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Abstract. We present several extensions of the Brezis-Lions Lemma on removable
singularities. We also give a positive answer to a question raised by H. Brezis and
M. Marcus about an “inverse” maximum principle for the Laplacian.

1 Introduction and main results

When can the set of singularities of a solution to a linear (or quasi-linear) elliptic
equation be removed? To shed some light on this question, let us first recall a
classical result in Potential Theory.

Here and throughout the rest of the paper, we assume that Ω ⊂ RN , N ≥ 2,
is a bounded domain and Σ ⊂ Ω is a compact subset.

Let us assume that cap2 (Σ) = 0, where cap2 denotes the standard H1-
capacity (see Section 2). Let u ∈ H1

loc(Ω\Σ) be a nonnegative function such that

−∆u ≥ 0 in D′(Ω\Σ).

Note that no information is given about u on the set Σ. Nevertheless, it is well
known that the function u actually belongs to L1

loc(Ω) and satisfies

−∆u ≥ 0 in D′(Ω). (1.1)

See, e.g., [11, Theorem 7.7]. Note that if cap2 (Σ) > 0, then (1.1) will no longer
hold in general.

Our first theorem extends this classical result to the operator −∆ + c, with
c ∈ R. It also generalizes a previous work of Brezis and Lions [4] (see also [7]), who
considered the case where Σ is a point:

Theorem 1 Assume that cap2 (Σ) = 0. Let c ∈ R and f ∈ L1
loc(Ω). If u ∈

L1
loc(Ω \ Σ), u ≥ 0 a.e. in Ω, satisfies

−∆u+ cu ≥ f in D′(Ω \ Σ), (1.2)

then u ∈ L1
loc(Ω) and

−∆u+ cu ≥ f in D′(Ω). (1.3)

We would like to emphasize that we do not assume that ∆u ∈ L1
loc(Ω\Σ).
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Remark 1 It follows from the proof of Theorem 1 that in fact u ∈ W 1,p
loc (Ω) for

all 1 ≤ p < N
N−1 ; see also Corollary 6. This regularity result is very standard and

just follows from (1.3).

An interesting consequence of Theorem 1 is the following:

Corollary 2 Assume that cap2 (Σ) = 0. Let c ∈ R and g : R+ → R+ be a
continuous function. Let u ∈ L1

loc(Ω \ Σ), u ≥ 0 a.e. in Ω, be such that g(u) ∈
L1

loc(Ω\Σ) and
−∆u+ cu ≥ g(u) in D′(Ω \ Σ). (1.4)

Then, u, g(u) ∈ L1
loc(Ω) and

−∆u+ cu ≥ g(u) in D′(Ω). (1.5)

This corollary can be interpreted as a linear version of a very general result
of Baras and Pierre [1] about removable singularities. Note that we do not impose
any asymptotic behavior on g(t) as t→∞.

We recall that any Radon measure µ in RN can be decomposed as a sum
µ = µa + µs, where µa and µs are the absolutely continuous and the singular
parts of µ with respect to the Lebesgue measure. There are several other possible
decompositions of µ however. A less standard one is given by (see [3] and also [10])

µ = µd + µc,

where

µd(A) = 0 for any Borel set A ⊂ Ω such that cap2 (A) = 0,
|µc|(Ω\F ) = 0 for some Borel set F ⊂ Ω such that cap2 (F ) = 0.

In particular, the Radon measures µd and µc are singular with respect to each
other.

Using the above notation, we have

Theorem 3 (“Inverse” maximum principle) Let u ∈ L1
loc(Ω) be such that

∆u is a Radon measure in Ω. If u ≥ 0 a.e. in Ω, then

(−∆u)c ≥ 0.

We refer the reader to recent works of Brezis and Ponce [6], and also of Brezis,
Marcus and Ponce [5], for some very nice applications of the “Inverse” maximum
principle.

Theorem 1 can be extended to other second order linear elliptic operators.
Here and in the rest of the paper, we use Einstein’s summation convention.
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Theorem 4 Assume that cap2 (Σ) = 0. For i, j ∈ {1, . . . , N}, let aij , bi, c ∈
L∞(Ω), f ∈ L1(Ω), and gi ∈ L2(Ω), where the coefficients aij are locally Lips-
chitz continuous in Ω\Σ and satisfy the uniform ellipticity condition

aijξiξj ≥ λ|ξ|2 ∀ξ ∈ RN ,

for some λ > 0. If u ∈W 1,1
loc (Ω\Σ), u ≥ 0 a.e. in Ω, is such that

−∂j(aij∂iu) + bi∂iu+ cu ≥ f + ∂ig
i in D′(Ω\Σ),

then u ∈W 1,1
loc (Ω) and

−∂j(aij∂iu) + bi∂iu+ cu ≥ f + ∂ig
i in D′(Ω).

Theorem 4 can be further generalized to the setting of quasi-linear elliptic
equations as follows.

Let A : Ω× R× RN → RN and B : Ω× R× RN → R be two Carathéodory
functions. A weakly differentiable function v in ω ⊂ Ω is a supersolution of

−divA(x, v,∇v) ≥ B(x, v,∇v) in D′(ω)

if Ai(x, v,∇v), B(x, v,∇v) are locally integrable in ω and∫
ω

Ai(x, v,∇v)∂iϕ ≥
∫

ω

B(x, v,∇v)ϕ ∀ϕ ∈ C∞0 (ω), ϕ ≥ 0 in ω.

