∀f ∈ Lp(Q),

for every 0 < ε < ε0.

Concerning the behavior of the constants in these inequalities, let A0

denote the best constant in (1). Then in Corollary 2.1 the constant Cs0 can
be chosen so that

Cs0 →
A0

Kp,N |SN−1|
as s0 ↑ 1.

Similarly, in Corollaries 2.2–2.4 we have Cε0 converging to the same limit
as ε0 ↓ 0.

Applying Theorem 1.1 to p = 1 and f = χE , where E ⊂ Q is any
measurable set, we get (see also [3] for related results) :
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Corollary 2.5. Let N ≥ 2. Given a sequence of radial functions (ρn) ⊂
L1(RN ) satisfying (2), then for any C > A0/K1,N there exists n0 ≥ 1 such
that

|E||Q\E| ≤ C

∫
E

∫
Q\E

ρn(|x− y|)
|x− y|

dx dy ∀E ⊂ Q measurable ∀n ≥ n0.

3. Estimates in dimension N = 1

Given any g ∈ Lp(R), let Gp : [0,∞) → [0,∞) be the (continuous) function
defined by

Gp(t) =
∫

R
|g(x + t)− g(x)|p dx ∀t ≥ 0. (10)

We start with the following

Lemma 3.1. Given 0 < s < t, let k ∈ N and θ ∈ [0, 1) be such that
t

s
= k + θ. Then there exists Cp > 0 such that for every g ∈ Lp(R) we have

Gp(t)
tp

≤ Cp

{
Gp(s)

sp
+

Gp(θs)
tp

}
. (11)

Proof. Note that

|g(x + t)− g(x)|p = |g(x + ks + θs)− g(x)|p

≤ 2p−1
{
|g(x + ks)− g(x)|p+

+ |g(x + ks + θs)− g(x + ks)|p
}

≤ 2p−1kp−1
k−1∑
j=0

|g(x + js + s)− g(x + js)|p+

+ 2p−1|g(x + ks + θs)− g(x + ks)|p.

Integrating with respect to x ∈ R and changing variables we get

Gp(t) ≤ 2p−1kpGp(s) + 2p−1Gp(θs).

Recall that k ≤ t

s
. We then conclude that (11) holds with Cp = 2p−1.

Another estimate we shall need is given by the lemma below :

Lemma 3.2. Let r > 0. There exists a constant Cp > 0 so that the following
holds : for every g ∈ Lp(0, 2r) such that g = 0 a.e. in (r, 2r) we have∫ r

0

|g|p ≤ Cpr
p

∫ r

0

|g(x + t)− g(x)|p

tp
dx ∀t ∈ (0, r). (12)



6 Augusto C. Ponce

Proof. By a scaling argument, it suffices to prove the lemma for r = 1. We
now extend g ∈ Lp(0, 2) to the entire half-line so that g = 0 a.e. in (1,∞).
Given 0 < t < 1, let k ≥ 1 be the first integer satisfying kt ≥ 1. In particular,
for x ∈ (0, 1) we have x + kt > 1, thus

|g(x)|p = |g(x + kt)− g(x)|p ≤ kp−1
k−1∑
j=0

|g(x + jt + t)− g(x + jt)|p.

Integrating this inequality with respect to x we get∫ 1

0

|g|p ≤ kp−1
k−1∑
j=0

∫ ∞

0

|g(x + jt + t)− g(x + jt)|p dx

= kp

∫ ∞

0

|g(x + t)− g(x)|p dx = kp

∫ 1

0

|g(x + t)− g(x)|p dx.

Note however that k ≤ 2
t
. The lemma now follows by taking C = 2p.

4. Compactness in Lp
loc(RN) for N ≥ 2

Given f ∈ Lp(RN ), we consider Fp : RN → [0,∞) defined by

Fp(h) =
∫

RN

|f(x + h)− f(x)|p dx ∀h ∈ RN .

This function is continuous and satisfies

Fp(h1 + h2) ≤ 2p−1
[
Fp(h1) + Fp(h2)

]
∀h1, h2 ∈ RN .

