Kato's inequality when Δu is a measure

L'inégalité de Kato lorsque Δu est une mesure

Haïm Brezis a,b, Augusto C. Ponce a,b,

^a Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, BC 187, 4 pl. Jussieu, 75252 Paris Cedex 05, France ^b Rutgers University, Dept. of Math., Hill Center, Busch Campus, 110 Frelinghuysen Rd, Piscataway, NJ 08854, USA

Abstract

We extend the classical Kato's inequality in order to allow functions $u \in L^1_{loc}$ such that Δu is a Radon measure. This inequality has been recently applied by Brezis, Marcus, and Ponce [5] to study the existence of solutions of the nonlinear equation $-\Delta u + g(u) = \mu$, where μ is a measure and $g : \mathbb{R} \to \mathbb{R}$ is an increasing continuous function. To cite this article: H. Brezis, A.C. Ponce, C. R. Acad. Sci. Paris, Ser. I XXX (2004).

Résumé

Nous étendons l'inégalité de Kato classique à des fonctions $u \in L^1_{loc}$ telles que Δu est une mesure de Radon. Cette inégalité a été récemment utilisée par Brezis, Marcus et Ponce [5] pour étudier l'existence des solutions de l'équation elliptique non linéaire $-\Delta u + g(u) = \mu$, où μ est une mesure et $g: \mathbb{R} \to \mathbb{R}$ est une fonction croissante et continue. Pour citer cet article : H. Brezis, A.C. Ponce, C. R. Acad. Sci. Paris, Ser. I XXX (2004).

Version française abrégée

Soient $N \geq 1$ et $\Omega \subset \mathbb{R}^N$ un ouvert borné quelconque. Selon l'inégalité de Kato classique (voir [8]), étant donné $u \in L^1_{loc}(\Omega)$ tel que $\Delta u \in L^1_{loc}(\Omega)$, alors Δu^+ est une mesure de Radon et, de plus,

$$\Delta u^+ \ge \chi_{[u>0]} \Delta u \quad \text{dans } \mathcal{D}'(\Omega).$$
 (1)

Nous étendons (1) à des fonctions $u \in L^1_{loc}(\Omega)$ telles que $\Delta u \in \mathcal{M}(\Omega)$, où $\mathcal{M}(\Omega)$ désigne l'espace des mesures de Radon définies sur Ω .

Rappelons que toute mesure $\mu \in \mathcal{M}(\Omega)$ peut être décomposée de façon unique comme une somme de deux mesures de Radon sur Ω (voir e.g. [7]) : $\mu = \mu_d + \mu_c$, avec

 $\mu_{\rm d}(A)=0$ pour tout borélien $A\subset\Omega$ tel que cap (A)=0, $|\mu_{\rm c}|(\Omega\backslash F)=0$ pour un ensemble $F\subset\Omega$ fixé tel que cap (F)=0,

Preprint submitted to Elsevier Science

27 mars 2006

où cap dénote la capacité newtonienne $(W^{1,2})$. Les mesures μ_d et μ_c sont mutuellement singulières; en particulier, $(\mu_d)^+ = (\mu^+)_d$ et $(\mu_c)^+ = (\mu^+)_c$.

Notre théorème principal est le suivant :

Théorème 0.1 Soit $u \in L^1_{loc}(\Omega)$ tel que $\Delta u \in \mathcal{M}(\Omega)$. Alors, $\Delta u^+ \in \mathcal{M}(\Omega)$ et, de plus,

$$(\Delta u^{+})_{d} \ge \chi_{[u>0]}(\Delta u)_{d} \quad sur \ \Omega, \tag{2}$$

$$(-\Delta u^{+})_{c} = (-\Delta u)_{c}^{+} \qquad sur \ \Omega. \tag{3}$$

Le membre de droite dans (2) est bien défini, car la fonction u est quasicontinue (voir [1], voir aussi [4, Lemme 1]).

