Kato's inequality when Δu is a measure

L'inégalité de Kato lorsque Δu est une mesure

Haïm Brezis ${ }^{\mathrm{a}, \mathrm{b}}$, Augusto C. Ponce ${ }^{\mathrm{a}, \mathrm{b}}$,
${ }^{\text {a }}$ Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, BC 187, 4 pl. Jussieu, 75252 Paris Cedex 05, France
${ }^{\mathrm{b}}$ Rutgers University, Dept. of Math., Hill Center, Busch Campus, 110 Frelinghuysen Rd, Piscataway, NJ 08854, USA

Abstract

We extend the classical Kato's inequality in order to allow functions $u \in L_{\text {loc }}^{1}$ such that Δu is a Radon measure. This inequality has been recently applied by Brezis, Marcus, and Ponce [5] to study the existence of solutions of the nonlinear equation $-\Delta u+g(u)=\mu$, where μ is a measure and $g: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing continuous function. To cite this article: H. Brezis, A.C. Ponce, C. R. Acad. Sci. Paris, Ser. I XXX (2004).

Résumé

Nous étendons l'inégalité de Kato classique à des fonctions $u \in L_{\text {loc }}^{1}$ telles que Δu est une mesure de Radon. Cette inégalité a été récemment utilisée par Brezis, Marcus et Ponce [5] pour étudier l'existence des solutions de l'équation elliptique non linéaire $-\Delta u+g(u)=\mu$, où μ est une mesure et $g: \mathbb{R} \rightarrow \mathbb{R}$ est une fonction croissante et continue. Pour citer cet article : H. Brezis, A.C. Ponce, C. R. Acad. Sci. Paris, Ser. I XXX (2004).

Version française abrégée

Soient $N \geq 1$ et $\Omega \subset \mathbb{R}^{N}$ un ouvert borné quelconque. Selon l'inégalité de Kato classique (voir [8]), étant donné $u \in L_{\mathrm{loc}}^{1}(\Omega)$ tel que $\Delta u \in L_{\mathrm{loc}}^{1}(\Omega)$, alors Δu^{+}est une mesure de Radon et, de plus,

$$
\begin{equation*}
\Delta u^{+} \geq \chi_{[u \geq 0]} \Delta u \quad \text { dans } \mathcal{D}^{\prime}(\Omega) \tag{1}
\end{equation*}
$$

Nous étendons (1) à des fonctions $u \in L_{\text {loc }}^{1}(\Omega)$ telles que $\Delta u \in \mathcal{M}(\Omega)$, où $\mathcal{M}(\Omega)$ désigne l'espace des mesures de Radon définies sur Ω.
Rappelons que toute mesure $\mu \in \mathcal{M}(\Omega)$ peut être décomposée de façon unique comme une somme de deux mesures de Radon sur Ω (voir e.g. [7]) : $\mu=\mu_{\mathrm{d}}+\mu_{\mathrm{c}}$, avec

$$
\begin{aligned}
& \mu_{\mathrm{d}}(A)=0 \text { pour tout borélien } A \subset \Omega \text { tel que } \operatorname{cap}(A)=0, \\
& \left|\mu_{\mathrm{c}}\right|(\Omega \backslash F)=0 \quad \text { pour un ensemble } F \subset \Omega \text { fixé tel que } \operatorname{cap}(F)=0 \text {, }
\end{aligned}
$$

où cap dénote la capacité newtonienne $\left(W^{1,2}\right)$. Les mesures μ_{d} et μ_{c} sont mutuellement singulières; en particulier, $\left(\mu_{\mathrm{d}}\right)^{+}=\left(\mu^{+}\right)_{\mathrm{d}}$ et $\left(\mu_{\mathrm{c}}\right)^{+}=\left(\mu^{+}\right)_{\mathrm{c}}$.

Notre théorème principal est le suivant:
Théorème 0.1 Soit $u \in L_{\mathrm{loc}}^{1}(\Omega)$ tel que $\Delta u \in \mathcal{M}(\Omega)$. Alors, $\Delta u^{+} \in \mathcal{M}(\Omega)$ et, de plus,

$$
\begin{align*}
\left(\Delta u^{+}\right)_{\mathrm{d}} & \geq \chi_{[u \geq 0]}(\Delta u)_{\mathrm{d}} & & \text { sur } \Omega \tag{2}\\
\left(-\Delta u^{+}\right)_{\mathrm{c}} & =(-\Delta u)_{\mathrm{c}}^{+} & & \text {sur } \Omega . \tag{3}
\end{align*}
$$

Le membre de droite dans (2) est bien défini, car la fonction u est quasicontinue (voir [1], voir aussi [4, Lemme 1]).

