$W^{1,1}$ -MAPS WITH VALUES INTO S^1

Haïm $Brezis^{(1),(2)}$, Petru Mironescu⁽³⁾ and Augusto C. $Ponce^{(1),(2)}$

Dedicated to François Treves with esteem and friendship

1. Introduction.

Let $G \subset \mathbb{R}^3$ be a smooth bounded domain with $\Omega = \partial G$ simply connected. In [BBM2] we studied properties of

$$H^{1/2}(\Omega; S^1) = \{ g \in H^{1/2}(\Omega; \mathbb{R}^2) ; |g| = 1 \text{ a.e. on } \Omega \}.$$

(In what follows, we identify \mathbb{R}^2 with \mathbb{C} .)

The space $W^{1,1} \cap L^{\infty}$ shares some properties with $H^{1/2}$ and it is natural to investigate

$$W^{1,1}(\Omega; S^1) = \left\{ g \in W^{1,1}(\Omega; \mathbb{R}^2) ; |g| = 1 \text{ a.e. on } \Omega \right\}.$$

One of the issues that we shall discuss is the question of existence of a lifting and, more precisely, "optimal" liftings. If $g \in W^{1,1}(\Omega; S^1) \cap C^0(\Omega; S^1)$, then g admits a "canonical" lifting $\varphi \in W^{1,1}(\Omega; \mathbb{R}) \cap C^0(\Omega; \mathbb{R})$ satisfying

(1.1)
$$\int_{\Omega} |\nabla \varphi| = \int_{\Omega} |\nabla g|.$$

(Since $g \in C^0$ and Ω is simply connected, there exists a $\varphi \in C^0$ such that $g = e^{i\varphi}$ and (1.1) holds for this φ .) However, if one removes the continuity assumption, then a general $g \in W^{1,1}(\Omega; S^1)$ need not have a lifting φ in $W^{1,1}(\Omega; \mathbb{R})$. This obstruction phenomenon — which also holds for other Sobolev spaces — is due to topological singularities of g and has been extensively studied in [BBM1]; see also earlier results of Schoen-Uhlenbeck [SU] and Bethuel [B2].

It has been established by Giaquinta-Modica-Souček [GMS2] that every map $g \in W^{1,1}(\Omega; S^1)$ admits a lifting in $BV(\Omega; \mathbb{R})$. However, as we shall see below, for some maps g in $W^{1,1}$ we may have

$$\operatorname{Min}\left\{\int_{\Omega} |D\varphi| \; ; \; \varphi \in BV(\Omega; \mathbb{R}) \text{ and } g = e^{i\varphi} \text{ a.e.}\right\} > \int_{\Omega} |\nabla g|$$

Typeset by $\mathcal{A}_{\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

where the measure $D\varphi$ is the distributional derivative of φ .

As we shall prove (see Corollary 6 below), there is always a $\varphi \in BV(\Omega; \mathbb{R})$ such that $g = e^{i\varphi}$ and

(1.2)
$$\int_{\Omega} |D\varphi| \le 2 \int_{\Omega} |\nabla g|.$$

The constant 2 in (1.2) is optimal (see Remark 2 below). Inequality (1.2) has been extended by Dávila-Ignat [DI] to maps $g \in BV(\Omega; S^1)$ (here, Ω can be an arbitrary domain in \mathbb{R}^N); the striking fact is that (1.2), with constant 2, holds in any dimension.

It is natural to study, for a given $g \in W^{1,1}(\Omega; S^1)$, the quantity

(1.3)
$$E(g) = \operatorname{Min}\left\{\int_{\Omega} |D\varphi| \; ; \; \varphi \in BV(\Omega; \mathbb{R}) \text{ and } g = e^{i\varphi} \text{ a.e.}\right\}.$$

Another quantity which is commonly studied in the framework of Sobolev maps with values into manifolds (see [BBC], and also [GMS2]) is the relaxed energy

(1.4)
$$E_{\rm rel}(g) = \inf \left\{ \liminf_{n \to \infty} \int |\nabla g_n| \; ; \; g_n \in C^{\infty}(\Omega; S^1) \text{ and } g_n \to g \text{ a.e.} \right\}.$$

It is not difficult to prove (see Proposition 2) that

$$E_{\mathrm{rel}}(g) = E(g), \quad \forall \ g \in W^{1,1}(\Omega; S^1).$$

As we shall establish in Section 3, the gap

(1.5)
$$E(g) - \int_{\Omega} |\nabla g|$$

can be easily computed in terms of the minimal connection L(g) of the topological singularities of g. For example, if $g \in C^{\infty}(\Omega \setminus \{P, N\}; S^1) \cap W^{1,1}$, deg (g, P) = +1and deg (g, N) = -1, then L(g) is the geodesic distance in Ω between N and P, and the gap (1.5) equals $2\pi L(g)$. For the definition of L(g) when g is an arbitrary element of $W^{1,1}(\Omega; S^1)$, see (1.9) below. The concept of a minimal connection connecting the topological singularities has its source in [BCL].

One of our main results is

Theorem 1. Let $g \in W^{1,1}(\Omega; S^1)$. We have

(1.6)
$$E(g) - \int_{\Omega} |\nabla g| = 2\pi L(g).$$

The first result of this kind (see [BBC]) concerned the Dirichlet integral $\int |\nabla g|^2$ and maps g from a 3-d domain into S^2 . Inequality \leq in (1.6) has been known for some time (see [DH] and [GMS2]); it relies on the dipole construction introduced in [BCL]. More generally, the [BCL] dipole construction has been adapted to a large variety of problems involving singularities (points and beyond); see e.g. [ABO]. The exact lower bound for the relaxed energy is always a more delicate issue. For $W^{1,2}(S^3; S^2)$ the corresponding lower bound obtained in [BBC] asserts that

$$E_{\rm rel}(g) \ge \int_{S^3} |\nabla g|^2 + 8\pi L(g).$$

The same argument applies to $W^{1,N}(S^{N+1};S^N), N \ge 3$, and yields

$$E_{\rm rel}(g) \ge \int_{S^{N+1}} |\nabla g|^N + c_N L(g), \quad c_N > 0.$$

The properties of L^p , $1 , are heavily used in these arguments. However, the space <math>L^1$ is different and it is not possible to adapt the proof of [BBC] to obtain a lower bound of the form

$$E_{\rm rel}(g) \ge \int_{\Omega} |\nabla g| + \alpha L(g),$$

for some $\alpha > 0$. Such a lower bound can presumably be proved using the theory of Cartesian currents of [GMS2]; however, the precise relationship between the formalism of [GMS2] and (1.6) is yet to be clarified.

We call the attention of the reader to the fact that, in the $H^{1/2}$ -setting studied in [BBM2], the analog of Theorem 1 is open ; we only have

$$E_{\rm rel}(g) - |g|_{H^{1/2}}^2 \sim L(g).$$

A useful quantity which plays a central role in our analysis is $g \wedge \nabla g$. More precisely, given $g \in W^{1,1}(\Omega; \mathbb{R}^2)$, consider the vector field $g \wedge \nabla g$ defined in a local frame by

$$g \wedge \nabla g = (g \wedge g_x, g \wedge g_y).$$

[This is the 2-d analog of the vector field D associated to $H^1(B^3; S^2)$ maps, originally introduced in [BCL]; there is a natural analog of D in the $W^{1,N}(S^{N+1}; S^N)$ context, for each N.]

When g is smooth with values into S^1 , $g \wedge \nabla g$ is a gradient map since we may always write $g = e^{i\varphi}$, so that $g \wedge \nabla g = \nabla \varphi$. However, if $g \in W^{1,1}(\Omega; S^1)$, then $g \wedge \nabla g$ is an L^1 -vector field which need not be a gradient map, e.g., when $g(x) \sim (x-a)/|x-a|$ near a point $a \in \Omega$, then $g \wedge \nabla g$ is not a gradient map since

$$(g \wedge g_x)_y \neq (g \wedge g_y)_x \quad \text{in } \mathcal{D}'(\Omega).$$

The following result gives an interpretation of L(g) as the "L¹-distance" of $g \wedge \nabla g$ to the class of gradient maps :

Theorem 2. For every $g \in W^{1,1}(\Omega; S^1)$, we have

(1.7)
$$L(g) = \frac{1}{2\pi} \inf_{\psi \in C^{\infty}(\Omega;\mathbb{R})} \int_{\Omega} |g \wedge \nabla g - \nabla \psi| = \frac{1}{2\pi} \min_{\psi \in BV(\Omega;\mathbb{R})} \int_{\Omega} |g \wedge \nabla g - D\psi|.$$

There are many minimizers ψ in (1.7); however, at least one of them satisfies $g = e^{i\psi} a.e.$ in Ω .

Let $g \in W^{1,1}(\Omega; \mathbb{R}^2) \cap L^{\infty}$. Following the ideas of [BCL] (or, more specifically, [DH] for this particular setting), we introduce the distribution $T(g) \in \mathcal{D}'(\Omega; \mathbb{R})$, defined by its action on Lip $(\Omega; \mathbb{R})$ through the formula

(1.8)
$$\langle T(g), \zeta \rangle = \int (g \wedge \nabla g) \cdot \nabla^{\perp} \zeta,$$

where $\nabla^{\perp}\zeta = (\zeta_y, -\zeta_x)$. In other words,

$$T(g) = -(g \wedge g_x)_y + (g \wedge g_y)_x = 2 \operatorname{Det} (\nabla g),$$

where $Det(\nabla g)$ denotes the distributional Jacobian of g. We then set

(1.9)
$$L(g) = \frac{1}{2\pi} \max_{\|\nabla \zeta\|_{L^{\infty}} \le 1} \langle T(g), \zeta \rangle.$$

We first state some analogs of the results in [BBM2] :

Theorem 3. Assume $g \in W^{1,1}(\Omega; S^1)$. There exist two sequences $(P_i), (N_i)$ in Ω such that $\sum_i |P_i - N_i| < \infty$ and

(1.10)
$$T(g) = 2\pi \sum (\delta_{P_i} - \delta_{N_i}).$$

Moreover,

(1.11)
$$L(g) = \operatorname{Inf} \sum_{j} d(\tilde{P}_{j}, \tilde{N}_{j}) \quad \left(\leq \frac{1}{2\pi} \int_{\Omega} |\nabla g| \right),$$

where d denotes the geodesic distance in Ω , and the infimum is taken over all possible sequences $(\tilde{P}_j), (\tilde{N}_j)$ satisfying

$$\sum (\delta_{\tilde{P}_j} - \delta_{\tilde{N}_j}) = \sum (\delta_{P_i} - \delta_{N_i}) \quad in \ (W^{1,\infty})^*.$$

Conversely, given two sequences $(P_i), (N_i)$ in Ω such that $\sum_i |P_i - N_i| < \infty$, there is always a map $g \in W^{1,1}(\Omega; S^1)$ such that (1.10) holds; this is the "generalized dipole" construction (see [BBM, Lemma 15] and Lemma 4 below). Furthermore (see Theorem 10) the length of the minimal connection (as given by the right-hand side of (1.11)) equals $\inf \{\frac{1}{2\pi} \int |\nabla g|\}$, where the infimum is taken over all maps gsuch that (1.10) holds.

As was already pointed out in [BBM2, Lemma 20], we have

$$\langle T(g), \zeta \rangle = 2\pi \int_{\mathbb{R}} \deg(g, \Gamma_{\lambda}) d\lambda,$$

where $\Gamma_{\lambda} = \{x \in \Omega ; \zeta(x) = \lambda\}$ is equipped with the appropriate orientation (Lemma 20 in [BBM2] is stated for $g \in H^{1/2}$, but the proof also covers the case where $g \in W^{1,1}$). Here is a new property

Theorem 4. Assume $g \in W^{1,1}(\Omega; S^1)$, and let $\zeta \in \text{Lip}(\Omega; \mathbb{R})$ with $\|\nabla \zeta\|_{L^{\infty}} \leq 1$. Then

(1.12)
$$\int_{\mathbb{R}} |\deg(g,\Gamma_{\lambda})| \, d\lambda \leq L(g).$$

In particular, if ζ is a maximizer in (1.9), then

(1.13)
$$\deg(g, \Gamma_{\lambda}) \ge 0 \quad for \ a.e. \ \lambda.$$

Finally, we study a notion of relaxed Jacobian determinants in the spirit of Fonseca-Fusco-Marcellini [FFM], and also Giaquinta-Modica-Souček [GMS1]. Given $g \in W^{1,1}(\Omega; S^1)$, we set (using the same notation as in [FFM]) (1.14)

$$TV(g) = \inf\left\{\liminf_{n \to \infty} \int_{\Omega} |g_{nx} \wedge g_{ny}| \; ; \; g_n \in C^{\infty}(\Omega; \mathbb{R}^2) \text{ and } g_n \to g \text{ in } W^{1,1}\right\}.$$

Of course this number is possibly infinite. The following is a far-reaching extension of some results in [FFM]

Theorem 5. Let $g \in W^{1,1}(\Omega; S^1)$. Then

$$TV(g) < \infty \quad \Longleftrightarrow \quad \mathrm{Det}\,(\nabla g) \quad is \ a \ measure.$$

In this case, we have

$$Det (\nabla g) = \pi \sum_{\text{finite}} (\delta_{P_i} - \delta_{N_i})$$

and

$$TV(g) = |\operatorname{Det}(\nabla g)|_{\mathcal{M}}.$$

In particular, $\frac{1}{\pi}TV(g)$ is an integer which equals the number of topological singularities of g (counting their multiplicities).