1. Introduction and main result

Let $N \ge 1$ and $\Omega \subset \mathbb{R}^N$ be a bounded open subset. The classical Kato's inequality (see [8]) states that given any function $u \in L^1_{loc}(\Omega)$ such that $\Delta u \in L^1_{loc}(\Omega)$, then Δu^+ is a Radon measure and the following holds:

$$\Delta u^{+} \ge \chi_{[u>0]} \Delta u \quad \text{in } \mathcal{D}'(\Omega). \tag{4}$$

Our main result in this paper (see Theorem 1.1 below) extends (4) to the case $\Delta u \in \mathcal{M}(\Omega)$, where $\mathcal{M}(\Omega)$ denotes the space of Radon measures on Ω . In other words, $\mu \in \mathcal{M}(\Omega)$ if and only if, for every $\omega \subset\subset \Omega$, there exists $C_{\omega} > 0$ such that $|\int_{\Omega} \varphi \, d\mu| \leq C_{\omega} ||\varphi||_{\infty}$, $\forall \varphi \in C_0^{\infty}(\omega)$.

We first recall that any $\mu \in \mathcal{M}(\Omega)$ can be uniquely decomposed as a sum of two Radon measures on Ω (see e.g. [7]): $\mu = \mu_d + \mu_c$, where

 $\mu_{\rm d}(A) = 0$ for any Borel measurable set $A \subset \Omega$ such that cap (A) = 0,

 $|\mu_c|(\Omega \backslash F) = 0$ for some Borel measurable set $F \subset \Omega$ such that cap (F) = 0.

Here, cap denotes the Newtonian $(W^{1,2})$ capacity of a set. We observe that μ_d and μ_c are singular with respect to each other. This decomposition is the analog of the classical Radon-Nikodym Theorem, but with respect to cap. Clearly, $(\mu_d)^+ = (\mu^+)_d$ and $(\mu_c)^+ = (\mu^+)_c$.

Using the above notation, we can now state our main result:

Theorem 1.1 Let $u \in L^1_{loc}(\Omega)$ be such that $\Delta u \in \mathcal{M}(\Omega)$. Then, $\Delta u^+ \in \mathcal{M}(\Omega)$, and the following holds:

$$(\Delta u^{+})_{d} \ge \chi_{[u \ge 0]}(\Delta u)_{d} \quad on \ \Omega, \tag{5}$$

$$(-\Delta u^{+})_{c} = (-\Delta u)_{c}^{+} \qquad on \ \Omega. \tag{6}$$

Note that the right-hand side of (5) is well-defined because u is quasicontinuous. More precisely, if $u \in L^1_{loc}(\Omega)$ and $\Delta u \in \mathcal{M}(\Omega)$, then there exists $\tilde{u}: \Omega \to \mathbb{R}$ quasicontinuous such that $u = \tilde{u}$ a.e. in Ω (see [1] and also [4, Lemma 1]). In (5), we then identify u with its quasicontinuous representative. It is easy to see that $\chi_{[u>0]}$ is locally integrable in Ω with respect to the measure $|(\Delta u)_{\mathbf{d}}|$.

The proof of (5) requires a theorem of Boccardo, Gallouët, and Orsina [2], which says that a Radon measure μ is diffuse (i.e. $\mu_c = 0$) if and only if $\mu \in L^1_{loc}(\Omega) + \Delta[H^1_{loc}(\Omega)]$. Identity (6) relies on (and in fact is equivalent to) the "inverse" maximum principle, recently established by Dupaigne and Ponce [6] (see Theorem 3.1 below).

An equivalent statement of Theorem 1.1 is the following:

Corollary 1.2 Let $u \in L^1_{loc}(\Omega)$ be such that $\Delta u \in \mathcal{M}(\Omega)$. Then, $\Delta |u| \in \mathcal{M}(\Omega)$, and the following holds:

$$(\Delta|u|)_{\rm d} \ge \operatorname{sgn}(u) (\Delta u)_{\rm d} \quad on \ \Omega,$$
 (7)

$$(\Delta |u|)_{c} = -|\Delta u|_{c} \qquad on \ \Omega. \tag{8}$$

Here, sgn(t) = 1 for t > 0, sgn(t) = -1 for t < 0, and sgn(0) = 0.

Remark 1 A slight modification of the proof of Theorem 1.1 shows that

$$(\Delta u^{+})_{d} \ge \chi_{[u>0]}(\Delta u)_{d} \quad on \ \Omega. \tag{9}$$

In other words, we can replace the set $[u \ge 0]$ in (5) by [u > 0] and still get the same result.