1. Introduction and main result

Let $N \geq 1$ and $\Omega \subset \mathbb{R}^{N}$ be a bounded open subset. The classical Kato's inequality (see [8]) states that given any function $u \in L_{\mathrm{loc}}^{1}(\Omega)$ such that $\Delta u \in L_{\mathrm{loc}}^{1}(\Omega)$, then Δu^{+}is a Radon measure and the following holds:

$$
\begin{equation*}
\Delta u^{+} \geq \chi_{[u \geq 0]} \Delta u \quad \text { in } \mathcal{D}^{\prime}(\Omega) \tag{4}
\end{equation*}
$$

Our main result in this paper (see Theorem 1.1 below) extends (4) to the case $\Delta u \in \mathcal{M}(\Omega)$, where $\mathcal{M}(\Omega)$ denotes the space of Radon measures on Ω. In other words, $\mu \in \mathcal{M}(\Omega)$ if and only if, for every $\omega \subset \subset \Omega$, there exists $C_{\omega}>0$ such that $\left|\int_{\Omega} \varphi d \mu\right| \leq C_{\omega}\|\varphi\|_{\infty}, \forall \varphi \in C_{0}^{\infty}(\omega)$.

We first recall that any $\mu \in \mathcal{M}(\Omega)$ can be uniquely decomposed as a sum of two Radon measures on Ω (see e.g. [7]): $\mu=\mu_{\mathrm{d}}+\mu_{\mathrm{c}}$, where

$$
\begin{aligned}
& \mu_{\mathrm{d}}(A)=0 \\
& \text { for any Borel measurable set } A \subset \Omega \text { such that } \operatorname{cap}(A)=0 \\
&\left|\mu_{\mathrm{c}}\right|(\Omega \backslash F)=0
\end{aligned} \text { for some Borel measurable set } F \subset \Omega \operatorname{such} \text { that } \operatorname{cap}(F)=0 . ~ \$
$$

Here, cap denotes the Newtonian $\left(W^{1,2}\right)$ capacity of a set. We observe that μ_{d} and μ_{c} are singular with respect to each other. This decomposition is the analog of the classical Radon-Nikodym Theorem, but with respect to cap. Clearly, $\left(\mu_{\mathrm{d}}\right)^{+}=\left(\mu^{+}\right)_{\mathrm{d}}$ and $\left(\mu_{\mathrm{c}}\right)^{+}=\left(\mu^{+}\right)_{\mathrm{c}}$.

Using the above notation, we can now state our main result:
Theorem 1.1 Let $u \in L_{\text {loc }}^{1}(\Omega)$ be such that $\Delta u \in \mathcal{M}(\Omega)$. Then, $\Delta u^{+} \in \mathcal{M}(\Omega)$, and the following holds:

$$
\begin{align*}
\left(\Delta u^{+}\right)_{\mathrm{d}} & \geq \chi_{[u \geq 0]}(\Delta u)_{\mathrm{d}} & & \text { on } \Omega \tag{5}\\
\left(-\Delta u^{+}\right)_{\mathrm{c}} & =(-\Delta u)_{\mathrm{c}}^{+} & & \text {on } \Omega . \tag{6}
\end{align*}
$$

Note that the right-hand side of (5) is well-defined because u is quasicontinuous. More precisely, if $u \in L_{\text {loc }}^{1}(\Omega)$ and $\Delta u \in \mathcal{M}(\Omega)$, then there exists $\tilde{u}: \Omega \rightarrow \mathbb{R}$ quasicontinuous such that $u=\tilde{u}$ a.e. in Ω (see [1] and also [4, Lemma 1]). In (5), we then identify u with its quasicontinuous representative. It is easy to see that $\chi_{[u \geq 0]}$ is locally integrable in Ω with respect to the measure $\left|(\Delta u)_{\mathrm{d}}\right|$.

The proof of (5) requires a theorem of Boccardo, Gallouët, and Orsina [2], which says that a Radon measure μ is diffuse (i.e. $\mu_{\mathrm{c}}=0$) if and only if $\mu \in L_{\mathrm{loc}}^{1}(\Omega)+\Delta\left[H_{\mathrm{loc}}^{1}(\Omega)\right]$. Identity (6) relies on (and in fact is equivalent to) the "inverse" maximum principle, recently established by Dupaigne and Ponce [6] (see Theorem 3.1 below).

