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Abstract

We study how the existence of the limitZ
Ω

Z
Ω

ω

„
|f(x)− f(y)|
|x− y|

«
ρε(x− y) dx dy as ε ↓ 0 (∗)

for ω : [0,∞) → [0,∞) continuous and (ρε) ⊂ L1(RN ) converging to δ0

is related to the weak regularity of f ∈ L1
loc(Ω). This approach gives

an alternative way of defining the Sobolev spaces W 1,p. We also briefly
discuss the Γ-convergence of (∗) with respect to the L1(Ω)-topology.

1 Introduction and main results.

Let Ω ⊂ RN be an open set such that ∂Ω is compact and Lipschitz. Given a
function f ∈ L1

loc(Ω) we consider the functional∫
Ω

∫
Ω

ω

(
|f(x)− f(y)|

|x− y|

)
ρε(x− y) dx dy, (1.1)

where ω : [0,∞) → [0,∞) is continuous and (ρε) ⊂ L1(RN ) is a family of
functions satisfying the following properties

ρε ≥ 0 a.e. in RN ,∫
RN

ρε = 1 ∀ε > 0,

lim
ε↓0

∫
|h|>δ

ρε(h) dh = 0 ∀δ > 0.

(1.2)

We show that in general there exists a sequence εj ↓ 0 for which the pointwise
limit in (1.1) exists. By imposing an extra condition on (ρε) we obtain new
characterizations for the Sobolev spaces W 1,p, 1 ≤ p < ∞, and BV . At the end
we prove the Γ-convergence of (1.1). As we will see our results can also be used
to get some information about noncoercive functionals.

We have been inspired by the simplified proofs presented in [3], following a
suggestion of E. Stein (see Lemma 5.4). Our approach not only unifies the
proofs of some well-known results, including in the BV -case, but it also deals
with more general families (ρε) ⊂ L1(RN ) (see [1, 2, 3, 6, 10, 11, 14]).

1



1.1 Construction of the subsequence εj ↓ 0.

We start with a family of functions (ρε) in L1(RN ) satisfying (1.2).

To each ε > 0 we associate the positive Radon measure µε on SN−1 defined by

µε(E) :=
∫

R+E

ρε for each Borel set E ⊂ SN−1, (1.3)

where R+E := {rx : r ≥ 0 and x ∈ E} is the cone generated by E with respect
to the origin.

The family (µε) is bounded in M(SN−1) (the space of Radon measures on
SN−1), so there exist a sequence εj ↓ 0 and µ ∈ M(SN−1) such that

µεj ⇀ µ in M(SN−1). (1.4)

In particular, µ ≥ 0 on SN−1 and µ(SN−1) = 1.

In Section 3 we present some examples of admissible families (ρε) for which the
measure µ can be written down explicitly from the construction above.

Given ω : [0,∞) → [0,∞) continuous, we define

ωµ(v) :=
∫

SN−1
ω
(
|v · σ|

)
dµ(σ) ∀v ∈ RN . (1.5)

1.2 The pointwise limit of (1.1) as εj ↓ 0.

With the particular choice ω(t) = tp, for some p ≥ 1, we have

Theorem 1.1 If f ∈ W 1,p(Ω), p ≥ 1, then there exists C > 0 such that∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρε(x− y) dx dy ≤ C ∀ε > 0. (1.6)

Moreover,

lim
j→∞

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρεj

(x− y) dx dy =
∫

Ω

(∫
SN−1

|Df · σ|p dµ(σ)
)

.

The case p = 1 can be further extended to include the case of BV -functions:

Theorem 1.2 If f ∈ BV (Ω), then there exists C > 0 such that∫
Ω

∫
Ω

|f(x)− f(y)|
|x− y|

ρε(x− y) dx dy ≤ C ∀ε > 0. (1.7)

In addition, we have

lim
j→∞

∫
Ω

∫
Ω

|f(x)− f(y)|
|x− y|

ρεj (x− y) dx dy =
∫

SN−1

(∫
Ω

|Df · σ|
)

dµ(σ).
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(We point out that the right-hand side of the identity above is well-defined since

the function σ ∈ SN−1 7→
∫

Ω

|Df · σ| is continuous).

There are special choices of (ρε) which give some very interesting expressions
(see Section 3, and also [3]). Taking for instance ρε to be a radial function for
each ε > 0, we get the following (see [2, 6])

Corollary 1.3 Suppose that ρε is radial for each ε > 0.

If f ∈ W 1,p(Ω), p > 1, or if f ∈ BV (Ω) and p = 1, then

lim
ε↓0

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρε

(
|x− y|

)
dx dy = Kp,N

∫
Ω

|Df |p, (1.8)

where Kp,N = �
∫

SN−1
|e1 · σ|p dHN−1.

Choosing the family (ρε) of the form ρε(x) := 1
εN ρ

(
x
ε

)
for some fixed nonnega-

tive function ρ ∈ L1(RN ), we obtain the following limit (see [11]):

Corollary 1.4 Let ρ ∈ L1(RN ), ρ ≥ 0 a.e. in RN .

If f ∈ W 1,p(Ω), p > 1, or if f ∈ BV (Ω) and p = 1, then

lim
ε↓0

1
εN

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρ
(x− y

ε

)
dx dy =

∫
RN

(∫
Ω

∣∣∣Df · z

|z|

∣∣∣p) ρ(z) dz.

In the special case where Ω = RN , by a simple change of variables we may
rewrite the above identity as

lim
ε↓0

∫
RN

∫
RN

|f(x + εh)− f(x)|p

|εh|p
ρ(h) dx dh =

∫
RN

(∫
RN

∣∣∣Df · z

|z|

∣∣∣p) ρ(z) dz.

We can also take families (ρε) which privilege certain directions. Let for instance

ρε :=
1

2Nε2N−1
χ(−ε,ε)×(−ε2,ε2)(N−1) ;

we have (see Example 3.3)

Corollary 1.5 If f ∈ W 1,p(Ω), p > 1, or if f ∈ BV (Ω) and p = 1, then

lim
ε↓0

1
ε2N−1

∫
Ω

∫
Ω

|x1−y1|<ε

|xi−yi|<ε2

i=2,...,N

|f(x)− f(y)|p

|x− y|p
dx dy = 2N

∫
Ω

∣∣∣∣ ∂f

∂x1

∣∣∣∣p . (1.9)
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Assuming that ω is asymptotic linear at infinity we obtain the following result
which extends Theorem 1.2:

Theorem 1.6 Let ω : [0,∞) → [0,∞) be a continuous function satisfying

ω∞ := lim
t→∞

ω(t)
t

∈ [0,∞). (1.10)

If Ω ⊂ RN is unbounded, suppose in addition that there exists C > 0 such that

|ω(t)| ≤ Ct ∀t ≥ 0. (1.11)

If f ∈ BV (Ω), then

lim
j→∞

∫
Ω

∫
Ω

ω

(
|f(x)− f(y)|

|x− y|

)
ρεj (x− y) dx dy =

=
∫

Ω

ωµ(Daf) + ω∞
∫

SN−1

(∫
Ω

|Dsf · σ|
)

dµ(σ),
(1.12)

where Df = Daf LN + Dsf is the Radon-Nikodym decomposition of Df with
respect to the Lebesgue measure.

Remark 1.1 The results in this section rely heavily on the Lipschitz regularity
of ∂Ω. In fact, take for instance N = 2 and Ω := B1(0)\

{
(x1, 0) : 0 ≤ x1 < 1

}
.

On Ω one can easily construct a smooth function f ∈ W 1,p(Ω) such that

lim
x2↓0

1
2 <x1<1

f(x1, x2) = 1 and lim
x2↑0

1
2 <x1<1

f(x1, x2) = 0.