We shall assume in the sequel that 1 < p ≤ N , and that for a.e. x ∈ Ω and
every r ≥ 0, q ∈ RN , we have

|A(x, r, q)| ≤ a0|q|p−1 + a1r
p−1 + g(x), (1.6)

−B(x, r, q) ≤ b0|q|p−1 + b1r
p−1 + f(x), (1.7)

A(x, r, q) · q ≥ |q|p − c1r
p − c2, (1.8)

where ai, bi, ci ≥ 0 are constant, f ∈ L1(Ω), and g ∈ Lp/(p−1)(Ω) are nonnegative
functions.

Under these assumptions, we have the following:

Theorem 5 Suppose that capp (Σ) = 0. If u ∈ W 1,p
loc (Ω\Σ), u ≥ 0 a.e. in Ω,

satisfies
−divA(x, u,∇u) ≥ B(x, u,∇u) in D′(Ω\Σ), (1.9)

then
up−1, |∇u|p−1 ∈ L1

loc(Ω). (1.10)

Furthermore, Ai(x, u,∇u), B(x, u,∇u) ∈ L1
loc(Ω) and u satisfies

−divA(x, u,∇u) ≥ B(x, u,∇u) in D′(Ω). (1.11)
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Here, capp (Σ) denotes the W 1,p-capacity of Σ (see Definition 1 below).

Remark 2 The meaning of ∇u in Ω requires some clarification. In fact, since
u ∈W 1,p

loc (Ω\Σ) and |Σ| = 0, then ∇u is well defined a.e. in Ω. We take this as the
definition of ∇u in Ω even if u is not (locally) weakly differentiable in the whole
domain Ω. By Corollary 6 below, if p > 2− 1

N , then |∇u| ∈ L1
loc(Ω). In this case,

we can conclude that u ∈ W 1,1
loc (Ω) and ∇u is the weak derivative of u in Ω (see

Lemma 3 below).

Remark 3 The fact that Ai(x, u,∇u) ∈ L1
loc(Ω) is a direct consequence of (1.6)

and (1.10). The corresponding property for B(x, u,∇u) requires some additional
argument.

The proof of Theorem 5 relies on a standard Moser iteration technique in
the spirit of [15]. The same idea has been used by Serrin [14] to study removable
singularities of solutions of

−divA(x, u,∇u) = B(x, u,∇u) in D′(Ω\Σ).

Once (1.11) is established, then it is well known that the regularity result
(1.10) can be improved. As we shall see in Section 5, we have

Corollary 6 Under the assumptions of Theorem 5, if u ∈W 1,p
loc (Ω\Σ), u ≥ 0 a.e.

in Ω, satisfies (1.9), then

up−1 ∈Lq
loc(Ω) ∀ 1 ≤ q <

N

N − p
, (1.12)

|∇u|p−1 ∈Lr
loc(Ω) ∀ 1 ≤ r <

N

N − 1
. (1.13)

We point out that Theorem 5 generalizes results of Bidaut-Véron [2] and also
of Kilpeläinen [13] on removable singularities for the p-Laplace operator:

Corollary 7 Assume that capp (Σ) = 0. Let c ∈ R and f ∈ L1
loc(Ω). If u ∈

W 1,p
loc (Ω\Σ), u ≥ 0 a.e. in Ω, satisfies

−∆pu+ cup−1 ≥ f in D′(Ω\Σ),

then
up−1, |∇u|p−1 ∈ L1

loc(Ω)

and we have
−∆pu+ cup−1 ≥ f in D′(Ω).
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2 Some remarks about the p-capacity

Given 1 ≤ p < +∞, we first recall the definition of the p-capacity:

Definition 1 The p-capacity of a compact set Σ ⊂ Ω is defined as

capp (Σ) = inf
{∫

Ω

|∇ϕ|p : ϕ ∈ C∞0 (Ω), ϕ ≥ 1 in some neighborhood of Σ
}
.

It follows from Definition 1 that if capp(Σ) = 0, then capq(Σ) = 0 for every
1 ≤ q < p. We next point out that in this definition we could have restricted
ourselves to a smaller class of functions ϕ. Namely, we have

capp (Σ) = inf
{∫

Ω

|∇ϕ|p
∣∣∣∣ ϕ ∈ C∞0 (Ω), 0 ≤ ϕ ≤ 1 in Ω,
ϕ = 1 in some neighborhood of Σ

}
.

Indeed, let (ϕn) ⊂ C∞0 (Ω), ϕn ≥ 1 near Σ, be a minimizing sequence for capp (Σ).
Define vn = min (ϕ+

n , 1) and observe that vn = 1 in a neighborhood of Σ. Denoting
by (ρε) a sequence of standard mollifiers, it follows that for ε = εn small enough,
wn := vn ∗ ρεn

also satisfies wn = 1 in a neighborhood of Σ. Also wn ∈ C∞0 (Ω),
wn ≥ 0 in Ω, and ∫

|∇wn|p ≤
∫
|∇ϕn|p → capp (Σ).

We also observe that if capp(Σ) = 0, then |Σ| = 0. Indeed, it follows from Poincaré’s
inequality that for any nonnegative ϕ ∈ C∞0 (Ω) such that ϕ = 1 on Σ, we have

|Σ| ≤
∫

Ω

ϕp ≤ C

∫
Ω

|∇ϕ|p.

Taking the infimum with respect to ϕ, we conclude that |Σ| = 0.
This result can be refined in more geometric terms (see [9] and also [8]):

Lemma 1 (i) HN−1(Σ) = 0 if and only if cap1(Σ) = 0;

(ii) if 1 < p ≤ N and HN−p(Σ) <∞, then capp(Σ) = 0;

(iii) if 1 < p ≤ N and capp(Σ) = 0, then Hs(Σ) = 0 for every s > N − p;

(iv) if p > N and capp(Σ) = 0, then Σ = φ.