An equivalent statement of Theorem 1.1 is the following:

Corollary 1.2 Let $u \in L_{\mathrm{loc}}^{1}(\Omega)$ be such that $\Delta u \in \mathcal{M}(\Omega)$. Then, $\Delta|u| \in \mathcal{M}(\Omega)$, and the following holds:

$$
\begin{array}{ll}
(\Delta|u|)_{\mathrm{d}} \geq \operatorname{sgn}(u)(\Delta u)_{\mathrm{d}} & \\
\text { on } \Omega, \tag{8}\\
(\Delta|u|)_{\mathrm{c}}=-|\Delta u|_{\mathrm{c}} & \\
\text { on } \Omega .
\end{array}
$$

Here, $\operatorname{sgn}(t)=1$ for $t>0, \operatorname{sgn}(t)=-1$ for $t<0$, and $\operatorname{sgn}(0)=0$.
Remark 1 A slight modification of the proof of Theorem 1.1 shows that

$$
\begin{equation*}
\left(\Delta u^{+}\right)_{\mathrm{d}} \geq \chi_{[u>0]}(\Delta u)_{\mathrm{d}} \quad \text { on } \Omega . \tag{9}
\end{equation*}
$$

In other words, we can replace the set $[u \geq 0]$ in (5) by $[u>0]$ and still get the same result.
Here is a simple consequence of (9):
Corollary 1.3 Let $u \in L_{\text {loc }}^{1}(\Omega)$ be such that $\Delta u \in \mathcal{M}(\Omega)$. If $u \geq 0$ a.e. in Ω, then

$$
\begin{equation*}
(\Delta u)_{\mathrm{d}} \geq 0 \quad \text { on the set }[u=0] \text {. } \tag{10}
\end{equation*}
$$

2. Proof of (5) in Theorem 1.1

We start with the following:
Lemma 2.1 Assume $\mu \in \mathcal{M}(\Omega)$ is a diffuse measure with respect to cap (i.e. $\mu_{\mathrm{c}}=0$ on Ω). Let (v_{n}) be a sequence in $L^{\infty}(\Omega) \cap H^{1}(\Omega)$ such that $\left\|v_{n}\right\|_{\infty} \leq C$ and $v_{n} \rightharpoonup v$ in H^{1}. Then,

$$
\begin{equation*}
v_{n} \rightarrow v \quad \text { in } L_{\mathrm{loc}}^{1}(\Omega ; d \mu) \tag{11}
\end{equation*}
$$

Equivalently, there exists a subsequence $\left(v_{n_{k}}\right)$ converging to $v|\mu|$-a.e. in Ω.
Proof. Without loss of generality, we may assume that $|\mu|(\Omega)<\infty$. By Theorem 2.1 of Boccardo, Gallouët, and Orsina [2], we know that $\mu=f-\Delta g$ in $\mathcal{D}^{\prime}(\Omega)$, for some $f \in L^{1}(\Omega)$ and $g \in H^{1}(\Omega)$. Using a standard density argument, we conclude that

$$
\begin{equation*}
\int_{\Omega} w \varphi d \mu=\int_{\Omega} w \varphi f+\int_{\Omega} \nabla g \cdot \nabla(w \varphi), \quad \forall \varphi \in C_{0}^{\infty}(\Omega), \quad \forall w \in L^{\infty} \cap H^{1} \tag{12}
\end{equation*}
$$

By assumption, the sequence $\left(\left|v_{n}-v\right|\right)$ is bounded in $H^{1}(\Omega)$ and, by Rellich's theorem, $\left|v_{n}-v\right| \rightarrow 0$ in $L^{2}(\Omega)$. Thus,

$$
\begin{equation*}
\left|v_{n}-v\right| \rightharpoonup 0 \quad \text { in } H^{1} \tag{13}
\end{equation*}
$$