However, taking (ρε) radial we have

lim
ε↓0

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρε

(
|x− y|

)
dx dy = +∞. (1.13)

See Theorem 1.8; note that f 6∈ W 1,p(B1) while the integral above is actually
being computed on B1 × B1 (since

{
(x1, 0) : 0 ≤ x1 < 1

}
is a null set in R2).

See also Remark 1.4.

We conclude this section with the following generalization of Theorem 1.1:

Theorem 1.7 Assume ω̃ : [0,∞) → [0,∞) is convex and increasing, and let
f ∈ W 1,1

loc (RN ) be such that ω̃
(
|Df |

)
∈ L1(RN ).

For any continuous function ω,

0 ≤ ω(t) ≤ ω̃(t) ∀t ≥ 0, (1.14)

we have

lim
j→∞

∫
Ω

∫
Ω

ω

(
|f(x)− f(y)|

|x− y|

)
ρεj (x− y) dx dy =

∫
Ω

ωµ(Df). (1.15)
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Remark 1.2 The assumption ω̃
(
|Df |

)
∈ L1(RN ) was made just for simplicity.

In fact, if ω̃
(
|Df |

)
∈ L1(Ω) we can always extend u to RN so that ω̃

(
α|Df |

)
∈

L1(RN ) for some α > 0 (which may be much smaller than 1).

Remark 1.3 There are several important functionals which cannot be point-
wise approximated by using (1.1). An example is the Mumford-Shah functional

MS(f) := λ1

∫
RN

|Daf |2 + λ2HN−1(Sf ) ∀f ∈ SBV (RN ) ⊂ BV (RN ),

where HN−1(Sf ) denotes the (N − 1)-dimensional Hausdorff measure of the set
of essential discontinuity of f and λ1, λ2 > 0 are constants.

Nevertheless, it can be approximated by (see [11, Example 7.4])∫
RN

∫
RN

ω|x−y|

(
|f(x)− f(y)|

|x− y|

)
ρε(x− y) dx dy, (1.16)

where

ρε(x) =
1

εN
ρ
(x

ε

)
, ρ ∈ L1(RN ) radial, ρ ≥ 0 a.e. (1.17)

and

ωτ (s) =
1
τ

arctan(τs2) ∀s ≥ 0 ∀τ > 0. (1.18)

It would be interesting to study the pointwise (and also the Γ-) convergence of
(1.16) for more general families of continuous functions (ωτ ) but especially for
any (ρε) which satisfy (1.2).

If (ρε) is an arbitrary family of radial functions, the convergence of (1.16) seems
to be unknown even in the special case where (ωτ ) is given by (1.18) (see however
[11]).

1.3 Some new characterizations of W 1,p, p ≥ 1, and BV .

By our previous results, we know that if u ∈ W 1,p(Ω) and 1 < p < ∞ then

lim sup
ε↓0

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρε(x− y) dx dy < +∞ (1.19)

(if p = 1 then W 1,1(Ω) may be replaced by BV (Ω)). In order to prove the
converse, we shall impose the following condition on the family (ρε):

there exist linearly independent vectors v1, . . . , vN ∈ RN

and δ > 0 such that
Cδ(vi) ∩ Cδ(vj) = φ if i 6= j,

lim sup
ε↓0

∫
Cδ(vi)

ρε > 0 ∀i = 1, . . . , N.

(1.20)
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Here, for any v ∈ RN\{0} and δ > 0, Cδ(v) denotes the cone

Cδ(v) :=
{

w ∈ RN\{0} :
v

|v|
· w

|w|
> (1− δ)

}
. (1.21)

We have

Theorem 1.8 Let f ∈ Lp(Ω), p ≥ 1. Suppose

lim sup
ε↓0

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρε(x− y) dx dy < ∞, (1.22)

where (ρε) satisfies (1.2) and (1.20).

Then f ∈ W 1,p(Ω) if p > 1, and f ∈ BV (Ω) if p = 1. Moreover, there exists
α > 0 (depending only on (ρε)) such that

α

∫
Ω

|Df |p ≤ lim sup
ε↓0

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρε(x− y) dx dy. (1.23)

In particular, we obtain the following characterization (see [2]):

Corollary 1.9 Suppose that ρε is radial for each ε > 0.

Let f ∈ Lp(Ω), p ≥ 1. If

lim inf
ε↓0

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρε

(
|x− y|

)
dx dy < ∞, (1.24)

then f ∈ W 1,p(Ω) if p > 1, and f ∈ BV (Ω) if p = 1. In particular, (1.8) holds.

Theorem 1.8 also implies the (see [11])

Corollary 1.10 Let ρ ∈ L1(RN ), ρ ≥ 0 a.e. in RN , be such that
∫

ρ > 0.

Let f ∈ Lp(Ω), p ≥ 1. If

lim inf
ε↓0

1
εN

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρ
(x− y

ε

)
dx dy < ∞, (1.25)

then f ∈ W 1,p(Ω) if p > 1, and f ∈ BV (Ω) if p = 1. In particular, Corollary 1.4
can be applied to f .

Another application of Theorem 1.8 is the following criterion to decide whether
a measurable function f , defined on an open connected set A ⊂ RN , is constant
or not; this extends some of the results in [3] (see also [13]):
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Corollary 1.11 Assume A ⊂ RN is an open connected set. Let f : A → R be
a measurable function such that

lim
ε↓0

∫
A

∫
A

|f(x)− f(y)|p

|x− y|p
ρε(x− y) dx dy = 0, (1.26)

where p ≥ 1 and (ρε) satisfies (1.2) and (1.20).

Then f = const a.e. in A.

We first note that it suffices to prove the corollary for f ∈ L∞(A). In fact, one
can always replace f by its truncation

TMf(x) :=


f(x) if |f(x)| ≤ M

M if f(x) > M

−M if f(x) < −M

for every M > 0. Applying Theorem 1.8 on the open balls Br ⊂ A, we conclude
that f ∈ W 1,p

loc (Ω) and Df = 0 a.e.. Since A is connected, we must have
f = const a.e. in A.

Remark 1.4 A careful inspection in the proof of Theorem 1.8 shows that it
still holds without any assumption on the regularity of Ω. As we have seen
the converse statement relies heavily on the smoothness of ∂Ω. It would be
interesting to find an expression similar to (1.19) which characterizes W 1,p(Ω)
without any additional assumptions on Ω. The example in Remark 1.1 suggests
the following

Open problem 1 Suppose (ρε) is a family of radial functions satisfying (1.2).
Let f ∈ Lp(Ω) be such that

lim sup
ε↓0

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρε

(
dΩ(x, y)

)
dx dy < +∞, (1.27)

where dΩ denotes the geodesic distance in Ω. Can one conclude that u ∈ W 1,p(Ω)
without assuming any regularity of Ω?

The answer to this problem does not seem to be known even in the case of a
disk without a line segment.

Let ω : [0,∞) → [0,∞) be a nondecreasing convex function such that ω(0) = 0
and satisfying the coercivity condition

lim
t→∞

ω(t)
t

= ∞. (1.28)

The Orlicz spaces are defined as

Lω(Ω) :=
{

f ∈ L1
loc(Ω) :

∫
Ω

ω
(
α|f |

)
< ∞ for some α > 0

}
. (1.29)
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Analogously, we have the Orlicz-Sobolev spaces (see e.g. [15])

W 1,ω(Ω) :=
{

f ∈ Lω(Ω) : |Df | ∈ Lω(Ω)
}

. (1.30)

We have the following characterization for these spaces:

Theorem 1.12 Suppose that (1.2) and (1.20) hold.

