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1. Introduction.
Let G ⊂ R3 be a smooth bounded domain with Ω = ∂G simply connected. In

[BBM2] we studied properties of

H1/2(Ω;S1) =
{
g ∈ H1/2(Ω; R2) ; |g| = 1 a.e. on Ω

}
.

(In what follows, we identify R2 with C.)
The space W 1,1 ∩ L∞ shares some properties with H1/2 and it is natural to inves-
tigate

W 1,1(Ω;S1) =
{
g ∈W 1,1(Ω; R2) ; |g| = 1 a.e. on Ω

}
.

One of the issues that we shall discuss is the question of existence of a lifting and,
more precisely, “optimal” liftings. If g ∈W 1,1(Ω;S1) ∩C0(Ω;S1), then g admits a
“canonical” lifting ϕ ∈W 1,1(Ω; R) ∩ C0(Ω; R) satisfying

(1.1)
∫

Ω

|∇ϕ| =
∫

Ω

|∇g|.

(Since g ∈ C0 and Ω is simply connected, there exists a ϕ ∈ C0 such that g = eiϕ

and (1.1) holds for this ϕ.) However, if one removes the continuity assumption,
then a general g ∈ W 1,1(Ω;S1) need not have a lifting ϕ in W 1,1(Ω; R). This
obstruction phenomenon — which also holds for other Sobolev spaces — is due to
topological singularities of g and has been extensively studied in [BBM1] ; see also
earlier results of Schoen-Uhlenbeck [SU] and Bethuel [B2].

It has been established by Giaquinta-Modica-Souček [GMS2] that every map
g ∈ W 1,1(Ω;S1) admits a lifting in BV (Ω; R). However, as we shall see below, for
some maps g in W 1,1 we may have

Min
{∫

Ω

|Dϕ| ; ϕ ∈ BV (Ω; R) and g = eiϕ a.e.
}
>

∫
Ω

|∇g|,
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2 HAÏM BREZIS(1),(2), PETRU MIRONESCU(3) AND AUGUSTO C. PONCE(1),(2)

where the measure Dϕ is the distributional derivative of ϕ.
As we shall prove (see Corollary 6 below), there is always a ϕ ∈ BV (Ω; R) such

that g = eiϕ and

(1.2)
∫

Ω

|Dϕ| ≤ 2
∫

Ω

|∇g|.

The constant 2 in (1.2) is optimal (see Remark 2 below). Inequality (1.2) has
been extended by Dávila-Ignat [DI] to maps g ∈ BV (Ω;S1) (here, Ω can be an
arbitrary domain in RN ) ; the striking fact is that (1.2), with constant 2, holds in
any dimension.

It is natural to study, for a given g ∈W 1,1(Ω;S1), the quantity

(1.3) E(g) = Min
{∫

Ω

|Dϕ| ; ϕ ∈ BV (Ω; R) and g = eiϕ a.e.
}
.

Another quantity which is commonly studied in the framework of Sobolev maps
with values into manifolds (see [BBC], and also [GMS2]) is the relaxed energy

(1.4) Erel(g) = Inf
{

lim inf
n→∞

∫
|∇gn| ; gn ∈ C∞(Ω;S1) and gn → g a.e.

}
.

It is not difficult to prove (see Proposition 2) that

Erel(g) = E(g), ∀ g ∈W 1,1(Ω;S1).

As we shall establish in Section 3, the gap

(1.5) E(g)−
∫

Ω

|∇g|

can be easily computed in terms of the minimal connection L(g) of the topological
singularities of g. For example, if g ∈ C∞(Ω \ {P,N};S1) ∩W 1,1, deg (g, P ) = +1
and deg (g,N) = −1, then L(g) is the geodesic distance in Ω between N and P ,
and the gap (1.5) equals 2πL(g). For the definition of L(g) when g is an arbitrary
element of W 1,1(Ω;S1), see (1.9) below. The concept of a minimal connection
connecting the topological singularities has its source in [BCL].

One of our main results is

Theorem 1. Let g ∈W 1,1(Ω;S1). We have

(1.6) E(g)−
∫

Ω

|∇g| = 2πL(g).
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The first result of this kind (see [BBC]) concerned the Dirichlet integral
∫
|∇g|2

and maps g from a 3-d domain into S2. Inequality ≤ in (1.6) has been known for
some time (see [DH] and [GMS2]) ; it relies on the dipole construction introduced in
[BCL]. More generally, the [BCL] dipole construction has been adapted to a large
variety of problems involving singularities (points and beyond) ; see e.g. [ABO].
The exact lower bound for the relaxed energy is always a more delicate issue. For
W 1,2(S3;S2) the corresponding lower bound obtained in [BBC] asserts that

Erel(g) ≥
∫
S3
|∇g|2 + 8πL(g).

The same argument applies to W 1,N (SN+1;SN ), N ≥ 3, and yields

Erel(g) ≥
∫
SN+1

|∇g|N + cNL(g), cN > 0.

The properties of Lp, 1 < p < ∞, are heavily used in these arguments. However,
the space L1 is different and it is not possible to adapt the proof of [BBC] to obtain
a lower bound of the form

Erel(g) ≥
∫

Ω

|∇g|+ αL(g),

for some α > 0. Such a lower bound can presumably be proved using the theory
of Cartesian currents of [GMS2] ; however, the precise relationship between the
formalism of [GMS2] and (1.6) is yet to be clarified.

We call the attention of the reader to the fact that, in the H1/2-setting studied
in [BBM2], the analog of Theorem 1 is open ; we only have

Erel(g)− |g|2H1/2 ∼ L(g).

A useful quantity which plays a central role in our analysis is g ∧ ∇g. More
precisely, given g ∈W 1,1(Ω; R2), consider the vector field g ∧∇g defined in a local
frame by

g ∧∇g = (g ∧ gx, g ∧ gy).
[This is the 2-d analog of the vector field D associated to H1(B3;S2) maps, origi-
nally introduced in [BCL] ; there is a natural analog of D in the W 1,N (SN+1;SN )
context, for each N .]
When g is smooth with values into S1, g∧∇g is a gradient map since we may always
write g = eiϕ, so that g∧∇g = ∇ϕ. However, if g ∈W 1,1(Ω;S1), then g∧∇g is an
L1-vector field which need not be a gradient map, e.g., when g(x) ∼ (x−a)/|x−a|
near a point a ∈ Ω, then g ∧∇g is not a gradient map since

(g ∧ gx)y 6= (g ∧ gy)x in D′(Ω).

The following result gives an interpretation of L(g) as the “L1-distance” of g∧∇g
to the class of gradient maps :
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Theorem 2. For every g ∈W 1,1(Ω;S1), we have

(1.7) L(g) =
1
2π

Inf
ψ∈C∞(Ω;R)

∫
Ω

|g ∧∇g −∇ψ| = 1
2π

Min
ψ∈BV (Ω;R)

∫
Ω

|g ∧∇g −Dψ|.

There are many minimizers ψ in (1.7) ; however, at least one of them satisfies
g = eiψ a.e. in Ω.

Let g ∈ W 1,1(Ω; R2) ∩ L∞. Following the ideas of [BCL] (or, more specifically,
[DH] for this particular setting), we introduce the distribution T (g) ∈ D′(Ω; R),
defined by its action on Lip (Ω; R) through the formula

(1.8) 〈T (g), ζ〉 =
∫

(g ∧∇g) · ∇⊥ζ,

where ∇⊥ζ = (ζy,−ζx). In other words,

T (g) = −(g ∧ gx)y + (g ∧ gy)x = 2Det (∇g),

where Det (∇g) denotes the distributional Jacobian of g. We then set

(1.9) L(g) =
1
2π

Max
‖∇ζ‖L∞≤1

〈T (g), ζ〉.

We first state some analogs of the results in [BBM2] :

Theorem 3. Assume g ∈ W 1,1(Ω;S1). There exist two sequences (Pi), (Ni) in Ω
such that

∑
i |Pi −Ni| <∞ and

(1.10) T (g) = 2π
∑

(δPi − δNi).

Moreover,

(1.11) L(g) = Inf
∑
j

d(P̃j , Ñj)
(
≤ 1

2π

∫
Ω

|∇g|
)
,

where d denotes the geodesic distance in Ω, and the infimum is taken over all
possible sequences (P̃j), (Ñj) satisfying∑

(δP̃j
− δÑj

) =
∑

(δPi
− δNi

) in (W 1,∞)∗.
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Conversely, given two sequences (Pi), (Ni) in Ω such that
∑
i |Pi −Ni| < ∞,

there is always a map g ∈W 1,1(Ω;S1) such that (1.10) holds ; this is the “general-
ized dipole” construction (see [BBM, Lemma 15] and Lemma 4 below). Furthermore
(see Theorem 10) the length of the minimal connection (as given by the right-hand
side of (1.11)) equals Inf

{
1
2π

∫
|∇g|

}
, where the infimum is taken over all maps g

such that (1.10) holds.

As was already pointed out in [BBM2, Lemma 20], we have

〈T (g), ζ〉 = 2π
∫

R
deg (g,Γλ) dλ,

where Γλ = {x ∈ Ω ; ζ(x) = λ} is equipped with the appropriate orientation
(Lemma 20 in [BBM2] is stated for g ∈ H1/2, but the proof also covers the case
where g ∈W 1,1). Here is a new property

Theorem 4. Assume g ∈ W 1,1(Ω;S1), and let ζ ∈ Lip (Ω; R) with ‖∇ζ‖L∞ ≤ 1.
Then

(1.12)
∫

R
|deg(g,Γλ)| dλ ≤ L(g).

In particular, if ζ is a maximizer in (1.9), then

(1.13) deg(g,Γλ) ≥ 0 for a.e. λ.