We have the following

Lemma 4.1. Assume N ≥ 2. Then there exists Cp > 0 such that∫
SN−1

Fp(tv)
tp

dσ(v) ≤ Cp

∫
SN−1

Fp(sv)
sp

dσ(v) for every 0 < s < t. (13)

Proof. Let 0 < s < t < ∞. Given v ∈ SN−1 and w ∈ (Rv)⊥, we apply the
one dimensional estimate in Lemma 3.1 to the function

g(τ) = f(w + τv) for a.e. τ ≥ 0.

Integrating the resulting expression with respect to w ∈ (Rv)⊥, it follows
that for every v ∈ SN−1 we have

Fp(tv)
tp

≤ Cp

{
Fp(sv)

sp
+

Fp(θsv)
tp

}
(14)

for some θ ∈ [0, 1) (depending on s and t). We now split the proof into two
cases :
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Case 1. N is even.
Let O ∈ O(N) be an orthogonal transformation such that 〈Ow, w〉 = 0 for
every w ∈ RN (this is possible since N is even). We then consider

O1w :=
θ

2
w +

√
1− θ2

4
Ow,

O2w :=
θ

2
w −

√
1− θ2

4
Ow.

Note that O1, O2 ∈ O(N) and

θw = O1w + O2w ∀w ∈ RN ,

thus
Fp(θsv) ≤ 2p−1

{
Fp(sO1v) + Fp(sO2v)

}
.

Inserting this inequality into (14) we get

Fp(tv)
tp

≤ Cp
Fp(sv) + Fp(sO1v) + Fp(sO2v)

sp
.

Integrating with respect to v ∈ SN−1 we obtain (13).
Case 2. N is odd.
Let v ∈ SN−1. We denote by SN−2

v the (N − 2)-sphere orthogonal to v :

SN−2
v := SN−1 ∩ (Rv)⊥.

Reasoning as in the previous case, we see that∫
SN−2

v

Fp(tw)
tp

dHN−2 ≤ Cp

∫
SN−2

v

Fp(sw)
sp

dHN−2. (15)

On the other hand, on SN−1 we consider the measure µ defined as

µ(A) =
∫

SN−1
HN−2

(
A ∩ SN−2

v

)
dσ(v) for every Borel set A ⊂ SN−1.

Note that µ is invariant under orthogonal transformations, i.e. µ(OA) =
µ(A) for every O ∈ O(N), and µ(SN−1) = |SN−2|. It then follows that

µ = |SN−2|HN−1bSN−1 .

We now integrate (15) with respect to v ∈ SN−1. Using the observation
above we get (13).

The lemma above implies the following compactness result :

Proposition 4.2. Assume N ≥ 2. Let (fn) ⊂ Lp(RN ) be a bounded se-
quence of functions such that∫

RN

∫
RN

|fn(x)− fn(y)|p

|x− y|p
ρn (|x− y|) dx dy ≤ B ∀n ≥ 1. (16)

Then (fn) is relatively compact in Lp
loc(RN ).
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Proof. Fix t0 > 0. Let n0 ≥ 1 be such that∫
Bt0

ρn ≥
1
2

∀n ≥ n0.

We first prove the following

Claim. There exists a constant C = C(p, N,B) > 0 such that∫
SN−1

Fn,p(tv) dσ(v) ≤ Ctp0 (17)

for every 0 < t < t0 and every n ≥ n0. (Fn,p denotes the function Fp

associated to fn).

In fact, let s, τ > 0 be such that 0 < s < t0 ≤ τ . It follows from the previous
lemma that ∫

SN−1

Fn,p(τv)
τp

dσ(v) ≤ Cp

∫
SN−1

Fn,p(sv)
sp

dσ(v).

We now multiply both sides by sN−1ρn(s) and then integrate the resulting
expression with respect to s running from 0 to t0. We get

1
2|SN−1|

∫
SN−1

Fn,p(τv)
τp

dσ(v) ≤
∫

SN−1

Fn,p(τv)
τp

dσ(v)
∫ t0

0

ρn(s)sN−1 ds

≤ C

∫ t0

0

∫
SN−1

Fn,p(sv)
sp

ρn(s)sN−1 dσ(v) ds

≤ C

∫
RN

Fn,p(h)
|h|p

ρn(|h|) dh.