Given $\varepsilon>0$, let $\omega \subset \subset \Omega$ be such that $|\mu|(\Omega \backslash \omega)<\varepsilon$. We then fix $\varphi_{0} \in C_{0}^{\infty}(\Omega)$ so that $0 \leq \varphi_{0} \leq 1$ in Ω and $\varphi_{0}=1$ on ω. Applying (12) with $w=\left|v_{n}-v\right|$ and $\varphi=\varphi_{0}$, we have

$$
\begin{aligned}
\int_{\Omega}\left|v_{n}-v\right| d \mu & \leq \int_{\omega}\left|v_{n}-v\right| d \mu+2 C|\mu|(\Omega \backslash \omega) \\
& \leq \int_{\Omega}\left|v_{n}-v\right| \varphi_{0} d \mu+2 C \varepsilon=\int_{\Omega}\left|v_{n}-v\right| \varphi_{0} f+\int_{\Omega} \nabla g \cdot \nabla\left(\left|v_{n}-v\right| \varphi_{0}\right)+2 C \varepsilon
\end{aligned}
$$

By (13), we know that $\int_{\Omega} \nabla g \cdot \nabla\left(\left|v_{n}-v\right| \varphi_{0}\right) \rightarrow 0$ as $n \rightarrow \infty$. Since $\left(v_{n}\right)$ is bounded in L^{∞} and $v_{n} \rightarrow v$ in L^{2}, we have $v_{n} \rightharpoonup v$ with respect to the weak* topology of L^{∞}; thus, $\int_{\Omega}\left|v_{n}-v\right| \varphi_{0} f \rightarrow 0$. We conclude that $\lim \sup _{n \rightarrow \infty} \int_{\Omega}\left|v_{n}-v\right| d \mu \leq 2 C \varepsilon$. Taking $\varepsilon>0$ arbitrarily small, (11) follows.

Given $k>0$, we denote by $T_{k}: \mathbb{R} \rightarrow \mathbb{R}$ the truncation operator, i.e. $T_{k}(s)=s$ if $s \in[-k, k]$ and $T_{k}(s)=\operatorname{sgn}(s) k$ if $|s|>k$. Recall the following standard inequality (see e.g. [4, Lemma 1]):
Lemma 2.2 Assume $u \in L_{\text {loc }}^{1}(\Omega)$ and $\Delta u \in \mathcal{M}(\Omega)$. Then, $T_{k}(u) \in H_{\mathrm{loc}}^{1}(\Omega), \forall k>0$; moreover, given $\omega \subset \subset \omega^{\prime} \subset \subset \Omega$, there exists $C>0$ such that

$$
\begin{equation*}
\int_{\omega}\left|\nabla T_{k}(u)\right|^{2} \leq k\left(\int_{\omega^{\prime}}|\Delta u|+C \int_{\omega^{\prime}}|u|\right) . \tag{14}
\end{equation*}
$$

Another ingredient to prove (5) is our next result, which extends Lemma 2 in [3]:
Proposition 2.1 Let $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{1}-convex function such that $0 \leq \Phi^{\prime} \leq 1$ on \mathbb{R}. If $u \in L_{\mathrm{loc}}^{1}(\Omega)$ and $\Delta u \in \mathcal{M}(\Omega)$, then

$$
\begin{equation*}
\Delta \Phi(u) \geq \Phi^{\prime}(u)(\Delta u)_{\mathrm{d}}-(\Delta u)_{\mathrm{c}}^{-} \quad \text { in } \mathcal{D}^{\prime}(\Omega) \tag{15}
\end{equation*}
$$

Proof. Without loss of generality, we shall assume that $\Phi \in C^{2}$ and $\Phi^{\prime \prime}$ has compact support in \mathbb{R}. The general case can be easily deduced by approximation (note that since Φ is convex and Φ^{\prime} is uniformly bounded, both limits $\Phi^{\prime}(\pm \infty)$ exist and are finite). We may also assume that $u \in L^{1}(\Omega)$ and $\int_{\Omega}|\Delta u|<\infty$.

For every $x \in \Omega$, define $u_{n}(x)=\rho_{n} * u(x)=\int_{\Omega} \rho_{n}(x-y) u(y) d y$, where ρ_{n} is a family of radial mollifiers such that $\operatorname{supp} \rho_{n} \subset B_{1 / n}$. Since $\Phi^{\prime \prime} \geq 0$ in \mathbb{R}, we have

$$
\Delta \Phi\left(u_{n}\right)=\Phi^{\prime}\left(u_{n}\right) \Delta u_{n}+\Phi^{\prime \prime}\left(u_{n}\right)\left|\nabla u_{n}\right|^{2} \geq \Phi^{\prime}\left(u_{n}\right) \Delta u_{n} \quad \text { in } \Omega
$$

