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Abstract

We extend the classical Kato’s inequality in order to allow functions u ∈ L1
loc such that ∆u is a Radon measure.

This inequality has been recently applied by Brezis, Marcus, and Ponce [5] to study the existence of solutions of
the nonlinear equation −∆u+g(u) = µ, where µ is a measure and g : R → R is an increasing continuous function.
To cite this article: H. Brezis, A.C. Ponce, C. R. Acad. Sci. Paris, Ser. I XXX (2004).

Résumé

Nous étendons l’inégalité de Kato classique à des fonctions u ∈ L1
loc telles que ∆u est une mesure de Radon.

Cette inégalité a été récemment utilisée par Brezis, Marcus et Ponce [5] pour étudier l’existence des solutions de
l’équation elliptique non linéaire −∆u + g(u) = µ, où µ est une mesure et g : R → R est une fonction croissante
et continue. Pour citer cet article : H. Brezis, A.C. Ponce, C. R. Acad. Sci. Paris, Ser. I XXX (2004).

Version française abrégée

Soient N ≥ 1 et Ω ⊂ RN un ouvert borné quelconque. Selon l’inégalité de Kato classique (voir [8]),
étant donné u ∈ L1

loc(Ω) tel que ∆u ∈ L1
loc(Ω), alors ∆u+ est une mesure de Radon et, de plus,

∆u+ ≥ χ[u≥0]∆u dans D′(Ω). (1)

Nous étendons (1) à des fonctions u ∈ L1
loc(Ω) telles que ∆u ∈ M(Ω), où M(Ω) désigne l’espace des

mesures de Radon définies sur Ω.
Rappelons que toute mesure µ ∈ M(Ω) peut être décomposée de façon unique comme une somme de

deux mesures de Radon sur Ω (voir e.g. [7]) : µ = µd + µc, avec

µd(A) = 0 pour tout borélien A ⊂ Ω tel que cap (A) = 0,

|µc|(Ω\F ) = 0 pour un ensemble F ⊂ Ω fixé tel que cap (F ) = 0,

Preprint submitted to Elsevier Science 27 mars 2006



où cap dénote la capacité newtonienne (W 1,2). Les mesures µd et µc sont mutuellement singulières ; en
particulier, (µd)+ = (µ+)d et (µc)+ = (µ+)c.

Notre théorème principal est le suivant :

Théorème 0.1 Soit u ∈ L1
loc(Ω) tel que ∆u ∈M(Ω). Alors, ∆u+ ∈M(Ω) et, de plus,

(∆u+)d ≥ χ[u≥0](∆u)d sur Ω, (2)

(−∆u+)c = (−∆u)+c sur Ω. (3)

Le membre de droite dans (2) est bien défini, car la fonction u est quasicontinue (voir [1], voir aussi [4,
Lemme 1]).

1. Introduction and main result

Let N ≥ 1 and Ω ⊂ RN be a bounded open subset. The classical Kato’s inequality (see [8]) states that
given any function u ∈ L1

loc(Ω) such that ∆u ∈ L1
loc(Ω), then ∆u+ is a Radon measure and the following

holds:

∆u+ ≥ χ[u≥0]∆u in D′(Ω). (4)

Our main result in this paper (see Theorem 1.1 below) extends (4) to the case ∆u ∈ M(Ω), where
M(Ω) denotes the space of Radon measures on Ω. In other words, µ ∈ M(Ω) if and only if, for every
ω ⊂⊂ Ω, there exists Cω > 0 such that

∣∣∫
Ω

ϕ dµ
∣∣ ≤ Cω‖ϕ‖∞, ∀ϕ ∈ C∞0 (ω).

We first recall that any µ ∈M(Ω) can be uniquely decomposed as a sum of two Radon measures on Ω
(see e.g. [7]): µ = µd + µc, where

µd(A) = 0 for any Borel measurable set A ⊂ Ω such that cap (A) = 0,

|µc|(Ω\F ) = 0 for some Borel measurable set F ⊂ Ω such that cap (F ) = 0.

Here, cap denotes the Newtonian (W 1,2) capacity of a set. We observe that µd and µc are singular with
respect to each other. This decomposition is the analog of the classical Radon-Nikodym Theorem, but
with respect to cap. Clearly, (µd)+ = (µ+)d and (µc)+ = (µ+)c.

Using the above notation, we can now state our main result:

Theorem 1.1 Let u ∈ L1
loc(Ω) be such that ∆u ∈M(Ω). Then, ∆u+ ∈M(Ω), and the following holds:

(∆u+)d ≥ χ[u≥0](∆u)d on Ω, (5)

(−∆u+)c = (−∆u)+c on Ω. (6)

Note that the right-hand side of (5) is well-defined because u is quasicontinuous. More precisely, if
u ∈ L1

loc(Ω) and ∆u ∈M(Ω), then there exists ũ : Ω → R quasicontinuous such that u = ũ a.e. in Ω (see
[1] and also [4, Lemma 1]). In (5), we then identify u with its quasicontinuous representative. It is easy
to see that χ[u≥0] is locally integrable in Ω with respect to the measure

∣∣(∆u)d
∣∣.