Note that the last term is precisely the double integral in the left-hand side
of (16). We then conclude that∫

SN−1
Fn,p(τv) dσ(v) ≤ Cτp ∀τ ≥ t0 ∀n ≥ n0.

We now let 0 < t < t0. Using the above estimate with τ = t0 and τ = t + t0
we get∫

SN−1
Fn,p(tv) dσ(v) ≤

≤ 2p−1

{∫
SN−1

Fn,p(t0v) dσ +
∫

SN−1
Fn,p((t + t0)v) dσ

}
≤ 2p−1C

[
tp0 + (t + t0)p

]
≤ Ctp0

for every n ≥ n0. This proves the claim.

Once we reach at this point we can proceed as in [2].
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We first set Φδ :=
1
|Bδ|

χBδ
. For any 0 < δ < t0, it follows from the previous

estimate that∫
RN

|Φδ ∗ fn(x)− fn(x)|p dx =
∫

RN

∣∣∣∣−∫
Bδ

[
fn(x + h)− fn(x)

]
dh

∣∣∣∣p dx

≤
∫

RN

−
∫

Bδ

|fn(x + h)− fn(x)|p dh dx

=
1
|Bδ|

∫ δ

0

∫
SN−1

Fn,p(tv) dσ(v) tN−1 dt

≤ Ctp0
|Bδ|

∫ δ

0

tN−1 dt ≤ Ctp0.

Thus,∫
RN

|Φδ ∗ fn(x)− fn(x)|p dx ≤ Ctp0 ∀n ≥ n0 ∀δ ∈ (0, t0). (18)

We now conclude the proof by applying a variant of the Fréchet-Kolmogorov
Theorem. In fact, since (fn) is bounded in Lp(RN ), then for every δ >
0 fixed the sequence (Φδ ∗ fn) is relatively compact in Lp

loc(RN ) (see [5,
Corollary IV.27]), hence it is totally bounded in Lp

loc(RN ). Using (18), it
follows that (fn) is also totally bounded in Lp

loc(RN ), which implies that
(fn) is relatively compact in Lp

loc(RN ).

5. An Lp-estimate near the boundary of Ω

In this section we shall prove the following

Lemma 5.1. Assume N ≥ 2. Then there exist constants r0 > 0 (depending
on Ω and on the sequence (ρn)n≥1) and C1, C2 > 0 (depending on p, Ω and
N) so that the following holds : given 0 < r < r0 we can find n0 ≥ 1 such
that∫

Ω

|f |p ≤ C1

∫
Ωr

|f |p + C2r
p

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρn (|x− y|) dx dy (19)

for every f ∈ Lp(Ω) and n ≥ n0.

Proof. Let x0 ∈ ∂Ω. Without loss of generality, we may assume that x0 = 0.
Take r0 > 0 sufficiently small such that (up to a rotation of ∂Ω) the set
∂Ω ∩B4r0 is the graph of a Lipschitz function γ. For simplicity, we can also
assume that γ has Lipschitz constant at most 1/2.
Given 0 < r < r0, we consider the graph of γ :

Γr :=
{

x = (x′, γ(x′)) ∈ RN : x′ ∈ B′
r

}
.
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Let Λ be the upper half cone

Λ :=
{

x = (x′, xN ) ∈ RN : |x′| ≤ xN

}
.

We also define
Ωr :=

{
x ∈ Ω : d(x, ∂Ω) > r

}
.

Because of the upper bound on the Lipschitz constant of γ, we have

Ω ∩Br/2 ⊂ Γr + (Λ ∩Br) ⊂ Ω ∩B3r (20)

for every 0 < r < r0. We first prove the following
Claim. There exists n0 ≥ 1 depending on r ∈ (0, r0) such that if f ∈ Lp(Ω)
and f = 0 a.e. in Ωr, then∫

Ω∩Br/2

|f |p ≤ Crp

∫
Ω∩B4r

∫
Ω∩B4r

|f(x)− f(y)|p

|x− y|p
ρn (|x− y|) dx dy (21)

for every n ≥ n0.
In fact, given ξ ∈ Γr and v ∈ Λ ∩ SN−1, we consider the function

g(t) = f(ξ + tv) for a.e. t ∈ (0, 2r).