Note that (iv) is just a consequence of Morrey’s inequality. In fact, if p > N
and (ϕn) ⊂ C∞0 (Ω) is such that

∫
|∇ϕn|p → 0, then (ϕn) converges uniformly to

0 as n → ∞. Since ϕn ≥ 1 on Σ, we must have Σ = φ. This shows in particular
why, as mentioned earlier, we restrict ourselves to the case p ≤ N .

As a corollary of Lemma 1 (ii), we have the following:

Corollary 8 Let 1 < p ≤ N . If Σ is contained in some manifold of codimension
k ≥ p, then capp(Σ) = 0.
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In this paper, we shall make use of the following two simple lemmas:

Lemma 2 Suppose capp(Σ) = 0. Given ψ ∈ C∞0 (Ω), there exists a sequence
(ψn) ⊂ C∞0 (Ω\Σ) such that

|ψn| ≤ |ψ| in Ω and ψn → ψ in W 1,p(Ω).

If ψ ≥ 0 in Ω, then (ψn) can be chosen so that each ψn is nonnegative in Ω.

Lemma 3 Suppose cap1(Σ) = 0. If u ∈W 1,p(Ω\Σ), then u ∈W 1,p(Ω).

Proof of Lemma 2. It suffices to take ψn := (1−ϕn)ψ, where (ϕn) ⊂ C∞0 (Ω) is
such that 0 ≤ ϕn ≤ 1 in Ω, ϕn = 1 in some neighborhood of Σ, and

∫
|∇ϕn|p → 0

as n→∞.

Proof of Lemma 3. We split the proof into two steps:
Step 1. Assume in addition that u is bounded. Then u ∈W 1,p(Ω).

We first show that u is weakly differentiable in Ω. In fact, since u is weakly
differentiable in Ω\Σ, for each i = 1, . . . , N we have∫

Ω

u∂iϕ = −
∫

Ω

∂iuϕ ∀ϕ ∈ C∞0 (Ω\Σ).

Given ψ ∈ C∞0 (Ω), it follows from the previous lemma that we can find a uniformly
bounded sequence (ψn) in C∞0 (Ω\Σ) converging to ψ in W 1,1(Ω). We now replace
ϕ by ψn in the above identity. Passing to the limit as n goes to ∞, we find that∫

Ω

u∂iψ = −
∫

Ω

∂iuψ ∀ψ ∈ C∞0 (Ω).

In particular, ∂iu gives the weak derivative of u in Ω. Since∫
Ω

|∇u|p =
∫

Ω\Σ
|∇u|p <∞,

we conclude that u ∈W 1,p(Ω).
Step 2. Proof of the lemma completed.

By working with the positive and negative parts of u, we may always assume
that u ≥ 0. For every k > 0, let now uk = min(u, k), so that uk ∈ W 1,p(Ω\Σ). It
then follows from the previous step that uk ∈W 1,p(Ω) and∫

Ω

uk∂iψ = −
∫

Ω

∂iukψ = −
∫

[u≤k]

∂iuψ ∀ψ ∈ C∞0 (Ω).

Note that ∂iu ∈ Lp(Ω\Σ) = Lp(Ω) for every i = 1, . . . , N . As k →∞, we conclude
that u is weakly differentiable in Ω and u ∈W 1,p(Ω).

We now extend the definition of the p-capacity for any measurable subset of
Ω. For simplicity, we only consider the case p = 2.
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Definition 2 Given an open set ω ⊂ Ω, we define

cap2 (ω) := sup
{

cap2 (K) : K is compact and K ⊂ ω
}
.

For any Borel measurable set F ⊂ Ω, we let

cap2 (F ) := inf
{

cap2 (ω) : ω is open and F ⊂ ω ⊂ Ω
}
.

One can easily see that Definition 2 agrees with Definition 1 when F ⊂ Ω is
compact. We also observe that if F1 ⊂ F2 ⊂ Ω, then cap2 (F1) ≤ cap2 (F2).

3 Proof of Theorems 1 and 4

The proof of Theorem 1 (and also of Theorem 4) is essentially contained in Sec-
tion 5. However, it is enlightening to go through this special case before proving
the more general result.

Below, we shall denote by uk the function min (u, k). Let us first state and
prove the following fairly well known lemma:

Lemma 4 Let u ∈ L1(ω), u ≥ 0 a.e. in ω, be such that

−∆u ≥ h in D′(ω), (3.1)

where h ∈ L1(ω). Then uk ∈ H1
loc(ω) and

−∆uk ≥ hχ[u<k] in D′(ω). (3.2)

Proof. By taking convolution with a smooth mollifier on both sides of (3.1), we
may assume that u ∈ C∞. It then follows from Kato’s inequality (see [12]) that

−∆uk ≥ hχ[u<k] in D′(ω). (3.3)

We now multiply both sides of (3.3) by
ϕ2

uk + 1
, where ϕ ∈ C∞0 (ω). Integrating by

parts the resulting expression, we get∫
ω

∇uk · ∇
(

ϕ2

uk + 1

)
≥ −

∫
ω

|h|ϕ2. (3.4)

The left-hand side of (3.4) can be estimated by∫
ω

∇uk · ∇
(

ϕ2

uk + 1

)
= −

∫
ω

|∇uk|2

(uk + 1)2
ϕ2 + 2

∫
ω

∇uk · ∇ϕ
uk + 1

ϕ

≤ −1
2

∫
ω

|∇uk|2

(uk + 1)2
ϕ2 + 2

∫
ω

|∇ϕ|2.
(3.5)
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Since uk + 1 ≤ k + 1, we conclude from (3.4) and (3.5) that

1
2

∫
ω

|∇uk|2ϕ2 ≤ (k + 1)2
∫

ω

(
|h|ϕ2 + 2|∇ϕ|2

)
.