Here, for any Radon measure μ ,

$$|\mu|_{\mathcal{M}} = \operatorname{Sup}\left\{ \langle \mu, \varphi \rangle \; ; \; \varphi \in C(\Omega; \mathbb{R}), \; \|\varphi\|_{L^{\infty}} \leq 1 \right\}.$$

Remark 1. The conclusion of Theorem 5 still holds if one replaces the strong $W^{1,1}$ convergence in (1.14) by the weak $W^{1,1}$ -convergence. There are numerous variants
and extensions of Theorem 5 in Sections 4 and 5.

The paper is organized as follows :

- 1. Introduction
- 2. Properties of $W^{1,1}(S^1; S^1)$
- 3. Properties of $W^{1,1}(\Omega; S^1)$. Proofs of Theorems 1–4
- 4. $W^{1,1}(\Omega; S^1)$ and relaxed Jacobians

5. Further directions and open problems

- 5.1. Some examples of BV-functions with jumps
- 5.2. Some analogs of Theorems 1, 3, and 5 for bounded domains in \mathbb{R}^2
- 5.3. Extensions of Theorems 1, 2, and 3 to higher dimensions
- 5.4. Extension of TV to higher dimensions and to fractional Sobolev spaces
- 5.5. Extension of Theorem 3 to maps with values into a curve

2. Properties of $W^{1,1}(S^1; S^1)$.

Even though the core of the paper deals with maps from a two dimensional manifold Ω with values into S^1 , it is illuminating to start with the study of $W^{1,1}$ -maps from S^1 into itself.

Let $g \in W^{1,1}(S^1; S^1)$. There are two natural quantities associated with g; namely,

(2.1)
$$E(g) = \operatorname{Min}\left\{|\varphi|_{BV} ; \varphi \in BV(S^1; \mathbb{R}), g = e^{i\varphi} \text{ a.e.}\right\}$$

and

$$E_{\rm rel}(g) = \inf \left\{ \liminf_{n \to \infty} \int_{S^1} |\dot{g}_n| \; ; \; g_n \in C^{\infty}(S^1; S^1), \; \deg g_n = 0, \; g_n \to g \; \text{a.e.} \right\}.$$

It turns out that the two quantities are equal and that they can be easily computed in terms of g :

Theorem 6. Let $g \in W^{1,1}(S^1; S^1)$. Then

(2.3)
$$E_{\rm rel}(g) = E(g) = \int_{S^1} |\dot{g}| + 2\pi |\deg g|.$$

Proof. First equality in (2.3) : " \geq " Let $(g_n) \subset C^{\infty}(S^1; S^1)$ be such that deg $g_n = 0$ and $g_n \to g$ a.e. Then we may write $g_n = e^{i\psi_n}$, with $\psi_n \in C^{\infty}(S^1; \mathbb{R})$ and $\int_{S^1} |\dot{\psi}_n| = \int_{S^1} |\dot{g}_n|$. Subtracting a suitable integer multiple of 2π , we may assume (ψ_n) bounded in $W^{1,1}(S^1; \mathbb{R})$. After passing to a subsequence, we may further assume that $\psi_n \to \psi$ a.e. for some $\psi \in BV(S^1; \mathbb{R})$. Therefore,

$$\liminf_{n \to \infty} \int_{S^1} |\dot{g}_n| = \liminf_{n \to \infty} \int_{S^1} |\dot{\psi}_n| \ge \int_{S^1} |\dot{\psi}|$$

and, clearly, $e^{i\psi} = g$ a.e.

" \leq " Let $\psi \in BV(S^1; \mathbb{R})$ be such that

$$|\psi|_{BV} = \operatorname{Min}\left\{|\varphi|_{BV}; g = e^{i\varphi} \text{ a.e.}\right\}.$$

Consider a sequence $(\psi_n) \subset C^{\infty}(S^1; \mathbb{R})$ such that $\psi_n \to \psi$ a.e. and $\int_{S^1} |\dot{\psi}_n| \to |\psi|_{BV}$. If we set $g_n = e^{i\psi_n}$, then clearly $g_n \in C^{\infty}(S^1; S^1)$, deg $g_n = 0$ and $g_n \to g$ a.e. Moreover,

$$\lim_{n \to \infty} \int_{S^1} |\dot{g}_n| = \lim_{n \to \infty} \int_{S^1} |\dot{\psi}_n| = |\psi|_{BV}.$$

Second equality in (2.3) : " \geq " This assertion has been established under slightly more general assumptions in [BBM2, Section 4.3]. Here is an alternative approach. Let $g \in W^{1,1}(S^1; S^1)$. We prove that, if $\varphi \in BV(S^1; \mathbb{R})$ satisfies $g = e^{i\varphi}$ a.e., then

(2.4)
$$|\varphi|_{BV} \ge \int_{S^1} |\dot{g}| + 2\pi |\deg g|$$

The main ingredient is the chain rule formula for BV-maps, due to Vol'pert ; see [V], and also [AFP].

Chain rule. Let $\varphi \in BV(S^1; \mathbb{R})$. Recall that there is a representative φ_0 of φ which is continuous except at (at most) countably many points $a_n \in S^1$; in the sequel, we take φ to be φ_0 itself. Moreover, at the points a_n , φ admits limits from the "right" and from the "left", say $\varphi(a_n+)$ and $\varphi(a_n-)$.

Let $\dot{\varphi}$ be the distributional derivative of φ , which is a Borel measure. The diffuse part of $\dot{\varphi}$ is

$$\dot{\varphi}_d = \dot{\varphi} - \sum_n (\varphi(a_n+) - \varphi(a_n-))\delta_{a_n}.$$

Vol'pert's chain rule for BV-maps on a bounded interval (or a closed curve) asserts that, if $F \in C^1(\mathbb{R}; \mathbb{R})$, then

$$\frac{\dot{F} \circ \varphi}{F \circ \varphi} = F'(\varphi)\dot{\varphi}_d + \sum_n \left(F(\varphi(a_n+)) - F(\varphi(a_n-))\right)\delta_{a_n}.$$

A more general version of the chain rule, which is valid in \mathbb{R}^N , is stated and explained in the proof of Lemma 5 in Section 3 below.

We now return to the proof of (2.4). By the chain rule formula, we have

$$\dot{g} = i \mathrm{e}^{i\varphi} \dot{\varphi}_d + \sum_n \left(\mathrm{e}^{i\varphi(a_n+)} - \mathrm{e}^{i\varphi(a_n-)} \right) \delta_{a_n}.$$

Using the continuity of g, we have $g(a_n) = e^{i\varphi(a_n+1)} = e^{i\varphi(a_n-1)}$ for each n. Hence,

$$\dot{g} = i \mathrm{e}^{i\varphi} \dot{\varphi}_d$$

Since $\dot{g} \in L^1$ and $e^{i\varphi} = g$ a.e., we thus find that

$$g \wedge \dot{g} = \frac{1}{ig}\dot{g} = \dot{\varphi}_d.$$

Consequently,

$$(2.5) \quad |\dot{\varphi}|_{\mathcal{M}} = |\dot{\varphi}_d|_{\mathcal{M}} + |\dot{\varphi} - \dot{\varphi}_d|_{\mathcal{M}} = |g \wedge \dot{g}|_{\mathcal{M}} + |g \wedge \dot{g} - \dot{\varphi}|_{\mathcal{M}} = \int_{S^1} |\dot{g}| + |g \wedge \dot{g} - \dot{\varphi}|_{\mathcal{M}}.$$

On the other hand,

(2.6)
$$|g \wedge \dot{g} - \dot{\varphi}|_{\mathcal{M}} \ge |\langle g \wedge \dot{g} - \dot{\varphi}, 1 \rangle| = |\langle g \wedge \dot{g}, 1 \rangle| = 2\pi |\deg g|.$$

(The last equality is clear when g is smooth; the case of a general $W^{1,1}$ -map follows by approximation.) Finally, by combining (2.5) and (2.6) we find that

$$|\varphi|_{BV} \ge \int_{S^1} |\dot{g}| + 2\pi |\deg g|,$$

as claimed.

Second equality in (2.3) : " \leq " Since $S^1 \setminus \{1\}$ is simply connected, we may write $g = e^{i\varphi}$ on $S^1 \setminus \{1\}$, for some $\varphi \in W^{1,1}(S^1 \setminus \{1\}; \mathbb{R})$ such that $|\dot{\varphi}| = |\dot{g}|$ in $S^1 \setminus \{1\}$. Since φ is continuous, we have

$$\varphi(1-) - \varphi(1+) = 2\pi \deg g.$$

Passing to the full S^1 , we have

$$|\varphi|_{BV} = \int_{S^1 \setminus \{1\}} |\dot{\varphi}| + |\varphi(1-) - \varphi(1+)| = \int_{S^1} |\dot{g}| + 2\pi |\deg g|.$$

As a consequence of Theorem 6, we have

Corollary 1. For every $g \in W^{1,1}(S^1; S^1)$,

(2.7)
$$E(g) \le 2|g|_{W^{1,1}}$$

Remark 2. The constant 2 in (2.7) is optimal. Indeed, for g = Id, we have $|g|_{W^{1,1}} = 2\pi$, while $E(g) = 4\pi$ by Theorem 6.

It is easy to see from the definition of the relaxed energy that $E_{\rm rel}$ is lower semicontinuous with respect to the pointwise a.e. convergence in S^1 . In view of Theorem 6, we have the following :

Corollary 2. Let $(g_n) \subset W^{1,1}(S^1; S^1)$ be such that $g_n \to g$ a.e. for some $g \in W^{1,1}(S^1; S^1)$. Then

(2.8)
$$\int_{S^1} |\dot{g}| + 2\pi |\deg g| \le \liminf_{n \to \infty} \left(\int_{S^1} |\dot{g}_n| + 2\pi |\deg g_n| \right).$$

Remark 3. The constant 2π in (2.8) cannot be improved. In fact, assume that (2.8) holds with 2π replaced by some C. In particular, for any sequence $(g_n) \subset C^{\infty}(S^1; S^1)$ such that deg $g_n = 0$ and $g_n \to \text{Id a.e.}$, we have (2.9)

$$2\pi + C = \int_{S^1} |\dot{g}| + C |\deg g| \le \liminf_{n \to \infty} \left(\int_{S^1} |\dot{g}_n| + C |\deg g_n| \right) = \liminf_{n \to \infty} \int_{S^1} |\dot{g}_n|.$$

On the other hand, according to Theorem 6, the sequence (g_n) can be chosen so that

(2.10)
$$\lim_{n \to \infty} \int_{S^1} |\dot{g}_n| = \int_{S^1} |\dot{g}| + 2\pi |\deg g| = 4\pi.$$

A comparison between (2.9) and (2.10) implies $C \leq 2\pi$.

Inequality (2.8) still holds if one replaces $|\deg g|$ and $|\deg g_n|$ by deg g and deg g_n , under the additional assumption that the sequence (g_n) is **bounded** in $W^{1,1}$. This assumption is essential; see Remark 4 below. More precisely, we have

Proposition 1 ([BBM2]). Let $g_n, g \in W^{1,1}(S^1; S^1)$ be such that $g_n \to g$ a.e and

$$\sup_{n}|g_{n}|_{BV}<\infty.$$

Then

(2.11)
$$\int_{S^1} |\dot{g}| + 2\pi \deg g \leq \liminf_{n \to \infty} \left(\int_{S^1} |\dot{g}_n| + 2\pi \deg g_n \right).$$

We present here an alternative proof based on Corollary 2.

Proof. Assume $|g_n|_{BV} \leq C, \forall n$. In particular,

$$\left|\deg g_n\right| \le \frac{1}{2\pi} \int_{S^1} \left|\dot{g}_n\right| \le \frac{C}{2\pi}.$$

Since deg g_n takes only integer values, after passing to a subsequence, we can assume that $d = \deg g_n$, $\forall n$. Given $\varepsilon > 0$, let $h \in C^{\infty}(S^1; S^1)$ be such that deg h = -d and h(x) = 1, $\forall x \in S^1 \setminus B_{\varepsilon}(1)$. Clearly,

$$hg_n \to hg$$
 a.e. in S^1 and $\deg hg_n = 0$, $\forall n$.

It follows from Corollary 2 that (2.12) $\int_{S^1} |\dot{g}h + g\dot{h}| + 2\pi (\deg g - d) \leq \liminf_{n \to \infty} \int_{S^1} |\dot{g}_n h + g_n \dot{h}| \leq \liminf_{n \to \infty} \int_{S^1} |\dot{g}_n| + \int_{S^1} |\dot{h}|.$

On the other hand, since h(x) = 1 for $x \in S^1 \setminus B_{\varepsilon}(1)$, we have

(2.13)
$$\int_{S^{1}} |\dot{g}h + g\dot{h}| = \int_{S^{1} \setminus B_{\varepsilon}(1)} |\dot{g}| + \int_{S^{1} \cap B_{\varepsilon}(1)} |\dot{g}h + g\dot{h}|$$
$$\geq \int_{S^{1} \setminus B_{\varepsilon}(1)} |\dot{g}| - \int_{S^{1} \cap B_{\varepsilon}(1)} |\dot{g}| + \int_{S^{1} \cap B_{\varepsilon}(1)} |\dot{h}|$$
$$= \int_{S^{1}} |\dot{g}| - 2 \int_{S^{1} \cap B_{\varepsilon}(1)} |\dot{g}| + \int_{S^{1}} |\dot{h}|.$$

Comparison between (2.12) and (2.13) yields

$$\int_{S^1} |\dot{g}| - 2 \int_{S^1 \cap B_{\varepsilon}(1)} |\dot{g}| + 2\pi (\deg g - d) \leq \liminf_{n \to \infty} \int_{S^1} |\dot{g}_n|.$$

Taking $\varepsilon \to 0$, we obtain (2.11).