Applying Lemma 3.2 to g we get∫ r

0

|f(ξ + sv)|p ds ≤ Crp

∫ r

0

|f(ξ + sv + tv)− f(ξ + sv)|p

tp
ds

for every 0 < t < r.
Recall that ξ = (x′, γ(x′)) for some x′ ∈ B′

r ⊂ RN−1. We first integrate the
above estimate with respect to x′ ∈ B′

r and then we perform the change of
coordinates

y = (x′, γ(x′)) + sv

with respect to the variables x′ and s. Using (20) we then find∫
Ω∩Br/2

|f |p ≤ Crp

∫
Γr+(Λ∩Br)

|f(y + tv)− f(y)|p

tp
dy

≤ Crp

∫
Ω∩B3r

|f(y + tv)− f(y)|p

tp
dy.

(22)

Take n0 ≥ 1 sufficiently large so that∫
Br

ρn ≥
1
2

∀n ≥ n0.

Since each ρn is a radial function, there exists c > 0 such that∫
Λ∩Br

ρn ≥ c ∀n ≥ n0.
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We now multiply (22) by ρn(t)tN−1. Integrating the resulting expression
with respect to t ∈ (0, r) and v ∈ Λ ∩ SN−1 we get

c

∫
Ω∩Br/2

|f |p ≤ Crp

∫
Ω∩B3r

∫
Λ∩Br

|f(y + h)− f(y)|p

|h|p
ρn(|h|) dh dy

≤ Crp

∫
Ω∩B4r

∫
Ω∩B4r

|f(x)− f(y)|p

|x− y|p
ρn (|x− y|) dx dy.

This completes the proof of the claim.

Using a standard covering argument, it follows from the claim above that
there exists n0 ≥ 1 depending on r ∈ (0, r0) such that if f ∈ Lp(Ω) and
f = 0 a.e. in Ωr, then∫

Ω\Ωr/4

|f |p ≤ Crp

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρn (|x− y|) dx dy (23)

for every n ≥ n0, where the constant C > 0 is independent of f , r and n.

We now take f ∈ Lp(Ω) arbitrary. In other words, we do not impose any
restriction on the set supp f .
Let ζ ∈ C∞(Ω) be such that ζ ≡ 0 on Ωr, ζ ≡ 1 on Ω\Ωr/2, 0 ≤ ζ ≤ 1 on
Ω and |∇ζ| ≤ C/r on Ω. Applying (23) to the function ζf we get∫

Ω\Ωr/4

|f |p ≤ Crp

∫
Ω

∫
Ω

|ζ(x)f(x)− ζ(y)f(y)|p

|x− y|p
ρn (|x− y|) dx dy

≤ 2p−1Crp

{ ∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρn (|x− y|) dx dy+

+
∫

Ω

∫
Ω

|f(x)|p |ζ(x)− ζ(y)|p

|x− y|p
ρn (|x− y|) dx dy

}
.

We now estimate the second double-integral in the right-hand side. Since
ζ(x) = ζ(y) = 1 for every x, y ∈ Ω\Ωr/2 we have

∫
Ω

∫
Ω

|f(x)|p |ζ(x)− ζ(y)|p

|x− y|p
ρn (|x− y|) dx dy =

∫∫
x∈Ω\Ωr/4

y∈Ωr/2

+
∫∫

x∈Ωr/4

y∈Ω

.

Note that d
(
Ω\Ωr/4, Ωr/2

)
= r/4, thus∫∫

x∈Ω\Ωr/4

y∈Ωr/2

≤ C

rp

∫
|h|> r

4

ρn ·
∫

Ω

|f |p and
∫∫

x∈Ωr/4

y∈Ω

≤ C

rp

∫
Ωr/4

|f |p.
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We then conclude that∫
Ω

|f |p =
∫

Ωr/4

|f |p +
∫

Ω\Ωr/4

|f |p

≤ C

∫
Ωr/4

|f |p + Crp

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρn (|x− y|) dx dy+

+ C

∫
|h|> r

4

ρn ·
∫

Ω

|f |p.