Finally, we study a notion of relaxed Jacobian determinants in the spirit of
Fonseca-Fusco-Marcellini [FFM], and also Giaquinta-Modica-Souček [GMS1]. Given
g ∈W 1,1(Ω;S1), we set (using the same notation as in [FFM])
(1.14)

TV (g) = Inf
{

lim inf
n→∞

∫
Ω

|gnx ∧ gny| ; gn ∈ C∞(Ω; R2) and gn → g in W 1,1

}
.

Of course this number is possibly infinite. The following is a far-reaching extension
of some results in [FFM]

Theorem 5. Let g ∈W 1,1(Ω;S1). Then

TV (g) <∞ ⇐⇒ Det (∇g) is a measure.

In this case, we have
Det (∇g) = π

∑
finite

(δPi − δNi)
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and
TV (g) = |Det (∇g)|M.

In particular,
1
π
TV (g) is an integer which equals the number of topological singu-

larities of g (counting their multiplicities).

Here, for any Radon measure µ,

|µ|M = Sup
{
〈µ, ϕ〉 ; ϕ ∈ C(Ω; R), ‖ϕ‖L∞ ≤ 1

}
.

Remark 1. The conclusion of Theorem 5 still holds if one replaces the strong W 1,1-
convergence in (1.14) by the weak W 1,1-convergence. There are numerous variants
and extensions of Theorem 5 in Sections 4 and 5.

The paper is organized as follows :

1. Introduction

2. Properties of W 1,1(S1;S1)

3. Properties of W 1,1(Ω;S1). Proofs of Theorems 1–4

4. W 1,1(Ω;S1) and relaxed Jacobians

5. Further directions and open problems

5.1. Some examples of BV -functions with jumps

5.2. Some analogs of Theorems 1, 3, and 5 for bounded domains in R2

5.3. Extensions of Theorems 1, 2, and 3 to higher dimensions

5.4. Extension of TV to higher dimensions and to fractional Sobolev spaces

5.5. Extension of Theorem 3 to maps with values into a curve

2. Properties of W 1,1(S1;S1).
Even though the core of the paper deals with maps from a two dimensional

manifold Ω with values into S1, it is illuminating to start with the study of W 1,1-
maps from S1 into itself.

Let g ∈ W 1,1(S1;S1). There are two natural quantities associated with g ;
namely,

(2.1) E(g) = Min
{
|ϕ|BV ; ϕ ∈ BV (S1; R), g = eiϕ a.e.

}
and
(2.2)

Erel(g) = Inf
{

lim inf
n→∞

∫
S1
|ġn| ; gn ∈ C∞(S1;S1), deg gn = 0, gn → g a.e.

}
.

It turns out that the two quantities are equal and that they can be easily com-
puted in terms of g :
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Theorem 6. Let g ∈W 1,1(S1;S1). Then

(2.3) Erel(g) = E(g) =
∫
S1
|ġ|+ 2π|deg g|.

Proof. First equality in (2.3) : “≥” Let (gn) ⊂ C∞(S1;S1) be such that deg gn =
0 and gn → g a.e. Then we may write gn = eiψn , with ψn ∈ C∞(S1; R) and∫
S1 |ψ̇n| =

∫
S1 |ġn|. Subtracting a suitable integer multiple of 2π, we may assume

(ψn) bounded in W 1,1(S1; R). After passing to a subsequence, we may further
assume that ψn → ψ a.e. for some ψ ∈ BV (S1; R). Therefore,

lim inf
n→∞

∫
S1
|ġn| = lim inf

n→∞

∫
S1
|ψ̇n| ≥

∫
S1
|ψ̇|

and, clearly, eiψ = g a.e.
“≤” Let ψ ∈ BV (S1; R) be such that

|ψ|BV = Min
{
|ϕ|BV ; g = eiϕ a.e.

}
.

Consider a sequence (ψn) ⊂ C∞(S1; R) such that ψn → ψ a.e. and
∫
S1 |ψ̇n| →

|ψ|BV . If we set gn = eiψn , then clearly gn ∈ C∞(S1;S1), deg gn = 0 and gn → g
a.e. Moreover,

lim
n→∞

∫
S1
|ġn| = lim

n→∞

∫
S1
|ψ̇n| = |ψ|BV .

Second equality in (2.3) : “≥” This assertion has been established under slightly
more general assumptions in [BBM2, Section 4.3]. Here is an alternative approach.
Let g ∈W 1,1(S1;S1). We prove that, if ϕ ∈ BV (S1; R) satisfies g = eiϕ a.e., then

(2.4) |ϕ|BV ≥
∫
S1
|ġ|+ 2π|deg g|.

The main ingredient is the chain rule formula for BV-maps, due to Vol’pert ; see
[V], and also [AFP].

Chain rule. Let ϕ ∈ BV (S1; R). Recall that there is a representative ϕ0 of ϕ
which is continuous except at (at most) countably many points an ∈ S1 ; in the
sequel, we take ϕ to be ϕ0 itself. Moreover, at the points an, ϕ admits limits from
the “right” and from the “left”, say ϕ(an+) and ϕ(an−).

Let ϕ̇ be the distributional derivative of ϕ, which is a Borel measure. The diffuse
part of ϕ̇ is

ϕ̇d = ϕ̇−
∑
n

(ϕ(an+)− ϕ(an−))δan .
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Vol’pert’s chain rule for BV-maps on a bounded interval (or a closed curve) asserts
that, if F ∈ C1(R; R), then

˙F ◦ ϕ = F ′(ϕ)ϕ̇d +
∑
n

(
F (ϕ(an+))− F (ϕ(an−))

)
δan .

A more general version of the chain rule, which is valid in RN , is stated and ex-
plained in the proof of Lemma 5 in Section 3 below.

We now return to the proof of (2.4). By the chain rule formula, we have

ġ = ieiϕϕ̇d +
∑
n

(
eiϕ(an+) − eiϕ(an−)

)
δan

.

Using the continuity of g, we have g(an) = eiϕ(an+) = eiϕ(an−) for each n. Hence,

ġ = ieiϕϕ̇d.

Since ġ ∈ L1 and eiϕ = g a.e., we thus find that

g ∧ ġ =
1
ig
ġ = ϕ̇d.

Consequently,

(2.5) |ϕ̇|M = |ϕ̇d|M+ |ϕ̇− ϕ̇d|M = |g∧ ġ|M+ |g∧ ġ− ϕ̇|M =
∫
S1
|ġ|+ |g∧ ġ− ϕ̇|M.

On the other hand,

(2.6) |g ∧ ġ − ϕ̇|M ≥ |〈g ∧ ġ − ϕ̇, 1〉| = |〈g ∧ ġ, 1〉| = 2π|deg g|.

(The last equality is clear when g is smooth ; the case of a general W 1,1-map follows
by approximation.) Finally, by combining (2.5) and (2.6) we find that

|ϕ|BV ≥
∫
S1
|ġ|+ 2π|deg g|,

as claimed.
Second equality in (2.3) : “≤” Since S1 \ {1} is simply connected, we may write

g = eiϕ on S1 \ {1}, for some ϕ ∈ W 1,1(S1 \ {1}; R) such that |ϕ̇| = |ġ| in S1\{1}.
Since ϕ is continuous, we have

ϕ(1−)− ϕ(1+) = 2π deg g.

Passing to the full S1, we have

|ϕ|BV =
∫
S1\{1}

|ϕ̇|+ |ϕ(1−)− ϕ(1+)| =
∫
S1
|ġ|+ 2π|deg g|.

As a consequence of Theorem 6, we have
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Corollary 1. For every g ∈W 1,1(S1;S1),

(2.7) E(g) ≤ 2|g|W 1,1 .

Remark 2. The constant 2 in (2.7) is optimal. Indeed, for g = Id, we have |g|W 1,1 =
2π, while E(g) = 4π by Theorem 6.

It is easy to see from the definition of the relaxed energy that Erel is lower
semicontinuous with respect to the pointwise a.e. convergence in S1. In view of
Theorem 6, we have the following :

Corollary 2. Let (gn) ⊂ W 1,1(S1;S1) be such that gn → g a.e. for some g ∈
W 1,1(S1;S1). Then

(2.8)
∫
S1
|ġ|+ 2π|deg g| ≤ lim inf

n→∞

(∫
S1
|ġn|+ 2π|deg gn|

)
.

Remark 3. The constant 2π in (2.8) cannot be improved. In fact, assume that
(2.8) holds with 2π replaced by some C. In particular, for any sequence (gn) ⊂
C∞(S1;S1) such that deg gn = 0 and gn → Id a.e., we have
(2.9)

2π + C =
∫
S1
|ġ|+ C|deg g| ≤ lim inf

n→∞

(∫
S1
|ġn|+ C|deg gn|

)
= lim inf

n→∞

∫
S1
|ġn|.

On the other hand, according to Theorem 6, the sequence (gn) can be chosen so
that

(2.10) lim
n→∞

∫
S1
|ġn| =

∫
S1
|ġ|+ 2π|deg g| = 4π.

A comparison between (2.9) and (2.10) implies C ≤ 2π.

Inequality (2.8) still holds if one replaces |deg g| and |deg gn| by deg g and deg gn,
under the additional assumption that the sequence (gn) is bounded in W 1,1. This
assumption is essential ; see Remark 4 below. More precisely, we have

Proposition 1 ([BBM2]). Let gn, g ∈W 1,1(S1;S1) be such that gn → g a.e and

sup
n
|gn|BV <∞.

Then

(2.11)
∫
S1
|ġ|+ 2π deg g ≤ lim inf

n→∞

(∫
S1
|ġn|+ 2π deg gn

)
.
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We present here an alternative proof based on Corollary 2.

Proof. Assume |gn|BV ≤ C, ∀ n. In particular,

|deg gn| ≤
1
2π

∫
S1
|ġn| ≤

C

2π
.