An immediate consequence of Proposition 1 is

Corollary 3. Under the assumptions of Proposition 1, we have

$$\int_{S^1} |\dot{g}| \le \liminf_{n \to \infty} \left(\int_{S^1} |\dot{g}_n| - 2\pi |\deg g_n - \deg g| \right).$$

Remark 4. Proposition 1 (or, equivalently, Corollary 3) is **false** without the assumption $\sup_n |g_n|_{BV} < \infty$. Here is an example. Let $n \ge 1$ be a fixed integer.

Given $0 \leq j \leq n-1$, let $a_{j,n} = \frac{2\pi j}{n}$ and $I_{j,n} = [a_{j,n}, a_{j+1,n} - \frac{1}{2^n}] \subset \mathbb{R}$. On each interval $I_{j,n}$, we define $f_n(t) = 2\pi j - a_{j,n}$. We then extend f_n continuously to $[0, 2\pi]$, so that f_n is affine linear outside the set $\bigcup_j I_{j,n}$, and $f_n(2\pi) = 2\pi (n-1)$. By construction, f_n is Lipschitz, nondecreasing, and $f_n(2\pi) - f_n(0) \in 2\pi\mathbb{Z}$. Note that

$$d(f_n(t), -t + 2\pi\mathbb{Z}) \le |a_{j+1,n} - a_{j,n}| = \frac{2\pi}{n} \quad \forall t \in \bigcup_j I_{j,n} ;$$
$$|[0, 2\pi] \setminus \bigcup_j I_{j,n}| = \frac{n}{2^n}.$$

Set $g_n(\theta) = e^{-if_n(\theta)}$. Then, we have $g_n \to g$ a.e., where g = Id; however,

$$\int_{S^1} |\dot{g}| + 2\pi \deg g = 4\pi,$$

while

$$\int_{S^1} |\dot{g}_n| + 2\pi \deg g_n = 0, \quad \forall \ n$$

3. Properties of $W^{1,1}(\Omega; S^1)$.

We start with the rigorous definitions of T(g) and of the class Lip mentioned in the Introduction. If $g \in W^{1,1}(\Omega; \mathbb{R}^2)$, we set

$$|\nabla g| = \left[\left(\frac{\partial g_1}{\partial x} \right)^2 + \left(\frac{\partial g_1}{\partial y} \right)^2 + \left(\frac{\partial g_2}{\partial x} \right)^2 + \left(\frac{\partial g_2}{\partial y} \right)^2 \right]^{1/2}$$

where (x, y) is any orthonormal frame at some point on Ω , and we let

$$|g|_{W^{1,1}} = \int_{\Omega} |\nabla g|.$$

Recall that we defined T(g) by

$$\langle T(g),\zeta\rangle = \int_{\Omega} \left((g \wedge g_x)\zeta_y - (g \wedge g_y)\zeta_x \right), \quad \forall \ \zeta \in \operatorname{Lip}\left(\Omega;\mathbb{R}\right).$$

Here, $\binom{u_1}{u_2} \wedge \binom{v_1}{v_2} = u_1 v_2 - u_2 v_1$, and the integrand is computed in any orthonor-

mal frame (x, y) such that (x, y, n) is direct, where n is the outward normal to G. (This integrand is frame invariant.) The class of testing functions, $\operatorname{Lip}(\Omega; \mathbb{R})$, is the set of functions which are Lipschitz with respect to the geodesic distance d in Ω . For such a map, we set

$$|\zeta|_{\operatorname{Lip}} = \sup_{x \neq y} \frac{|\zeta(x) - \zeta(y)|}{d(x,y)} = \|\nabla \zeta\|_{L^{\infty}}.$$

We next collect some straightforward properties of T(g) and L(g):

Lemma 1. We have

a)
$$T(\bar{g}) = -T(g), \forall g \in W^{1,1}(\Omega; \mathbb{R}^2) \cap L^{\infty} ;$$

b) $T(gh) = T(g) + T(h), \forall g, h \in W^{1,1}(\Omega; S^1) ;$
c) $L(g) \leq \frac{1}{2\pi} |g|_{W^{1,1}} ||g||_{\infty}, \forall g \in W^{1,1}(\Omega; \mathbb{R}^2) \cap L^{\infty} ;$

d) If $g_n, g \in W^{1,1}(\Omega; \mathbb{R}^2) \cap L^{\infty}$ are such that $g_n \to g$ in $W^{1,1}$ and $||g_n||_{L^{\infty}} \leq C$, then $L(g_n) \to L(g)$.

Proof. The only property that requires a proof is d). Since

$$|\langle T(g_n),\zeta\rangle - \langle T(g),\zeta\rangle| \le \int_{\Omega} |g_n| |\nabla(g_n - g)| |\nabla\zeta| + \int_{\Omega} |g_n - g| |\nabla g| |\nabla\zeta|,$$

we have

$$|L(g_n) - L(g)| \le C|g_n - g|_{W^{1,1}} + ||(g_n - g)\nabla g||_{L^1}$$

and d) follows by dominated convergence.

Recall the following density result of Bethuel-Zheng [BZ]:

Lemma 2. The class

$$\mathcal{R} = \left\{ g \in W^{1,1}(\Omega; S^1) \; ; \; g \in C^{\infty}(\Omega \setminus A; S^1), \; \text{where } A \text{ is some finite set} \right\}$$

is dense in $W^{1,1}(\Omega; S^1)$.

When $g \in \mathcal{R}$, a straightforward adaptation of the proof of Lemma 2 in [BBM2] yields the following :

Lemma 3. If $g \in W^{1,1}(\Omega; S^1)$, $g \in C^{\infty}(\Omega \setminus \{a_1, ..., a_k\}; S^1)$, then

$$T(g) = 2\pi \sum_{j=1}^{k} d_j \delta_{a_j}.$$

Here, $d_j = \deg(g, a_j)$ is the topological degree of g restricted to any small circle around a_j , positively oriented with respect to the outward normal. Moreover, L(g)is the length of the minimal connection associated to the configuration (a_j, d_j) and to the geodesic distance on Ω (see Remark 5 below).

Remark 5. By the definition of T(g), we have $\langle T(g), 1 \rangle = 0$. Thus, $\sum_{j=1}^{k} d_j = 0$, by Lemma 3. Therefore, we may write the collection of points (a_j) (repeated with multiplicity $|d_j|$) as $(P_1, \ldots, P_\ell, N_1, \ldots, N_\ell)$, where $\ell = \frac{1}{2} \sum_{j=1}^{k} |d_j|$; the points of

degree 0 do not appear in this list, a_j is counted among the points P_i if $d_j > 0$, and among the points N_i otherwise. Then

$$L(g) = \min_{\sigma \in S_{\ell}} \sum_{j=1}^{\ell} d(P_j, N_{\sigma(j)}).$$

This formula first appeared in the context of S^2 -valued maps; see [BCL].

Using the density of \mathcal{R} in $W^{1,1}(\Omega; S^1)$, one can easily obtain Theorem 3 from Lemma 3. The analog of Theorem 3 for $H^{1/2}(\Omega; S^1)$ was proved in [BBM2], and the arguments there also apply to our case.

A converse to Theorem 3 is also true. Namely, for any sequence of points (P_i) , (N_i) satisfying $\sum_i |P_i - N_i| < \infty$, one can find $g \in W^{1,1}(\Omega; S^1)$ such that (1.10) holds; see [BBM2]. Motivated by this, we state the following :

Open Problem 1. Let $1 . Given <math>g \in W^{1,p}(\Omega; S^1)$, can one find (P_i) , (N_i) such that $\sum_i |P_i - N_i|^{2/p-1} < \infty$ and (1.10) holds ?

Open Problem 2. Given two sequences (P_i) , (N_i) such that $\sum_i |P_i - N_i|^{2/p-1} < \infty$ for some $1 , does there exist some <math>g \in W^{1,p}(\Omega; S^1)$ such that (1.10) holds? If the answer is negative (as we suspect), what is the right condition on the points P_i , N_i (in terms of capacity?) which guarantees the existence of g?

We now consider the following class

$$Y = \overline{C^{\infty}(\Omega; S^1)}^{W^{1,1}}$$

this class is properly contained in $W^{1,1}(\Omega; S^1)$ (see Remark 7 below).

It turns out that maps in Y can be characterized in terms of their distribution T(g):

Theorem 7. Let $g \in W^{1,1}(\Omega; S^1)$. Then the following properties are equivalent :

- a) $g \in Y$;
- b) T(g) = 0;
- c) there exists $\varphi \in W^{1,1}(\Omega; \mathbb{R})$ such that $g = e^{i\varphi}$.

Remark 6. When Ω is a smooth bounded open set in \mathbb{R}^2 , the equivalence a) \Leftrightarrow b) was established by Demengel [D]. We could adapt the argument in [D] to our case, but we present below a different approach, based on an idea of Carbou [C].

Remark 7. Using Theorem 7, it is easy to construct maps in $W^{1,1}(\Omega; S^1) \setminus Y$. Assume, e.g., that $\Omega = S^2$, and let $g(x, y, z) = \frac{(x, y)}{|(x, y)|}$. By Lemma 3, we have

 $T(g) = 2\pi(\delta_N - \delta_S)$, where N, S are the North and South pole of S^2 . By Theorem 7, this implies that $g \notin Y$.

Proof of Theorem 7.

a) \Rightarrow b) By Lemma 3, we have T(g) = 0 if $g \in C^{\infty}(\Omega; S^1)$. By Lemma 1, $g \mapsto T(g)$ is continuous with respect to $W^{1,1}$ -convergence, and thus $T(g) = 0, \forall g \in Y$. b) \Rightarrow c) We argue as in [C]; see also [BBM1]. Let $x_0 \in \Omega$ and assume that $\Omega \subset \mathbb{R}^2$ near x_0 . Since T(g) = 0, the L^1 -vector field

$$F = \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = \begin{pmatrix} g \land g_x \\ g \land g_y \end{pmatrix}$$

satisfies, near $x_0, \frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}$ in the sense of distributions. By a variant of the Poincaré Lemma (see [BBM1]), we may find a neighborhood ω of x_0 and a function $\psi \in W^{1,1}(\omega; \mathbb{R})$ such that $g = e^{i(\psi+C)}$ in ω , for some constant C (see [BBM1]).

Consider a finite covering of Ω with open sets ω_j such that

(i) in each ω_j we may write $g = e^{i\varphi_j}$ for some $\varphi_j \in W^{1,1}(\omega_j; \mathbb{R})$;

(*ii*) $\omega_j \cap \omega_k$ is connected, $\forall j, \forall k$.

In $\omega_j \cap \omega_k$, the map $\varphi_j - \varphi_k$ belongs to $W^{1,1}$ and is $2\pi\mathbb{Z}$ -valued; thus, it has to be constant a.e. Since Ω is simply connected, we may therefore find a map φ in $W^{1,1}(\Omega; \mathbb{R})$ such that $\varphi - \varphi_j$ is, a.e. in ω_j , a constant integer multiple of 2π . In particular, $g = e^{i\varphi}$ in Ω .

c) \Rightarrow a) Let $(\varphi_n) \subset C^{\infty}(\Omega; \mathbb{R})$ be such that $\varphi_n \to \varphi$ in $W^{1,1}$. Set $g_n = e^{i\varphi_n}$. Then, clearly, $g_n \in C^{\infty}(\Omega; S^1)$ and $g_n \to g$ in $W^{1,1}$.

Remark 8. It follows from Theorem 7 that, given a map $g \in W^{1,1}(\Omega; S^1)$, in general we may **not** write $g = e^{i\varphi}$ for some $\varphi \in W^{1,1}(\Omega; \mathbb{R})$; consider, for example, the map g in Remark 7. However, it follows from Theorem 2 that we may write $g = e^{i\varphi}$ for some $\varphi \in BV(\Omega; \mathbb{R})$. This conclusion still holds for maps $g \in BV(\Omega; S^1)$; see [GMS2] and [DI].

Before starting the proof of Theorem 2, we recall the "generalized dipole" construction presented in [BBM2] :

Lemma 4. Let $g \in W^{1,1}(\Omega; S^1)$. Then, for each $\varepsilon > 0$, there is some $h = h_{\varepsilon} \in W^{1,1}(\Omega; S^1)$ such that

(i)
$$|h|_{W^{1,1}} \le 2\pi L(g) + \varepsilon$$
;

(ii) T(h) = T(g);

(iii) there is a function $\psi = \psi_{\varepsilon} \in BV(\Omega; \mathbb{R})$ such that $h = e^{i\psi}$ a.e. and $|\psi|_{BV} \leq i\psi$ $4\pi L(g) + \varepsilon$;

(*iv*) meas (Supp ψ) = meas (Supp (h - 1)) < ε .