This was established assuming that u ∈ C∞. For a function u ∈ L1(ω) satisfying
(3.1), we can argue by density to conclude that uk ∈ H1

loc(ω) and that (3.2) holds.

Proof of Theorem 1. Applying the previous lemma to ω = Ω\Σ, we see that
uk ∈ H1

loc(Ω\Σ) for every k > 0 and

−∆uk + cuχ[u<k] ≥ fχ[u<k] in D′(Ω\Σ). (3.6)

Actually, we also established that

1
2

∫
Ω

|∇uk|2ϕ2 ≤ (k + 1)2
∫

Ω

(
|h̃|ϕ2 + 2|∇ϕ|2

)
∀ϕ ∈ C∞0 (Ω\Σ), (3.7)

where h̃ = (f − cu)χ[u<k].
Let ψ ∈ C∞0 (Ω), ψ ≥ 0 in Ω. Since cap2 (Σ) = 0, it follows from Lemma 2 that
there exists a sequence (ϕn) ⊂ C∞0 (Ω\Σ) such that 0 ≤ ϕn ≤ ψ and ϕn → ψ in
H1(Ω). We now replace ϕ by ϕn in (3.7). Passing to the limit as n goes to ∞, we
conclude that

1
2

∫
Ω

|∇uk|2ψ2 ≤ (k + 1)2
∫

Ω

(
|h̃|ψ2 + 2|∇ψ|2

)
.

Take for instance ψ = 1 in some neighborhood of Σ; Lemma 3 then implies that
uk ∈ H1

loc(Ω).
We now use ϕn as a test function in (3.6):∫

Ω

∇uk · ∇ϕn + c

∫
Ω

uχ[u<k]ϕn ≥
∫

Ω

fχ[u<k]ϕn.

Since uk ∈ H1
loc(Ω), as n→∞ we find that∫

Ω

∇uk · ∇ψ + c

∫
Ω

uχ[u<k]ψ ≥
∫

Ω

fχ[u<k]ψ ∀ψ ∈ C∞0 (Ω), ψ ≥ 0 in Ω.

In other words,
−∆uk + cuχ[u<k] ≥ fχ[u<k] in D′(Ω). (3.8)

Assume for the moment that u ∈ L1
loc(Ω). In this case, we are allowed to take

k →∞ in (3.8), from which (1.3) follows.
Thus, in order to conclude the proof of Theorem 1, we only need to prove that
u ∈ L1

loc(Ω), which requires a Harnack type estimate. For this, we multiply both
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sides of (3.8) by
ϕ2

(uk + 1)2/N
, where ϕ ∈ C∞0 (Ω). Proceeding exactly as in the

previous lemma, we obtain

1
N

∫
Ω

|∇uk|2

(uk + 1)
N+2

N

ϕ2 ≤ |c|
∫

Ω

u
N−2

N

k ϕ2 +
∫

Ω

|f |ϕ2 +N

∫
Ω

(uk +1)
N−2

N |∇ϕ|2. (3.9)

We claim that, by choosing ϕ appropriately, this inequality implies that u ∈
L1

loc(Ω). Since the argument is essentially the same as in the more general set-
ting (see Steps 2 and 3 in Section 5), we shall present here only a sketch of the
proof.
We first take ϕ = 1 in some small neighborhood ω of Σ. On the one hand, using
Hölder’s inequality, we have∫

Ω

u
N−2

N

k ϕ2 ≤ |ω|2/N

(∫
ω

uk

)N−2
N

+ C1(ω), (3.10)

where C1(ω) denotes a constant independent of k. On the other hand, by the
Sobolev inequality, there exists a constant α > 0 (independent of ω) such that

α

(∫
ω

uk

)N−2
N

≤
∫

Ω

|∇uk|2

(uk + 1)
N+2

N

ϕ2 + C2(ω). (3.11)

Combining (3.9)–(3.11), we get

(
1− β|ω|N/2

)(∫
ω

uk

)N−2
N

≤ C(ω).

By choosing |ω| sufficiently small, it follows that (uk) is bounded in L1(ω); thus,
u ∈ L1

loc(Ω). This concludes the proof of Theorem 1.

The proof of Theorem 4 follows along the same lines (although a little more
technical) and we shall omit it.

4 Proof of Corollary 2 and Theorem 3

Proof of Corollary 2. Since g(u) ≥ 0 a.e. in Ω, the function u satisfies

−∆u+ cu ≥ 0 in D′(Ω\Σ).

Applying Theorem 1 to f = 0, we conclude that u ∈ L1
loc(Ω) and

−∆u+ cu ≥ 0 in D′(Ω).

In particular, ∆u is a Radon measure in Ω. By taking a smaller open set if neces-
sary, we may assume that

∫
Ω
|∆u| <∞.
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Let (ϕn) ⊂ C∞0 (Ω\Σ) be a nondecreasing sequence of test functions such that
0 ≤ ϕn ≤ 1 in Ω and ϕn(x) → 1 for every x ∈ Ω\Σ. It follows from (1.4) that∫

Ω

g(u)ϕn ≤ −
∫

Ω

ϕn∆u+ c

∫
Ω

ϕnu ≤
∫

Ω

|∆u|+ |c|
∫

Ω

|u|.