Let f ∈ Lω(Ω). Then f ∈ W 1,ω(Ω) if, and only if, there exists β > 0 such that

lim sup
ε↓0

∫
Ω

∫
Ω

ω

(
β
|f(x)− f(y)|

|x− y|

)
ρε(x− y) dx dy < ∞. (1.31)

The description of the Sobolev space W 1,1(Ω) is more delicate since it is not
reflexive, and so bounded sequences do not necessarily converge weakly to an
element in W 1,1(Ω) (but they do converge weakly in BV (Ω)).

We first recall that given g ∈ L1(Ω) there exists a nondecreasing convex function
ωg : [0,∞) → [0,∞) such that g ∈ Lωg (Ω) (see e.g. [8]). In particular, W 1,1(Ω)
can be written as the union of all Orlicz-Sobolev spaces. More precisely,

W 1,1(Ω) =
⋃

ω convex
and coercive

W 1,ω(Ω). (1.32)

This gives an indirect characterization of W 1,1(Ω), by means of the Orlicz-
Sobolev spaces, in terms of (1.31).

1.4 Properties of f under no additional assumptions on
(ρε).

Let us now assume that only (1.2) holds. We can still derive some information
about f if (1.19) is satisfied.

In order to simplify our notation, we state our results in the special case Ω = RN :

Theorem 1.13 Let f ∈ Lp(RN ), p ≥ 1, be such that

lim inf
ε↓0

∫
RN

∫
RN

|f(x)− f(y)|p

|x− y|p
ρε(x− y) dx dy < ∞. (1.33)

Then there exists a vector subspace E ⊂ RN , dim E ≥ 1, such that

f |E+w ∈ W 1,p(E + w) for a.e. w ∈ E⊥ if p > 1,

f |E+w ∈ BV (E + w) for a.e. w ∈ E⊥ if p = 1.

In addition, there exists α > 0 such that

α

∫
RN

|DEf |p ≤ lim inf
ε↓0

∫
RN

∫
RN

|f(x)− f(y)|p

|x− y|p
ρε(x− y) dx dy. (1.34)
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In particular we have

Corollary 1.14 Assume f ∈ Lp
loc(RN ), p ≥ 1, is such that

lim inf
ε↓0

∫
RN

∫
RN

|f(x)− f(y)|p

|x− y|p
ρε(x− y) dx dy = 0. (1.35)

Then there exist a vector space E ⊂ RN , dim E = k ≥ 1, and a function
f̃ ∈ Lp

loc(RN−k) such that

f(v + w) = f̃(w) for a.e. v ∈ E and a.e. w ∈ E⊥. (1.36)

In other words, f is a function of (N − k)-variables.

Note that by Corollary 1.5 this is the best we can expect from f under our
assumptions on (ρε).

1.5 Some remarks about the Γ-convergence of (1.1).

Let us first recall the definition of Γ-lower and upper limits (with respect to the
L1(Ω)-topology; see for instance [7]).

Given a bounded open set A ⊂ RN , let (Fj) be any sequence of functionals
Fj : L1(A) → [0,+∞]. For each f ∈ L1(A) we set

Γ−L1(A)-lim inf
j→∞

Fj(f) := min
{

lim inf
j→∞

Fj(fj) : fj → f in L1(A)
}

, (1.37)

Γ−L1(A)-lim sup
j→∞

Fj(f) := min
{

lim sup
j→∞

Fj(fj) : fj → f in L1(A)
}

. (1.38)

(A standard diagonalization argument shows that both minima are really at-
tained).

If both limits are equal at some point f ∈ L1(A), we say that the sequence (Fj)
Γ-converges at f and we denote this common number by Γ−L1(A)- lim

j→∞
Fj(f).

Given F : L1(A) → [0,+∞], the lower semicontinuous envelope of F , sc−L1(A) F ,
is the greatest L1(A)-lower semicontinuous functional less than or equal to F .
In terms of the Γ-convergence we have

sc−L1(A) F (f) = min
{

lim inf
j→∞

F (fj) : fj → f in L1(A)
}

. (1.39)

We recall that ω∗∗ denotes the convex lower semicontinuous envelope of ω :
[0,∞) → [0,∞) (which in our case coincides with the greatest convex function
less than or equal to ω).
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Theorem 1.15 Assume Ω ⊂ RN is a bounded open set with Lipschitz boundary
and ω : [0,∞) → [0,∞) is continuous. If

ω∗∗µ = (ω∗∗)µ in RN , (1.40)

then

Γ−L1(Ω)- lim
j→∞

∫
Ω

∫
Ω

ω

(
|f(x)− f(y)|

|x− y|

)
ρεj (x− y) dx dy = sc−L1(Ω) F (f) (1.41)

for every f ∈ L1(Ω), where F : L1(Ω) → [0,+∞] is given by

F (f) =


∫

Ω

ωµ(Df) if f ∈ C1(Ω),

+∞ otherwise.
(1.42)

The theorem above reduces the problem of studying the Γ-convergence of our
functionals to a relaxation problem, namely to determine the lower semicontin-
uous envelope of F .

By relaxation, we know that (see [4, Theorems 4.2.8 and 4.4.1])

sc−L1(Ω) F (f) =
∫

Ω

ω∗∗µ (Df) ∀f ∈ C1(Ω). (1.43)

More generally, let
(
ω∗∗µ

)∞ : RN → [0,+∞] be defined as

(
ω∗∗µ

)∞(v) := lim
t→∞

ω∗∗µ (tv)
t

∀v ∈ RN (1.44)

(the limit above always exists in [0,+∞] since ω∗∗µ is convex). Applying Theo-
rem 4.7 in [5] to (1.43) we get

sc−L1(Ω) F (f) =
∫

Ω

ω∗∗µ (Daf) dx +
∫

Ω

(
ω∗∗µ

)∞( dDsf

d|Dsf |

)
d|Dsf | (1.45)

for every f ∈ BV (Ω). Here, Df = Daf LN + Dsf is the Radon-Nikodym
decomposition of Df and dDsf

d|Dsf | denotes the Radon-Nikodym derivative of Dsf

with respect to |Dsf |.
In view of Theorem 1.15 and (1.45), we have the following

Corollary 1.16 Under the assumptions of Theorem 1.15, we have

Γ−L1(Ω)- lim
j→∞

∫
Ω

∫
Ω

ω

(
|f(x)− f(y)|

|x− y|

)
ρεj

(x− y) dx dy =

=
∫

Ω

ω∗∗µ (Daf) dx +
∫

Ω

(
ω∗∗µ

)∞( dDsf

d|Dsf |

)
d|Dsf |

(1.46)

for every f ∈ BV (Ω).
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Remark 1.5 As in [12], given a vector-valued Radon measure ν in RN with
values in RN , for each Borel set A ⊂ RN we define

ω∗∗µ ν(A) := sup

{∑
i

|Ai|ω∗∗µ

(
ν(Ai)

|Ai|

)}
, (1.47)

where the supremum is taken over all finite disjoint partitions A = ∪Ai in terms
of Borel sets Ai, and | · | denotes the Lebesgue measure in RN (if |Ai| = 0, the
term |Ai|ω∗∗µ

( ν(Ai)
|Ai|

)
is to be understood as the limit

(
ω∗∗µ

)∞(
ν(Ai)

)
). With

such definition, ω∗∗µ ν is a positive measure in RN and (see [12, Theorem 2′])

ω∗∗µ ν(A) =
∫

A

ω∗∗µ (νa) dx +
∫

A

(
ω∗∗µ

)∞( dνs

d|νs|

)
d|νs| (1.48)

for any Borel set A ⊂ RN .

Applying (1.48) with ν = Df , f ∈ BV (Ω), and A = Ω, we can rewrite (1.46) in
the more elegant form

Γ−L1(Ω)- lim
j→∞

∫
Ω

∫
Ω

ω

(
|f(x)− f(y)|

|x− y|

)
ρεj (x− y) dx dy =

∫
Ω

ω∗∗µ Df.