Proof of Theorem 2. Let $\psi \in BV(\Omega; \mathbb{R})$ and $\zeta \in C^{\infty}(\Omega; \mathbb{R})$ be such that $|\nabla \zeta| \leq 1$. Then

$$|g \wedge \nabla g - D\psi|_{\mathcal{M}(\Omega)} \ge \int_{\Omega} (g \wedge \nabla g) \cdot \nabla^{\perp} \zeta - \int_{\Omega} D\psi \cdot \nabla^{\perp} \zeta = \langle T(g), \zeta \rangle,$$

so that

$$\frac{1}{2\pi}|g \wedge \nabla g - D\psi|_{\mathcal{M}(\Omega)} \ge L(g),$$

by taking the supremum over ζ .

It thus remains to construct, for each $\varepsilon > 0$, a map $\psi \in C^{\infty}(\Omega; \mathbb{R})$ such that

$$\int_{\Omega} |g \wedge \nabla g - \nabla \psi| \le 2\pi L(g) + \varepsilon.$$

Recall that, by Lemma 4, we may find some $h \in W^{1,1}(\Omega; S^1)$ such that T(h) = T(g)and

$$\int_{\Omega} |\nabla h| \le 2\pi L(g) + \varepsilon/2.$$

Set $k = g\bar{h}$, so that $k \in Y$, by Lemma 1 and Theorem 7. Write $k = e^{i\varphi}$ for some $\varphi \in W^{1,1}$ and let $\psi \in C^{\infty}(\Omega; \mathbb{R})$ be such that $\int_{\Omega} |\nabla \varphi - \nabla \psi| < \frac{\varepsilon}{2}$.

Then

$$\begin{split} \int_{\Omega} |g \wedge \nabla g - \nabla \psi| &= \int_{\Omega} |(hk) \wedge \nabla (hk) - \nabla \psi| = \int_{\Omega} |h \wedge \nabla h + k \wedge \nabla k - \nabla \psi| \\ &= \int_{\Omega} |h \wedge \nabla h + \nabla \varphi - \nabla \psi| \leq \int_{\Omega} |h \wedge \nabla h| + \int_{\Omega} |\nabla \varphi - \nabla \psi| \\ &\leq \int_{\Omega} |\nabla h| + \frac{\varepsilon}{2} \leq 2\pi L(g) + \varepsilon. \end{split}$$

In order to complete the proof of Theorem 2, it suffices to prove the following **Claim.** Given $g \in W^{1,1}(\Omega; S^1)$, there exists some $\varphi \in BV(\Omega; \mathbb{R})$ such that

(3.1)
$$g = e^{i\varphi}$$
 a.e. in Ω

and

(3.2)
$$|g \wedge \nabla g - D\varphi|_{\mathcal{M}(\Omega)} = 2\pi L(g).$$

In other words, in (1.7), one may restrict the minimization to the class of functions $\psi \in BV(\Omega; \mathbb{R})$ such that $g = e^{i\psi}$.

Using the same argument as above, we can write g as

(3.3)
$$g = h_n \mathrm{e}^{i\varphi_n} \quad \text{in } \Omega,$$

where $\varphi_n \in W^{1,1}(\Omega; \mathbb{R}), h_n \in W^{1,1}(\Omega; S^1)$ and

$$|h_n|_{W^{1,1}} \le 2\pi L(g) + \frac{1}{n}.$$

Moreover, in view of (iv) in Lemma 4, we can also assume that $h_n \to 1$ a.e.

Note that

(3.4)
$$\int_{\Omega} |g \wedge \nabla g - \nabla \varphi_n| = \int_{\Omega} |h_n \wedge \nabla h_n| = \int_{\Omega} |\nabla h_n| \le 2\pi L(g) + \frac{1}{n}.$$

Subtracting a suitable integer multiple of 2π from φ_n , we may assume that (φ_n) is bounded in $W^{1,1}(\Omega; \mathbb{R})$. After passing to a subsequence if necessary, we can find $\varphi \in BV(\Omega; \mathbb{R})$ such that

$$\varphi_n \to \varphi$$
 a.e. in Ω and $\nabla \varphi_n \stackrel{*}{\rightharpoonup} D\varphi$ in $\mathcal{M}(\Omega)$.

Since $h_n \to 1$ a.e. in Ω , it follows from (3.3) that $g = e^{i\varphi}$ a.e. in Ω . Letting $n \to \infty$ in (3.4), we obtain

$$\int_{\Omega} |g \wedge \nabla g - D\varphi| \leq \liminf_{n \to \infty} \int_{\Omega} |g \wedge \nabla g - \nabla \varphi_n| \leq 2\pi L(g).$$

This establishes " \leq " in (3.2). The reverse inequality follows trivially from (1.7).

Remark 9. Here is an example which shows that a minimizing function ψ in (1.7) is not necessarily a lifting of g (modulo constants). Assume for simplicity Ω is flat and consider a map g having four singular points in Ω , say $P_1 = (0,0), P_2 = (1,1), N_1 = (1,0)$ and $N_2 = (0,1)$. Then $S = P_1 N_1 P_2 N_2$ is a square. We may write $g = e^{i\psi_1} = e^{i\psi_2}$, where

$$\psi_1 \in C^{\infty}(\Omega \setminus ([P_1, N_1] \cup [P_2, N_2])) \text{ and } \psi_2 \in C^{\infty}(\Omega \setminus ([P_1, N_2] \cup [P_2, N_1])).$$

Then $|g \wedge \nabla g - D\psi_1| = 2\pi\nu_1$ (resp. $|g \wedge \nabla g - D\psi_2| = 2\pi\nu_2$), where ν_1 (resp. ν_2) denotes the 1-dimensional Hausdorff measure on $[P_1, N_1] \cup [P_2, N_2]$ (resp. $[P_1, N_2] \cup [P_2, N_1]$).

It follows from Theorem 2 that ψ_1, ψ_2 are minimizers in (1.7). Moreover, we may assume that $\psi_1 = \psi_2$ in the square S. By convexity, the function $\psi = (\psi_1 + \psi_2)/2$ is also a minimizer. Outside \bar{S}, ψ is smooth and, clearly, $g = \alpha e^{i\psi}$ in $\Omega \setminus \bar{S}$ for some $\alpha \in S^1$. One may check that $\alpha = -1$, and thus

$$\mathbf{e}^{i\psi} = \begin{cases} g, & \text{in } S \\ -g, & \text{in } \Omega \setminus \bar{S} \end{cases},$$

so that ψ is not a lifting of g.

Going back to the general situation, let K be the set of minimizers of the problem

$$\min_{\psi \in BV} \int |g \wedge \nabla g - D\psi|$$

satisfying $\int \psi = 0$. Clearly, K is convex and compact in $L^1(\Omega; \mathbb{R})$.

Open Problem 3. Is it true that

 ψ is an extreme point of $K \iff g = e^{i(\psi+C)}$ for some constant C?

Another result, closely related to Theorem 1, is the following :

Theorem 8. Let $g \in W^{1,1}(\Omega; S^1)$. Then,

(3.5) Inf
$$\left\{ |\varphi_2|_{BV} ; g = e^{i(\varphi_1 + \varphi_2)}, \varphi_1 \in W^{1,1}(\Omega; \mathbb{R}), \varphi_2 \in BV(\Omega; \mathbb{R}) \right\} = 4\pi L(g).$$

The analog of Theorem 8 for the space $H^{1/2}(\Omega; S^1)$ was established in [BBM2], and the arguments there can be adapted to our case. The proof we present below for " \geq " in (3.5) is however different.

Proof of Theorem 8.

Proof of " \leq " in (3.5). With $\varepsilon > 0$ fixed and h given by Lemma 4, we write g = hk, where $k = g\bar{h}$. By Lemma 1 a), b), we have T(k) = 0. Therefore, by Theorem 7 we may write $k = e^{i\varphi}$ for some $\varphi \in W^{1,1}(\Omega; \mathbb{R})$. It follows that $g = e^{i(\varphi + \psi)}$, with ψ given by Lemma 4. Inequality " \leq " in (3.5) follows from (iii) in Lemma 4.

Proof of " \geq " in (3.5). We rely on the following

Lemma 5. Let $\varphi \in BV(\Omega; \mathbb{R})$ be such that $g = e^{i\varphi} \in W^{1,1}(\Omega; S^1)$. Then

$$|D\varphi|_{\mathcal{M}(\Omega)} = |g|_{W^{1,1}} + |g \wedge \nabla g - D\varphi|_{\mathcal{M}(\Omega)}.$$

Proof. We split the measure $D\varphi$ as

(3.6)
$$D\varphi = (D\varphi)_{ac} + (D\varphi)_C + (D\varphi)_J,$$

where ac, C, J stand respectively for the absolutely continuous, Cantor and jump part. Applying Volpert's chain rule to the composition $f(\varphi)$, where $f(t) = e^{it}$, we obtain

(3.7)
$$Dg = D(f \circ \varphi) = f'(\varphi)(D\varphi)_{ac} + f'(\varphi)(D\varphi)_C + \frac{f(\varphi^+) - f(\varphi^-)}{\varphi^+ - \varphi^-}(D\varphi)_J.$$

The meaning of this identity is the following : recall that, for every function $\varphi \in BV(\Omega)$, the Lebesgue set of φ is the complement of a set of σ -finite \mathcal{H}^1 -measure. We may assume that φ coincides with its precise representative on the Lebesgue set of φ . Since $|(D\varphi)_{ac}|(A) = |(D\varphi)_C|(A) = 0$ whenever $\mathcal{H}^1(A) < \infty$, the first two terms in the right-hand side of (3.7) are well-defined (i.e., independently of the choice of the representative of φ). The last term in (3.7) is to be understood as follows : the jump set J of φ is a countable union of Lipschitz curves \mathcal{C}_i and, at \mathcal{H}^1 -a.e. point x of $\mathcal{C}_i, \mathcal{C}_i$ has a normal vector and φ has one-sided limits at x along the normal direction ; the quantities φ^+ and φ^- stand for the two one-sided limits. See [AFP] for a proof of (3.7).

Since $g \in W^{1,1}$, it follows that $(Dg)_C = (Dg)_J = 0$, so that $(D\varphi)_C = 0$ and

(3.8)
$$\nabla g = f'(\varphi)(D\varphi)_{ac} = ig(D\varphi)_{ac}.$$

From (3.8), we obtain that

(3.9)
$$g \wedge \nabla g = -i\bar{g}\,\nabla g = (D\varphi)_{ac}.$$

Thus

$$(D\varphi)_J = D\varphi - g \wedge \nabla g.$$

Since the decomposition (3.6) consists of mutually orthogonal measures, we have

$$|D\varphi| = |(D\varphi)_{ac}| + |(D\varphi)_J| = |i\bar{g}\,\nabla g|_{\mathcal{M}(\Omega)} + |g \wedge \nabla g - D\varphi|_{\mathcal{M}(\Omega)}$$
$$= |g|_{W^{1,1}} + |g \wedge \nabla g - D\varphi|_{\mathcal{M}(\Omega)}.$$

Proof of Theorem 8 completed. Write $g = e^{i(\varphi_1 + \varphi_2)}$, with $\varphi_1 \in W^{1,1}$, $\varphi_2 \in BV$. Then, with $h = g e^{-i\varphi_1}$, we have $h = e^{i\varphi_2}$, $h \in W^{1,1}$ and T(h) = T(g). Theorem 2 and Lemma 5 yield

$$|D\varphi_2|_{\mathcal{M}(\Omega)} = |h|_{W^{1,1}} + |h \wedge \nabla h - D\varphi_2|_{\mathcal{M}(\Omega)}$$

$$\geq |h|_{W^{1,1}} + 2\pi L(h) \geq 4\pi L(h) = 4\pi L(g),$$

since $2\pi L(h) \leq |h|_{W^{1,1}}$, by Lemma 1.

Maps in $W^{1,1}(\Omega; S^1)$ need not belong to $H^{1/2}(\Omega; S^1)$. However, we have the following link between $W^{1,1}$ and $H^{1/2}$:

Theorem 9. Let $g \in W^{1,1}(\Omega; S^1)$. Then there exist $h \in W^{1,1}(\Omega; S^1) \cap H^{1/2}(\Omega; S^1)$ and $\varphi \in W^{1,1}(\Omega; \mathbb{R})$ such that $g = e^{i\varphi}h$.

The analog of Theorem 9 for $H^{1/2}(\Omega; S^1)$ was established in [BBM2].

Proof. We rely on the following additional property of the maps $h = h_{\varepsilon}$ constructed in Lemma 4 (see [BBM2]) :

(v) $h \in H^{1/2}(\Omega; S^1)$.

Pick any of the maps h as in Lemma 4. Then $T(g\bar{h}) = 0$, so that, by Theorem 7, we may write $g\bar{h} = e^{i\varphi}$ for some $\varphi \in W^{1,1}(\Omega; \mathbb{R})$. The decomposition $g = e^{i\varphi}h$ has all the required properties.

From Theorem 2, we have

Corollary 4. Each $g \in W^{1,1}(\Omega; S^1)$ may be written as $g = e^{i\varphi}$ for some $\varphi \in BV(\Omega; \mathbb{R})$.

Corollary 5 ([GMS2]). For each $g \in W^{1,1}(\Omega; S^1)$, one can find a sequence $(g_n) \subset C^{\infty}(\Omega; S^1)$, bounded in $W^{1,1}$, such that $g_n \to g$ a.e.