As n→∞, we conclude that∫
Ω

g(u) ≤
∫

Ω

|∆u|+ |c|
∫

Ω

|u| <∞

(recall that |Σ| = 0). Thus, g(u) ∈ L1
loc(Ω) and clearly (1.5) holds.

Before establishing Theorem 3, we state the following variant of Lemma 4,
which can be easily established via convolution:

Lemma 5 Let u ∈ L1(ω), u ≥ 0 a.e. in ω, be such that ∆u is a Radon measure
in Ω. Then uk ∈ H1

loc(ω), ∆uk is a Radon measure in Ω, and

∆uk ≤ (∆u)+ in D′(ω). (4.1)

Proof of Theorem 3. It follows from the previous lemma applied to ω = Ω that
uk ∈ H1

loc(Ω), ∀k > 0. Let us simply denote ∆u by µ in Ω. We fix a compact
set K ⊂ F , where F is a set of zero H1-capacity such that |µc|(Ω\F ) = 0; in
particular, cap2 (K) = 0. Applying Lemma 5 to ω = Ω\K, we have

∆uk ≤ µ+ in D′(Ω\K). (4.2)

Given ψ ∈ C∞0 (Ω), ψ ≥ 0 in Ω, let (ϕn) ⊂ C∞0 (Ω\K) be such that 0 ≤ ϕn ≤ ψ in
Ω and ϕn → ψ in H1(Ω). Then∫

Ω

∇uk ·∇ϕn
n→∞−→

∫
Ω

∇uk ·∇ψ and
∫

Ω

ϕn dµ
+ ≤

∫
Ω\K

ψ dµ+ ∀n ≥ 1. (4.3)

Combining (4.2) and (4.3), we conclude that

−
∫

Ω

∇uk · ∇ψ ≤
∫

Ω\K
ψ dµ+ ∀ψ ∈ C∞0 (Ω), ψ ≥ 0 in Ω;

in other words,
∆uk ≤ χΩ\Kµ

+ in D′(Ω).

As k →∞, we get
µ = ∆u ≤ χΩ\Kµ

+ in D′(Ω).

Thus,
µcbK= µbK≤ 0 in Ω.

Recall that K ⊂ Ω was an arbitrary compact subset of F . By the inner regularity
of Radon measures, we finally conclude that

µc ≤ 0 in Ω.
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5 Proof of Theorem 5

By assumption, we know that Ai(x, u,∇u), B(x, u,∇u) ∈ L1
loc(Ω\Σ), and∫

Ω

Ai(x, u,∇u)∂iϕ ≥
∫

Ω

B(x, u,∇u)ϕ ∀ϕ ∈ C∞0 (Ω\Σ), ϕ ≥ 0 in Ω.

Since u ∈W 1,p
loc (Ω\Σ) and A satisfies (1.6), we actually have

Ai(x, u,∇u) ∈ Lp/(p−1)
loc (Ω\Σ).

It follows from a density argument that∫
Ω

Ai(x, u,∇u)∂iv ≥
∫

Ω

B(x, u,∇u)v (5.1)

for every v ∈W 1,p(Ω) ∩ L∞(Ω) such that v ≥ 0 a.e. in Ω and supp v ⊂ Ω\Σ.
After replacing u by u+ 1, we can assume that u ≥ 1 a.e. in Ω. Indeed, the

function v := u+ 1 satisfies

−div Ã(x, v,∇v) ≥ B̃(x, v,∇v) in D′(Ω \ Σ),

where Ã(x, r, q) = A(x, r − 1, q) and B̃(x, r, q) = B(x, r − 1, q). The functions Ã
and B̃ clearly verify assumptions (1.6)–(1.8).

We shall split the proof of Theorem 5 into three steps:
Step 1. For every k ≥ 1, uk ∈W 1,p

loc (Ω). Moreover, given 0 ≤ σ < p− 1, we have∫
Ω

|∇uk|p

up−σ
k

ψp ≤ C

{∫
Ω

uσ
k(ψp + |∇ψ|p) +

∫
Ω

gp/(p−1)ψp +
∫

Ω

fψp

}
(5.2)

for all ψ ∈ C∞0 (Ω), ψ ≥ 0 in Ω, where C = C(p, σ, ai, bi, ci).
Let ϕ ∈ C∞0 (Ω\Σ) be such that ϕ ≥ 0 in Ω. We first apply (5.1) to

v = wkϕ
p :=

(
1

up−σ−1
k

− 1
kp−σ−1

)
ϕp in Ω.

Note in particular that v ≥ 0 in Ω, and v = 0 a.e. on the set [u ≥ k]; hence, ∂iv = 0
a.e. on [u ≥ k]. We have∫

Ω

B(x, u,∇u)v ≤
∫

Ω

Ai(x, u,∇u)∂iv

=
∫

[u<k]

Ai(x, uk,∇uk) ∂i

(
wkϕ

p
)

= −(p− σ − 1)
∫

Ω

Ai(x, uk,∇uk)∂iuk

up−σ
k

ϕp+

+ p

∫
Ω

Ai(x, uk,∇uk)wk∂iϕϕ
p−1.