The proof of (5) requires a theorem of Boccardo, Gallouët, and Orsina [2], which says that a Radon
measure µ is diffuse (i.e. µc = 0) if and only if µ ∈ L1

loc(Ω) + ∆
[
H1

loc(Ω)
]
. Identity (6) relies on (and in

fact is equivalent to) the “inverse” maximum principle, recently established by Dupaigne and Ponce [6]
(see Theorem 3.1 below).

An equivalent statement of Theorem 1.1 is the following:
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Corollary 1.2 Let u ∈ L1
loc(Ω) be such that ∆u ∈M(Ω). Then, ∆|u| ∈ M(Ω), and the following holds:

(∆|u|)d ≥ sgn (u) (∆u)d on Ω, (7)

(∆|u|)c =−|∆u|c on Ω. (8)

Here, sgn (t) = 1 for t > 0, sgn (t) = −1 for t < 0, and sgn (0) = 0.

Remark 1 A slight modification of the proof of Theorem 1.1 shows that

(∆u+)d ≥ χ[u>0](∆u)d on Ω. (9)

In other words, we can replace the set [u ≥ 0] in (5) by [u > 0] and still get the same result.

Here is a simple consequence of (9):

Corollary 1.3 Let u ∈ L1
loc(Ω) be such that ∆u ∈M(Ω). If u ≥ 0 a.e. in Ω, then

(∆u)d ≥ 0 on the set [u = 0]. (10)

2. Proof of (5) in Theorem 1.1

We start with the following:

Lemma 2.1 Assume µ ∈M(Ω) is a diffuse measure with respect to cap (i.e. µc = 0 on Ω). Let (vn) be
a sequence in L∞(Ω) ∩H1(Ω) such that ‖vn‖∞ ≤ C and vn ⇀ v in H1. Then,

vn → v in L1
loc(Ω; dµ). (11)

Equivalently, there exists a subsequence (vnk
) converging to v |µ|-a.e. in Ω.

Proof. Without loss of generality, we may assume that |µ|(Ω) < ∞. By Theorem 2.1 of Boccardo,
Gallouët, and Orsina [2], we know that µ = f −∆g in D′(Ω), for some f ∈ L1(Ω) and g ∈ H1(Ω). Using
a standard density argument, we conclude that∫

Ω

wϕ dµ =
∫
Ω

wϕf +
∫
Ω

∇g · ∇(wϕ), ∀ϕ ∈ C∞0 (Ω), ∀w ∈ L∞ ∩H1. (12)

By assumption, the sequence
(
|vn − v|

)
is bounded in H1(Ω) and, by Rellich’s theorem, |vn − v| → 0 in

L2(Ω). Thus,

|vn − v| ⇀ 0 in H1. (13)

Given ε > 0, let ω ⊂⊂ Ω be such that |µ|(Ω\ω) < ε. We then fix ϕ0 ∈ C∞0 (Ω) so that 0 ≤ ϕ0 ≤ 1 in Ω
and ϕ0 = 1 on ω. Applying (12) with w = |vn − v| and ϕ = ϕ0, we have∫

Ω

|vn − v| dµ≤
∫
ω

|vn − v| dµ + 2C|µ|(Ω\ω)

≤
∫
Ω

|vn − v|ϕ0 dµ + 2Cε =
∫
Ω

|vn − v|ϕ0f +
∫
Ω

∇g · ∇
(
|vn − v|ϕ0

)
+ 2Cε.

By (13), we know that
∫
Ω
∇g · ∇

(
|vn − v|ϕ0

)
→ 0 as n → ∞. Since (vn) is bounded in L∞ and vn → v

in L2, we have vn ⇀ v with respect to the weak∗ topology of L∞; thus,
∫
Ω
|vn− v|ϕ0f → 0. We conclude

that lim supn→∞
∫
Ω
|vn − v| dµ ≤ 2Cε. Taking ε > 0 arbitrarily small, (11) follows.
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Given k > 0, we denote by Tk : R → R the truncation operator, i.e. Tk(s) = s if s ∈ [−k, k] and
Tk(s) = sgn (s) k if |s| > k. Recall the following standard inequality (see e.g. [4, Lemma 1]):

Lemma 2.2 Assume u ∈ L1
loc(Ω) and ∆u ∈ M(Ω). Then, Tk(u) ∈ H1

loc(Ω), ∀k > 0; moreover, given
ω ⊂⊂ ω′ ⊂⊂ Ω, there exists C > 0 such that∫

ω

∣∣∇Tk(u)
∣∣2 ≤ k

( ∫
ω′

|∆u|+ C

∫
ω′

|u|
)

. (14)

Another ingredient to prove (5) is our next result, which extends Lemma 2 in [3]:

Proposition 2.1 Let Φ : R → R be a C1-convex function such that 0 ≤ Φ′ ≤ 1 on R. If u ∈ L1
loc(Ω) and

∆u ∈M(Ω), then

∆Φ(u) ≥ Φ′(u)(∆u)d − (∆u)−c in D′(Ω). (15)

Proof. Without loss of generality, we shall assume that Φ ∈ C2 and Φ′′ has compact support in R. The
general case can be easily deduced by approximation (note that since Φ is convex and Φ′ is uniformly
bounded, both limits Φ′(±∞) exist and are finite). We may also assume that u ∈ L1(Ω) and

∫
Ω
|∆u| < ∞.