Let $\varphi \in C_{0}^{\infty}(\Omega)$ with $\varphi \geq 0$. We multiply both sides of the inequality above by φ and integrate by parts. For every $n \geq 1$ such that $d(\operatorname{supp} \varphi, \partial \Omega)>1 / n$, we have

$$
\begin{aligned}
\int_{\Omega} \Phi\left(u_{n}\right) \Delta \varphi & \geq \int_{\Omega} \Phi^{\prime}\left(u_{n}\right) \varphi \Delta u_{n} \\
& =\int_{\Omega}\left\{\rho_{n} *\left[\Phi^{\prime}\left(u_{n}\right) \varphi\right]\right\} \Delta u \geq \int_{\Omega}\left\{\rho_{n} *\left[\Phi^{\prime}\left(u_{n}\right) \varphi\right]\right\}(\Delta u)_{\mathrm{d}}-\int_{\Omega}\left(\rho_{n} * \varphi\right)(\Delta u)_{\mathrm{c}}^{-}
\end{aligned}
$$

Clearly,

$$
\begin{equation*}
\int_{\Omega} \Phi\left(u_{n}\right) \Delta \varphi \rightarrow \int_{\Omega} \Phi(u) \Delta \varphi \quad \text { and } \quad \int_{\Omega}\left(\rho_{n} * \varphi\right)(\Delta u)_{\mathrm{c}}^{-} \rightarrow \int_{\Omega} \varphi(\Delta u)_{\mathrm{c}}^{-} \tag{16}
\end{equation*}
$$

We now establish the following:
Claim. $\rho_{n} *\left[\Phi^{\prime}\left(u_{n}\right) \varphi\right] \rightharpoonup \Phi^{\prime}(u) \varphi$ in $H^{1}(\Omega)$.
In fact, since $\rho_{n} *\left[\Phi^{\prime}\left(u_{n}\right) \varphi\right] \rightarrow \Phi^{\prime}(u) \varphi$ in, say, $L^{1}(\Omega)$ and since φ has compact support in Ω, it suffices to show that $\left(\Phi^{\prime}\left(u_{n}\right)\right)$ is bounded in $H_{\mathrm{loc}}^{1}(\Omega)$. Let $M>0$ be such that supp $\Phi^{\prime \prime} \subset[-M, M]$. Then,

$$
\nabla \Phi^{\prime}\left(u_{n}\right)=\Phi^{\prime \prime}\left(u_{n}\right) \nabla u_{n}=\Phi^{\prime \prime}\left(u_{n}\right) \nabla T_{M}\left(u_{n}\right) \quad \text { in } \Omega
$$

Let $\omega \subset \subset \omega^{\prime} \subset \subset \Omega$. For $n \geq 1$ sufficiently large, it follows from (14) that

$$
\int_{\omega}\left|\nabla \Phi^{\prime}\left(u_{n}\right)\right|^{2} \leq\left\|\Phi^{\prime \prime}\right\|_{\infty} \int_{\omega}\left|\nabla T_{M}\left(u_{n}\right)\right|^{2} \leq C M\left(\int_{\omega^{\prime}}\left|u_{n}\right|+\int_{\omega^{\prime}}\left|\Delta u_{n}\right|\right) \leq C M\left(\int_{\Omega}|u|+\int_{\Omega}|\Delta u|\right)
$$

for some constant $C>0$ independent of n.

In view of the previous claim, we can now apply Lemma 2.1 above with $v_{n}=\rho_{n} *\left[\Phi^{\prime}\left(u_{n}\right) \varphi\right]$ and $\mu=(\Delta u)_{\mathrm{d}}$ to conclude that

$$
\begin{equation*}
\int_{\Omega}\left\{\rho_{n} *\left[\Phi^{\prime}\left(u_{n}\right) \varphi\right]\right\}(\Delta u)_{\mathrm{d}} \rightarrow \int_{\Omega} \Phi^{\prime}(u) \varphi(\Delta u)_{\mathrm{d}} \tag{17}
\end{equation*}
$$