Since deg gn takes only integer values, after passing to a subsequence, we can assume
that d = deg gn, ∀ n. Given ε > 0, let h ∈ C∞(S1;S1) be such that deg h = −d
and h(x) = 1, ∀ x ∈ S1\Bε(1). Clearly,

hgn → hg a.e. in S1 and deg hgn = 0, ∀ n.

It follows from Corollary 2 that
(2.12)∫
S1
|ġh+ gḣ|+ 2π(deg g − d) ≤ lim inf

n→∞

∫
S1
|ġnh+ gnḣ| ≤ lim inf

n→∞

∫
S1
|ġn|+

∫
S1
|ḣ|.

On the other hand, since h(x) = 1 for x ∈ S1\Bε(1), we have

(2.13)

∫
S1
|ġh+ gḣ| =

∫
S1\Bε(1)

|ġ|+
∫
S1∩Bε(1)

|ġh+ gḣ|

≥
∫
S1\Bε(1)

|ġ| −
∫
S1∩Bε(1)

|ġ|+
∫
S1∩Bε(1)

|ḣ|

=
∫
S1
|ġ| − 2

∫
S1∩Bε(1)

|ġ|+
∫
S1
|ḣ|.

Comparison between (2.12) and (2.13) yields∫
S1
|ġ| − 2

∫
S1∩Bε(1)

|ġ|+ 2π(deg g − d) ≤ lim inf
n→∞

∫
S1
|ġn|.

Taking ε→ 0, we obtain (2.11).

An immediate consequence of Proposition 1 is

Corollary 3. Under the assumptions of Proposition 1, we have∫
S1
|ġ| ≤ lim inf

n→∞

(∫
S1
|ġn| − 2π|deg gn − deg g|

)
.

Remark 4. Proposition 1 (or, equivalently, Corollary 3) is false without the as-
sumption supn |gn|BV < ∞. Here is an example. Let n ≥ 1 be a fixed integer.
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Given 0 ≤ j ≤ n − 1, let aj,n = 2πj
n and Ij,n = [aj,n, aj+1,n − 1

2n ] ⊂ R. On each
interval Ij,n, we define fn(t) = 2πj − aj,n. We then extend fn continuously to
[0, 2π], so that fn is affine linear outside the set

⋃
j Ij,n, and fn(2π) = 2π(n− 1).

By construction, fn is Lipschitz, nondecreasing, and fn(2π) − fn(0) ∈ 2πZ. Note
that

d
(
fn(t),−t+ 2πZ

)
≤ |aj+1,n − aj,n| =

2π
n

∀t ∈
⋃
j

Ij,n ;

∣∣[0, 2π]\
⋃
j

Ij,n
∣∣ =

n

2n
.

Set gn(θ) = e−ifn(θ). Then, we have gn → g a.e., where g = Id ; however,∫
S1
|ġ|+ 2π deg g = 4π,

while ∫
S1
|ġn|+ 2π deg gn = 0, ∀ n.

3. Properties of W 1,1(Ω;S1).
We start with the rigorous definitions of T (g) and of the class Lip mentioned in

the Introduction. If g ∈W 1,1(Ω; R2), we set

|∇g| =

[(
∂g1
∂x

)2

+
(
∂g1
∂y

)2

+
(
∂g2
∂x

)2

+
(
∂g2
∂y

)2
]1/2

,

where (x, y) is any orthonormal frame at some point on Ω, and we let

|g|W 1,1 =
∫

Ω

|∇g|.

Recall that we defined T (g) by

〈T (g), ζ〉 =
∫

Ω

((g ∧ gx)ζy − (g ∧ gy)ζx) , ∀ ζ ∈ Lip (Ω; R).

Here,
(
u1

u2

)
∧

(
v1
v2

)
= u1v2−u2v1, and the integrand is computed in any orthonor-

mal frame (x, y) such that (x, y, n) is direct, where n is the outward normal to G.
(This integrand is frame invariant.) The class of testing functions, Lip (Ω; R), is
the set of functions which are Lipschitz with respect to the geodesic distance d in
Ω. For such a map, we set

|ζ|Lip = Sup
x6=y

|ζ(x)− ζ(y)|
d(x, y)

= ‖∇ζ‖L∞ .

We next collect some straightforward properties of T (g) and L(g) :
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Lemma 1. We have

a) T (ḡ) = −T (g), ∀ g ∈W 1,1(Ω; R2) ∩ L∞ ;

b) T (gh) = T (g) + T (h), ∀ g, h ∈W 1,1(Ω;S1) ;

c) L(g) ≤ 1
2π
|g|W 1,1‖g‖∞, ∀ g ∈W 1,1(Ω; R2) ∩ L∞ ;

d) If gn, g ∈W 1,1(Ω; R2)∩L∞ are such that gn → g in W 1,1 and ‖gn‖L∞ ≤ C,
then L(gn) → L(g).

Proof. The only property that requires a proof is d). Since

|〈T (gn), ζ〉 − 〈T (g), ζ〉| ≤
∫

Ω

|gn| |∇(gn − g)| |∇ζ|+
∫

Ω

|gn − g| |∇g| |∇ζ|,

we have
|L(gn)− L(g)| ≤ C|gn − g|W 1,1 + ‖(gn − g)∇g‖L1

and d) follows by dominated convergence.

Recall the following density result of Bethuel-Zheng [BZ] :

Lemma 2. The class

R =
{
g ∈W 1,1(Ω;S1) ; g ∈ C∞(Ω \A;S1), where A is some finite set

}
is dense in W 1,1(Ω;S1).

When g ∈ R, a straightforward adaptation of the proof of Lemma 2 in [BBM2]
yields the following :

Lemma 3. If g ∈W 1,1(Ω;S1), g ∈ C∞(Ω \ {a1, . . . , ak};S1), then

T (g) = 2π
k∑
j=1

djδaj
.

Here, dj = deg (g, aj) is the topological degree of g restricted to any small circle
around aj , positively oriented with respect to the outward normal. Moreover, L(g)
is the length of the minimal connection associated to the configuration (aj , dj) and
to the geodesic distance on Ω (see Remark 5 below).

Remark 5. By the definition of T (g), we have 〈T (g), 1〉 = 0. Thus,
∑k
j=1 dj = 0,

by Lemma 3. Therefore, we may write the collection of points (aj) (repeated with
multiplicity |dj |) as (P1, . . . , P`, N1, . . . , N`), where ` = 1

2

∑k
j=1 |dj | ; the points of
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degree 0 do not appear in this list, aj is counted among the points Pi if dj > 0, and
among the points Ni otherwise. Then

L(g) = Min
σ∈S`

∑̀
j=1

d(Pj , Nσ(j)).

This formula first appeared in the context of S2-valued maps ; see [BCL].

Using the density of R in W 1,1(Ω;S1), one can easily obtain Theorem 3 from
Lemma 3. The analog of Theorem 3 for H1/2(Ω;S1) was proved in [BBM2], and
the arguments there also apply to our case.

A converse to Theorem 3 is also true. Namely, for any sequence of points (Pi),
(Ni) satisfying

∑
i |Pi −Ni| < ∞, one can find g ∈ W 1,1(Ω;S1) such that (1.10)

holds ; see [BBM2]. Motivated by this, we state the following :

Open Problem 1. Let 1 < p < 2. Given g ∈W 1,p(Ω;S1), can one find (Pi), (Ni)
such that

∑
i |Pi −Ni|2/p−1 <∞ and (1.10) holds ?

Open Problem 2. Given two sequences (Pi), (Ni) such that
∑
i |Pi −Ni|2/p−1 <

∞ for some 1 < p < 2, does there exist some g ∈ W 1,p(Ω;S1) such that (1.10)
holds ? If the answer is negative (as we suspect), what is the right condition on the
points Pi, Ni (in terms of capacity ?) which guarantees the existence of g ?

We now consider the following class

Y = C∞(Ω;S1)
W 1,1

;

this class is properly contained in W 1,1(Ω;S1) (see Remark 7 below).
It turns out that maps in Y can be characterized in terms of their distribution

T (g) :

Theorem 7. Let g ∈W 1,1(Ω;S1). Then the following properties are equivalent :

a) g ∈ Y ;

b) T (g) = 0 ;

c) there exists ϕ ∈W 1,1(Ω; R) such that g = eiϕ.

Remark 6. When Ω is a smooth bounded open set in R2, the equivalence a) ⇔ b)
was established by Demengel [D]. We could adapt the argument in [D] to our case,
but we present below a different approach, based on an idea of Carbou [C].

Remark 7. Using Theorem 7, it is easy to construct maps in W 1,1(Ω;S1) \ Y .

Assume, e.g., that Ω = S2, and let g(x, y, z) =
(x, y)
|(x, y)|

. By Lemma 3, we have
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T (g) = 2π(δN−δS), where N,S are the North and South pole of S2. By Theorem 7,
this implies that g /∈ Y .

Proof of Theorem 7.
a) ⇒ b) By Lemma 3, we have T (g) = 0 if g ∈ C∞(Ω;S1). By Lemma 1, g 7→

T (g) is continuous with respect to W 1,1-convergence, and thus T (g) = 0, ∀ g ∈ Y .
b) ⇒ c) We argue as in [C] ; see also [BBM1]. Let x0 ∈ Ω and assume that

Ω ⊂ R2 near x0. Since T (g) = 0, the L1-vector field

F =
(
F1

F2

)
=

(
g ∧ gx
g ∧ gy

)

satisfies, near x0,
∂F1
∂y

=
∂F2

∂x
in the sense of distributions. By a variant of the

Poincaré Lemma (see [BBM1]), we may find a neighborhood ω of x0 and a function
ψ ∈W 1,1(ω; R) such that g = ei(ψ+C) in ω, for some constant C (see [BBM1]).

Consider a finite covering of Ω with open sets ωj such that

(i) in each ωj we may write g = eiϕj for some ϕj ∈W 1,1(ωj ; R) ;

(ii) ωj ∩ ωk is connected, ∀ j, ∀ k.