We now establish

Proposition 2. For each $g \in W^{1,1}(\Omega; S^1)$, we have

$$E_{\rm rel}(g) = E(g).$$

Proof. " \leq " Let $\varphi \in BV(\Omega; \mathbb{R})$ be such that $g = e^{i\varphi}$. Let $(\varphi_n) \subset C^{\infty}(\Omega; \mathbb{R})$ be such that $\varphi_n \to \varphi$ a.e. and $\int_{\Omega} |\nabla \varphi_n| \to |\varphi|_{BV}$. We define $g_n = e^{i\varphi_n} \in C^{\infty}(\Omega; S^1)$. Then $g_n \to g$ a.e. and $\int_{\Omega} |\nabla g_n| = \int_{\Omega} |\nabla \varphi_n| \to |\varphi|_{BV}$, so that " \leq " follows.

" \geq " Let $(g_n) \subset C^{\infty}(\Omega; S^1)$ be such that $g_n \to g$ a.e. and $\int_{\Omega} |\nabla g_n| \to E_{rel}(g)$. Since Ω is simply connected, we may write $g_n = e^{i\varphi_n}$, with $\varphi_n \in C^{\infty}(\Omega; \mathbb{R})$. Since

 $\int_{\Omega} |\nabla g_n| = \int_{\Omega} |\nabla \varphi_n|, \text{ we may find some } \varphi \in BV(\Omega; \mathbb{R}) \text{ such that, after subtracting an integer multiple of } 2\pi \text{ from } \varphi_n \text{ and up to some subsequence, } \varphi_n \to \varphi \text{ a.e. }; \text{ we then conclude that } |\varphi|_{BV} \leq \liminf_{n \to \infty} \int_{\Omega} |\nabla \varphi_n| = E_{\text{rel}}(g).$

The relaxed energy is also related to the minimal connection L(g). This is the content of Theorem 1 :

(3.10)
$$E_{\rm rel}(g) = \int_{\Omega} |\nabla g| + 2\pi L(g), \quad \forall \ g \in W^{1,1}(\Omega; S^1).$$

Proof of Theorem 1. Inequality " \leq " in (3.10) was proved in [DH] when Ω is a smooth bounded open set in \mathbb{R}^2 , and their argument could be easily adapted to our situation. Here is another way. By Theorem 2, we may find some $\varphi_1 \in BV$ such that $g = e^{i\varphi_1}$ and

$$|g \wedge \nabla g - D\varphi_1|_{\mathcal{M}} = 2\pi L(g).$$

Combining with Lemma 5 yields

$$|D\varphi_1|_{\mathcal{M}} = |g|_{W^{1,1}} + |g \wedge \nabla g - D\varphi_1|_{\mathcal{M}} = |g|_{W^{1,1}} + 2\pi L(g).$$

By Proposition 2, we finally get

$$E_{\rm rel}(g) \le |D\varphi_1|_{\mathcal{M}} = |g|_{W^{1,1}} + 2\pi L(g).$$

For the reverse inequality " \geq " in (3.10), we argue as follows. By Proposition 2, we know that

$$E_{\mathrm{rel}}(g) = |D\varphi_0|_{\mathcal{M}}$$

for some $\varphi_0 \in BV(\Omega; \mathbb{R})$ such that $g = e^{i\varphi_0}$. By Lemma 5 and Theorem 2, we have

$$|D\varphi_0|_{\mathcal{M}} = |g|_{W^{1,1}} + |g \wedge \nabla g - D\varphi_0|_{\mathcal{M}} \ge |g|_{W^{1,1}} + 2\pi L(g).$$

Corollary 6. For each $g \in W^{1,1}(\Omega; S^1)$, there is some $\varphi \in BV(\Omega; \mathbb{R})$ such that $g = e^{i\varphi}$ a.e. and $|\varphi|_{BV} \leq 2|g|_{W^{1,1}}$.

Corollary 6 is a special case of a much more general result of Dávila and Ignat [DI] which asserts that the same conclusion holds for maps $g \in BV(\Omega; S^1)$.

Proof. The corollary follows from Proposition 2, Theorem 1 and the inequality $L(g) \leq \frac{1}{2\pi} |g|_{W^{1,1}}, \ \forall \ g \in W^{1,1}(\Omega; S^1)$ (this last estimate is an immediate consequence of the definition (1.9) of L(g)).

We now present a coarea type formula proved in [BBM2], which relates the quantity $\langle T(g), \zeta \rangle$ and the degree of $g \in H^{1/2}(\Omega; S^1)$ with respect to the level sets

of ζ (in [BBM2] the result is stated for $H^{1/2}$ -maps, but it is actually proved for $W^{1,1}$). More precisely, let $\zeta \in C^{\infty}(\Omega; \mathbb{R})$. If $\lambda \in \mathbb{R}$ is a regular value of ζ , let

$$\Gamma_{\lambda} = \big\{ x \in \Omega \ ; \ \zeta(x) = \lambda \big\}.$$

We orient Γ_{λ} such that, for each $x \in \Gamma_{\lambda}$, the basis $(\tau(x), \nabla \zeta(x), n(x))$ is direct, where n(x) denotes the outward normal to Ω at x.

Given $g \in H^{1/2}(\Omega; S^1)$, the restriction of g to the level set Γ_{λ} belongs to $W^{1,1} \subset C^0$ for a.e. λ ; this follows from the coarea formula. Therefore, deg $(g; \Gamma_{\lambda})$ makes sense for a.e. λ , and Γ_{λ} is a union of simple curves, say $\Gamma_{\lambda} = \bigcup \gamma_i$; then we set

$$\deg(g;\Gamma_{\lambda}) = \sum \deg(g;\gamma_j).$$

In [BBM2], the authors proved that for every $g \in W^{1,1}(\Omega; S^1)$ we have

(3.11)
$$\langle T(g), \zeta \rangle = 2\pi \int_{\mathbb{R}} \deg(g; \Gamma_{\lambda}) d\lambda$$

We point out that this formula still holds if $\zeta \in \text{Lip}(\Omega; \mathbb{R})$. If we assume in addition that $|\zeta|_{\text{Lip}} \leq 1$, then a simple corollary of (3.11) is the inequality :

(3.12)
$$\left| \int_{\mathbb{R}} \deg\left(g; \Gamma_{\lambda}\right) d\lambda \right| \leq L(g).$$

The novelty in Theorem 4 is that this estimate remains true if one replaces deg $(g; \Gamma_{\lambda})$ by its absolute value inside the integral in (3.12).

Proof of Theorem 4. We shall first establish (1.12) for functions g in the class \mathcal{R} , and then we argue by density.

Let $g \in \mathcal{R}$ and $\zeta \in \operatorname{Lip}(\Omega; \mathbb{R})$, with $|\zeta|_{\operatorname{Lip}} \leq 1$. By Lemma 3, we can find finitely many points P_i, N_i such that

$$T(g) = 2\pi \sum_{i=1}^{k} \left(\delta_{P_i} - \delta_{N_i}\right).$$

Let $\lambda \in \mathbb{R}$ be a regular value of ζ such that $\lambda \neq \zeta(P_i), \zeta(N_i)$ for any $i \in \{1, \ldots, k\}$. Then, we have

$$\deg (g; \Gamma_{\lambda}) = \operatorname{card} \left\{ i \; ; \; \zeta(P_i) > \lambda \right\} - \operatorname{card} \left\{ i \; ; \; \zeta(N_i) > \lambda \right\},$$

so that

$$\deg\left(g;\Gamma_{\lambda}\right) = \frac{1}{2}\sum_{i=1}^{k} \left\{ \operatorname{sgn}\left[\zeta(P_{i}) - \zeta\right] - \operatorname{sgn}\left[\zeta(N_{i}) - \zeta\right] \right\}.$$

After relabeling the negative points N_i if necessary, we can assume that $L(g) = \sum_{i=1}^k d(P_i, N_i)$. Let γ_i be a geodesic arc in Ω connecting P_i to N_i . Clearly,

$$\frac{1}{2} \left| \operatorname{sgn} \left[\zeta(P_i) - \zeta \right] - \operatorname{sgn} \left[\zeta(N_i) - \zeta \right] \right| \le \operatorname{card} \left\{ x \in \gamma_i \; ; \; \zeta(x) = \lambda \right\}.$$

Using the area formula, we obtain

$$\int_{\mathbb{R}} |\deg(g;\Gamma_{\lambda})| \, d\lambda \leq \sum_{i=1}^{k} \int_{\mathbb{R}} \operatorname{card} \left\{ x \in \gamma_{i} \; ; \; \zeta(x) = \lambda \right\} d\lambda = \sum_{i=1}^{k} \int_{\gamma_{i}} \left| \frac{\partial \zeta}{\partial \tau} \right| \leq L(g).$$

This establishes (1.12) for maps $g \in \mathcal{R}$.

For a general $g \in W^{1,1}(\Omega; S^1)$, it follows from Lemma 2 that we can find a sequence $(g_n) \subset \mathcal{R}$ such that $g_n \to g$ strongly in $W^{1,1}$. In particular, by Lemma 1 d) we have

$$L(g_n) \to L(g).$$

Passing to a subsequence, we may assume that $u_{n|\Gamma_{\lambda}}$ converges to $u_{|\Gamma_{\lambda}}$ in $W^{1,1}$, and hence uniformly, for a.e. λ . Thus,

$$\deg(g_n; \Gamma_\lambda) \to \deg(g; \Gamma_\lambda)$$
 for a.e. λ .

Applying Fatou's lemma, we find

$$\int_{\mathbb{R}} |\deg(g;\Gamma_{\lambda})| \, d\lambda \leq \liminf_{n \to \infty} \int_{\mathbb{R}} |\deg(g_n;\Gamma_{\lambda})| \, d\lambda \leq \lim_{n \to \infty} L(g_n) = L(g).$$

This proves (1.12). Note that (1.13) follows immediately from (1.12). In fact, if ζ maximizes (1.9), then

$$L(g) = \int_{\mathbb{R}} \deg\left(g; \Gamma_{\lambda}\right) d\lambda \leq \int_{\mathbb{R}} \left| \deg\left(g; \Gamma_{\lambda}\right) \right| d\lambda \leq L(g).$$

Therefore, deg $(g; \Gamma_{\lambda}) = | deg (g; \Gamma_{\lambda}) | \ge 0$ for a.e. λ .

Given two (infinite) sequences of points (P_i) and (N_i) in Ω such that

(3.13)
$$\sum_{i=1}^{\infty} d(P_i, N_i) < \infty,$$

we may introduce the distribution

(3.14)
$$T = 2\pi \sum_{i=1}^{\infty} (\delta_{P_i} - \delta_{N_i}) \quad \text{in } (W^{1,\infty})^*,$$

and the number

(3.15)
$$L = \frac{1}{2\pi} \max_{|\zeta|_{\text{Lip}} \le 1} \langle T, \zeta \rangle,$$

where the best Lipschitz constant $|\zeta|_{\text{Lip}}$ refers to the geodesic distance d in Ω . The distribution T admits many representations, and it has been proved in [BBM2, Lemma 12'] (see also [P]) that

$$L = \inf \left\{ \sum_{j} d(\tilde{P}_{j}, \tilde{N}_{j}) \; ; \; \sum_{j} (\delta_{\tilde{P}_{j}} - \delta_{\tilde{N}_{j}}) = \sum_{i} (\delta_{P_{i}} - \delta_{N_{i}}) \; \text{in} \; (W^{1,\infty})^{*} \right\}.$$

We also recall that if the sequences $(P_i), (N_i)$ consist of a **finite** number of points $P_1, P_2, \ldots, P_k, N_1, N_2, \ldots, N_k$, then

(3.16)
$$L = \underset{\sigma}{\operatorname{Min}} \sum_{i=1}^{k} d(P_i, N_{\sigma(i)}),$$

where the minimum in (3.16) is taken over all permutations of the integers $\{1, 2, \ldots, k\}$.

In our next result, we are **given** points $(P_i), (N_i)$ satisfying (3.13), and we ask what is the least " $W^{1,1}$ -energy" needed to produce singularities of degree +1 at the points P_i , and degree -1 at the points N_i ; more precisely, we consider the class of all maps g in $W^{1,1}(\Omega; S^1)$ such that

(3.17)
$$T(g) = 2\pi \sum_{i} (\delta_{P_i} - \delta_{N_i}).$$

[We know (see Lemma 16 in [BBM2]) that such class of maps g is not empty.]

The answer is given by

Theorem 10. Let $P_i, N_i \in \Omega$ be such that $\sum_i d(P_i, N_i) < \infty$. Then

(3.18)
$$\operatorname{Inf}\left\{\int_{\Omega} |\nabla g| \; ; \; g \in W^{1,1}(\Omega; S^1) \; \text{satisfying} \; (3.17)\right\} = 2\pi L.$$

In particular,

(3.19)

$$d(P,N) = \frac{1}{2\pi} \operatorname{Inf} \left\{ \int_{\Omega} |\nabla g| \; ; \; g \in W^{1,1}(\Omega; S^{1}), \; T(g) = 2\pi (\delta_{P} - \delta_{N}) \right\}$$
$$= \frac{1}{2\pi} \operatorname{Inf} \left\{ \int_{\Omega} |\nabla g| \; \left| \begin{array}{c} g \in W^{1,\infty}_{\operatorname{loc}}(\Omega \setminus \{P,N\}; S^{1}), \\ \deg(g,P) = +1 \; and \; \deg(g,N) = -1 \end{array} \right\}$$

Proof. Given P_i, N_i as above, we fix some $g_0 \in W^{1,1}(\Omega; S^1)$ such that

$$T(g_0) = T = 2\pi \sum_{i} (\delta_{P_i} - \delta_{N_i}).$$

By Lemma 4, for each $\varepsilon > 0$ we may find a map $h \in W^{1,1}(\Omega; S^1)$ such that $T(h) = T(g_0) = T$ and

$$\int_{\Omega} |\nabla h| \le 2\pi L(g_0) + \varepsilon = 2\pi L + \varepsilon,$$

which implies " \leq " in (3.18). Inequality " \geq " in (3.18) follows from Lemma 1 c).