Taking n0 ≥ 1 large enough so that∫
|h|> r

4

ρn ≤
1

2C
∀n ≥ n0,

we see that (19) holds.

6. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.2. Given l ≥ 1, we fix ϕl ∈ C∞
0 (Ω) such that

ϕ ≡ 1 on Ω1/l. It is easy to see that the sequence (ϕlfn)n≥1 satisfies the
assumptions of Proposition 4.2. In particular, (fn) is relatively compact
in Lp(Ωl). Applying a standard diagonalization argument, we can extract a
subsequence (fnj ) such that fnj → f in Lp

loc(Ω). Since the original sequence
is bounded, f ∈ Lp(Ω).
Claim. f ∈ BV (Ω) if p = 1 and f ∈ W 1,p(Ω) if 1 < p < ∞; moreover,∫

Ω

|Df |p ≤ B

Kp,N
. (24)

Let ϕ ∈ C∞
0 (B1) be such that ϕ ≥ 0 and

∫
ϕ = 1. Given δ > 0, we define

ϕδ(x) :=
1

δN
ϕ

(x

δ

)
∀x ∈ RN .

It follows from Jensen’s inequality and estimate (6) that∫
Ωδ

∫
Ωδ

|ϕδ ∗ fn(x)− ϕδ ∗ fn(y)|p

|x− y|p
ρn (|x− y|) dx dy ≤ B ∀n ≥ 1. (25)

We now observe that for each δ > 0 fixed, the subsequence (ϕδ ∗ fnj
)j≥1

converges to ϕδ ∗ f in C2(Ωδ). Taking nj → ∞ in (25) we get (see e.g. [8,
Remark 7])

Kp,N

∫
Ωδ

∣∣D(ϕδ ∗ f)
∣∣p ≤ B ∀δ > 0.

The claim now follows by taking δ → 0.
We are left to prove that fnj

→ f in Lp(Ω).
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In order to show this, we apply (19) with f replaced by fnj
− f . Using (5)

and (6) we get∫
Ω

|fnj − f |p ≤ C1

∫
Ωr

|fnj − f |p + C2r
p2p−1

(
B + C

∫
Ω

|Df |p
)

for every nj ≥ n0(r). For r > 0 fixed we let j →∞. It follows that

lim sup
j→∞

∫
Ω

|fnj − f |p ≤ C2r
p2p−1

(
B + C

∫
Ω

|Df |p
)

.

Taking r → 0, we conclude that fnj → f in Lp(Ω).

As a corollary to Theorem 1.2 we have

Proof of Theorem 1.1. Let A0 > 0 be the best constant of the inequality
(1). Assume by contradiction that there exists C > A0/Kp,N for which (4)
fails for every n ≥ n0. This means there exists a sequence (fn) in Lp(Ω)
verifying the following properties :∫

Ω

|fn|p = 1 and
∫

Ω

fn = 0, (26)∫
Ω

∫
Ω

|fn(x)− fn(y)|p

|x− y|p
ρn (|x− y|) dx dy <

1
C

. (27)

Note that (fn) satisfies the assumptions of Theorem 1.2. We can then extract
a convergent subsequence fnj → f in Lp(Ω). In particular, it follows from
(26) that ∫

Ω

|f |p = 1 and
∫

Ω

f = 0.

On the other hand, from (27) we have∫
Ω

|Df |p ≤ 1
Kp,NC

.

These two facts imply that 1 ≤ A0

Kp,NC
, a contradiction.

7. Proof of Theorem 1.3

We first observe that after replacing the sequence ρn by ρn(t)+ρn(−t)
2 , we can

always assume that each ρn is an even function. Note that (9) still holds
with the same constant B.

To prove the theorem we shall follow the sames steps as before. We start
with a compactness lemma :



14 Augusto C. Ponce

Lemma 7.1. Assume there exists θ0 ∈ (0, 1) and α0 > 0 such that (8)
holds. If (fn) ⊂ Lp(R) is a bounded sequence of functions such that∫

R

∫
R

|fn(x)− fn(y)|p

|x− y|p
ρn (x− y) dx dy ≤ B ∀n ≥ 1, (28)

then (fn) is relatively compact in Lp
loc(R).

