NONLINEAR ELLIPTIC EQUATIONS
WITH MEASURES REVISITED
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ABSTRACT. We study the existence of solutions of the nonlinear problem

P
(P) u=0 on 01,

{ —Au+g(u) =p in £,

where p is a Radon measure and g : R — R is a nondecreasing continuous function
with g(0) = 0. This equation need not have a solution for every measure u, and we
say that p is a good measure if (P) admits a solution. We show that for every u
there exists a largest good measure p* < p. This reduced measure has a number of
remarkable properties.
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0. Introduction.

Let © ¢ RY be a bounded domain with smooth boundary. Let g : R — R
be a continuous, nondecreasing function such that g(0) = 0. In this paper we are
concerned with the problem

0.1) { —Au+g(u) =p in Q,

u=0 on 01,

where p is a measure. The study of (0.1) when pu € L'(Q) was initiated by Brezis-
Strauss [BS]; their main result asserts that for every p € L' and every g as above,
problem (0.1) admits a unique weak solution (see Theorem B.2 in Appendix B
below). The right concept of weak solution is the following:

u € LY (), g(u) € LY(N) and

0D - [eacs [atc= [ can e @, c=om o0
Q Q Q

It will be convenient to write
Co(@)={CeC(Q);¢=00n 00}

and
C3(Q) = {¢C e C?*(Q); (=0o0n N},

and to say that (0.1) holds in the sense of (C3)*. We will often omit the word
“weak” and simply say that u is a solution of (0.1), meaning (0.2). It follows from
standard (linear) regularity theory that a weak solution u belongs to VVO1 1(Q) for
every ¢ < 72 (see, e.g., [S] and Theorem B.1 below).

The case where p is a measure turns out to be much more subtle than one might
expect. It was observed in 1975 by Ph. Bénilan and H. Brezis (see [B1], [B2], [B3],
[B4], [BB] and Theorem B.6 below) that if N > 3 and g(t) = |t[P~1¢ with p > &,
then (0.1) has no solution when u = §,, a Dirac mass at a point @ € 2. On the
other hand, it was also proved (see Theorem B.5 below) that if g(t) = [t|P~1¢ with
p < 7 (and N > 2), then (0.1) has a solution for any measure y. Later Baras-
Pierre [BP] (see also [GM]) characterized all measures p for which (0.1) admits a
solution. Their necessary and sufficient condition for the existence of a solution
when p > % can be expressed in two equivalent ways:

03) { p admits a decomposition p = fo — Awvg in the (C2)*-sense,
' with fy € L' and vy € LP,
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or

(0.4) [1|(A) =0 for every Borel set A C 2 with cap, ,, (A) =0,

where cap, ,, denotes the capacity associated to w2r',

Our goal in this paper is to analyze the nonexistence mechanism and to describe
what happens if one “forces” (0.1) to have a solution in cases where the equation
“refuses” to possess one. The natural approach is to introduce an approximation
scheme. For example, u is kept fixed and g is truncated. Alternatively, g is kept
fixed and p is approximated, e.g., via convolution. It was originally observed by
one of us (see [B4]) that if N > 3, g(t) = [t[~1¢, with p > &5, and p = &,, with
a € Q, then all “natural” approximations (u,) of (0.1) converge to u = 0. And, of
course, u = 0 is not a solution of (0.1) corresponding to pu = ¢, ! It is this kind of
phenomenon that we propose to explore in full generality. We are led to study the
convergence of the approximate solutions (u,) under various assumptions on the
sequence of data.

Concerning the function g we will assume throughout the rest of the paper (except
in Section 7) that g : R — R is continuous, nondecreasing, and that

(0.5) gt) =0 Vt<o.

Remark 1. Assumption (0.5) is harmless when the data p is nonnegative, since the
corresponding solution u is nonnegative by the maximum principle and it is only
the restriction of g to [0, 00) which is relevant. However when p is a signed measure
it is worthwhile to remove assumption (0.5) and this is done in Section 7 below.

By a measure ;1 we mean a continuous linear functional on Cy(£2), or equivalently
a finite measure on 2 such that |u|(092) = 0 (see Appendix C below). The space of
measures is denoted by M(Q2) and is equipped with the standard norm

[l = Sup{/ wdu; o € Co(Q) and ||z < 1},
Q

By a (weak) solution u of (0.1) we mean that (0.2) holds. A (weak) subsolution
u of (0.1) is a function u satisfying

u € LY ), g(u) € LY(N) and

0.6 _
(06) - [unc+ [ g [ ¢du WeCR@, ¢z0ma

Q Q Q

We will say that p € M(Q) is a good measure if (0.1) admits a solution. If p is
a good measure, then equation (0.1) has exactly one solution u (see Corollary B.1
in Appendix B). We denote by G the set of good measures (relative to g).
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Remark 2. In many places throughout this paper, the quantity fQ (du, with ¢ €

C2(Q), plays an important role. Such an expression makes sense even for measures
which are not bounded but merely locally bounded in €, and such that [, po d|u| <
oo, where pg(z) = d(z,00). Many of our results remain valid for such measures
provided some of the statements (and the proofs) are slightly modified. In this
case, the condition g(u) € L'(Q2) in (0.2) (and also in (0.6)) must be replaced by
g(u)po € LY(€2). Since we have not pursued this direction, we shall leave the details
to the reader.