In ωj ∩ ωk, the map ϕj − ϕk belongs to W 1,1 and is 2πZ-valued ; thus, it has
to be constant a.e. Since Ω is simply connected, we may therefore find a map ϕ in
W 1,1(Ω; R) such that ϕ − ϕj is, a.e. in ωj , a constant integer multiple of 2π. In
particular, g = eiϕ in Ω.

c) ⇒ a) Let (ϕn) ⊂ C∞(Ω; R) be such that ϕn → ϕ in W 1,1. Set gn = eiϕn .
Then, clearly, gn ∈ C∞(Ω;S1) and gn → g in W 1,1.

Remark 8. It follows from Theorem 7 that, given a map g ∈W 1,1(Ω;S1), in general
we may not write g = eiϕ for some ϕ ∈ W 1,1(Ω; R) ; consider, for example, the
map g in Remark 7. However, it follows from Theorem 2 that we may write g = eiϕ

for some ϕ ∈ BV (Ω; R). This conclusion still holds for maps g ∈ BV (Ω;S1) ; see
[GMS2] and [DI].

Before starting the proof of Theorem 2, we recall the “generalized dipole” con-
struction presented in [BBM2] :

Lemma 4. Let g ∈ W 1,1(Ω;S1). Then, for each ε > 0, there is some h = hε ∈
W 1,1(Ω;S1) such that

(i) |h|W 1,1 ≤ 2πL(g) + ε ;

(ii) T (h) = T (g) ;
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(iii) there is a function ψ = ψε ∈ BV (Ω; R) such that h = eiψ a.e. and |ψ|BV ≤
4πL(g) + ε ;

(iv) meas (Suppψ) = meas (Supp (h− 1)) < ε.

Proof of Theorem 2. Let ψ ∈ BV (Ω; R) and ζ ∈ C∞(Ω; R) be such that |∇ζ| ≤ 1.
Then

|g ∧∇g −Dψ|M(Ω) ≥
∫

Ω

(g ∧∇g) · ∇⊥ζ −
∫

Ω

Dψ · ∇⊥ζ = 〈T (g), ζ〉,

so that
1
2π
|g ∧∇g −Dψ|M(Ω) ≥ L(g),

by taking the supremum over ζ.
It thus remains to construct, for each ε > 0, a map ψ ∈ C∞(Ω; R) such that∫

Ω

|g ∧∇g −∇ψ| ≤ 2πL(g) + ε.

Recall that, by Lemma 4, we may find some h ∈W 1,1(Ω;S1) such that T (h) = T (g)
and ∫

Ω

|∇h| ≤ 2πL(g) + ε/2.

Set k = gh̄, so that k ∈ Y , by Lemma 1 and Theorem 7. Write k = eiϕ for some

ϕ ∈W 1,1 and let ψ ∈ C∞(Ω; R) be such that
∫

Ω

|∇ϕ−∇ψ| < ε

2
.

Then∫
Ω

|g ∧∇g −∇ψ| =
∫

Ω

|(hk) ∧∇(hk)−∇ψ| =
∫

Ω

|h ∧∇h+ k ∧∇k −∇ψ|

=
∫

Ω

|h ∧∇h+∇ϕ−∇ψ| ≤
∫

Ω

|h ∧∇h|+
∫

Ω

|∇ϕ−∇ψ|

≤
∫

Ω

|∇h|+ ε

2
≤ 2πL(g) + ε.

In order to complete the proof of Theorem 2, it suffices to prove the following
Claim. Given g ∈W 1,1(Ω;S1), there exists some ϕ ∈ BV (Ω; R) such that

(3.1) g = eiϕ a.e. in Ω

and

(3.2) |g ∧∇g −Dϕ|M(Ω) = 2πL(g).
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In other words, in (1.7), one may restrict the minimization to the class of functions
ψ ∈ BV (Ω; R) such that g = eiψ.

Using the same argument as above, we can write g as

(3.3) g = hneiϕn in Ω,

where ϕn ∈W 1,1(Ω; R), hn ∈W 1,1(Ω;S1) and

|hn|W 1,1 ≤ 2πL(g) +
1
n
.

Moreover, in view of (iv) in Lemma 4, we can also assume that hn → 1 a.e.
Note that

(3.4)
∫

Ω

|g ∧∇g −∇ϕn| =
∫

Ω

|hn ∧∇hn| =
∫

Ω

|∇hn| ≤ 2πL(g) +
1
n
.

Subtracting a suitable integer multiple of 2π from ϕn, we may assume that (ϕn)
is bounded in W 1,1(Ω; R). After passing to a subsequence if necessary, we can find
ϕ ∈ BV (Ω; R) such that

ϕn → ϕ a.e. in Ω and ∇ϕn
∗
⇀ Dϕ in M(Ω).

Since hn → 1 a.e. in Ω, it follows from (3.3) that g = eiϕ a.e. in Ω. Letting n→∞
in (3.4), we obtain∫

Ω

|g ∧∇g −Dϕ| ≤ lim inf
n→∞

∫
Ω

|g ∧∇g −∇ϕn| ≤ 2πL(g).

This establishes “≤” in (3.2). The reverse inequality follows trivially from (1.7).

Remark 9. Here is an example which shows that a minimizing function ψ in (1.7)
is not necessarily a lifting of g (modulo constants). Assume for simplicity Ω is flat
and consider a map g having four singular points in Ω, say P1 = (0, 0), P2 = (1, 1),
N1 = (1, 0) and N2 = (0, 1). Then S = P1N1P2N2 is a square. We may write
g = eiψ1 = eiψ2 , where

ψ1 ∈ C∞(Ω \ ([P1, N1] ∪ [P2, N2])) and ψ2 ∈ C∞(Ω \ ([P1, N2] ∪ [P2, N1])).

Then |g ∧ ∇g −Dψ1| = 2πν1 (resp. |g ∧ ∇g −Dψ2| = 2πν2), where ν1 (resp. ν2)
denotes the 1-dimensional Hausdorff measure on [P1, N1]∪ [P2, N2] (resp. [P1, N2]∪
[P2, N1]).
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It follows from Theorem 2 that ψ1, ψ2 are minimizers in (1.7). Moreover, we may
assume that ψ1 = ψ2 in the square S. By convexity, the function ψ = (ψ1 + ψ2)/2
is also a minimizer. Outside S̄, ψ is smooth and, clearly, g = αeiψ in Ω\ S̄ for some
α ∈ S1. One may check that α = −1, and thus

eiψ =
{
g, in S
−g, in Ω \ S̄

,

so that ψ is not a lifting of g.

Going back to the general situation, letK be the set of minimizers of the problem

Min
ψ∈BV

∫
|g ∧∇g −Dψ|

satisfying
∫
ψ = 0. Clearly, K is convex and compact in L1(Ω; R).

Open Problem 3. Is it true that

ψ is an extreme point of K ⇐⇒ g = ei(ψ+C) for some constant C ?

Another result, closely related to Theorem 1, is the following :

Theorem 8. Let g ∈W 1,1(Ω;S1). Then,

(3.5) Inf
{
|ϕ2|BV ; g = ei(ϕ1+ϕ2), ϕ1 ∈W 1,1(Ω; R), ϕ2 ∈ BV (Ω; R)

}
= 4πL(g).

The analog of Theorem 8 for the space H1/2(Ω;S1) was established in [BBM2],
and the arguments there can be adapted to our case. The proof we present below
for “≥” in (3.5) is however different.

Proof of Theorem 8.

Proof of “≤” in (3.5). With ε > 0 fixed and h given by Lemma 4, we write g = hk,
where k = gh̄. By Lemma 1 a), b), we have T (k) = 0. Therefore, by Theorem 7
we may write k = eiϕ for some ϕ ∈W 1,1(Ω; R). It follows that g = ei(ϕ+ψ), with ψ
given by Lemma 4. Inequality “≤” in (3.5) follows from (iii) in Lemma 4.

Proof of “≥” in (3.5). We rely on the following
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Lemma 5. Let ϕ ∈ BV (Ω; R) be such that g = eiϕ ∈W 1,1(Ω;S1). Then

|Dϕ|M(Ω) = |g|W 1,1 + |g ∧∇g −Dϕ|M(Ω).

Proof. We split the measure Dϕ as

(3.6) Dϕ = (Dϕ)ac + (Dϕ)C + (Dϕ)J ,

where ac, C, J stand respectively for the absolutely continuous, Cantor and jump
part. Applying Volpert’s chain rule to the composition f(ϕ), where f(t) = eit, we
obtain

(3.7) Dg = D(f ◦ ϕ) = f ′(ϕ)(Dϕ)ac + f ′(ϕ)(Dϕ)C +
f(ϕ+)− f(ϕ−)

ϕ+ − ϕ−
(Dϕ)J .

The meaning of this identity is the following : recall that, for every function ϕ ∈
BV (Ω), the Lebesgue set of ϕ is the complement of a set of σ-finite H1-measure.
We may assume that ϕ coincides with its precise representative on the Lebesgue
set of ϕ. Since |(Dϕ)ac|(A) = |(Dϕ)C |(A) = 0 whenever H1(A) < ∞, the first
two terms in the right-hand side of (3.7) are well-defined (i.e., independently of the
choice of the representative of ϕ). The last term in (3.7) is to be understood as
follows : the jump set J of ϕ is a countable union of Lipschitz curves Ci and, at
H1-a.e. point x of Ci, Ci has a normal vector and ϕ has one-sided limits at x along
the normal direction ; the quantities ϕ+ and ϕ− stand for the two one-sided limits.
See [AFP] for a proof of (3.7).

Since g ∈W 1,1, it follows that (Dg)C = (Dg)J = 0, so that (Dϕ)C = 0 and

(3.8) ∇g = f ′(ϕ)(Dϕ)ac = ig(Dϕ)ac.