(5.3)

11



We now apply (1.8) to r = uk and q = ∇uk. Multiplying the resulting inequality

by
ϕp

up−σ
k

and integrating over Ω, we get

∫
Ω

|∇uk|p

up−σ
k

ϕp ≤
∫

Ω

Ai(x, uk,∇uk)∂iuk

up−σ
k

ϕp +
∫

Ω

c1u
σ
kϕ

p +
∫

Ω

c2
ϕp

up−σ
k

. (5.4)

Combining (5.3) and (5.4) yields∫
Ω

|∇uk|p

up−σ
k

ϕp ≤ I + II +
∫

Ω

c1u
σ
kϕ

p +
∫

Ω

c2ϕ
p,

where

I = − 1
p− σ − 1

∫
Ω

B(x, u,∇u)v, (5.5)

II =
p

p− σ − 1

∫
Ω

Ai(x, uk,∇uk)wk∂iϕϕ
p−1. (5.6)

We first estimate (5.5). Since σ < p− 1, we can apply (1.7) to get

I ≤ C

∫
Ω

(
b0|∇u|p−1 + b1u

p−1 + f
)
v.

Recall that v = 0 a.e. on [u ≥ k] and v ≤ ϕp

up−σ−1
k

a.e. in Ω. We then have

I ≤ C

∫
[u<k]

(
b0|∇u|p−1 + b1u

p−1 + f
) ϕp

up−σ−1
k

≤ C

{∫
Ω

b0
|∇uk|p−1

up−σ−1
k

ϕp +
∫

Ω

b1u
σ
kϕ

p +
∫

Ω

f
ϕp

up−σ−1
k

}

≤ C

{∫
Ω

b0
|∇uk|p−1

up−σ−1
k

ϕp +
∫

Ω

b1u
σ
kϕ

p +
∫

Ω

fϕp

}
.

(5.7)

We now estimate the first integral in the right-hand side of (5.7). We first write∫
Ω

b0
|∇uk|p−1

up−σ−1
k

ϕp =
∫

Ω

b0
|∇uk|p−1

u
(p−σ) p−1

p

k

ϕp−1 · uσ/p
k ϕ.

For an arbitrary δ > 0, it follows from Young’s inequality that∫
Ω

b0
|∇uk|p−1

up−σ−1
k

ϕp ≤ δ

∫
Ω

|∇uk|p

up−σ
k

ϕp + Cδ

∫
Ω

uσ
kϕ

p.

12



Inserting this into (5.7), we obtain

I ≤ δ

∫
Ω

|∇uk|p

up−σ
k

ϕp + Cδ

{∫
Ω

uσ
kϕ

p +
∫

Ω

fϕp

}
. (5.8)

We now consider (5.6). Using (1.6) and arguing as above, we have

II =
p

p− σ − 1

∫
Ω

Ai(x, uk,∇uk)wk∂iϕϕ
p−1

≤ C

∫
[u<k]

(
a0|∇u|p−1 + a1u

p−1 + g
)
wk|∇ϕ|ϕp−1

≤ C

{∫
Ω

a0
|∇uk|p−1

up−σ−1
k

ϕp−1|∇ϕ|+
∫

Ω

a1u
σ
kϕ

p−1|∇ϕ|+
∫

Ω

g
ϕp−1

up−σ−1
k

|∇ϕ|

}

≤ C

{∫
Ω

a0
|∇uk|p−1

up−σ−1
k

ϕp−1|∇ϕ|+
∫

Ω

a1u
σ
kϕ

p−1|∇ϕ|+
∫

Ω

gϕp−1|∇ϕ|

}
.

(5.9)

On the other hand, given δ > 0, it follows from Young’s inequality that∫
Ω

a0
|∇uk|p−1

up−σ−1
k

ϕp−1|∇ϕ| ≤ δ

∫
Ω

|∇uk|p

up−σ
k

ϕp + Cδ

∫
Ω

uσ
k |∇ϕ|p. (5.10)

In addition, ∫
Ω

a1u
σ
kϕ

p−1|∇ϕ| ≤ C

{∫
Ω

uσ
kϕ

p +
∫

Ω

uσ
k |∇ϕ|p

}
, (5.11)∫

Ω

gϕp−1|∇ϕ| ≤
∫

Ω

|∇ϕ|p +
∫

Ω

gp/(p−1)ϕp. (5.12)

We now apply (5.9)–(5.12). Since uk ≥ 1 a.e. in Ω, we get

II ≤ δ

∫
Ω

|∇uk|p

up−σ
k

ϕp + Cδ

{∫
Ω

uσ
k(ϕp + |∇ϕ|p) +

∫
Ω

gp/(p−1)ϕp

}
. (5.13)

Choosing δ > 0 sufficiently small, we conclude from (5.4), (5.8) and (5.13) that∫
Ω

|∇uk|p

up−σ
k

ϕp ≤ C

{∫
Ω

uσ
k(ϕp + |∇ϕ|p) +

∫
Ω

gp/(p−1)ϕp +
∫

Ω

fϕp

}
. (5.14)

Let ψ ∈ C∞0 (Ω), ψ ≥ 0 in Ω. Applying Lemma 2, we can find a sequence of
nonnegative functions (ψn) in C∞0 (Ω\Σ) converging to ψ in W 1,p(Ω) and a.e. in
Ω. Replacing ϕ by ψn in (5.14) and then letting n→∞ we find (5.2).
Let ω ⊂⊂ Ω be some fixed open set containing Σ. We now take ψ0 ∈ C∞0 (Ω) so
that ψ0 = 1 on ω and 0 ≤ ψ0 ≤ 1 in Ω. Applying (5.2) with σ = 0, we obtain∫

ω\Σ
|∇uk|p ≤ Ckp

{∫
Ω

(1 + |∇ψ0|p) +
∫

Ω

gp/(p−1) +
∫

Ω

f

}
.