Combining (16) and (17) yields

$$
\int_{\Omega} \Phi(u) \Delta \varphi \geq \int_{\Omega} \Phi^{\prime}(u) \varphi(\Delta u)_{\mathrm{d}}-\int_{\Omega} \varphi(\Delta u)_{\mathrm{c}}^{-}, \quad \forall \varphi \in C_{0}^{\infty}(\Omega) \text { with } \varphi \geq 0 \text { in } \Omega
$$

which is precisely (15).
Proof of (5). Let $\left(\Phi_{n}\right)$ be a sequence of smooth convex functions in \mathbb{R} such that $\Phi_{n}(t)=t$ if $t \geq 0$ and $\left|\Phi_{n}(t)\right| \leq 1 / n$ if $t<0$. In particular, $0 \leq \Phi^{\prime} \leq 1$ in \mathbb{R}. It follows from the previous proposition that

$$
\Delta \Phi_{n}(u) \geq \Phi_{n}^{\prime}(u)(\Delta u)_{\mathrm{d}}-(\Delta u)_{\mathrm{c}}^{-} \quad \text { in } \mathcal{D}(\Omega)
$$

As $n \rightarrow \infty$, we get

$$
\begin{equation*}
\Delta u^{+} \geq \chi_{[u \geq 0]}(\Delta u)_{\mathrm{d}}-(\Delta u)_{\mathrm{c}}^{-} \quad \text { in } \mathcal{D}(\Omega) . \tag{18}
\end{equation*}
$$

In particular, $\Delta u^{+} \in \mathcal{M}(\Omega)$. Taking the diffuse part from both sides of (18), we conclude that (5) holds.

3. Proof of (6) in Theorem 1.1

Identity (6) relies on the following:
Theorem 3.1 ("Inverse" maximum principle [6]) Let $u \in L_{\text {loc }}^{1}(\Omega)$ be such that $\Delta u \in \mathcal{M}(\Omega)$. If $u \geq 0$ a.e. in Ω, then

$$
\begin{equation*}
(-\Delta u)_{\mathrm{c}} \geq 0 \quad \text { on } \Omega \tag{19}
\end{equation*}
$$

To complete the proof of Theorem 1.1, we now present:
Proof of (6). From the proof of (5), we already know that Δu^{+}is a Radon measure on Ω. Applying the "inverse" maximum principle to u^{+}, we have $\left(-\Delta u^{+}\right)_{c} \geq 0$ on Ω. Since $u^{+}-u \geq 0$ a.e. in Ω, it also follows from Theorem 3.1 above that $\left(-\Delta u^{+}\right)_{\mathrm{c}} \geq(-\Delta u)_{\mathrm{c}}$ on Ω. Thus,

$$
\left(-\Delta u^{+}\right)_{\mathrm{c}} \geq(-\Delta u)_{\mathrm{c}}^{+} \quad \text { on } \Omega
$$

which gives the " \geq " in (6). The reverse inequality just follows by taking the concentrated part from both sides of (18). In fact,

$$
\left(-\Delta u^{+}\right)_{\mathrm{c}} \leq(\Delta u)_{\mathrm{c}}^{-}=(-\Delta u)_{\mathrm{c}}^{+} \quad \text { on } \Omega
$$

Acknowledgements

The first author (H.B.) is partially sponsored by an EC Grant through the RTN Program "FrontSingularities", HPRN-CT-2002-00274. He is also a member of the Institut Universitaire de France. The second author (A.C.P.) is partially supported by CAPES, Brazil, under grant no. BEX1187/99-6.

References

[1] A. Ancona, Une propriété d'invariance des ensembles absorbants par perturbation d'un opérateur elliptique, Comm. Partial Differential Equations 4 (1979), 321-337.
[2] L. Boccardo, T. Gallouët, L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 539-551.
[3] H. Brezis, T. Cazenave, Y. Martel, A. Ramiandrisoa, Blow up for $u_{t}-\Delta u=g(u)$ revisited, Adv. Differential Equations 1 (1996), 73-90.
[4] H. Brezis, A.C. Ponce, Remarks on the strong maximum principle, Differential Integral Equations 16 (2003), 1-12.
[5] H. Brezis, M. Marcus, A.C. Ponce, Nonlinear elliptic equations with measures revisited, in preparation.
[6] L. Dupaigne, A.C. Ponce, Singularities of positive supersolutions in elliptic PDEs, to appear in Selecta Math. (N.S.).
[7] M. Fukushima, K. Sato, S. Taniguchi, On the closable part of pre-Dirichlet forms and the fine supports of underlying measures, Osaka Math. J. 28 (1991), 517-535.
[8] T. Kato, Schrödinger operators with singular potentials, Israel J. Math. 13 (1972), 135-148 (1973).