We observe that (1.40) holds for any nonnegative µ ∈ M(SN−1) in the following
cases:

1) ω is convex;

2) ω is concave;

3) lim
t→∞

ω(t)
t

= 0 and ω(0) = 0.

Identity (1.40) also holds for any continuous function ω : [0,∞) → [0,∞) if we
take

4) µ =
N∑

i=1

αiδei
, where αi ≥ 0 for each i = 1, . . . , N .

In particular, we see that for any ω : [0,∞) → [0,∞) continuous and any
f ∈ W 1,1(Ω) we have

Γ−L1(Ω)- lim
ε↓0

1
ε2N−1

∫
Ω

∫
Ω

|x1−y1|<ε

|xi−yi|<ε2

i=2,...,N

ω

(
|f(x)− f(y)|

|x− y|

)
dx dy = 2N

∫
Ω

ω∗∗
(∣∣∣ ∂f

∂x1

∣∣∣) .
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Identity (1.40) does not hold in general. In fact, take µ = 1
|SN−1|H

N−1bSN−1

(which corresponds to a family (ρε) of radial functions); then one can construct
a continuous function ω which is not convex, while ωµ is.

It would be interesting to know if condition (1.40) is really necessary to prove
the Γ-convergence of (1.1) for the subsequence εj ↓ 0 we have constructed. We
can state the following

Open problem 2 Under the hypotheses of Theorem 1.15, but without as-
suming condition (1.40), does

Γ−L1(Ω)- lim
j→∞

∫
Ω

∫
Ω

ω

(
|f(x)− f(y)|

|x− y|

)
ρεj

(x− y) dx dy = sc−L1(Ω) F (f)

still hold for any f ∈ L1(Ω) and any continuous function ω : [0,∞) → [0,∞)?

2 Notation.

For any set A ⊂ RN , we denote by χA the characteristic function of A.

For an open set Ω ⊂ RN and r > 0 we write

Ωr := {x ∈ Ω : dist (x, ∂Ω) > r},
Nr(Ω) := {x ∈ RN : dist (x,Ω) < r}.

Let us fix a radial nonnegative function η ∈ C∞
0 (RN ) such that

∫
η = 1 and

supp η ⊂ B1. Given δ > 0, for any f ∈ L1(Ω) we define

fδ(x) :=
1

εN

∫
Ω

η
(x− y

ε

)
f(y) dy ∀x ∈ Ωδ.

Given a locally compact topological space X (in our case we shall take X to be
RN or SN−1), we denote by M(X) the vector space of finite Radon measures
on X. We shall endow M(X) with the norm

‖ν‖ :=
∫

X

d|ν| = sup
{∫

Ω

ϕ dν : ϕ ∈ C0(X), |ϕ| ≤ 1 in Ω
}

.

We shall also use the standard notation for averages:

�
∫

X

v dµ :=

∫
X

v dµ∫
X

dµ
.

By abuse of notation, |SN−1| denotes the (N − 1)-Hausdorff measure of SN−1.

Given ω : [0,∞) → [0,∞) continuous and µ ∈ M(SN−1), let ωµ : RN → R be
the continuous function given by

ωµ(v) :=
∫

SN−1
ω
(
|v · σ|

)
dµ(σ) ∀v ∈ RN .

12



3 Determining the measure µ ∈ M(SN−1). Some
examples.

Before proceeding, we point out that the family (µε) we defined in Section 1
is absolutely continuous with respect to the Hausdorff measure HN−1bSN−1 in
SN−1, that is, µε ∈ L1(SN−1) and it is given by

µε(σ) =
∫ ∞

0

ρε(tσ)tN−1 dt for a.e. σ ∈ SN−1. (3.1)

In particular, µε ≥ 0 a.e. in SN−1 and
∫

SN−1
µε = 1 for every ε > 0. Since

µεj ⇀ µ in M(SN−1), these properties imply that the Radon measure µ itself

is nonnegative and
∫

SN−1
dµ = 1.

Example 3.1 Suppose that ρε is radial for every ε > 0. Then µε = 1
|SN−1|

∀ε > 0, and so µ = 1
|SN−1|H

N−1bSN−1 . Therefore,

ωµ(v) = �
∫

SN−1
ω
(
|v · σ|

)
dHN−1(σ) ∀v ∈ RN . (3.2)

Taking in particular ω(t) = tp, p > 0, and using the symmetry of SN−1 we have

ωµ(v) = Kp,N |v|p ∀v ∈ RN , (3.3)

where

Kp,N = �
∫

SN−1
|e1 · σ|p dHN−1 =

1
π1/2

Γ
(

N
2

)
Γ
(

p+1
2

)
Γ
(

N+p
2

) . (3.4)

Example 3.2 Let ρ ∈ L1(RN ), ρ ≥ 0 a.e. in RN , be such that
∫

ρ = 1. For
each ε > 0, define

ρε(x) :=
1

εN
ρ
(x

ε

)
for a.e. x ∈ RN .

Therefore,

µ(σ) = µε(σ) =
∫ ∞

0

ρ(tσ)tN−1 dt for a.e. σ ∈ SN−1.

The function ωµ may be written in this case as

ωµ(v) =
∫

RN

ω

(∣∣∣v · z

|z|

∣∣∣) ρ(z) dz ∀v ∈ RN . (3.5)
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Example 3.3 Let

ρε :=
1

2Nε2N−1
χ(−ε,ε)×(−ε2,ε2)(N−1) .

It is easy to see that µ =
δe1 + δ−e1

2
, whence

ωµ(v) = ω
(
|v1|
)

∀v ∈ RN . (3.6)

More generally, let 1 ≤ k ≤ N be a fixed integer and write RN = Rk ⊕ RN−k.
We now define

ρε :=
1

|Bk
ε | × |BN−k

ε2 |
χBk

ε
×BN−k

ε2
.

We observe that suppµ ⊂ Sk−1, µ is uniform on Sk−1 and µ(Sk−1) = 1. We

then conclude that µ =
1

|Sk−1|
Hk−1bSk−1 .

Taking in particular ω(t) = tp, p > 0, we get

ωµ(v) = Kp,k|v′|p ∀v = (v′, v′′) ∈ RN , (3.7)

where Kp,k is defined in Example 3.1.

In the next example we show that given any nonnegative measure µ ∈ M(SN−1),
µ(SN−1) = 1, one can find a family (ρε) satisfying (1.2) for which

µε ⇀ µ in M(SN−1). (3.8)

Example 3.4 Let µ ∈ M(SN−1), µ ≥ 0, be such that µ(SN−1) = 1. We define

ρε(x) :=
1

εN

∫
SN−1

ηε

(x

ε
− y
)

dµ(y) ∀x ∈ RN , (3.9)

where η ∈ C∞
0 (RN ) is a nonnegative function such that

∫
η = 1 and supp η ⊂

B1.

Notice that ρε ∈ C∞
0 (RN ), ρε ≥ 0 in RN ,

∫
ρε = 1 and supp ρε ⊂ B2ε. Thus

(ρε) satisfies (1.2). In addition, one can easily check that (3.8) holds for such
family.

We conclude this section with the following remark which will be useful in some
of the proofs:

Remark 3.1 Assume θ ∈ C(SN−1). For each ε > 0 we have∫
RN

θ

(
h

|h|

)
ρε(h) dh =

∫
SN−1

θ(σ) dµε(σ). (3.10)

In particular,

lim
j→∞

∫
RN

θ

(
h

|h|

)
ρεj (h) dh =

∫
SN−1

θ(σ) dµ(σ). (3.11)
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4 The regular case.

The next proposition implies that (1.1) always converges (up to the fixed sub-
sequence εj ↓ 0 we have constructed) if Ω is bounded and f is smooth. More
precisely,

Proposition 4.1 Assume Ω ⊂ RN is bounded and let ω : [0,∞) → [0,∞) be a
continuous function.