13



In particular, uk ∈W 1,p(ω\Σ). It follows from Lemma 3 that uk ∈W 1,p(ω). This
concludes the first step of the proof.
Step 2. Given 0 < σ < p − 1, we can find an open set ω ⊂⊂ Ω containing Σ so
that

‖uk‖σ

L
σ N

N−p (ω)
+ ‖∇uk‖σ

L
σ N

N−1 (ω)
≤ C

{∫
Ω\ω

uσ
k +

∫
Ω

gp/(p−1) +
∫

Ω

f

}
(5.15)

for every k ≥ 1, where C = C
(
p, σ, ω,Ω, ai, bi, ci

)
.

Let ω ⊂⊂ Ω be a neighborhood of Σ with measure |ω| small enough to be
chosen later on (recall that |Σ| = 0, so that such ω actually exists). We then take
ψ0 ∈ C∞0 (Ω), so that suppψ0 ⊂ Ω and ψ0 = 1 on ω. Since uk ∈ W 1,p

loc (Ω) and
uk ≥ 1 a.e. in Ω, we have uσ/p

k ∈W 1,p
loc (Ω) and

∇
(
u

σ/p
k ψ0

)
=
σ

p

∇uk

u
1−σ/p
k

ψ0 + u
σ/p
k ∇ψ0 in Ω.

It follows from (5.2) that∫
Ω

∣∣∣∇(uσ/p
k ψ0

)∣∣∣p ≤ C

{∫
Ω

uσ
k(ψp

0 + |∇ψ0|p) +
∫

Ω

gp/(p−1)ψp
0 +

∫
Ω

fψp
0

}
.

Since ∇ψ0 = 0 on ω, we get∫
Ω

∣∣∣∇(uσ/p
k ψ0

)∣∣∣p ≤ C1

∫
ω

uσ
k + C2

{
(1 + ‖∇ψ0‖p

∞)
∫

Ω\ω
uσ

k +
∫

Ω

gp/(p−1) +
∫

Ω

f

}

≤ C1

∫
ω

uσ
k + C2K,

where K denotes the term in brackets and C1, C2 are positive constants indepen-
dent of k; note also that C1 does not depend on ω.
Applying the Sobolev inequality, we find that(∫

ω

u
σ N

N−p

k

)N−p
N

≤
(∫

Ω

u
σ N

N−p

k ψ
Np

N−p

0

)N−p
N

≤ C̃1

∫
ω

uσ
k + C̃2K if 1 < p < N , (5.16)(∫

ω

uσq
k

) 1
q

≤ C̃1

∫
ω

uσ
k + C̃2K ∀q ∈ [1,∞) if p = N , (5.17)

where C̃1 is independent of ω.
We shall assume in the sequel that 1 < p < N , since the case p = N can be dealt
with in a similar way. From Hölder’s inequality, we know that∫

ω

uσ
k ≤ |ω|p/N

(∫
ω

u
σ N

N−p

k

)N−p
N

. (5.18)
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Inserting (5.18) into (5.16), we find that

(
1− |ω|p/N C̃1

) ∫
ω

uσ
k ≤ |ω|p/N C̃2K.

We now choose ω so that |ω|p/N C̃1 < 1/2. Thus, we have

1
2

∫
ω

uσ
k ≤ |ω|p/N C̃2K. (5.19)

We finally conclude from (5.16) and the above that(∫
ω

u
σ N

N−p

k

)N−p
N

≤
(
2|ω|p/N C̃1 + 1

)
C̃2K ≤ 2C̃2K. (5.20)

This gives the estimate for the first term in the left-hand side of (5.15). We now
estimate the second one.
Applying Hölder’s inequality, we have∫

ω

|∇uk|σ
N

N−1 =
∫

ω

|∇uk|σ
N

N−1

u
(p−σ) σ

p
N

N−1
k

· u(p−σ) σ
p

N
N−1

k

≤

(∫
ω

|∇uk|p

up−σ
k

)σ
p

N
N−1 (∫

ω

u
σ N

N−p/(p−σ)

k

)1−σ
p

N
N−1

.

By (5.2) and (5.19), the first integral is bounded by CK. Note that N
N−p/(p−σ) <

N
N−p for σ < p−1; thus, by Hölder’s inequality, the second integral can be estimated

by CK
N

N−p/(p−σ) . Therefore,∫
ω

|∇uk|σ
N

N−1 ≤ (CK)
σ
p

N
N−1

(
CK

N
N−p/(p−σ)

)1−σ
p

N
N−1 = CK

N
N−1 .

This concludes the proof of Step 2.
Step 3. Proof of (1.10).