From (3.8), we obtain that

(3.9) g ∧∇g = −iḡ∇g = (Dϕ)ac.

Thus
(Dϕ)J = Dϕ− g ∧∇g.

Since the decomposition (3.6) consists of mutually orthogonal measures, we have

|Dϕ| = |(Dϕ)ac|+ |(Dϕ)J | = |iḡ∇g|M(Ω) + |g ∧∇g −Dϕ|M(Ω)

= |g|W 1,1 + |g ∧∇g −Dϕ|M(Ω).
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Proof of Theorem 8 completed. Write g = ei(ϕ1+ϕ2), with ϕ1 ∈ W 1,1, ϕ2 ∈ BV .
Then, with h = ge−iϕ1 , we have h = eiϕ2 , h ∈ W 1,1 and T (h) = T (g). Theorem 2
and Lemma 5 yield

|Dϕ2|M(Ω) = |h|W 1,1 + |h ∧∇h−Dϕ2|M(Ω)

≥ |h|W 1,1 + 2πL(h) ≥ 4πL(h) = 4πL(g),

since 2πL(h) ≤ |h|W 1,1 , by Lemma 1.

Maps in W 1,1(Ω;S1) need not belong to H1/2(Ω;S1). However, we have the
following link between W 1,1 and H1/2 :

Theorem 9. Let g ∈W 1,1(Ω;S1). Then there exist h ∈W 1,1(Ω;S1)∩H1/2(Ω;S1)
and ϕ ∈W 1,1(Ω; R) such that g = eiϕh.

The analog of Theorem 9 for H1/2(Ω;S1) was established in [BBM2].

Proof. We rely on the following additional property of the maps h = hε constructed
in Lemma 4 (see [BBM2]) :

(v) h ∈ H1/2(Ω;S1).

Pick any of the maps h as in Lemma 4. Then T (gh̄) = 0, so that, by Theorem 7,
we may write gh̄ = eiϕ for some ϕ ∈ W 1,1(Ω; R). The decomposition g = eiϕh has
all the required properties.

From Theorem 2, we have

Corollary 4. Each g ∈ W 1,1(Ω;S1) may be written as g = eiϕ for some ϕ ∈
BV (Ω; R).

Corollary 5 ([GMS2]). For each g ∈W 1,1(Ω;S1), one can find a sequence (gn) ⊂
C∞(Ω;S1), bounded in W 1,1, such that gn → g a.e.

We now establish

Proposition 2. For each g ∈W 1,1(Ω;S1), we have

Erel(g) = E(g).

Proof. “≤” Let ϕ ∈ BV (Ω; R) be such that g = eiϕ. Let (ϕn) ⊂ C∞(Ω; R) be such
that ϕn → ϕ a.e. and

∫
Ω
|∇ϕn| → |ϕ|BV . We define gn = eiϕn ∈ C∞(Ω;S1). Then

gn → g a.e. and
∫
Ω
|∇gn| =

∫
Ω
|∇ϕn| → |ϕ|BV , so that “≤” follows.

“≥” Let (gn) ⊂ C∞(Ω;S1) be such that gn → g a.e. and
∫
Ω
|∇gn| → Erel(g).

Since Ω is simply connected, we may write gn = eiϕn , with ϕn ∈ C∞(Ω; R). Since
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∫
Ω
|∇gn| =

∫
Ω
|∇ϕn|, we may find some ϕ ∈ BV (Ω; R) such that, after subtracting

an integer multiple of 2π from ϕn and up to some subsequence, ϕn → ϕ a.e. ; we
then conclude that |ϕ|BV ≤ lim inf

n→∞

∫
Ω
|∇ϕn| = Erel(g).

The relaxed energy is also related to the minimal connection L(g). This is the
content of Theorem 1 :

(3.10) Erel(g) =
∫

Ω

|∇g|+ 2πL(g), ∀ g ∈W 1,1(Ω;S1).

Proof of Theorem 1. Inequality “≤” in (3.10) was proved in [DH] when Ω is a
smooth bounded open set in R2, and their argument could be easily adapted to our
situation. Here is another way. By Theorem 2, we may find some ϕ1 ∈ BV such
that g = eiϕ1 and

|g ∧∇g −Dϕ1|M = 2πL(g).

Combining with Lemma 5 yields

|Dϕ1|M = |g|W 1,1 + |g ∧∇g −Dϕ1|M = |g|W 1,1 + 2πL(g).

By Proposition 2, we finally get

Erel(g) ≤ |Dϕ1|M = |g|W 1,1 + 2πL(g).

For the reverse inequality “≥” in (3.10), we argue as follows. By Proposition 2, we
know that

Erel(g) = |Dϕ0|M
for some ϕ0 ∈ BV (Ω; R) such that g = eiϕ0 . By Lemma 5 and Theorem 2, we have

|Dϕ0|M = |g|W 1,1 + |g ∧∇g −Dϕ0|M ≥ |g|W 1,1 + 2πL(g).

Corollary 6. For each g ∈ W 1,1(Ω;S1), there is some ϕ ∈ BV (Ω; R) such that
g = eiϕ a.e. and |ϕ|BV ≤ 2|g|W 1,1 .

Corollary 6 is a special case of a much more general result of Dávila and Ignat
[DI] which asserts that the same conclusion holds for maps g ∈ BV (Ω;S1).

Proof. The corollary follows from Proposition 2, Theorem 1 and the inequality

L(g) ≤ 1
2π
|g|W 1,1 , ∀ g ∈ W 1,1(Ω;S1) (this last estimate is an immediate conse-

quence of the definition (1.9) of L(g)).

We now present a coarea type formula proved in [BBM2], which relates the
quantity 〈T (g), ζ〉 and the degree of g ∈ H1/2(Ω;S1) with respect to the level sets
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of ζ (in [BBM2] the result is stated for H1/2-maps, but it is actually proved for
W 1,1). More precisely, let ζ ∈ C∞(Ω; R). If λ ∈ R is a regular value of ζ, let

Γλ =
{
x ∈ Ω ; ζ(x) = λ

}
.

We orient Γλ such that, for each x ∈ Γλ, the basis
(
τ(x),∇ζ(x), n(x)

)
is direct,

where n(x) denotes the outward normal to Ω at x.
Given g ∈ H1/2(Ω;S1), the restriction of g to the level set Γλ belongs to W 1,1 ⊂

C0 for a.e. λ ; this follows from the coarea formula. Therefore, deg (g; Γλ) makes
sense for a.e. λ, and Γλ is a union of simple curves, say Γλ =

⋃
γj ; then we set

deg (g; Γλ) =
∑

deg (g; γj).

In [BBM2], the authors proved that for every g ∈W 1,1(Ω;S1) we have

(3.11) 〈T (g), ζ〉 = 2π
∫

R
deg (g; Γλ) dλ.

We point out that this formula still holds if ζ ∈ Lip (Ω; R). If we assume in addition
that |ζ|Lip ≤ 1, then a simple corollary of (3.11) is the inequality :

(3.12)
∣∣∣∣∫

R
deg (g; Γλ) dλ

∣∣∣∣ ≤ L(g).

The novelty in Theorem 4 is that this estimate remains true if one replaces deg (g; Γλ)
by its absolute value inside the integral in (3.12).

Proof of Theorem 4. We shall first establish (1.12) for functions g in the class R,
and then we argue by density.

Let g ∈ R and ζ ∈ Lip (Ω; R), with |ζ|Lip ≤ 1. By Lemma 3, we can find finitely
many points Pi, Ni such that

T (g) = 2π
k∑
i=1

(δPi
− δNi

).

Let λ ∈ R be a regular value of ζ such that λ 6= ζ(Pi), ζ(Ni) for any i ∈ {1, . . . , k}.
Then, we have

deg (g; Γλ) = card
{
i ; ζ(Pi) > λ

}
− card

{
i ; ζ(Ni) > λ

}
,

so that

deg (g; Γλ) =
1
2

k∑
i=1

{
sgn

[
ζ(Pi)− ζ

]
− sgn

[
ζ(Ni)− ζ

]}
.
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After relabeling the negative points Ni if necessary, we can assume that L(g) =
k∑
i=1

d(Pi, Ni). Let γi be a geodesic arc in Ω connecting Pi to Ni. Clearly,

1
2

∣∣∣ sgn
[
ζ(Pi)− ζ

]
− sgn

[
ζ(Ni)− ζ

]∣∣∣ ≤ card
{
x ∈ γi ; ζ(x) = λ

}
.

Using the area formula, we obtain

∫
R
|deg (g; Γλ)| dλ ≤

k∑
i=1

∫
R

card
{
x ∈ γi ; ζ(x) = λ

}
dλ =

k∑
i=1

∫
γi

∣∣∣∣∂ζ∂τ
∣∣∣∣ ≤ L(g).

This establishes (1.12) for maps g ∈ R.
For a general g ∈ W 1,1(Ω;S1), it follows from Lemma 2 that we can find a

sequence (gn) ⊂ R such that gn → g strongly inW 1,1. In particular, by Lemma 1 d)
we have

L(gn) → L(g).

Passing to a subsequence, we may assume that un|Γλ
converges to u|Γλ

in W 1,1,
and hence uniformly, for a.e. λ. Thus,

deg (gn; Γλ) → deg (g; Γλ) for a.e. λ.

Applying Fatou’s lemma, we find∫
R
|deg (g; Γλ)| dλ ≤ lim inf

n→∞

∫
R
|deg (gn; Γλ)| dλ ≤ lim

n→∞
L(gn) = L(g).

This proves (1.12). Note that (1.13) follows immediately from (1.12). In fact, if ζ
maximizes (1.9), then

L(g) =
∫

R
deg (g; Γλ) dλ ≤

∫
R
|deg (g; Γλ)| dλ ≤ L(g).