If f ∈ C2(Ω), then

lim
j→∞

∫
Ω

∫
Ω

ω

(
|f(x)− f(y)|

|x− y|

)
ρεj (x− y) dx dy =

∫
Ω

ωµ(Df). (4.1)

Proof. For each f ∈ C2(Ω), we set Mf := ‖Df‖L∞ . Since ω is uniformly
continuous in [0,Mf ], given any δ > 0 there exists Cδ > 0 such that

|ω(s)− ω(t)| ≤ Cδ|s− t|+ δ ∀s, t ∈ [0,Mf ].

In particular, we have∣∣∣∣ω( |f(x)− f(y)|
|x− y|

)
− ω

(∣∣∣Df(x) · x− y

|x− y|

∣∣∣)∣∣∣∣ ≤
≤ Cδ

∣∣f(x)− f(y)−Df(x) · (x− y)
∣∣

|x− y|
+ δ

≤ Cδ|x− y|+ δ ∀x, y ∈ RN , x 6= y.

Therefore,∫
Ω

∫
Ω

∣∣∣∣ω( |f(x)− f(y)|
|x− y|

)
− ω

(∣∣∣Df(x) · x− y

|x− y|

∣∣∣)∣∣∣∣ ρε(x− y) dx dy ≤

≤ |Ω|

{
Cδ

∫
|h|≤1

|h|ρε(h) dh + δ + max
[0,Mf ]

ω ·
∫
|h|>1

ρε(h) dh

}
.

As ε ↓ 0, by (1.2) the first and the last terms in the right-hand side tend to zero
for every fixed δ > 0. By taking δ ↓ 0 in the resulting expression, we conclude
that

lim
ε↓0

∫
Ω

∫
Ω

∣∣∣∣ω( |f(x)− f(y)|
|x− y|

)
− ω

(∣∣∣Df(x) · x− y

|x− y|

∣∣∣)∣∣∣∣ ρε(x− y) dx dy = 0.

In other words, to prove (4.1), it suffices to show that

lim
j→∞

∫
Ω

∫
Ω

ω

(∣∣∣Df(x) · x− y

|x− y|

∣∣∣) ρεj (x− y) dx dy =
∫

Ω

ωµ(Df). (4.2)

15



We first write∫
Ω

∫
RN

ω

(∣∣∣Df(x) · h

|h|

∣∣∣) ρεj
(h) dx dh

=
∫

Ω

∫
Ω

ω

(∣∣∣Df(x) · x− y

|x− y|

∣∣∣) ρεj
(x− y) dx dy

+
∫

Ω

∫
RN\Ω

ω

(∣∣∣Df(x) · x− y

|x− y|

∣∣∣) ρεj
(x− y) dx dy.

(4.3)

To estimate the last term in (4.3), fix λ > 0. We have∫
Ω

∫
RN\Ω

ω

(∣∣∣Df(x) · x− y

|x− y|

∣∣∣) ρε(x− y) dx dy ≤

≤ max
[0,Mf ]

ω ·

{
|Ω|
∫
|h|>λ

ρε(h) dh + |Ω\Ωλ|
∫
|h|≤λ

ρε(h) dh

}
.

We first take ε ↓ 0 and then λ ↓ 0 to get

lim
ε↓0

∫
Ω

∫
RN\Ω

ω

(∣∣∣Df(x) · x− y

|x− y|

∣∣∣) ρε(x− y) dx dy = 0. (4.4)

By Remark 3.1, (4.3) and (4.4), we conclude that (4.2) holds.

The next two remarks will be used in Section 12 to study the Γ-convergence of
(1.1):

Remark 4.1 It follows from the proof of Proposition 4.1 that the convergence
in (4.1) is uniform on the bounded subsets of C2(Ω).

Remark 4.2 A slight modification in the argument above shows that (4.1) still
holds for any f ∈ C1(Ω).

5 Some useful estimates.

The following lemmas will be used throughout this paper. Since they have been
extensively applied (see [2, 3, 6]), we shall only sketch their proofs.

Lemma 5.1 Assume ω : [0,∞) → [0,∞) is convex.

If f ∈ W 1,1
loc (RN ), then∫

RN

∫
RN

ω

(
|f(x)− f(y)|

|x− y|

)
ρε(x− y) dx dy ≤

≤
∫

RN

∫
RN

ω

(∣∣∣Df(x) · h

|h|

∣∣∣) ρε(h) dx dh ∀ε > 0.

(5.1)
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Proof. Let δ > 0. For any R > 0, it follows from a standard application of the
Fundamental Theorem of Calculus and Jensen’s inequality that∫

BR

∫
BR

ω

(
|fδ(x)− fδ(y)|

|x− y|

)
ρε(x− y) dx dy ≤

≤
∫

BR

∫
RN

ω

(∣∣∣Dfδ(x) · h

|h|

∣∣∣) ρε(h) dx dh

≤
∫

RN

∫
RN

ω

(∣∣∣Df(x) · h

|h|

∣∣∣) ρε(h) dx dh.

(5.2)

Taking δ ↓ 0 and then R →∞ we obtain (5.1).

Lemma 5.2 Assume f ∈ W 1,p(Ω), p ≥ 1. Let f̄ ∈ W 1,p(RN ) be an extension
of f in RN . For every r, ε > 0 we have∫

Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρε(x− y) dx dy ≤

≤
∫

Nr(Ω)

∫
|h|<r

∣∣∣Df̄(x) · h

|h|

∣∣∣pρε(h) dx dh +
2p‖f‖p

Lp

rp

∫
|h|≥r

ρε.

(5.3)

Proof. For any δ ∈ (0, r) we have∫
Ω

∫
Ω

|f̄δ(x)− f̄δ(y)|p

|x− y|p
ρε(x− y) dx dy ≤

≤
∫

Ω

∫
Ω

|x−y|<r

|f̄δ(x)− f̄δ(y)|p

|x− y|p
ρε(x− y) dx dy +

2p‖f‖p
Lp

rp

∫
|h|≥r

ρε.
(5.4)

Proceeding as before to estimate the first term in the right-hand side of the
inequality (note that if x, y ∈ Ω and |x− y| < r then tx + (1− t)y ∈ Nr(Ω) for
every t ∈ [0, 1]), we obtain (5.3).

The next lemma can be proved exactly as above. Actually, applying Jensen’s
inequality as in the last estimate in (5.2), we can avoid the weak convergence
Df̄δ ⇀ Df̄ in M(RN ).

Lemma 5.3 Assume f ∈ BV (Ω). Let f̄ ∈ BV (RN ) be an extension of f in
RN . For every r, ε > 0 we have∫

Ω

∫
Ω

|f(x)− f(y)|
|x− y|

ρε(x− y) dx dy ≤

≤
∫
|h|<r

(∫
Nr(Ω)

∣∣∣Df̄ · h

|h|

∣∣∣)ρε(h) dh +
2‖f‖L1

r

∫
|h|≥r

ρε.

(5.5)

The following lemma was pointed out by E. Stein. It comes from a simple
application of Jensen’s inequality and a change of variables.
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Lemma 5.4 Assume ω : [0,∞) → [0,∞) is convex, and let f ∈ L1
loc(Ω). For

each r > 0 we have∫
Ωr

∫
Ωr

ω

(
|fδ(x)− fδ(y)|

|x− y|

)
ρε(x− y) dx dy ≤

≤
∫

Ω

∫
Ω

ω

(
|f(x)− f(y)|

|x− y|

)
ρε(x− y) dx dy ∀δ ∈ (0, r).