Since u ∈W 1,p
loc (Ω\Σ), it suffices to show that up−1, |∇u|p−1 are integrable in

some small neighborhood of Σ. Given 0 < σ < p− 1, it follows from the previous
step that (5.15) holds for some small open set ω containing Σ. In particular,

∫
ω

u
σ N

N−p

k ≤ C

{∫
Ω\ω

uσ +
∫

Ω

gp/(p−1) +
∫

Ω

f

} N
N−p

∀k ≥ 1. (5.21)

(Shrinking the domain Ω if necessary, we can always assume that
∫
Ω\ω u

σ <∞).
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By making the special choice σ = (p−1)
N − p

N
in (5.21), we immediately see that

up−1 ∈ L1(ω). Note also that according to (5.15), we have

∫
ω

|∇uk|σ
N

N−1 ≤ C

{∫
Ω\ω

uσ +
∫

Ω

gp/(p−1) +
∫

Ω

f

} N
N−1

∀k ≥ 1. (5.22)

Take in particular σ = (p − 1)
N − 1
N

. Since |Σ| = 0 and u ∈ W 1,p
loc (Ω\Σ), we

have ∇uk = χ[u<k]∇u a.e. in Ω. Applying the Monotone Convergence Theorem to
(5.22), we conclude that (1.10) holds.
The argument above actually shows that (1.12) and (1.13) hold; moreover, we have

‖u‖σ

L
σ N

N−p (ω)
+ ‖∇u‖σ

L
σ N

N−1 (ω)
≤ C

{∫
Ω\ω

uσ +
∫

Ω

gp/(p−1) +
∫

Ω

f

}
,

where C = C
(
p, σ, ω,Ω, ai, bi, ci

)
and 0 < σ < p− 1.

Step 4. Ai(x, u,∇u), B(x, u,∇u) ∈ L1
loc(Ω) and

−divA(x, u,∇u) ≥ B(x, u,∇u) in D′(Ω).

In view of (1.10) and the structure estimate (1.6), Ai(x, u,∇u) ∈ L1
loc(Ω).

Given k > 0, let Fk ∈ C∞(R) be a non-increasing function such that Fk(t) = 1 if
t ≤ k/2, Fk(t) = 0 if t ≥ k and |F ′k| ≤ 4/k in R. Since Fk is non-increasing, we
have in particular that 0 ≤ Fk ≤ 1 in R.
Note that Fk ◦ u = Fk ◦ uk. As a consequence of the first step, we thus have

Fk ◦ u ∈W 1,p
loc (Ω) and ∇(Fk ◦ u) = F ′k(u)v∇u a.e. in Ω.

Given ϕ ∈ C∞0 (Ω\Σ), ϕ ≥ 0 in Ω, it follows from (5.1) applied to the function
v = Fk(u)ϕ that∫

Ω

B(x, u,∇u)Fk(u)ϕ ≤

≤
∫

Ω

Ai(x, u,∇u)∂iuF
′
k(u)ϕ+

∫
Ω

Ai(x, u,∇u)∂iϕFk(u)

=
∫

Ω

Ai(x, uk,∇uk)∂iuk F
′
k(u)ϕ+

∫
Ω

Ai(x, uk,∇uk)∂iϕFk(u),

(5.23)

where we have used the fact that Fk(t) = F ′k(t) = 0 for all t ≥ k.
Given ψ ∈ C∞0 (Ω), ψ ≥ 0 in Ω, let (ψn) be a sequence of nonnegative functions in
C∞0 (Ω\Σ) converging to ψ with respect to the W 1,p-norm and also a.e. in Ω.
We first observe that in view of (1.7) and (1.10), we have

B(x, u,∇u) ≥ −b0|∇u|p−1 − b1u
p−1 − f ∈ L1

loc(Ω).
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It follows from Fatou’s Lemma that∫
Ω

B(x, u,∇u)Fk(u)ψ ≤ lim inf
n→∞

∫
Ω

B(x, u,∇u)Fk(u)ψn.

We now apply (5.23) with ϕ replaced by ψn. Since Ai(x, uk,∇uk) ∈ Lp/(p−1)
loc (Ω),

we can take n→∞ in the resulting inequality to get∫
Ω

B(x, u,∇u)Fk(u)ψ ≤
∫

Ω

Ai(x, uk,∇uk)∂iuk F
′
k(u)ψ+

+
∫

Ω

Ai(x, uk,∇uk)∂iψ Fk(u),
(5.24)

for every ψ ∈ C∞0 (Ω) such that ψ ≥ 0 in Ω.
We now let k →∞ in the inequality above. By Fatou’s Lemma,∫

Ω

B(x, u,∇u)ψ ≤ lim inf
k→∞

∫
Ω

B(x, u,∇u)Fk(u)ψ. (5.25)

Next, since

|A(x, uk,∇uk)| ≤ a0|∇uk|p−1 + a1u
p−1
k + g

≤ a0|∇u|p−1 + a1u
p−1 + g ∈ L1

loc(Ω),

it follows from the Dominated Convergence Theorem that

lim
k→∞

∫
Ω

Ai(x, uk,∇uk)∂iψ Fk(u) =
∫

Ω

Ai(x, u,∇u)∂iψ. (5.26)

Finally, recall that −4/k ≤ F ′k ≤ 0 in R. Using (1.8), we have∫
Ω

Ai(x, uk,∇uk)∂iuk F
′
k(u)ψ ≤

∫
Ω

(
|∇uk|p − c1u

p
k − c2

)
F ′k(u)ψ

≤ 4
k

∫
[ k
2 <u<k]

(|c1|up
k + |c2|)ψ.

Since up
k/k ≤ up−1

k ≤ up−1, we get∫
Ω

Ai(x, uk,∇uk)∂iuk F
′
k(u)ψ ≤ 4

∫
[ k
2 <u<k]

(
|c1|up−1 +

|c2|
k

)
ψ → 0 (5.27)

as k →∞. It then follows from (5.24)–(5.27) that∫
Ω

B(x, u,∇u)ψ ≤
∫

Ω

Ai(x, u,∇u)∂iψ ∀ψ ∈ C∞0 (Ω), ψ ≥ 0 in Ω.

In particular, since B(x, u,∇u) is bounded from below by an L1
loc-function in Ω,

we must have B(x, u,∇u) ∈ L1
loc(Ω).
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