Therefore, deg (g; Γλ) = |deg (g; Γλ)| ≥ 0 for a.e. λ.

Given two (infinite) sequences of points (Pi) and (Ni) in Ω such that

(3.13)
∞∑
i=1

d(Pi, Ni) <∞,
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we may introduce the distribution

(3.14) T = 2π
∞∑
i=1

(δPi
− δNi

) in (W 1,∞)∗,

and the number

(3.15) L =
1
2π

Max
|ζ|Lip≤1

〈T, ζ〉,

where the best Lipschitz constant |ζ|Lip refers to the geodesic distance d in Ω. The
distribution T admits many representations, and it has been proved in [BBM2,
Lemma 12′] (see also [P]) that

L = Inf
{∑

j

d(P̃j , Ñj) ;
∑
j

(δP̃j
− δÑj

) =
∑
i

(δPi
− δNi

) in (W 1,∞)∗
}
.

We also recall that if the sequences (Pi), (Ni) consist of a finite number of points
P1, P2, . . . , Pk, N1, N2, . . . , Nk, then

(3.16) L = Min
σ

k∑
i=1

d(Pi, Nσ(i)),

where the minimum in (3.16) is taken over all permutations of the integers {1, 2, . . . , k}.
In our next result, we are given points (Pi), (Ni) satisfying (3.13), and we ask

what is the least “W 1,1-energy” needed to produce singularities of degree +1 at the
points Pi, and degree −1 at the points Ni ; more precisely, we consider the class of
all maps g in W 1,1(Ω;S1) such that

(3.17) T (g) = 2π
∑
i

(δPi − δNi).

[We know (see Lemma 16 in [BBM2]) that such class of maps g is not empty.]
The answer is given by

Theorem 10. Let Pi, Ni ∈ Ω be such that
∑
i d(Pi, Ni) <∞. Then

(3.18) Inf
{∫

Ω

|∇g| ; g ∈W 1,1(Ω;S1) satisfying (3.17)
}

= 2πL.
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In particular,

d(P,N) =
1
2π

Inf
{∫

Ω

|∇g| ; g ∈W 1,1(Ω;S1), T (g) = 2π(δP − δN )
}(3.19)

=
1
2π

Inf

{∫
Ω

|∇g|

∣∣∣∣∣ g ∈W
1,∞
loc (Ω\{P,N};S1),

deg (g, P ) = +1 and deg (g,N) = −1

}
.

Proof. Given Pi, Ni as above, we fix some g0 ∈W 1,1(Ω;S1) such that

T (g0) = T = 2π
∑
i

(δPi
− δNi

).

By Lemma 4, for each ε > 0 we may find a map h ∈ W 1,1(Ω;S1) such that
T (h) = T (g0) = T and ∫

Ω

|∇h| ≤ 2πL(g0) + ε = 2πL+ ε,

which implies “≤” in (3.18). Inequality “≥” in (3.18) follows from Lemma 1 c).
To prove the second equality in (3.19), it suffices to apply Lemma 15 in [BBM2].

In view of Theorem 10, it is natural to define, for every P,N ∈ Ω,

ρ(P,N) =
1
2π

Inf
{

[g]W 1,1 ; g ∈W 1,1(Ω;S1), T (g) = 2π(δP − δN )
}
.

Here, [ ]W 1,1 is a general given semi-norm on W 1,1(Ω; C) equivalent to | |W 1,1 . Of
course, ρ depends on the choice of [ ]W 1,1 . We require from [ ]W 1,1 some structural
properties :

(P1) [αg]W 1,1 = [g]W 1,1 , ∀ g ∈W 1,1(Ω; C), ∀ α ∈ S1 ;

(P2) [ḡ]W 1,1 = [g]W 1,1 , ∀ g ∈W 1,1(Ω; C) ;

(P3) [gh]W 1,1 ≤ ‖g‖L∞ [h]W 1,1 + ‖h‖L∞ [g]W 1,1 , ∀ g, h ∈W 1,1(Ω; C) ∩ L∞.

It follows easily from (P3) that ρ is a distance.

Example 1. The semi-norm

[g]W 1,1 =
∫

Ω

|∇g|w,
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where w is a positive smooth function defined on Ω, satisfies (P1), (P2) and (P3).
Exercise : compute ρ in this case.

One may define a new relaxed energy associated to [ ]W 1,1 by setting, for every
g ∈W 1,1(Ω;S1),

Ẽrel(g) = Inf
{

lim inf
n→∞

[gn]W 1,1 ; gn ∈ C∞(Ω;S1), gn → g a.e.
}
,

and also

L̃(g) =
1
2π

Sup
{
〈T (g), ζ〉 ;

∣∣ζ(x)− ζ(y)
∣∣ ≤ ρ(x, y), ∀ x, y ∈ Ω

}
.

We end this section with the following

Open Problem 4. Is it true that, for every g ∈W 1,1(Ω;S1),

Ẽrel(g) = [g]W 1,1 + 2πL̃(g) ?

4. W 1,1(Ω;S1) and relaxed Jacobians.
Given any function g ∈ W 1,p(Ω; R2), with p ≥ 1, a natural concept associated

to g is the following

TVτ (g) = Inf
{

lim inf
n→∞

∫
Ω

|gnx ∧ gny| ; gn ∈ C∞(Ω; R2), gn → g with respect to τ
}
,

for some topology τ .
There are several topologies τ of interest. For example, given 1 ≤ p < 2 and

g ∈W 1,p(Ω; R2), we consider

TVp,s(g) = TV computed with respect to the strong W 1,p-topology,

TVp,w(g) = TV computed with respect to the weak W 1,p-topology.

In the case p = 1, for every g ∈W 1,1(Ω; R2), we also define

TV1,w∗(g) = TV computed with respect to the weak∗ W 1,1-topology.

In what follows, we are going to work with the weak W 1,1-topology and simply
write TV for the total variation TV1,w. But we will also state results for TVp,w and
TVp,s for every 1 ≤ p < 2, and for TV1,w∗ ; see Remarks 10 and 12 below.

Let us start with a simple
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Proposition 3. Assume g ∈W 1,1(Ω; R2)∩L∞ and TV (g) <∞. Then Det (∇g) ∈
M(Ω) and

(4.1) |Det (∇g)|M ≤ TV (g).

Recall that Det (∇g) is the distributional Jacobian of g and that T (g) = 2 Det (∇g)
(see (1.8)).

Proof. Given ε > 0, there exists a sequence (gn) ⊂ C∞(Ω; R2) such that

gn ⇀ g weakly in W 1,1,(4.2) ∫
Ω

|gnx ∧ gny| ≤ TV (g) + ε, ∀n.(4.3)

Let M = ‖g‖L∞ and let P : R2 → BM be the orthogonal projection onto BM . Set
g̃n = Pgn. It is easy to see (using Dunford-Pettis’ theorem) that g̃n satisfies (4.2)
and (4.3). Moreover, by a standard regularization argument, we may assume that
the functions g̃n are smooth. In what follows, we will denote g̃n by gn, and so we
also have

(4.4) ‖gn‖L∞ ≤ ‖g‖L∞ .

We claim that
gn ∧∇gn ⇀ g ∧∇g weakly in L1.

In fact, it suffices to notice that∫
Ω

|gn − g||∇gn| → 0,

which follows from Egorov’s and Dunford-Pettis’ theorems. Hence

gnx ∧ gny =
1
2

[
(gn ∧ gny)x + (gnx ∧ gn)y

]
converges to Det (∇g) in the sense of distributions. We deduce from (4.3) that
Det (∇g) ∈M(Ω) and that (4.1) holds.

Remark 10. The conclusion of Proposition 3 is no longer true if we compute the
total variation of g with respect to the weak∗-topology of W 1,1, TV1,w∗(g). In
fact, assume g ∈ W 1,1(Ω;S1). It follows from Corollary 5 that there exists (gn) ⊂
C∞(Ω;S1) such that gn

∗
⇀ g in W 1,1. Since gnx ∧ gny = 0 for each n, we conclude

that TV1,w∗(g) = 0. On the other hand, for some maps g in W 1,1(Ω;S1) we have
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Det (∇g) =
1
2
T (g) 6= 0 ; see Theorem 11 below. A fortiori, the conclusion of

Proposition 3 fails if τ is the strong L1-topology (or the convergence pointwise
a.e.).

In general, the inequality in (4.1) is strict. This fact was pointed out by an
example in [M] ; see also [GMS1]. There, the map g ∈W 1,1(Ω; R2) takes its values
in an eight-shaped curve and satisfies Deg (∇g) = 0 in the sense of distributions,
while TV (g) > 0. It is therefore remarkable that equality in (4.1) holds whenever
the map g takes its values in S1. This is the content of our next result, which is
stronger than Theorem 5 :

Theorem 11. Assume g ∈ W 1,p(Ω;S1), 1 ≤ p < 2, is such that Det (∇g) ∈ M.
Then there exists a sequence (gn) ⊂ C∞(Ω; R2) such that

gn → g strongly in W 1,p

and
TV (g) = lim

n→∞

∫
Ω

|gnx ∧ gny| = |Det (∇g)|M.

Moreover, in this case,

Det (∇g) = π
∑
finite

(δPi
− δNi

).

In particular,
1
π
|Det (∇g)|M equals the number of topological singularities of g,

taking into account their multiplicities.

Remark 11. Theorem 11 extends and clarifies some of the results of [FFM]. Al-
though in their case Ω is a smooth bounded domain in R2, the above results, stated
for Ω = ∂G, adapt easily to bounded domains ; see Section 5.2 below.