Here is a simple consequence of (9):

Corollary 1.3 Let $u \in L^1_{loc}(\Omega)$ be such that $\Delta u \in \mathcal{M}(\Omega)$. If $u \geq 0$ a.e. in Ω , then

$$(\Delta u)_{\rm d} \ge 0$$
 on the set $[u=0]$. (10)

2. Proof of (5) in Theorem 1.1

We start with the following:

Lemma 2.1 Assume $\mu \in \mathcal{M}(\Omega)$ is a diffuse measure with respect to cap (i.e. $\mu_c = 0$ on Ω). Let (v_n) be a sequence in $L^{\infty}(\Omega) \cap H^1(\Omega)$ such that $||v_n||_{\infty} \leq C$ and $v_n \rightharpoonup v$ in H^1 . Then,

$$v_n \to v \quad in \ L^1_{loc}(\Omega; d\mu).$$
 (11)

Equivalently, there exists a subsequence (v_{n_k}) converging to $v \mid \mu \mid$ -a.e. in Ω .

Proof. Without loss of generality, we may assume that $|\mu|(\Omega) < \infty$. By Theorem 2.1 of Boccardo, Gallouët, and Orsina [2], we know that $\mu = f - \Delta g$ in $\mathcal{D}'(\Omega)$, for some $f \in L^1(\Omega)$ and $g \in H^1(\Omega)$. Using a standard density argument, we conclude that

$$\int_{\Omega} w\varphi \, d\mu = \int_{\Omega} w\varphi f + \int_{\Omega} \nabla g \cdot \nabla(w\varphi), \quad \forall \varphi \in C_0^{\infty}(\Omega), \quad \forall w \in L^{\infty} \cap H^1.$$
(12)

By assumption, the sequence $(|v_n - v|)$ is bounded in $H^1(\Omega)$ and, by Rellich's theorem, $|v_n - v| \to 0$ in $L^2(\Omega)$. Thus,

$$|v_n - v| \to 0 \quad \text{in } H^1. \tag{13}$$

Given $\varepsilon > 0$, let $\omega \subset\subset \Omega$ be such that $|\mu|(\Omega \setminus \omega) < \varepsilon$. We then fix $\varphi_0 \in C_0^{\infty}(\Omega)$ so that $0 \leq \varphi_0 \leq 1$ in Ω and $\varphi_0 = 1$ on ω . Applying (12) with $w = |v_n - v|$ and $\varphi = \varphi_0$, we have

$$\int_{\Omega} |v_n - v| \, d\mu \le \int_{\omega} |v_n - v| \, d\mu + 2C|\mu|(\Omega \setminus \omega)$$

$$\le \int_{\Omega} |v_n - v| \varphi_0 \, d\mu + 2C\varepsilon = \int_{\Omega} |v_n - v| \varphi_0 f + \int_{\Omega} \nabla g \cdot \nabla (|v_n - v| \varphi_0) + 2C\varepsilon.$$

By (13), we know that $\int_{\Omega} \nabla g \cdot \nabla (|v_n - v|\varphi_0) \to 0$ as $n \to \infty$. Since (v_n) is bounded in L^{∞} and $v_n \to v$ in L^2 , we have $v_n \to v$ with respect to the weak* topology of L^{∞} ; thus, $\int_{\Omega} |v_n - v|\varphi_0 f \to 0$. We conclude that $\limsup_{n \to \infty} \int_{\Omega} |v_n - v| \, d\mu \leq 2C\varepsilon$. Taking $\varepsilon > 0$ arbitrarily small, (11) follows.

Given k > 0, we denote by $T_k : \mathbb{R} \to \mathbb{R}$ the truncation operator, i.e. $T_k(s) = s$ if $s \in [-k, k]$ and $T_k(s) = \operatorname{sgn}(s) k$ if |s| > k. Recall the following standard inequality (see e.g. [4, Lemma 1]):

Lemma 2.2 Assume $u \in L^1_{loc}(\Omega)$ and $\Delta u \in \mathcal{M}(\Omega)$. Then, $T_k(u) \in H^1_{loc}(\Omega)$, $\forall k > 0$; moreover, given $\omega \subset\subset \omega' \subset\subset \Omega$, there exists C > 0 such that

$$\int_{\omega} |\nabla T_k(u)|^2 \le k \left(\int_{\omega'} |\Delta u| + C \int_{\omega'} |u| \right). \tag{14}$$

Another ingredient to prove (5) is our next result, which extends Lemma 2 in [3]:

Proposition 2.1 Let $\Phi : \mathbb{R} \to \mathbb{R}$ be a C^1 -convex function such that $0 \le \Phi' \le 1$ on \mathbb{R} . If $u \in L^1_{loc}(\Omega)$ and $\Delta u \in \mathcal{M}(\Omega)$, then

$$\Delta\Phi(u) \ge \Phi'(u)(\Delta u)_{\rm d} - (\Delta u)_{\rm c}^{-} \quad \text{in } \mathcal{D}'(\Omega). \tag{15}$$

Proof. Without loss of generality, we shall assume that $\Phi \in C^2$ and Φ'' has compact support in \mathbb{R} . The general case can be easily deduced by approximation (note that since Φ is convex and Φ' is uniformly bounded, both limits $\Phi'(\pm \infty)$ exist and are finite). We may also assume that $u \in L^1(\Omega)$ and $\int_{\Omega} |\Delta u| < \infty$. For every $x \in \Omega$, define $u_n(x) = \rho_n * u(x) = \int_{\Omega} \rho_n(x-y)u(y) \, dy$, where ρ_n is a family of radial mollifiers such that supp $\rho_n \subset B_{1/n}$. Since $\Phi'' \geq 0$ in \mathbb{R} , we have

$$\Delta\Phi(u_n) = \Phi'(u_n)\Delta u_n + \Phi''(u_n)|\nabla u_n|^2 \ge \Phi'(u_n)\Delta u_n \quad \text{in } \Omega.$$

Let $\varphi \in C_0^{\infty}(\Omega)$ with $\varphi \geq 0$. We multiply both sides of the inequality above by φ and integrate by parts. For every $n \geq 1$ such that $d(\operatorname{supp} \varphi, \partial\Omega) > 1/n$, we have

$$\int_{\Omega} \Phi(u_n) \Delta \varphi \ge \int_{\Omega} \Phi'(u_n) \varphi \, \Delta u_n$$

$$= \int_{\Omega} \left\{ \rho_n * \left[\Phi'(u_n) \varphi \right] \right\} \Delta u \ge \int_{\Omega} \left\{ \rho_n * \left[\Phi'(u_n) \varphi \right] \right\} (\Delta u)_{d} - \int_{\Omega} (\rho_n * \varphi) (\Delta u)_{c}^{-}.$$

Clearly,

$$\int_{\Omega} \Phi(u_n) \Delta \varphi \to \int_{\Omega} \Phi(u) \Delta \varphi \quad \text{and} \quad \int_{\Omega} (\rho_n * \varphi) (\Delta u)_{\mathbf{c}}^- \to \int_{\Omega} \varphi (\Delta u)_{\mathbf{c}}^-.$$
 (16)

We now establish the following:

Claim. $\rho_n * [\Phi'(u_n)\varphi] \rightharpoonup \Phi'(u)\varphi$ in $H^1(\Omega)$.

In fact, since $\rho_n * [\Phi'(u_n)\varphi] \to \Phi'(u)\varphi$ in, say, $L^1(\Omega)$ and since φ has compact support in Ω , it suffices to show that $(\Phi'(u_n))$ is bounded in $H^1_{loc}(\Omega)$. Let M > 0 be such that supp $\Phi'' \subset [-M, M]$. Then,

$$\nabla \Phi'(u_n) = \Phi''(u_n) \nabla u_n = \Phi''(u_n) \nabla T_M(u_n)$$
 in Ω .

Let $\omega \subset\subset \omega'\subset\subset\Omega$. For $n\geq 1$ sufficiently large, it follows from (14) that

$$\int_{\omega} \left| \nabla \Phi'(u_n) \right|^2 \le \|\Phi''\|_{\infty} \int_{\omega} \left| \nabla T_M(u_n) \right|^2 \le CM \left(\int_{\omega'} |u_n| + \int_{\omega'} |\Delta u_n| \right) \le CM \left(\int_{\Omega} |u| + \int_{\Omega} |\Delta u| \right),$$

for some constant C > 0 independent of n.