To prove the second equality in (3.19), it suffices to apply Lemma 15 in [BBM2].

In view of Theorem 10, it is natural to define, for every $P, N \in \Omega$,

$$\rho(P,N) = \frac{1}{2\pi} \operatorname{Inf} \Big\{ [g]_{W^{1,1}} ; \ g \in W^{1,1}(\Omega; S^1), \ T(g) = 2\pi (\delta_P - \delta_N) \Big\}.$$

Here, $[]_{W^{1,1}}$ is a general given semi-norm on $W^{1,1}(\Omega; \mathbb{C})$ equivalent to $||_{W^{1,1}}$. Of course, ρ depends on the choice of $[]_{W^{1,1}}$. We require from $[]_{W^{1,1}}$ some structural properties :

(P1) $[\alpha g]_{W^{1,1}} = [g]_{W^{1,1}}, \ \forall \ g \in W^{1,1}(\Omega; \mathbb{C}), \ \forall \ \alpha \in S^1 ;$

(P2)
$$[\bar{g}]_{W^{1,1}} = [g]_{W^{1,1}}, \forall g \in W^{1,1}(\Omega; \mathbb{C});$$

(P3)
$$[gh]_{W^{1,1}} \le ||g||_{L^{\infty}} [h]_{W^{1,1}} + ||h||_{L^{\infty}} [g]_{W^{1,1}}, \forall g, h \in W^{1,1}(\Omega; \mathbb{C}) \cap L^{\infty}.$$

It follows easily from (P3) that ρ is a distance.

Example 1. The semi-norm

$$[g]_{W^{1,1}} = \int_{\Omega} |\nabla g| \, w,$$

where w is a positive smooth function defined on Ω , satisfies (P1), (P2) and (P3). Exercise : compute ρ in this case.

One may define a new relaxed energy associated to $[]_{W^{1,1}}$ by setting, for every $g \in W^{1,1}(\Omega; S^1)$,

$$\widetilde{E}_{\mathrm{rel}}(g) = \mathrm{Inf} \left\{ \liminf_{n \to \infty} [g_n]_{W^{1,1}} ; g_n \in C^{\infty}(\Omega; S^1), g_n \to g \text{ a.e.} \right\},\$$

and also

$$\widetilde{L}(g) = \frac{1}{2\pi} \operatorname{Sup} \Big\{ \langle T(g), \zeta \rangle \; ; \; \big| \zeta(x) - \zeta(y) \big| \le \rho(x, y), \; \forall \; x, y \in \Omega \Big\}.$$

We end this section with the following

Open Problem 4. Is it true that, for every $g \in W^{1,1}(\Omega; S^1)$,

$$\widetilde{E}_{\rm rel}(g) = [g]_{W^{1,1}} + 2\pi \widetilde{L}(g) ?$$

4. $W^{1,1}(\Omega; S^1)$ and relaxed Jacobians.

Given any function $g \in W^{1,p}(\Omega; \mathbb{R}^2)$, with $p \ge 1$, a natural concept associated to g is the following

$$TV_{\tau}(g) = \inf \left\{ \liminf_{n \to \infty} \int_{\Omega} |g_{nx} \wedge g_{ny}| \; ; \; g_n \in C^{\infty}(\Omega; \mathbb{R}^2), \; g_n \to g \text{ with respect to } \tau \right\},$$

for some topology τ .

There are several topologies τ of interest. For example, given $1 \leq p < 2$ and $g \in W^{1,p}(\Omega; \mathbb{R}^2)$, we consider

 $TV_{p,s}(g) = TV$ computed with respect to the strong $W^{1,p}$ -topology,

 $TV_{p,w}(g) = TV$ computed with respect to the weak $W^{1,p}$ -topology.

In the case p = 1, for every $g \in W^{1,1}(\Omega; \mathbb{R}^2)$, we also define

 $TV_{1,w^*}(g) = TV$ computed with respect to the weak^{*} $W^{1,1}$ -topology.

In what follows, we are going to work with the weak $W^{1,1}$ -topology and simply write TV for the total variation $TV_{1,w}$. But we will also state results for $TV_{p,w}$ and $TV_{p,s}$ for every $1 \le p < 2$, and for TV_{1,w^*} ; see Remarks 10 and 12 below.

Let us start with a simple

Proposition 3. Assume $g \in W^{1,1}(\Omega; \mathbb{R}^2) \cap L^{\infty}$ and $TV(g) < \infty$. Then $\text{Det}(\nabla g) \in \mathcal{M}(\Omega)$ and

(4.1)
$$|\operatorname{Det}(\nabla g)|_{\mathcal{M}} \leq TV(g).$$

Recall that $\text{Det}(\nabla g)$ is the distributional Jacobian of g and that $T(g) = 2 \text{ Det}(\nabla g)$ (see (1.8)).

Proof. Given $\varepsilon > 0$, there exists a sequence $(g_n) \subset C^{\infty}(\Omega; \mathbb{R}^2)$ such that

(4.2)
$$g_n \rightharpoonup g$$
 weakly in $W^{1,1}$,

(4.3)
$$\int_{\Omega} |g_{nx} \wedge g_{ny}| \le TV(g) + \varepsilon, \quad \forall n.$$

Let $M = ||g||_{L^{\infty}}$ and let $P : \mathbb{R}^2 \to B_M$ be the orthogonal projection onto B_M . Set $\tilde{g}_n = Pg_n$. It is easy to see (using Dunford-Pettis' theorem) that \tilde{g}_n satisfies (4.2) and (4.3). Moreover, by a standard regularization argument, we may assume that the functions \tilde{g}_n are smooth. In what follows, we will denote \tilde{g}_n by g_n , and so we also have

(4.4)
$$||g_n||_{L^{\infty}} \le ||g||_{L^{\infty}}.$$

We claim that

$$g_n \wedge \nabla g_n \rightharpoonup g \wedge \nabla g$$
 weakly in L^1 .

In fact, it suffices to notice that

$$\int_{\Omega} |g_n - g| |\nabla g_n| \to 0.$$

which follows from Egorov's and Dunford-Pettis' theorems. Hence

$$g_{nx} \wedge g_{ny} = \frac{1}{2} \Big[(g_n \wedge g_{ny})_x + (g_{nx} \wedge g_n)_y \Big]$$

converges to $\text{Det}(\nabla g)$ in the sense of distributions. We deduce from (4.3) that $\text{Det}(\nabla g) \in \mathcal{M}(\Omega)$ and that (4.1) holds.

Remark 10. The conclusion of Proposition 3 is no longer true if we compute the total variation of g with respect to the weak*-topology of $W^{1,1}$, $TV_{1,w^*}(g)$. In fact, assume $g \in W^{1,1}(\Omega; S^1)$. It follows from Corollary 5 that there exists $(g_n) \subset C^{\infty}(\Omega; S^1)$ such that $g_n \stackrel{*}{\rightharpoonup} g$ in $W^{1,1}$. Since $g_{nx} \wedge g_{ny} = 0$ for each n, we conclude that $TV_{1,w^*}(g) = 0$. On the other hand, for some maps g in $W^{1,1}(\Omega; S^1)$ we have

Det $(\nabla g) = \frac{1}{2}T(g) \neq 0$; see Theorem 11 below. A fortiori, the conclusion of Proposition 3 fails if τ is the strong L^1 -topology (or the convergence pointwise a.e.).

In general, the inequality in (4.1) is strict. This fact was pointed out by an example in [M]; see also [GMS1]. There, the map $g \in W^{1,1}(\Omega; \mathbb{R}^2)$ takes its values in an eight-shaped curve and satisfies $\text{Deg}(\nabla g) = 0$ in the sense of distributions, while TV(g) > 0. It is therefore remarkable that equality in (4.1) holds whenever the map g takes its values in S^1 . This is the content of our next result, which is stronger than Theorem 5:

Theorem 11. Assume $g \in W^{1,p}(\Omega; S^1)$, $1 \leq p < 2$, is such that $Det(\nabla g) \in \mathcal{M}$. Then there exists a sequence $(g_n) \subset C^{\infty}(\Omega; \mathbb{R}^2)$ such that

$$g_n \to g$$
 strongly in $W^{1,p}$

and

$$TV(g) = \lim_{n \to \infty} \int_{\Omega} |g_{nx} \wedge g_{ny}| = |\operatorname{Det}(\nabla g)|_{\mathcal{M}}$$

Moreover, in this case,

Det
$$(\nabla g) = \pi \sum_{\text{finite}} (\delta_{P_i} - \delta_{N_i}).$$

In particular, $\frac{1}{\pi} |\operatorname{Det}(\nabla g)|_{\mathcal{M}}$ equals the number of topological singularities of g, taking into account their multiplicities.

Remark 11. Theorem 11 extends and clarifies some of the results of [FFM]. Although in their case Ω is a smooth bounded domain in \mathbb{R}^2 , the above results, stated for $\Omega = \partial G$, adapt easily to bounded domains; see Section 5.2 below.

Proof of Theorem 11. The fact that

Det
$$(\nabla g)$$
 measure \implies Det $(\nabla g) = \pi \sum_{\text{finite}} (\delta_{P_i} - \delta_{N_i})$

is a consequence of Theorem 3 and a result of Smets [S]; see also [P]. Let us assume, for simplicity, that $\text{Det}(\nabla g) = \pi(\delta_P - \delta_N)$; the argument below still applies to the general case. Suppose, in addition, that Ω is flat and horizontal near P and N. We start by defining, near P and N, a map h by setting

$$h(x) = \left(\frac{x-P}{|x-P|}\right)^{\pm 1}$$
 near P , $h(x) = \left(\frac{x-N}{|x-N|}\right)^{\mp 1}$ near N .

For appropriate choices of \pm , we have deg (h, P) = +1 and deg (h, N) = -1. Then h extends to a map in $C^{\infty}(\Omega \setminus \{P, N\}; S^1) \cap W^{1,p}(\Omega; S^1), 1 \leq p < 2$. Set

$$h_n(x) = \begin{cases} h(x), & \text{if } d(x, P) \ge 1/n \text{ and } d(x, N) \ge 1/n \\ n \, d(x, P)h(x), & \text{if } d(x, P) < 1/n \\ n \, d(x, N)h(x), & \text{if } d(x, N) < 1/n \end{cases}$$

Clearly, $h_n \to h$ in $W^{1,p}$ and

$$\int_{\Omega} |h_{nx} \wedge h_{ny}| = 2\pi.$$

Let $k = g\bar{h}$. Since T(k) = 0, we may write $k = e^{i\varphi}$ for some $\varphi \in W^{1,1}$ (see Theorem 7). Moreover, $g, h \in W^{1,p} \cap L^{\infty}$ implies $k \in W^{1,p}$. From this, we easily conclude that $\varphi \in W^{1,p}$.

Let $(\varphi_n) \subset C^{\infty}(\Omega; \mathbb{R})$ be such that $\varphi_n \to \varphi$ in $W^{1,p}$. Since a point has zero $W^{1,2}$ -capacity, we may also assume that $\varphi_n(x) = 0$ if $d(x, P) \leq 1/n$ or $d(x, N) \leq 1/n$. Clearly, $g_n = h_n e^{i\varphi_n}$ belongs to $C^{\infty}(\Omega; \mathbb{R}^2)$ and $g_n \to g$ in $W^{1,p}$. Since $g_{nx} \wedge g_{ny} = h_{nx} \wedge h_{ny}$, we obtain

$$\int_{\Omega} |g_{nx} \wedge g_{ny}| = 2\pi = |\operatorname{Det} (\nabla g)|_{\mathcal{M}},$$

which shows that

$$TV(g) \leq |\operatorname{Det}(\nabla g)|_{\mathcal{M}}.$$

The reverse inequality follows from Proposition 3.

Remark 12. Theorem 11 and Proposition 3 imply that, for every $p \in [1, 2)$,

$$TV_{p,w}(g) = TV_{p,s}(g) = TV(g), \quad \forall \ g \in W^{1,p}(\Omega; S^1).$$

We do not know whether the same holds without assuming that g is S^1 -valued : Open Problem 5. Let $g \in W^{1,1}(\Omega; \mathbb{R}^2)$. Is it true that

$$TV_{1,w}(g) = TV_{1,s}(g)$$
?

Assume in addition that $g \in W^{1,p}(\Omega; \mathbb{R}^2)$ for some 1 . Does one have

$$TV_{1,w}(g) = TV_{1,s}(g) = TV_{p,w}(g) = TV_{p,s}(g)$$
?

Remark 13. The analog of Remark 12 for $p \ge 2$ is true, but uninteresting. Indeed, every $g \in W^{1,p}(\Omega; S^1)$, with $p \ge 2$, is a strong limit in $W^{1,p}$ of a sequence (g_n) in $C^{\infty}(\Omega; S^1)$ (see, e.g., [BZ]). Thus, TV(g) = 0 and $TV_{p,w}(g) = TV_{p,s}(g) = 0$ for every $g \in W^{1,p}(\Omega; S^1)$.