Proof of Theorem 11. The fact that

Det (∇g) measure =⇒ Det (∇g) = π
∑
finite

(δPi
− δNi

)

is a consequence of Theorem 3 and a result of Smets [S] ; see also [P]. Let us assume,
for simplicity, that Det (∇g) = π(δP − δN ) ; the argument below still applies to the
general case. Suppose, in addition, that Ω is flat and horizontal near P and N . We
start by defining, near P and N , a map h by setting

h(x) =
(
x− P

|x− P |

)±1

near P , h(x) =
(
x−N

|x−N |

)∓1

near N .
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For appropriate choices of ±, we have deg (h, P ) = +1 and deg (h,N) = −1. Then
h extends to a map in C∞(Ω\{P,N};S1) ∩W 1,p(Ω;S1), 1 ≤ p < 2. Set

hn(x) =


h(x), if d(x, P ) ≥ 1/n and d(x,N) ≥ 1/n
n d(x, P )h(x), if d(x, P ) < 1/n
n d(x,N)h(x), if d(x,N) < 1/n

.

Clearly, hn → h in W 1,p and ∫
Ω

|hnx ∧ hny| = 2π.

Let k = gh̄. Since T (k) = 0, we may write k = eiϕ for some ϕ ∈ W 1,1 (see
Theorem 7). Moreover, g, h ∈ W 1,p ∩ L∞ implies k ∈ W 1,p. From this, we easily
conclude that ϕ ∈W 1,p.

Let (ϕn) ⊂ C∞(Ω; R) be such that ϕn → ϕ in W 1,p. Since a point has zero
W 1,2-capacity, we may also assume that ϕn(x) = 0 if d(x, P ) ≤ 1/n or d(x,N) ≤
1/n. Clearly, gn = hneiϕn belongs to C∞(Ω; R2) and gn → g in W 1,p. Since
gnx ∧ gny = hnx ∧ hny, we obtain∫

Ω

|gnx ∧ gny| = 2π = |Det (∇g)|M,

which shows that
TV (g) ≤ |Det (∇g)|M.

The reverse inequality follows from Proposition 3.

Remark 12. Theorem 11 and Proposition 3 imply that, for every p ∈ [1, 2),

TVp,w(g) = TVp,s(g) = TV (g), ∀ g ∈W 1,p(Ω;S1).

We do not know whether the same holds without assuming that g is S1-valued :

Open Problem 5. Let g ∈W 1,1(Ω; R2). Is it true that

TV1,w(g) = TV1,s(g) ?

Assume in addition that g ∈W 1,p(Ω; R2) for some 1 < p < 2. Does one have

TV1,w(g) = TV1,s(g) = TVp,w(g) = TVp,s(g) ?

Remark 13. The analog of Remark 12 for p ≥ 2 is true, but uninteresting. Indeed,
every g ∈ W 1,p(Ω;S1), with p ≥ 2, is a strong limit in W 1,p of a sequence (gn)
in C∞(Ω;S1) (see, e.g., [BZ]). Thus, TV (g) = 0 and TVp,w(g) = TVp,s(g) = 0 for
every g ∈W 1,p(Ω;S1).
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5. Further directions and open problems.

5.1. Some examples of BV -functions with jumps.
It is natural to try to extend the above (or part of the above) results to the

class of maps g in BV (Ω;S1), where Ω = ∂G, G ⊂ R3 as in the Introduction.
Every g ∈ BV (Ω;S1) admits a lifting ϕ ∈ BV (Ω; R) (see [GMS2] and also [DI]).
Hence, we may define the two quantities E(g) and Erel(g) as in (1.3) and (1.4),
and we always have E(g) = Erel(g). The difficulty starts when we try to find a
simple formula for E as in Theorem 1. To illustrate the heart of the difficulty, it is
worthwhile to start, as in Section 2, with the simpler case BV (S1;S1).

Clearly, every g ∈ BV (S1;S1) admits a lifting ϕ ∈ BV (S1; R). Hence we may
define the two quantities E(g) and Erel(g) as in (2.1) and (2.2), and we always have
E(g) = Erel(g). It is natural to ask for an explicit formula for E(g). For S1-valued
maps, there are two natural ways of defining the BV -norm of g :

|g|BV =
∫
S1
|ġ|

and

|g|BV S1 =
∫
S1

(
|ġac|+ |ġC |

)
+

∑
n

dS1(g(an+), g(an−)),

where dS1 denotes the geodesic distance on S1. It is easy to see that

|g|BV = Inf
{

lim inf
n→∞

∫
S1
|ġn| ; gn ∈ C∞(S1; R2) and gn → g a.e.

}
,

|g|BV S1 = Inf
{

lim inf
n→∞

∫
S1
|ġn| ; gn ∈ C∞(S1;S1) and gn → g a.e.

}
.

We also have, for every g ∈ BV (S1;S1),

E(g) ≥ |g|BV S1 ≥ |g|BV .

Moreover E(g) − |g|BV = 0 ⇐⇒ g ∈ C0 and deg g = 0. R. Ignat [I] has recently
obtained an explicit formula for E(g)−|g|BV S1 involving the jumps of g ∈ BV and
a kind of degree in the sense of Definition 2 below.

An interesting estimate for E(g) when g ∈ BV is the following

Theorem 12. For every g ∈ BV (S1;S1), we have

(5.1) E(g) ≤ 2|g|BV .
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The above result is a variant of a nice theorem of [DI] which asserts that if
u ∈ BV (U ;S1), where U is a domain in RN , then u = eiϕ for some ϕ ∈ BV (U ; R)
with |ϕ|BV ≤ 2|g|BV . The proof of Theorem 12 is a straightforward adaptation
of the ingenious method in [DI]. Surprisingly, the natural proof of (5.1) — via the
explicit formula [I] for E(g) — turns out to be quite involved (see [I]) !

As we have already pointed out in Remark 2, the constant 2 in Theorem 12 is
optimal in W 1,1. A less intuitive fact is that the constant 2 is also optimal for
piecewise constant functions. Here is an example :

Example 2. Fix an integer k ≥ 1 and set

g(θ) = ei2πj/k for
2πj
k

< θ <
2π(j + 1)

k
, j = 0, 1, . . . , k − 1.

Then
|g|BV = 2k sin

π

k
and E(g) = 4π − 4π

k
.

The inequality

E(g) ≤ 4π − 4π
k

is straightforward ; however, the reverse inequality is more delicate and relies on
the following lemma whose proof is left to the reader

Lemma 6. For every choice of α1, . . . , αk ∈ Z with
∑
j αj = 1, we have

k∑
j=1

∣∣∣∣1k − αj

∣∣∣∣ ≥ 2− 2
k
.

A striking difference with formula (2.3) is that neither
1
2π

(E(g) − |g|BV ) nor
1
2π

(E(g)− |g|BV S1) is necessarily an integer. Here is an example :

Example 3. Let

g(θ) =


1, for 0 < θ < 2π/3

ei2π/3, for 2π/3 < θ < 4π/3

ei4π/3, for 4π/3 < θ < 2π

.

An easy computation shows that

E(g) =
8π
3
, |g|BV = 3

√
3 and |g|BV S1 = 2π.

In fact, it is hopeless (?) to have an analog of Theorem 6 since there is no
reasonable notion of degree for maps in BV (S1;S1). This is a consequence of
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Theorem 13. The space BV (S1;S1) is path-connected.

Proof. Let ϕ ∈ BV (S1; R) be such that g = eiϕ. We claim that the map

(5.2) F : t ∈ [0, 1] 7−→ eitϕ ∈ BV (S1;S1)

is strongly continuous ; this implies that every map in BV (S1;S1) can be connected
to 1.

The continuity of F in (5.2) follows from

Lemma 7. Let f : R2 → R be such that :

(i) t 7→ f(t, x) is continuous, ∀ x ∈ R ;

(ii) fx is continuous and bounded.

Then, for every ϕ ∈ BV (Ω; R), the map

t 7→ f(t, ϕ) ∈ BV (Ω; R)

is continuous.

Proof. It suffices to establish continuity at t = 0. Set F (t) = f(t, ϕ). For every t,
we have F (t) ∈ BV (Ω; R). Let C > 0 be such that |fx(t, x)| ≤ C, ∀ t, ∀ x.

Since ∣∣f(t, x)
∣∣ ≤ ∣∣f(t, 0)

∣∣ + C|x|,

we find that F (t) → F (0) in L1(Ω) as t → 0. Therefore, it suffices to prove that
DF (t) → DF (0) in M(Ω). By the chain rule, we have

DF (t) = fx
(
t, ϕ(x)

)
(Dϕ)d +

f(t, ϕ+)− f(t, ϕ−)
ϕ+ − ϕ−

(Dϕ)J .

Thus, |DF (t)| ≤ C|Dϕ|, ∀ t. On the other hand, fx
(
t, ϕ(x)

)
→ fx

(
0, ϕ(x)

)
a.e.

with respect to (Dϕ)d. Moreover,

f(t, ϕ+)− f(t, ϕ−)
ϕ+ − ϕ−

→ f(0, ϕ+)− f(0, ϕ−)
ϕ+ − ϕ−

a.e. with respect to (Dϕ)J . Therefore,∣∣Dϕ(t)−Dϕ(0)
∣∣
M → 0 as t→ 0,

by dominated convergence.

There is however an interesting concept of multivalued degree which associates
to every g ∈ BV (S1;S1) a bounded subset of Z. The starting point is the following
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Definition 1. Let g ∈ BV (I;S1), where I is an interval. A canonical lifting of g
is any map ϕ ∈ BV (I; R) such that

g = eiϕ and E(g) = |Dϕ|M(I).

The structure of canonical liftings is quite rigid. In fact, the following holds :

Theorem 14. If ϕ1 and ϕ2 are two canonical liftings of the same map g, then

ϕ̇1 − ϕ̇2 = π
∑
finite

±δai
.

Moreover, if g ∈ BV ∩C0, then the canonical lifting is uniquely determined modulo
2π and coincides with a continuous lifting.