In view of the previous claim, we can now apply Lemma 2.1 above with $v_n = \rho_n * [\Phi'(u_n)\varphi]$ and $\mu = (\Delta u)_d$ to conclude that

$$\int_{\Omega} \left\{ \rho_n * \left[\Phi'(u_n) \varphi \right] \right\} (\Delta u)_{\mathrm{d}} \to \int_{\Omega} \Phi'(u) \varphi (\Delta u)_{\mathrm{d}}. \tag{17}$$

Combining (16) and (17) yields

$$\int\limits_{\Omega} \Phi(u)\Delta\varphi \geq \int\limits_{\Omega} \Phi'(u)\varphi\left(\Delta u\right)_{\rm d} - \int\limits_{\Omega} \varphi\left(\Delta u\right)_{\rm c}^{-}, \quad \forall \varphi \in C_0^{\infty}(\Omega) \text{ with } \varphi \geq 0 \text{ in } \Omega,$$

which is precisely (15).

Proof of (5). Let (Φ_n) be a sequence of smooth convex functions in \mathbb{R} such that $\Phi_n(t) = t$ if $t \geq 0$ and $|\Phi_n(t)| \leq 1/n$ if t < 0. In particular, $0 \leq \Phi' \leq 1$ in \mathbb{R} . It follows from the previous proposition that

$$\Delta \Phi_n(u) \ge \Phi'_n(u)(\Delta u)_{\rm d} - (\Delta u)_{\rm c}^- \quad \text{in } \mathcal{D}(\Omega).$$

As $n \to \infty$, we get

$$\Delta u^{+} \ge \chi_{[u>0]}(\Delta u)_{d} - (\Delta u)_{c}^{-} \quad \text{in } \mathcal{D}(\Omega). \tag{18}$$

In particular, $\Delta u^+ \in \mathcal{M}(\Omega)$. Taking the diffuse part from both sides of (18), we conclude that (5) holds.

3. Proof of (6) in Theorem 1.1

Identity (6) relies on the following:

Theorem 3.1 ("Inverse" maximum principle [6]) Let $u \in L^1_{loc}(\Omega)$ be such that $\Delta u \in \mathcal{M}(\Omega)$. If $u \geq 0$ a.e. in Ω , then

$$(-\Delta u)_{c} \ge 0 \quad on \ \Omega. \tag{19}$$

To complete the proof of Theorem 1.1, we now present:

Proof of (6). From the proof of (5), we already know that Δu^+ is a Radon measure on Ω . Applying the "inverse" maximum principle to u^+ , we have $(-\Delta u^+)_c \geq 0$ on Ω . Since $u^+ - u \geq 0$ a.e. in Ω , it also follows from Theorem 3.1 above that $(-\Delta u^+)_c \geq (-\Delta u)_c$ on Ω . Thus,

$$(-\Delta u^+)_c \ge (-\Delta u)_c^+$$
 on Ω ,

which gives the "\ge " in (6). The reverse inequality just follows by taking the concentrated part from both sides of (18). In fact,

$$(-\Delta u^+)_c \le (\Delta u)_c^- = (-\Delta u)_c^+$$
 on Ω .

Acknowledgements

The first author (H.B.) is partially sponsored by an EC Grant through the RTN Program "Front-Singularities", HPRN-CT-2002-00274. He is also a member of the Institut Universitaire de France. The second author (A.C.P.) is partially supported by CAPES, Brazil, under grant no. BEX1187/99-6.

References

- [1] A. Ancona, Une propriété d'invariance des ensembles absorbants par perturbation d'un opérateur elliptique, Comm. Partial Differential Equations 4 (1979), 321–337.
- [2] L. Boccardo, T. Gallouët, L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 539–551.
- [3] H. Brezis, T. Cazenave, Y. Martel, A. Ramiandrisoa, Blow up for $u_t \Delta u = g(u)$ revisited, Adv. Differential Equations 1 (1996), 73–90.
- [4] H. Brezis, A.C. Ponce, Remarks on the strong maximum principle, Differential Integral Equations 16 (2003), 1–12.
- [5] H. Brezis, M. Marcus, A.C. Ponce, Nonlinear elliptic equations with measures revisited, in preparation.
- [6] L. Dupaigne, A.C. Ponce, Singularities of positive supersolutions in elliptic PDEs, to appear in Selecta Math. (N.S.).
- [7] M. Fukushima, K. Sato, S. Taniguchi, On the closable part of pre-Dirichlet forms and the fine supports of underlying measures, Osaka Math. J. 28 (1991), 517–535.
- $[8] \ T. \ Kato, Schrödinger \ operators \ with \ singular \ potentials, \ Israel \ J. \ Math. \ 13 \ (1972), \ 135-148 \ (1973).$