5. Further directions and open problems.

5.1. Some examples of *BV*-functions with jumps.

It is natural to try to extend the above (or part of the above) results to the class of maps g in $BV(\Omega; S^1)$, where $\Omega = \partial G$, $G \subset \mathbb{R}^3$ as in the Introduction. Every $g \in BV(\Omega; S^1)$ admits a lifting $\varphi \in BV(\Omega; \mathbb{R})$ (see [GMS2] and also [DI]). Hence, we may define the two quantities E(g) and $E_{rel}(g)$ as in (1.3) and (1.4), and we always have $E(g) = E_{rel}(g)$. The difficulty starts when we try to find a simple formula for E as in Theorem 1. To illustrate the heart of the difficulty, it is worthwhile to start, as in Section 2, with the simpler case $BV(S^1; S^1)$.

Clearly, every $g \in BV(S^1; S^1)$ admits a lifting $\varphi \in BV(S^1; \mathbb{R})$. Hence we may define the two quantities E(g) and $E_{rel}(g)$ as in (2.1) and (2.2), and we always have $E(g) = E_{rel}(g)$. It is natural to ask for an explicit formula for E(g). For S^1 -valued maps, there are two natural ways of defining the BV-norm of g:

$$|g|_{BV} = \int_{S^1} |\dot{g}|$$

and

$$|g|_{BVS^1} = \int_{S^1} \left(|\dot{g}_{ac}| + |\dot{g}_C| \right) + \sum_n d_{S^1}(g(a_n+), g(a_n-)),$$

where d_{S^1} denotes the geodesic distance on S^1 . It is easy to see that

$$|g|_{BV} = \operatorname{Inf} \left\{ \liminf_{n \to \infty} \int_{S^1} |\dot{g}_n| \; ; \; g_n \in C^{\infty}(S^1; \mathbb{R}^2) \text{ and } g_n \to g \text{ a.e.} \right\},$$
$$g|_{BVS^1} = \operatorname{Inf} \left\{ \liminf_{n \to \infty} \int_{S^1} |\dot{g}_n| \; ; \; g_n \in C^{\infty}(S^1; S^1) \text{ and } g_n \to g \text{ a.e.} \right\}.$$

We also have, for every $g \in BV(S^1; S^1)$,

$$E(g) \ge |g|_{BVS^1} \ge |g|_{BV}.$$

Moreover $E(g) - |g|_{BV} = 0 \iff g \in C^0$ and $\deg g = 0$. R. Ignat [I] has recently obtained an explicit formula for $E(g) - |g|_{BVS^1}$ involving the jumps of $g \in BV$ and a kind of degree in the sense of Definition 2 below.

An interesting estimate for E(g) when $g \in BV$ is the following **Theorem 12.** For every $g \in BV(S^1; S^1)$, we have

$$(5.1) E(g) \le 2|g|_{BV}.$$

The above result is a variant of a nice theorem of [DI] which asserts that if $u \in BV(U; S^1)$, where U is a domain in \mathbb{R}^N , then $u = e^{i\varphi}$ for some $\varphi \in BV(U; \mathbb{R})$ with $|\varphi|_{BV} \leq 2|g|_{BV}$. The proof of Theorem 12 is a straightforward adaptation of the ingenious method in [DI]. Surprisingly, the natural proof of (5.1) — via the explicit formula [I] for E(g) — turns out to be quite involved (see [I]) !

As we have already pointed out in Remark 2, the constant 2 in Theorem 12 is optimal in $W^{1,1}$. A less intuitive fact is that the constant 2 is also optimal for piecewise constant functions. Here is an example :

Example 2. Fix an integer $k \ge 1$ and set

$$g(\theta) = e^{i2\pi j/k}$$
 for $\frac{2\pi j}{k} < \theta < \frac{2\pi (j+1)}{k}$, $j = 0, 1, \dots, k-1$.

Then

$$|g|_{BV} = 2k\sin\frac{\pi}{k}$$
 and $E(g) = 4\pi - \frac{4\pi}{k}$

The inequality

$$E(g) \le 4\pi - \frac{4\pi}{k}$$

is straightforward ; however, the reverse inequality is more delicate and relies on the following lemma whose proof is left to the reader

Lemma 6. For every choice of $\alpha_1, \ldots, \alpha_k \in \mathbb{Z}$ with $\sum_j \alpha_j = 1$, we have

$$\sum_{j=1}^{k} \left| \frac{1}{k} - \alpha_j \right| \ge 2 - \frac{2}{k}.$$

A striking difference with formula (2.3) is that neither $\frac{1}{2\pi}(E(g) - |g|_{BV})$ nor $\frac{1}{2\pi}(E(g) - |g|_{BVS^1})$ is necessarily an integer. Here is an example : **Example 3.** Let

$$g(\theta) = \begin{cases} 1, & \text{for } 0 < \theta < 2\pi/3 \\ e^{i2\pi/3}, & \text{for } 2\pi/3 < \theta < 4\pi/3 \\ e^{i4\pi/3}, & \text{for } 4\pi/3 < \theta < 2\pi \end{cases}$$

An easy computation shows that

$$E(g) = \frac{8\pi}{3}, \quad |g|_{BV} = 3\sqrt{3} \quad \text{and} \quad |g|_{BVS^1} = 2\pi.$$

In fact, it is hopeless (?) to have an analog of Theorem 6 since there is no reasonable notion of degree for maps in $BV(S^1; S^1)$. This is a consequence of

Theorem 13. The space $BV(S^1; S^1)$ is path-connected.

Proof. Let $\varphi \in BV(S^1; \mathbb{R})$ be such that $g = e^{i\varphi}$. We claim that the map

(5.2)
$$F: t \in [0,1] \longmapsto e^{it\varphi} \in BV(S^1; S^1)$$

is strongly continuous ; this implies that every map in $BV(S^1; S^1)$ can be connected to 1.

The continuity of F in (5.2) follows from

Lemma 7. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be such that :

(i) $t \mapsto f(t, x)$ is continuous, $\forall x \in \mathbb{R}$;

(ii) f_x is continuous and bounded.

Then, for every $\varphi \in BV(\Omega; \mathbb{R})$, the map

$$t\mapsto f(t,\varphi)\in BV(\Omega;\mathbb{R})$$

is continuous.

Proof. It suffices to establish continuity at t = 0. Set $F(t) = f(t, \varphi)$. For every t, we have $F(t) \in BV(\Omega; \mathbb{R})$. Let C > 0 be such that $|f_x(t, x)| \leq C, \forall t, \forall x$.

Since

$$|f(t,x)| \le |f(t,0)| + C|x|,$$

we find that $F(t) \to F(0)$ in $L^1(\Omega)$ as $t \to 0$. Therefore, it suffices to prove that $DF(t) \to DF(0)$ in $\mathcal{M}(\Omega)$. By the chain rule, we have

$$DF(t) = f_x(t,\varphi(x))(D\varphi)_d + \frac{f(t,\varphi^+) - f(t,\varphi^-)}{\varphi^+ - \varphi^-}(D\varphi)_J.$$

Thus, $|DF(t)| \leq C|D\varphi|, \forall t$. On the other hand, $f_x(t,\varphi(x)) \to f_x(0,\varphi(x))$ a.e. with respect to $(D\varphi)_d$. Moreover,

$$\frac{f(t,\varphi^+) - f(t,\varphi^-)}{\varphi^+ - \varphi^-} \to \frac{f(0,\varphi^+) - f(0,\varphi^-)}{\varphi^+ - \varphi^-}$$

a.e. with respect to $(D\varphi)_J$. Therefore,

$$|D\varphi(t) - D\varphi(0)|_{\mathcal{M}} \to 0 \text{ as } t \to 0,$$

by dominated convergence.

There is however an interesting concept of multivalued degree which associates to every $g \in BV(S^1; S^1)$ a bounded subset of \mathbb{Z} . The starting point is the following **Definition 1.** Let $g \in BV(I; S^1)$, where I is an interval. A canonical lifting of g is any map $\varphi \in BV(I; \mathbb{R})$ such that

$$g = e^{i\varphi}$$
 and $E(g) = |D\varphi|_{\mathcal{M}(I)}$.

The structure of canonical liftings is quite rigid. In fact, the following holds : **Theorem 14.** If φ_1 and φ_2 are two canonical liftings of the same map g, then

$$\dot{\varphi}_1 - \dot{\varphi}_2 = \pi \sum_{\text{finite}} \pm \delta_{a_i}.$$

Moreover, if $g \in BV \cap C^0$, then the canonical lifting is uniquely determined modulo 2π and coincides with a continuous lifting.

Using canonical liftings, we may define a multivalued degree for all maps in $BV(S^1; S^1)$:

Definition 2. Let $g \in BV(S^1; S^1)$. Assume g is continuous at $z \in S^1$. We let

$$\operatorname{Deg}_1 g = \left\{ \frac{\varphi(z-) - \varphi(z+)}{2\pi} ; \ \varphi \ is \ a \ canonical \ lifting \ of \ g \ in \ S^1 \backslash \{z\} \right\}.$$

Since, clearly, for each canonical lifting we have

$$\left|\frac{\varphi(z-)-\varphi(z+)}{2\pi}\right| \le \frac{1}{2\pi} \int_{S^1} |\dot{\varphi}|,$$

the set $\text{Deg}_1 g$ is bounded. It follows from the second part of Theorem 14 that $\text{Deg}_1 g = \{ \deg g \}$ if $g \in BV \cap C^0$. As another example, let

$$g(\theta) = \begin{cases} 1, & \text{if } 0 < \theta < \pi, \\ -1, & \text{if } \pi < \theta < 2\pi. \end{cases}$$

Then it is easy to see that $\operatorname{Deg}_1 g = \{-1, 0, 1\}.$

We collect below some properties of Deg_1 :

Theorem 15. Assume $g \in BV(S^1; S^1)$. Then,

- (a) $\text{Deg}_1 g$ is a finite set of successive integers ;
- (b) $\text{Deg}_1 g$ is independent of the choice of z.

Another possible definition of a multivalued degree is the following

Definition 3. Given $g \in BV(S^1; S^1)$, we set

$$\operatorname{Deg}_2 g = \left\{ d \; ; \; \exists \; (g_n) \subset C^{\infty}(S^1; S^1) \text{ such that } g_n \to g \text{ a.e., } \int |\dot{g}_n| \to \int |\dot{g}|, \; \deg g_n = d \right\}.$$

Actually, both definitions yield the same degree :

Theorem 16. We have

$$\operatorname{Deg} := \operatorname{Deg}_1 = \operatorname{Deg}_2$$

Moreover, the function $g \mapsto \text{Deg } g$ is continuous in the multivalued sense.

A final interesting property of Deg is that it is "almost always" single-valued :

Theorem 17. Let

$$\mathcal{U} = \Big\{ g \in BV(S^1; S^1) ; \text{ Deg } g \text{ is single-valued} \Big\}.$$

Then \mathcal{U} is a dense open subset of $BV(S^1; S^1)$.

We omit the proofs of Theorems 14-17 and we refer the reader to [BMP] for details.

5.2. Some analogs of Theorems 1, 3, and 5 for bounded domains in \mathbb{R}^2 .

Most of the above results admit counterparts in the case where the 2-d manifold Ω is replaced by a bounded, simply connected domain in \mathbb{R}^2 with smooth boundary. To illustrate this, we state the analogs of the main results ; namely, Theorems 1, 3 and 5.

Let $g \in W^{1,1}(\Omega; S^1)$ and consider the distribution

$$\langle T(g),\zeta\rangle = \int_{\Omega} (g\wedge\nabla g)\cdot\nabla^{\perp}\zeta, \quad \forall \ \zeta\in W^{1,\infty}_0(\Omega;S^1).$$

A natural (semi-) metric on $\overline{\Omega}$ is given by

$$d_{\Omega}(x,y) = \operatorname{Min}\left\{ |x-y|, \ d(x,\partial\Omega) + d(y,\partial\Omega) \right\}.$$

Note that, if $\zeta \in W_0^{1,\infty}(\Omega)$, then

$$|\zeta(x) - \zeta(y)| \le \|\nabla \zeta\|_{L^{\infty}} d_{\Omega}(x, y), \quad \forall \ x, y \in \overline{\Omega}.$$

We also set

$$L(g) = \frac{1}{2\pi} \max_{\substack{\zeta \in W_0^{\infty}(\Omega) \\ \|\nabla \zeta\|_{L^{\infty}} \le 1}} \langle T(g), \zeta \rangle.$$

We then have the following

Theorem 3'. There exist sequences $(P_i), (N_i)$ in $\overline{\Omega}$ such that $\sum_i d_{\Omega}(P_i, N_i) < \infty$ and

$$T(g) = 2\pi \sum_{i} \left(\delta_{P_i} - \delta_{N_i} \right) \quad in \ \left[W_0^{1,\infty}(\Omega) \right]^*.$$

Moreover,

$$L(g) = \operatorname{Inf} \sum_{i} d_{\Omega}(P_i, N_i),$$

where the infimum is taken over all possible representations of T(g).