(5.6)

6 Proof of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Given f ∈ W 1,p(Ω), we take an extension f̄ ∈
W 1,p(RN ) of f . For any g ∈ C∞

0 (RN ), using the triangle inequality and
Lemma 5.1 we have∣∣∣∣( ∫

Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρεj

(x− y) dx dy
)1/p

−

−
(∫

Ω

∫
Ω

|g(x)− g(y)|p

|x− y|p
ρεj

(x− y) dx dy
)1/p

∣∣∣∣ ≤
≤
(∫

Ω

∫
Ω

|(f − g)(x)− (f − g)(y)|p

|x− y|p
ρεj (x− y) dx dy

)1/p

≤
(∫

RN

|Df̄ −Dg|p
)1/p

.

Let j → ∞. We conclude the proof by using a variant of Proposition 4.1 for
C∞

0 -functions and the density of C∞
0 (RN ) in W 1,p(RN ).

Proof of Theorem 1.2. Given f ∈ BV (Ω), there exists an extension f̄ ∈

BV (RN ) such that
∫

∂Ω

|Df̄ | = 0 (see e.g. [9]; this last property can be obtained

by a local reflexion across the boundary). Applying Lemma 5.3 we see that
(1.7) holds.

By Lemmas 5.3 and 5.4 we have for any 0 < δ < r that∫
Ωr∩B1/r

∫
Ωr∩B1/r

|fδ(x)− fδ(y)|
|x− y|

ρεj
(x− y) dx dy ≤

≤
∫

Ω

∫
Ω

|f(x)− f(y)|
|x− y|

ρεj (x− y) dx dy ≤

≤
∫

RN

(∫
Nr(Ω)

∣∣∣Df̄ · h

|h|

∣∣∣)ρεj
(h) dh +

2‖f‖L1

r

∫
|h|≥r

ρεj
.

(6.1)

We make the following remarks:

σ ∈ SN−1 7−→
∫
|Df̄ · σ| ∈ R is continuous; (6.2)∫

|Dfδ · σ|
δ↓0−→

∫
|Df · σ| uniformly with respect to σ ∈ SN−1. (6.3)
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By (6.2), Remark 3.1 and the outer regularity of Radon measures, we get

lim
r↓0

lim
j→∞

∫
RN

(∫
Nr(Ω)

∣∣∣Df̄ · h

|h|

∣∣∣)ρεj (h) dh =

=
∫

SN−1

(∫
Ω

|Df̄ · σ|
)

dµ(σ).
(6.4)

Proposition 4.1, (6.3) and the inner regularity of Radon measures give us

lim
r↓0

lim
δ↓0

lim
j→∞

∫
Ωr∩B1/r

∫
Ωr∩B1/r

|fδ(x)− fδ(y)|
|x− y|

ρεj (x− y) dx dy =

=
∫

SN−1

(∫
Ω

|Df · σ|
)

dµ(σ).
(6.5)

We now take j → ∞, δ ↓ 0 and then r ↓ 0 in (6.1). Using (6.4), (6.5) and∫
∂Ω

|Df̄ | = 0 we obtain the result.

7 Proof of Theorem 1.6.

Theorem 1.6 is an immediate consequence of Theorem 1.2 and the following
lemma applied to the function β(t) := ω(t)− ω∞t, t ∈ [0,∞).

Lemma 7.1 Let β : [0,∞) → R be a continuous function such that

lim
t→∞

β(t)
t

= 0. (7.1)

If Ω ⊂ RN is unbounded, suppose in addition that there exists C > 0 such that

|β(t)| ≤ Ct ∀t ≥ 0. (7.2)

If f ∈ BV (Ω), then

lim
j→∞

∫
Ω

∫
Ω

β

(
|f(x)− f(y)|

|x− y|

)
ρεj (x− y) dx dy =

∫
Ω

βµ(Daf), (7.3)

where Daf is the absolutely continuous part of Df with respect to the Lebesgue

measure in RN , and βµ(v) :=
∫

SN−1
β
(
|v · σ|

)
dµ(σ) ∀v ∈ RN .

In order to prove Lemma 7.1 we shall need the next two simple remarks:

Remark 7.1 Let ν1, ν2 ∈ M(RN ) be such that ν1 ≤ ν2 in RN , then

νa
1 ≤ νa

2 and νs
1 ≤ νs

2 in RN , (7.4)

where νi = νa
i LN + νs

i is the Radon-Nikodym decomposition of νi, i = 1, 2.
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Remark 7.2 If (νj) is a sequence of nonnegative measures in M(SN−1) such
that νj ⇀ ν in M(SN−1), then∫

A

dν ≤ lim inf
j→∞

∫
A

dνj ≤ lim sup
j→∞

∫
A

dνj ≤
∫

Ā

dν ∀A ⊂ SN−1 open. (7.5)

This is a simple consequence of the inner and outer regularity of Radon measures
(see e.g. [9]).

Proof of Lemma 7.1. Let f ∈ BV (Ω). After extending f to the whole space
RN (take for instance f = 0 in RN\Ω), we may suppose that f ∈ BV (RN ). We
define (see [6])

νj(x) :=
∫

RN

β

(
|f(x + h)− f(x)|

|h|

)
ρεj

(h) dh for a.e. x ∈ RN . (7.6)

In particular, (νj) is bounded in L1
loc(RN ) (by Lemma 5.3) so that, up to a

subsequence, there exists ν ∈ Mloc(RN ) such that

νj ⇀ ν in Mloc(RN ).

We shall prove that ν is absolutely continuous with respect to the Lebesgue
measure, and ν = βµ(Daf) a.e. in RN .

Step 1. νs = 0 in RN .

By (7.1), for each δ > 0 there exists Cδ > 0 such that

|β(s)| ≤ δs + Cδ ∀s ≥ 0. (7.7)

We now take x0 ∈ RN and R > 0. For r ∈ (0, R), it follows from (7.7) and
Lemma 5.3 that∫

BR−r(x0)

νj ≤ δ

∫
BR−r(x0)

∫
RN

|f(x + h)− f(x)|
|h|

ρεj (h) dx dh + Cδ|BR|

≤ δ

∫
BR(x0)

|Df |+ 2δ

r
‖f‖L1

∫
|h|>r

ρεj + Cδ|BR|.

Take j →∞ and then r ↓ 0; Remark 7.2 implies that∫
BR(x0)

ν ≤ δ

∫
BR(x0)

|Df |+ Cδ|BR| ∀x0 ∈ RN ∀R > 0.

In particular, by Remark 7.1,

0 ≤ νs ≤ δ|Dsf | in RN ∀δ > 0.

We now let δ ↓ 0 to conclude that νs = 0 in RN .

Step 2. νa = βµ(Daf) a.e. in RN .
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Let δ > 0. By (7.1) and the continuity of β we have∣∣β(s)− β(t)
∣∣ ≤ Cδ|s− t|+ δ(1 + s + t) ∀s, t ≥ 0, (7.8)

for some Cδ > 0.

Let x0 ∈ RN and R > 0. For r ∈ (0, R) fixed, using (7.8) we can estimate∫
BR−r(x0)

∫
RN

∣∣∣∣β( |f(x + h)− f(x)|
|h|

)
− β

(∣∣∣Daf(x) · h

|h|

∣∣∣)∣∣∣∣ ρεj
(h) dx dh

by an expression of the form

CδA1 + δA2, (7.9)

where

A1 :=
∫

BR−r(x0)

∫
RN

∣∣f(x + h)− f(x)−Daf(x) · h
∣∣

|h|
ρεj

(h) dx dh,

A2 :=
∫

BR−r(x0)

∫
RN

{
1 +

∣∣f(x + h)− f(x)
∣∣

|h|
+
∣∣Daf(x)

∣∣} ρεj (h) dx dh.