Using canonical liftings, we may define a multivalued degree for all maps in
BV (S1;S1) :

Definition 2. Let g ∈ BV (S1;S1). Assume g is continuous at z ∈ S1. We let

Deg1 g =
{
ϕ(z−)− ϕ(z+)

2π
; ϕ is a canonical lifting of g in S1\{z}

}
.

Since, clearly, for each canonical lifting we have∣∣∣∣ϕ(z−)− ϕ(z+)
2π

∣∣∣∣ ≤ 1
2π

∫
S1
|ϕ̇|,

the set Deg1 g is bounded. It follows from the second part of Theorem 14 that
Deg1 g = {deg g} if g ∈ BV ∩ C0. As another example, let

g(θ) =
{

1, if 0 < θ < π,
−1, if π < θ < 2π.

Then it is easy to see that Deg1 g = {−1, 0, 1}.

We collect below some properties of Deg1 :

Theorem 15. Assume g ∈ BV (S1;S1). Then,

(a) Deg1 g is a finite set of successive integers ;

(b) Deg1 g is independent of the choice of z.

Another possible definition of a multivalued degree is the following
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Definition 3. Given g ∈ BV (S1;S1), we set

Deg2 g =
{
d ; ∃ (gn) ⊂ C∞(S1;S1) such that gn → g a.e.,

∫
|ġn| →

∫
|ġ|, deg gn = d

}
.

Actually, both definitions yield the same degree :

Theorem 16. We have
Deg := Deg1 = Deg2 .

Moreover, the function g 7→ Deg g is continuous in the multivalued sense.

A final interesting property of Deg is that it is “almost always” single-valued :

Theorem 17. Let

U =
{
g ∈ BV (S1;S1) ; Deg g is single-valued

}
.

Then U is a dense open subset of BV (S1;S1).

We omit the proofs of Theorems 14-17 and we refer the reader to [BMP] for
details.

5.2. Some analogs of Theorems 1, 3, and 5 for bounded domains in R2.
Most of the above results admit counterparts in the case where the 2-d manifold

Ω is replaced by a bounded, simply connected domain in R2 with smooth boundary.
To illustrate this, we state the analogs of the main results ; namely, Theorems 1, 3
and 5.

Let g ∈W 1,1(Ω;S1) and consider the distribution

〈T (g), ζ〉 =
∫

Ω

(g ∧∇g) · ∇⊥ζ, ∀ ζ ∈W 1,∞
0 (Ω;S1).

A natural (semi-) metric on Ω is given by

dΩ(x, y) = Min
{
|x− y| , d(x, ∂Ω) + d(y, ∂Ω)

}
.

Note that, if ζ ∈W 1,∞
0 (Ω), then∣∣ζ(x)− ζ(y)

∣∣ ≤ ‖∇ζ‖L∞dΩ(x, y), ∀ x, y ∈ Ω.

We also set
L(g) =

1
2π

Max
ζ∈W∞

0 (Ω)

‖∇ζ‖L∞≤1

〈T (g), ζ〉.

We then have the following
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Theorem 3′. There exist sequences (Pi), (Ni) in Ω such that
∑
i dΩ(Pi, Ni) < ∞

and
T (g) = 2π

∑
i

(δPi
− δNi

) in
[
W 1,∞

0 (Ω)
]∗.

Moreover,
L(g) = Inf

∑
i

dΩ(Pi, Ni),

where the infimum is taken over all possible representations of T (g).

With E(g) defined exactly as in (1.3), and Erel(g) as in (1.4) (where Ω is replaced
by Ω), we have

Theorem 1′. For every g ∈W 1,1(Ω;S1),

E(g) = Erel(g) =
∫

Ω

|∇g|+ 2πL(g).

Similarly, defining TV (g) as in (1.14) (with Ω replaced by Ω), we also have

Theorem 5′. Let g ∈W 1,1(Ω;S1). Then

TV (g) <∞ ⇐⇒ Det(∇g) ∈M(Ω) =
[
C0(Ω)

]∗
.

In this case, there exist a finite number of points ai ∈ Ω and integers di ∈ Z\{0}
such that

Det (∇g) = π
k∑
i=1

diδai in
[
W 1,∞

0 (Ω)
]∗

and

TV (g) = |Det (∇g)|M = π
k∑
i=1

|di|.

Theorems 1′, 3′ and 5′ are established in [BMP].

5.3. Extensions of Theorems 1, 2, and 3 to higher dimensions.
Let G ⊂ RN+1, N ≥ 2, be a smooth bounded domain and Ω = ∂G. Given

u ∈W 1,N−1(Ω;SN−1), we define the L1-vector field

D(u) = (D1, . . . , DN ),

where
Dj = det (ux1 , . . . , uxj−1 , u, uxj+1 , . . . , uxN

)
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and det refers to the determinant of an N ×N matrix (u is viewed as a vector in
RN ).

We then associate to the map u the distribution

T (u) = divD(u) = N Det (∇u).

Set
L(u) =

1
σN

Max
‖∇ζ‖L∞≤1

〈T (u), ζ〉,

where σN = |SN−1|. The relaxed energy is defined by

Erel(u) = Inf
{

lim inf
n→∞

∫
Ω

|∇un|N−1 ; un ∈ C∞(Ω;SN−1) and un → u a.e.
}
,

where | | denotes the Euclidean norm.

We then have the following analogs of Theorems 1–3 :

Theorem 1′′. For every u ∈W 1,N−1(Ω;SN−1),

Erel(u) =
∫

Ω

|∇u|N−1 + (N − 1)
N−1

2 σNL(u).

Theorem 2′′. For every u ∈W 1,N−1(Ω;SN−1),

Inf
v∈C∞(Ω;SN−1)

∫
Ω

|D(u)−D(v)| = σNL(u).

Theorem 3′′. For every u ∈ W 1,N−1(Ω;SN−1), there exist sequences (Pi), (Ni)
in Ω such that

∑
i |Pi −Ni| <∞ and

T (u) = σN
∑
i

(δPi
− δNi

).

For the proofs, we refer to [BMP].

5.4. Extension of TV to higher dimensions and to fractional Sobolev
spaces.

Let Ω and u be as in Section 5.3. Set, for u ∈W 1,N−1(Ω;SN−1),
(5.3)

TV (u) = Inf
{

lim inf
n→∞

∫
Ω

|det∇un| ; un ∈ C∞(Ω; RN ) and un → u in W 1,N−1

}
.

The analog of Theorem 5 becomes
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Theorem 5′′. Let u ∈W 1,N−1(Ω;SN−1). Then,

TV (u) <∞ ⇐⇒ Det (∇u) is a measure

In this case, we have

Det (∇u) =
σN
N

∑
finite

(δPi
− δNi

)

and
TV (u) = |Det (∇u)|M.

Remark 14. In the definition (5.3), one cannot replace the strong convergence in
W 1,N−1 by weak convergence when N ≥ 3. Indeed, every u ∈ W 1,N−1(Ω;SN−1)
is a weak limit in W 1,N−1 of a sequence (un) ⊂ C∞(Ω;SN−1), when N ≥ 3.
However, one can replace in (5.3) the strong convergence of un in W 1,N−1 by the
weak convergence of un in W 1,N−1 and the equi-integrability of |∇un|N−1 (see
[BMP]).

We may even go one step further. Let N − 1 < p < ∞. In [BBM3] we have
defined the distribution Det (∇u) for maps u ∈W (N−1)/p,p(Ω;SN−1). By analogy
with the above definitions of TV , set

TV (u) = Inf
{

lim inf
n→∞

∫
Ω

|det∇un| ; un ∈ C∞(Ω; RN ), un → u in W (N−1)/p,p

}
.

We have the following

Theorem 5′′′. Let N − 1 < p ≤ N and u ∈W (N−1)/p,p(Ω;SN−1). Then,

TV (u) <∞ ⇐⇒ Det (∇u) is a measure

and the conclusions of Theorem 5 ′′ hold.

We refer to [BMP] for the proofs of Theorems 5′′ and 5′′′.

Open Problem 6. Does the assertion of Theorem 5′′′ hold when p > N ?

Another topic to explore is the following:

Open Direction 7. Very likely, all the results of Sections 3 and 4 extend to maps
g ∈ W 1,1(SN ;S1), N ≥ 3. For example, when N = 3, point singularities are
replaced by curves ; the analog of L(g) is the area of a minimal surface spanned by
these curves and the analog of TV (g) is their total length. Some useful tools may
be found in [ABO].
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5.5. Extension of Theorem 3 to maps with values into a curve.
Let G ⊂ R3 be a smooth bounded domain with Ω = ∂G simply connected.

Assume Γ ⊂ R2 is a smooth curve, with finitely many self-intersections. We then
define

W 1,1(Ω; Γ) =
{
g ∈W 1,1(Ω; R2) ; g(x) ∈ Γ for a.e. x ∈ Ω

}
.

Given a map g ∈ W 1,1(Ω; Γ), we define the distribution T (g) exactly as in (1.8).
We denote by A1, . . . , Ak the bounded connected components of R2\Γ. We then
have (see [BMP]) :

Theorem 3′′′′. Given g ∈ W 1,1(Ω; Γ), there exist sequences (Pi,j), (Ni,j) in Ω,
with j = 1, . . . , k, such that

∑
i,j |Aj | d(Pi,j , Ni,j) <∞ and

(5.4) T (g) = 2
k∑
j=1

|Aj |
∑
i

(δPi,j − δNi,j ).

There are many open directions here :

1) Does Theorem 3′′′′ remain valid for any smooth (or even rectifiable) curve, with-
out assuming that the number of self-intersections of Γ is finite ?

2) What are the counterparts of Theorems 1, 2, and 5 in this general setting ?
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UNIVERSITÉ PARIS-SUD
91405 ORSAY

E-mail address: Petru.Mironescu@math.u-psud.fr