With E(g) defined exactly as in (1.3), and $E_{\rm rel}(g)$ as in (1.4) (where Ω is replaced by $\overline{\Omega}$), we have

Theorem 1'. For every $g \in W^{1,1}(\Omega; S^1)$,

$$E(g) = E_{\rm rel}(g) = \int_{\Omega} |\nabla g| + 2\pi L(g).$$

Similarly, defining TV(g) as in (1.14) (with Ω replaced by $\overline{\Omega}$), we also have **Theorem 5'.** Let $g \in W^{1,1}(\Omega; S^1)$. Then

$$TV(g) < \infty \quad \iff \quad \operatorname{Det}(\nabla g) \in \mathcal{M}(\Omega) = \left[C_0(\overline{\Omega})\right]^*.$$

In this case, there exist a finite number of points $a_i \in \Omega$ and integers $d_i \in \mathbb{Z} \setminus \{0\}$ such that

Det
$$(\nabla g) = \pi \sum_{i=1}^{\kappa} d_i \delta_{a_i}$$
 in $\left[W_0^{1,\infty}(\Omega) \right]^*$

and

$$TV(g) = |\operatorname{Det}(\nabla g)|_{\mathcal{M}} = \pi \sum_{i=1}^{k} |d_i|.$$

Theorems 1', 3' and 5' are established in [BMP].

5.3. Extensions of Theorems 1, 2, and 3 to higher dimensions.

Let $G \subset \mathbb{R}^{N+1}$, $N \geq 2$, be a smooth bounded domain and $\Omega = \partial G$. Given $u \in W^{1,N-1}(\Omega; S^{N-1})$, we define the L^1 -vector field

$$D(u) = (D_1, \ldots, D_N),$$

where

$$D_j = \det(u_{x_1}, \dots, u_{x_{j-1}}, u, u_{x_{j+1}}, \dots, u_{x_N})$$

and det refers to the determinant of an $N \times N$ matrix (*u* is viewed as a vector in \mathbb{R}^N).

We then associate to the map u the distribution

$$T(u) = \operatorname{div} D(u) = N \operatorname{Det} (\nabla u).$$

 Set

$$L(u) = \frac{1}{\sigma_N} \max_{\|\nabla\zeta\|_{L^{\infty}} \le 1} \langle T(u), \zeta \rangle,$$

where $\sigma_N = |S^{N-1}|$. The relaxed energy is defined by

$$E_{\rm rel}(u) = \inf\left\{\liminf_{n \to \infty} \int_{\Omega} |\nabla u_n|^{N-1} \; ; \; u_n \in C^{\infty}(\Omega; S^{N-1}) \text{ and } u_n \to u \text{ a.e.}\right\},$$

where || denotes the Euclidean norm.

We then have the following analogs of Theorems 1-3:

Theorem 1''. For every $u \in W^{1,N-1}(\Omega; S^{N-1})$,

$$E_{\rm rel}(u) = \int_{\Omega} |\nabla u|^{N-1} + (N-1)^{\frac{N-1}{2}} \sigma_N L(u).$$

Theorem 2''. For every $u \in W^{1,N-1}(\Omega; S^{N-1})$,

$$\inf_{v \in C^{\infty}(\Omega; S^{N-1})} \int_{\Omega} |D(u) - D(v)| = \sigma_N L(u).$$

Theorem 3''. For every $u \in W^{1,N-1}(\Omega; S^{N-1})$, there exist sequences (P_i) , (N_i) in Ω such that $\sum_i |P_i - N_i| < \infty$ and

$$T(u) = \sigma_N \sum_i (\delta_{P_i} - \delta_{N_i}).$$

For the proofs, we refer to [BMP].

5.4. Extension of TV to higher dimensions and to fractional Sobolev spaces.

Let Ω and u be as in Section 5.3. Set, for $u \in W^{1,N-1}(\Omega; S^{N-1})$, (5.3)

$$TV(u) = \inf \left\{ \liminf_{n \to \infty} \int_{\Omega} |\det \nabla u_n| \; ; \; u_n \in C^{\infty}(\Omega; \mathbb{R}^N) \text{ and } u_n \to u \text{ in } W^{1,N-1} \right\}.$$

The analog of Theorem 5 becomes

Theorem 5''. Let $u \in W^{1,N-1}(\Omega; S^{N-1})$. Then,

$$TV(u) < \infty \quad \iff \quad \text{Det}(\nabla u) \quad is \ a \ measure$$

In this case, we have

$$\operatorname{Det}\left(\nabla u\right) = \frac{\sigma_N}{N} \sum_{\text{finite}} \left(\delta_{P_i} - \delta_{N_i}\right)$$

and

$$TV(u) = |\operatorname{Det}(\nabla u)|_{\mathcal{M}}.$$

Remark 14. In the definition (5.3), one cannot replace the strong convergence in $W^{1,N-1}$ by weak convergence when $N \geq 3$. Indeed, every $u \in W^{1,N-1}(\Omega; S^{N-1})$ is a weak limit in $W^{1,N-1}$ of a sequence $(u_n) \subset C^{\infty}(\Omega; S^{N-1})$, when $N \geq 3$. However, one can replace in (5.3) the strong convergence of u_n in $W^{1,N-1}$ by the weak convergence of u_n in $W^{1,N-1}$ and the equi-integrability of $|\nabla u_n|^{N-1}$ (see [BMP]).

We may even go one step further. Let N - 1 . In [BBM3] we have $defined the distribution Det <math>(\nabla u)$ for maps $u \in W^{(N-1)/p,p}(\Omega; S^{N-1})$. By analogy with the above definitions of TV, set

$$TV(u) = \inf\left\{\liminf_{n \to \infty} \int_{\Omega} |\det \nabla u_n| \; ; \; u_n \in C^{\infty}(\Omega; \mathbb{R}^N), \; u_n \to u \text{ in } W^{(N-1)/p,p} \right\}.$$

We have the following

Theorem 5'''. Let $N - 1 and <math>u \in W^{(N-1)/p,p}(\Omega; S^{N-1})$. Then,

 $TV(u) < \infty \iff \text{Det}(\nabla u)$ is a measure

and the conclusions of Theorem 5'' hold.

We refer to [BMP] for the proofs of Theorems 5" and 5".

Open Problem 6. Does the assertion of Theorem 5''' hold when p > N?

Another topic to explore is the following:

Open Direction 7. Very likely, all the results of Sections 3 and 4 extend to maps $g \in W^{1,1}(S^N; S^1)$, $N \ge 3$. For example, when N = 3, point singularities are replaced by curves; the analog of L(g) is the area of a minimal surface spanned by these curves and the analog of TV(g) is their total length. Some useful tools may be found in [ABO].

5.5. Extension of Theorem 3 to maps with values into a curve.

Let $G \subset \mathbb{R}^3$ be a smooth bounded domain with $\Omega = \partial G$ simply connected. Assume $\Gamma \subset \mathbb{R}^2$ is a smooth curve, with finitely many self-intersections. We then define

$$W^{1,1}(\Omega;\Gamma) = \Big\{ g \in W^{1,1}(\Omega;\mathbb{R}^2) ; \ g(x) \in \Gamma \text{ for a.e. } x \in \Omega \Big\}.$$

Given a map $g \in W^{1,1}(\Omega; \Gamma)$, we define the distribution T(g) exactly as in (1.8). We denote by A_1, \ldots, A_k the bounded connected components of $\mathbb{R}^2 \setminus \Gamma$. We then have (see [BMP]) :

Theorem 3''''. Given $g \in W^{1,1}(\Omega; \Gamma)$, there exist sequences $(P_{i,j})$, $(N_{i,j})$ in Ω , with $j = 1, \ldots, k$, such that $\sum_{i,j} |A_j| d(P_{i,j}, N_{i,j}) < \infty$ and

(5.4)
$$T(g) = 2\sum_{j=1}^{k} |A_j| \sum_{i} (\delta_{P_{i,j}} - \delta_{N_{i,j}}).$$

There are many open directions here :

1) Does Theorem 3'''' remain valid for any smooth (or even rectifiable) curve, without assuming that the number of self-intersections of Γ is finite ?

2) What are the counterparts of Theorems 1, 2, and 5 in this general setting ?

Acknowledgements: We are grateful to M. Giaquinta for useful discussions concerning the concept of relaxed energy in the context of Cartesian currents. We also thank R. Ignat for interesting comments about *BV*-functions. The first author (H.B.) is partially sponsored by an EC Grant through the RTN Program "Front-Singularities", HPRN-CT-2002-00274. He is also a member of the Institut Universitaire de France. Part of this work was done during a visit of the second author (P.M.) at Rutgers University ; he thanks the Mathematics Department for its support and hospitality. The third author (A.C.P.) is partially supported by CAPES, Brazil, under grant no. BEX1187/99-6.

References

- [ABO] G. Alberti, S. Baldo and G. Orlandi, Functions with prescribed singularities, J. Eur. Math. Soc. 5 (2003), 275–311.
- [AFP] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford University Press, New York, 2000.
- [B1] F. Bethuel, A characterization of maps in $H^1(B^3, S^2)$ which can be approximated by smooth maps, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 7 (1990), 269–286.
- [B2] _____, The approximation problem for Sobolev maps between two manifolds, Acta Math. 167 (1991), 153–206.

- [BBC] F. Bethuel, H. Brezis and J.-M. Coron, *Relaxed energies for harmonic maps* in Variational Methods (H. Berestycki, J.-M. Coron and I. Ekeland, eds.), Birkhäuser, 1990, pp. 37–52.
- [BZ] F. Bethuel and X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal. 80 (1988), 60–75.
- [BBM1] J. Bourgain, H. Brezis and P. Mironescu, Lifting in Sobolev spaces, J. Anal. Math. 80 (2000), 37–86.
- $[BBM2] \quad \underline{\qquad}, \ H^{1/2} \ maps \ with \ values \ into \ the \ circle : \ minimal \ connections, \ lifting, \ and \ the \ Ginzburg-Landau \ equation, \ to \ appear \ in \ Publ. \ Math. \ Inst. \ Hautes \ Études \ Sci.; \ part \ of \ the \ results \ were \ announced \ in \ a \ note \ by \ the \ same \ authors : \ On \ the \ structure \ of \ the \ Sobolev \ space \ H^{1/2} \ with \ values \ into \ the \ circle, \ C. \ R. \ Acad. \ Sci. \ Paris \ Sér. \ I \ Math. \ 310 \ (2000), \ 119-124.$
- [BBM3] _____, Lifting, degree and distributional Jacobian revisited, to appear.
- [BCL] H. Brezis, J.-M. Coron and E. Lieb, Harmonic maps with defects, Comm. Math. Phys. 107 (1986), 649–705.
- [BMP] H. Brezis, P. Mironescu and A.C. Ponce, Detailed proofs of some claims in the present paper. To be posted on the website http://www.ann.jussieu.fr/publications/2003.php3.
- [C] G. Carbou, Applications harmoniques à valeurs dans un cercle, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), 359–362.
- [DI] J. Dávila and R. Ignat, Lifting of BV functions with values in S^1 , C. R. Acad. Sci. Paris, Ser. I **337** (2003), 159–164.
- [D] F. Demengel, Une caractérisation des applications de $W^{1,p}(B^N; S^1)$ qui peuvent être approchées par des fonctions régulières, C. R. Acad. Sci. Paris Sér. I Math. **310** (1990), 553–557.
- [DH] F. Demengel and R. Hadiji, Relaxed energies for functionals on $W^{1,1}(B^2, S^1)$, Nonlinear Anal. **19** (1992), 625–641.
- [FFM] I. Fonseca, N. Fusco and P. Marcellini, On the Total Variation of the Jacobian, to appear in J. Funct. Anal.
- [GMS1] M. Giaquinta, G. Modica and J. Souček, Graphs of finite mass which cannot be approximated in area by smooth graphs, Manuscripta Math. 78 (1993), 259–271.
- [GMS2] _____, Cartesian Currents in the Calculus of Variations, vol. 2, Springer, 1998.
- [I] R. Ignat, Optimal lifting of $BV(S^1, S^1)$ functions, to appear.
- [M] J. Malý, L^p-approximation of Jacobians, Comment. Math. Univ. Carolinae **32** (1991), 659–666.
- [P] A.C. Ponce, On the distributions of the form $\sum_{i} (\delta_{p_i} \delta_{n_i})$, to appear in J. Funct. Anal.; part of the results were announced in a note by the same author : On the distributions of the form $\sum_{i} (\delta_{p_i} - \delta_{n_i})$, C. R. Acad. Sci. Paris Sér. I Math. **336** (2003), 571–576.
- [SU] R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom. 18 (1983), 253–268.
- [S] D. Smets, On some infinite sums of integer valued Dirac's masses, C. R. Acad. Sci. Paris, Ser. I 334 (2002), 371–374.
- [V] A.I. Vol'pert, Spaces BV and quasilinear equations (Russian), Mat. Sb. (N.S.) 73 (115) (1967), 255–302; English version : Math. Sb. USSR 2 (1967), 225–267.

(1) LABORATOIRE J. -L. LIONS
UNIVERSITÉ P. ET M. CURIE, B.C. 187
4 PL. JUSSIEU
75252 PARIS CEDEX 05

E-mail address: brezis@ccr.jussieu.fr, ponce@ann.jussieu.fr

⁽²⁾ RUTGERS UNIVERSITY
 DEPT. OF MATH., HILL CENTER, BUSCH CAMPUS
 110 FRELINGHUYSEN RD, PISCATAWAY, NJ 08854
 E-mail address: brezis@math.rutgers.edu, augponce@math.rutgers.edu

⁽³⁾ DÉPARTEMENT DE MATHÉMATIQUES
 UNIVERSITÉ PARIS-SUD
 91405 ORSAY
 E-mail address: Petru.Mironescu@math.u-psud.fr