In order to estimate A1 we write

A1 ≤
∫

BR−r(x0)

∫
|h|<r

{∫ 1

0

∣∣Daf(x + th)−Daf(x)
∣∣ dt

}
ρεj (h) dx dh+

+
∫

BR(x0)

|Dsf |+
(

2‖f‖L1

r
+
∫

BR

|Daf |
)∫

|h|≥r

ρεj ≤

≤ sup
v∈Br

{∫
BR(x0)

∣∣Daf(x + v)−Daf(x)
∣∣ dx

}
+

+
∫

BR(x0)

|Dsf |+
(

2‖f‖L1

r
+
∫

BR

|Daf |
)∫

|h|≥r

ρεj .

(One may verify these inequalities first for the smooth functions fλ := ηλ ∗ f ,
observing that Dfλ = (Daf)λ + (Dsf)λ, and then using Jensen’s inequality
before letting λ ↓ 0).

On the other hand, using Lemma 5.3 we have

A2 ≤ |BR|+
∫

BR−r(x0)

∫
|h|<r

∣∣f(x + h)− f(x)
∣∣

|h|
ρεj

(h) dx dh+

+
2‖f‖L1

r

∫
|h|≥r

ρεj +
∫

BR(x0)

|Daf | ≤

≤ |BR|+ 2
∫

BR(x0)

|Df |+ 2‖f‖L1

r

∫
|h|≥r

ρεj .
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Taking j → ∞ and then r ↓ 0, it follows from Remarks 3.1 and 7.2, and the
estimates above that∣∣∣∣∣

∫
BR(x0)

[
ν − βµ(Daf)

]∣∣∣∣∣ ≤ Cδ

∫
BR(x0)

|Dsf |+ δ

(
|BR|+ 2

∫
BR(x0)

|Df |

)

for all x0 ∈ RN and R > 0.

In particular, by Remark 7.1,∣∣νa − βµ(Daf)
∣∣ ≤ δ

(
1 + 2|Daf |

)
a.e. in RN ∀δ > 0.

We let δ ↓ 0 to conclude that νa = βµ(Daf) a.e. in RN .

Step 3. Proof of Lemma 7.1 completed.

If follows from Steps 1 and 2 that ν = βµ(Daf) a.e. in RN . In order to prove
(7.3), for a fixed r > 0 we write∫

Ωr

νj ≤
∫

Ω

∫
Ω

β

(
|f(x)− f(y)|

|x− y|

)
ρεj (x− y) dx dy+

+
∫

Ωr

∫
RN\Ω

β

(
|f(x)− f(y)|

|x− y|

)
ρεj

(x− y) dx dy ≤

≤
∫

Ω

νj .

(7.10)

We now observe that dist
(
Ωr, RN\Ω

)
= r > 0. Applying (7.7) (take for instance

δ = 1) if Ω is bounded, or (7.2) if not, it is easy to check that the term of the
form

∫
Ωr

∫
RN\Ω in the expression above tends to 0 as j → ∞. We obtain (7.3)

by letting j →∞ and then r ↓ 0 in (7.10).

8 Proof of Theorem 1.7.

Step 1. (1.15) holds if ω is convex.

For any δ ∈ (0, r), r > 0 fixed, it follows from Lemmas 5.1 and 5.4 that∫
Ωr∩B1/r

∫
Ωr∩B1/r

ω

(
|fδ(x)− fδ(y)|

|x− y|

)
ρεj

(x− y) dx dy ≤

≤
∫

Ω

∫
Ω

ω

(
|f(x)− f(y)|

|x− y|

)
ρεj

(x− y) dx dy ≤

≤
∫

Ω

∫
RN

ω

(∣∣∣Df(x) · h

|h|

∣∣∣) ρεj (h) dx dh.

(8.1)

Note that
ω
(
|Df · σ|

)
≤ ω̃

(
|Df |

)
∈ L1(RN ) ∀σ ∈ SN−1.
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Thus
σ ∈ SN−1 7−→

∫
ω
(
|Df · σ|

)
∈ R is continuous.

We now let j → ∞, δ ↓ 0 and r ↓ 0 in (8.1). Applying Remark 3.1 and
Proposition 4.1, we see that (1.15) holds in this case.

Step 2. (1.15) holds if ω is convex on [R,∞) for some R > 0.

It suffices to write ω as ω = ω1 + ω2 in [0,∞), where

ω1(t) =

{
0 if 0 ≤ t ≤ R

ω(t)− ω(R) if t > R
.

In particular, ω1 is convex and ω2 is bounded (moreover, if Ω is unbounded we
have ω2(t) ≤ ω̃(t) ≤ Ct for t ≥ 0 small). We now apply the previous step to ω1

and Lemma 7.1 to ω2. This gives (1.15).

Step 3. Proof of Theorem 1.7 completed.

Let R > 0 fixed. For an arbitrary continuous function ω satisfying (1.14) we
take two continuous functions 0 ≤ ω ≤ ω ≤ ω such that ω = ω = ω on [0, R],
and ω = 0, ω = ω̃ on [R + 1,∞).

Applying Step 2 and Lemma 7.1 we conclude that∫
Ω

ωµ(Df) ≤ lim inf
j→∞

∫
Ω

∫
Ω

ω

(
|f(x)− f(y)|

|x− y|

)
ρεj

(x− y) dx dy

≤ lim sup
j→∞

∫
Ω

∫
Ω

ω

(
|f(x)− f(y)|

|x− y|

)
ρεj

(x− y) dx dy

≤
∫

Ω

ωµ(Df).

Taking R →∞ we obtain (1.15) from the Dominated Convergence Theorem.

9 A characterization of W 1,p, p > 1, and BV .
Proof of Theorem 1.8.

Suppose (ρε) is a family of functions in L1(RN ) satisfying (1.2).

Let p ≥ 1 and f ∈ Lp(Ω) be such that∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρε(x− y) dx dy ≤ C ∀ε > 0 small, (9.1)

for some C > 0.

It follows from Lemma 5.4 that for any 0 < δ < r we have∫
Ωr∩B1/r

∫
Ωr∩B1/r

|fδ(x)− fδ(y)|p

|x− y|p
ρε(x− y) dx dy ≤ C ∀ε > 0 small. (9.2)
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By Proposition 4.1 and Jensen’s inequality (recall that µ(SN−1) = 1) we get∫
Ωr∩B1/r

{∫
SN−1

∣∣Dfδ(x) · σ
∣∣ dµ(σ)

}p

dx ≤

≤
∫

Ωr∩B1/r

∫
SN−1

∣∣Dfδ(x) · σ
∣∣p dx dµ(σ) ≤ C,

(9.3)

for every δ ∈ (0, r).

In the special case of Examples 3.1 and 3.2, it is easy to see that the measure µ
satisfies the coercivity condition

α|v| ≤
∫

SN−1
|v · σ| dµ(σ) ∀v ∈ RN (9.4)

for some α > 0.

By (9.3) and (9.4) we conclude that∫
Ωr∩B1/r

|Dfδ|p ≤
C

αp
∀δ ∈ (0, r). (9.5)

Therefore, f ∈ W 1,p(Ω) if p > 1, and f ∈ BV (Ω) if p = 1. In addition, the
following estimate holds ∫

Ω

|Df |p ≤ C

αp
. (9.6)

This proves Corollaries 1.9 and 1.10.

More generally, the above argument shows that in order to characterize the
elements in W 1,p(Ω) for p > 1, or BV (Ω) for p = 1, by using (9.1) it suffices to
show that (9.4) holds.

Let Iµ : SN−1 → R+ be the function given by

Iµ(v) :=
∫

SN−1
|v · σ| dµ(σ) ∀v ∈ SN−1, (9.7)

so that Iµ is continuous and (9.4) holds if, and only if, Iµ > 0 in SN−1. Con-
versely, Iµ(v0) = 0 for some v0 ∈ SN−1 if, and only if, v0⊥ suppµ, i.e. supp µ is
contained in an (N − 1)-dimensional vector space.