For every x ∈ Ω, define un(x) = ρn ∗u(x) =
∫
Ω

ρn(x−y)u(y) dy, where ρn is a family of radial mollifiers
such that supp ρn ⊂ B1/n. Since Φ′′ ≥ 0 in R, we have

∆Φ(un) = Φ′(un)∆un + Φ′′(un)|∇un|2 ≥ Φ′(un)∆un in Ω.

Let ϕ ∈ C∞0 (Ω) with ϕ ≥ 0. We multiply both sides of the inequality above by ϕ and integrate by parts.
For every n ≥ 1 such that d(supp ϕ, ∂Ω) > 1/n, we have∫

Ω

Φ(un)∆ϕ≥
∫
Ω

Φ′(un)ϕ ∆un

=
∫
Ω

{
ρn ∗

[
Φ′(un)ϕ

]}
∆u ≥

∫
Ω

{
ρn ∗

[
Φ′(un)ϕ

]}
(∆u)d −

∫
Ω

(ρn ∗ ϕ) (∆u)−c .

Clearly,∫
Ω

Φ(un)∆ϕ →
∫
Ω

Φ(u)∆ϕ and
∫
Ω

(ρn ∗ ϕ) (∆u)−c →
∫
Ω

ϕ (∆u)−c . (16)

We now establish the following:

Claim. ρn ∗
[
Φ′(un)ϕ

]
⇀ Φ′(u)ϕ in H1(Ω).

In fact, since ρn ∗
[
Φ′(un)ϕ

]
→ Φ′(u)ϕ in, say, L1(Ω) and since ϕ has compact support in Ω, it suffices

to show that
(
Φ′(un)

)
is bounded in H1

loc(Ω). Let M > 0 be such that suppΦ′′ ⊂ [−M,M ]. Then,

∇Φ′(un) = Φ′′(un)∇un = Φ′′(un)∇TM (un) in Ω.

Let ω ⊂⊂ ω′ ⊂⊂ Ω. For n ≥ 1 sufficiently large, it follows from (14) that∫
ω

∣∣∇Φ′(un)
∣∣2 ≤ ‖Φ′′‖∞

∫
ω

∣∣∇TM (un)
∣∣2 ≤ CM

( ∫
ω′

|un|+
∫
ω′

|∆un|
)
≤ CM

( ∫
Ω

|u|+
∫
Ω

|∆u|
)

,

for some constant C > 0 independent of n.
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In view of the previous claim, we can now apply Lemma 2.1 above with vn = ρn ∗
[
Φ′(un)ϕ

]
and

µ = (∆u)d to conclude that∫
Ω

{
ρn ∗

[
Φ′(un)ϕ

]}
(∆u)d →

∫
Ω

Φ′(u)ϕ (∆u)d. (17)

Combining (16) and (17) yields∫
Ω

Φ(u)∆ϕ ≥
∫
Ω

Φ′(u)ϕ (∆u)d −
∫
Ω

ϕ (∆u)−c , ∀ϕ ∈ C∞0 (Ω) with ϕ ≥ 0 in Ω,

which is precisely (15).

Proof of (5). Let (Φn) be a sequence of smooth convex functions in R such that Φn(t) = t if t ≥ 0 and∣∣Φn(t)
∣∣ ≤ 1/n if t < 0. In particular, 0 ≤ Φ′ ≤ 1 in R. It follows from the previous proposition that

∆Φn(u) ≥ Φ′n(u)(∆u)d − (∆u)−c in D(Ω).

As n →∞, we get

∆u+ ≥ χ[u≥0](∆u)d − (∆u)−c in D(Ω). (18)

In particular, ∆u+ ∈M(Ω). Taking the diffuse part from both sides of (18), we conclude that (5) holds.

3. Proof of (6) in Theorem 1.1

Identity (6) relies on the following:

Theorem 3.1 (“Inverse” maximum principle [6]) Let u ∈ L1
loc(Ω) be such that ∆u ∈ M(Ω). If

u ≥ 0 a.e. in Ω, then

(−∆u)c ≥ 0 on Ω. (19)

To complete the proof of Theorem 1.1, we now present:

Proof of (6). From the proof of (5), we already know that ∆u+ is a Radon measure on Ω. Applying
the “inverse” maximum principle to u+, we have (−∆u+)c ≥ 0 on Ω. Since u+ − u ≥ 0 a.e. in Ω, it also
follows from Theorem 3.1 above that (−∆u+)c ≥ (−∆u)c on Ω. Thus,

(−∆u+)c ≥ (−∆u)+c on Ω,

which gives the “≥” in (6). The reverse inequality just follows by taking the concentrated part from both
sides of (18). In fact,

(−∆u+)c ≤ (∆u)−c = (−∆u)+c on Ω.
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