Proof. Let `0 ≥ 1 be a fixed integer. We first prove the following
Claim. Estimate (11) still holds with θ replaced by

θ̃ := 1− θ

`0
= 1− 1

`0

(
t

s
− k

)
(with the constant Cp also depending on `0).
Indeed, it suffices to notice that

Gp(θs) ≤ `p
0 Gp

(θs

`0

)
≤ 2p−1`0

{
Gp(s) + Gp

(
s− θs

`0

)}
.

Inserting this inequality into (11), the claim follows.
Given θ0 ∈ (0, 1), we take `0 ≥ 2 sufficiently large so that 1/`0 < 1− θ0; in
particular, we have θ0 < θ̃ ≤ 1.
We now fix t0 > 0. Take n0 ≥ 1 sufficiently large so that∫ t0

0

ρn,θ0 ≥
α0

4
∀n ≥ n0.

We know from our claim that

Fn,p(τ)
τp

≤ C

{
Fn,p(s)

sp
+

Fn,p(θ̃s)
τp

}
for every 0 < s < t0 ≤ τ . We multiply both sides of this inequality by ρn,θ0 .
Using (7) and integrating the resulting expression from 0 to t0 we get

α0

4
Fn,p(τ)

τp
≤ C

{∫ ∞

0

Fn,p(s)
sp

ρn(s) ds +
1
τp

∫ t0

0

Fn,p(θ̃s)ρn(θ̃s) ds

}
(29)

for every τ ≥ t0 and n ≥ n0. We now estimate the second integral in the
right-hand side of this inequality. We first observe that

1
τp

∫ t0

0

Fn,p(θ̃s)ρn(θ̃s) ds ≤
∫ τ

0

Fn,p(θ̃s)
(θ̃s)p

ρn(θ̃s) ds =: I.

We then make the change of variables h = θ̃s (note that θ̃ is a function of
s for fixed τ). Recall that, by definition,

θ̃s =
(

k

`0
+ 1

)
s +

τ

`0
for k ≤ τ

s
< k + 1.
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Thus,

I =
∞∑

k=1

∫ τ
k

τ
k+1

Fn,p(θ̃s)
(θ̃s)p

ρn(θ̃s) ds

=
∞∑

k=1

∫ τ
k

(1− 1
`0

) τ
k+1

Fn,p(h)
hp

ρn(h)
dh

k
`0

+ 1
≤ C

∫ ∞

0

Fn,p(h)
hp

ρn(h) dh.

(30)

This last inequality comes from the fact that 1
k0

belongs to at most Ck0

intervals of the form „
(1− 1

`0
)

1

k + 1
;
1

k

«
for k ≥ 1.

Inserting (30) into (29) and using (28) we conclude that

Fn,p(τ)
τp

≤ C

α0

∫ ∞

0

Fn,p(s)
sp

ρn(s) ds ≤ C

α0
B

for every τ ≥ t0 and n ≥ n0. Proceeding as in the proof of (17), this implies
that ∫

R
|fn(x + t)− fn(x)|p dx ≤ Ctp0 ∀t ∈ (0, t0) ∀n ≥ n0.

In other words, the sequence (fn) is relatively compact in Lp
loc(R) (see [5,

Theorem IV.25]).

The analogue of Lemma 5.1 is the following

Lemma 7.2. There exist r0 > 0 (depending on (ρn)n≥1) and constants
C1, C2 > 0 (depending on p) so that the following holds : given 0 < r < r0

we can find n0 ≥ 1 such that∫ 1

0

|f |p ≤ C1

∫ 1−r

r

|f |p + C2r
p

∫ 1

0

∫ 1

0

|f(x)− f(y)|p

|x− y|p
ρn (x− y) dx dy (31)

for every f ∈ Lp(0, 1) and n ≥ n0.

Proof. We proceed exactly as in the proof of Lemma 5.1. Actually, this
case is even simpler since the claim is essentially contained in Lemma 3.2.
Note in particular that condition (8) is not needed.

Theorem 1.3 can now be proved as in the previous section.
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