This simple remark implies the following

Lemma 9.1 (9.4) holds if, and only if, suppµ contains a basis of RN .

Using the same reasoning as above, Theorem 1.8 follows easily from Lemma 9.1
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10 Proof of Theorem 1.12.

Step 1. If f ∈ W 1,ω(Ω), then there exists β > 0 such that (1.31) holds.

Using the Lipschitz regularity of ∂Ω, we can extend f to the whole space RN so
that f ∈ W 1,ω(RN ). By the definition of the Orlicz-Sobolev spaces, there exists
β > 0 such that ω

(
β|Df |

)
∈ L1(RN ). Estimate (1.31) now follows immediately

from Lemma 5.1 applied to the function βf .

Step 2. If (1.31) is satisfied, then f ∈ W 1,ω(Ω).

Let εj ↓ 0 and µ ∈ M(SN−1) be as in (1.4). Without loss of generality, we may
assume that there exists α > 0 such that

α|v| ≤
∫

SN−1
|v · σ| dµ(σ) ∀v ∈ RN . (10.1)

Take C > 0 such that∫
Ω

∫
Ω

ω

(
β
|f(x)− f(y)|

|x− y|

)
ρεj

(x− y) dx dy ≤ C ∀j ≥ 1. (10.2)

Proceeding as in Section 9 and using (10.1) we have∫
Ωr∩B1/r

ω
(
αβ|Dfδ|

)
dx ≤ C ∀δ ∈ (0, r) ∀r > 0. (10.3)

In particular, we conclude that f ∈ BV (Ω). On the other hand, (1.28) implies
that the family Dfδ is equi-integrable on the compact subsets of Ω. Therefore,
Df ∈ L1

loc(Ω), and so Dfδ → Df a.e. in Ω. Letting δ ↓ 0 we conclude that
ω
(
αβ|Df |

)
∈ L1(Ω).

11 Proof of Theorem 1.13.

Let εj ↓ 0 and µ ∈ M(SN−1) be as in (1.4) and such that there exists C > 0
satisfying∫

RN

∫
RN

|f(x)− f(y)|p

|x− y|p
ρεj

(x− y) dx dy ≤ C ∀j ∈ N large enough. (11.1)

Arguing as in Section 9 we conclude that∫
RN

{∫
SN−1

∣∣Dfδ(x) · σ
∣∣ dµ(σ)

}p

dx ≤ C ∀δ > 0. (11.2)

Define

F :=
{

w ∈ RN :
∫

SN−1
|w · σ| dµ(σ) = 0

}
, (11.3)

25



so that F is a vector subspace and F $ RN since µ ≥ 0 and µ(SN−1) = 1.

Let k := dim F⊥ ≥ 1. Given v = v′ + v′′ ∈ F ⊕ F⊥ = RN , we have∫
SN−1

|v · σ| dµ(σ) =
∫

SN−1∩F⊥
|v′′ · σ′′| dµ(σ)

=
∫

Sk−1
|v′′ · σ′′| dµ(σ′′)

≥ α̃|v′′| for some α̃ > 0.

(11.4)

By (11.3) and (11.4), we conclude that

α̃p

∫
RN

|DF⊥fδ|p ≤ C ∀δ > 0, (11.5)

from which the theorem follows by letting δ ↓ 0 and taking E = F⊥.

12 Proof of Theorem 1.15.

Throughout this section we shall assume that Ω ⊂ RN is bounded.

For each j = 1, 2, . . . we take

Fj(f) :=
∫

Ω

∫
Ω

ω

(
|f(x)− f(y)|

|x− y|

)
ρεj (x− y) dx dy ∀f ∈ L1(Ω). (12.1)

Theorem 1.15 will be a consequence of the following two lemmas:

Lemma 12.1

Γ−L1(Ω)-lim sup
j→∞

Fj(f) ≤ sc−L1(Ω) F (f) ∀f ∈ L1(Ω), (12.2)

where F is the functional given by (1.42).

Proof. Let f ∈ C1(Ω). Taking the constant sequence fj := f for each j ≥ 1 in
(1.38), it follows from Remark 4.2 that

Γ−L1(Ω)-lim sup
j→∞

Fj(f) ≤ lim
j→∞

Fj(f) =
∫

Ω

ωµ(Df), (12.3)

whence
Γ−L1(Ω)-lim sup

j→∞
Fj(f) ≤ F (f) ∀f ∈ L1(Ω). (12.4)

Since Γ−L1(Ω)-lim sup
j→∞

Fj is lower semicontinuous in L1(Ω) (see [7]), (12.2) follows.
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Lemma 12.2

Γ−L1(Ω)-lim inf
j→∞

Fj(f) ≥ sc−L1(Ω) GΩ(f) ∀f ∈ L1(Ω), (12.5)

where for each open set A ⊂ RN the functional GA is defined as

GA(g) =


∫

A

(ω∗∗)µ(Dg) if g ∈ C1(A),

+∞ if g ∈ L1(A)\C1(A).
(12.6)

Proof. Fix 0 < δ < r. Let f ∈ L1(Ω) and (fj) ⊂ L1(Ω) be such that fj → f in
L1(Ω). Applying Lemma 5.4, for each j ≥ 1 we have

Fj(fj) ≥
∫

Ω

∫
Ω

ω∗∗
(
|fj(x)− fj(y)|

|x− y|

)
ρεj (x− y) dx dy

≥
∫

Ωr

∫
Ωr

ω∗∗
(
|fj,δ(x)− fj,δ(y)|

|x− y|

)
ρεj

(x− y) dx dy.

(12.7)

Note that for each δ > 0 fixed we have fj,δ → fδ in C2(Ωr). It follows from
Remark 4.1 that∫

Ωr

∫
Ωr

ω∗∗
(
|fj,δ(x)− fj,δ(y)|

|x− y|

)
ρεj (x− y) dx dy

j→∞−→
∫

Ωr

(ω∗∗)µ(Dfδ).

Therefore,

lim inf
j→∞

Fj(fj) ≥
∫

Ωr

ω∗∗µ (Dfδ) ∀δ ∈ (0, r). (12.8)

Given A ⊂⊂ Ω, let r > 0 sufficiently small so that A ⊂ Ωr. We have

lim inf
j→∞

Fj(fj) ≥ GA(fδ) ≥ sc−L1(A) GA(fδ) ∀δ ∈ (0, r). (12.9)

Letting δ ↓ 0 and using the lower semicontinuity of sc−L1(A) GA in L1(A), we
conclude that

lim inf
j→∞

Fj(fj) ≥ sup
{

sc−L1(A) GA(f) : A ⊂⊂ Ω
}
. (12.10)

Since Ω ⊂ RN is a bounded open set with Lipschitz boundary and (ω∗∗)µ is
convex, we can apply Theorem 4.4 in [5] which implies that

sup
{

sc−L1(A) GA(f) : A ⊂⊂ Ω
}

= sc−L1(Ω) GΩ(f). (12.11)

Since the sequence fj → f in L1(Ω) was arbitrary, (12.5) follows from (12.10)
and (12.11).
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Proof of Theorem 1.15. Let

G̃(f) =


∫

Ω

ω∗∗µ (Df) if f ∈ C1(Ω),

+∞ if f ∈ L1(Ω)\C1(Ω),
(12.12)

then
sc−L1(Ω) F (f) = sc−L1(Ω) G̃(f) ∀f ∈ L1(Ω). (12.13)

(This follows from (1.39) and (1.43)).

By hypothesis, ω∗∗µ = (ω∗∗)µ, so that GΩ(f) = G̃(f) for every f ∈ L1(Ω).
Theorem 1.15 now follows from (12.2), (12.5) and (12.13).
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