In Section 1 we will introduce the first approximation method, namely u is fixed
and ¢ is “truncated”. In the sequel we denote by (g,,) a sequence of functions g,, :
R — R which are continuous, nondecreasing and satisfy the following conditions:

0<gi(t) <go(t) <...<g(t) VEER,
gn(t) — g(t) VteR.
(Recall that, by Dini’s lemma, conditions (0.7) and (0.8) imply that g, — ¢ uni-
formly on compact subsets of R).
If N > 2, we assume in addition that each g,, has subcritical growth, i.e., that there

exist C' > 0 and p < % (possibly depending on n) such that

(0.9) gn(t) <C(tP +1) VteR.

A good example to keep in mind is g, (t) = min{g(¢),n}, Vt € R.
Our first result is

Proposition 1. Given any measure p € M(S2), let u,, be the unique solution of

—Auy,, + g (uy) = n €,
(0.10) { gn(un) = p

u, =0 on Of.

Then uy, | u* in Q asn T oo, where u* is the largest subsolution of (0.1). Moreover
we have

(0.11) | [ wad < 2lliclie v e CG@)
and

(0.12) /Qg(U*) < plm-
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An important consequence of Proposition 1 is that u* does not depend on the
choice of the truncating sequence (gn). It is an intrinsic object which will play an
important role in the sequel. In some sense, u* is the “best one can do” (!) in the
absence of a solution.

Remark 3. If p is a good measure, then u* coincides with the unique solution
u of (0.1); this is an easy consequence of standard comparison arguments (see
Corollary B.2 in Appendix B).

We now introduce the basic concept of reduced measure. From (0.11), (0.12), and
the density of C3(Q) in Cy(2) (easy to check), we see that there exists a unique
measure p* € M(Q) such that

(0.13) —/Qu*AC+/Qg(u*)C:/QCdu* V¢ € C2(9).

We call p* the reduced measure associated to pu. Clearly, p*

measure. Since u* is a subsolution of (0.1), we have

is always a good

(0.14) p < .
Even though we have not indicated the dependence on g we emphasize that pu* does
depend on g (see Section 8 below).
One of our main results is
Theorem 1. The reduced measure p* is the largest good measure < p.
Here is an easy consequence:

Corollary 1. We have
(0.15) 0<p—p" <pt =sup{y0}

In particular,

(0.16) ] < Jpl
and
(0.17) =0 = [p"=0]

Indeed, every measure v < 0 is a good measure since the solution v of

—Av=v in (),
{ v=0 on 01,
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satisfies v < 0 in €2, and therefore by (0.5)
~Av+g(w)=v in (C3)*.

In particular, —p~ is a good measure (recall that p= = sup {—u,0}). Since —u~ <
u, we deduce from Theorem 1 that

and consequently

Our next result asserts that the measure p — u* is concentrated on a small set:

Theorem 2. There exists a Borel set ¥ C Q with cap (X) = 0 such that

(0.18) (b= p*)(Q\X) =0.

Here and throughout the rest of the paper “cap” denotes the Newtonian (H')
capacity with respect to 2.

Remark 4. Theorem 2 is optimal in the following sense. Given any measure g >
0 concentrated on a set of zero capacity, there exists some g such that pu* = 0
(see Theorem 14 below). In particular, © — p* can be any nonnegative measure
concentrated on a set of zero capacity.

Here is a useful

Definition. A measure p € M(Q) is called diffuse if |u|(A) = 0 for every Borel
set A C Q such that cap (A) = 0.

An immediate consequence of Corollary 1 and Theorem 2 is
Corollary 2. FEvery diffuse measure p € M(Q) is a good measure.
Indeed, let ¥ be as in Theorem 2, so that cap (3) = 0 and

(14— 1)@\ 5) = 0.
On the other hand, (0.15) implies
(1 — u*)(®) < u*(5) =0,

since p is diffuse. Therefore
(1= p") () =0,
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so that p = p* and thus p is a good measure.

Remark 5. The converse of Corollary 2 is not true. In Example 5 (see Section 8
below) the measure p = ¢d,, with 0 < ¢ < 47 and a € €2, is a good measure, but it
is not diffuse — cap ({a}) = 0, while u({a}) = ¢ > 0. See, however, Theorem 5.

Remark 6. Recall that a measure p is diffuse if and only if 4 € L' + H~!; more
precisely, there exist fo € L1(Q) and vy € H}(Q) such that

(0.19) /Q(d,u:/QfOC—/QVUO-VC V¢ € Co(Q) N Hy.

The implication [ € L' + H~'] = [u diffuse] is due to Grun-Rehomme [GRe].
(In fact he proved only that [v € H™'] = [v diffuse], but L!-functions are dif-
fuse measures — since [cap (4) = 0] = [|A4| = 0] — and the sum of two diffuse
measures is diffuse). The converse [u diffuse] = [ € L' + H1] is due to Boccardo-
Gallouét-Orsina [BGO1] (and was suggested by earlier results of Baras-Pierre [BP]
and Gallouét-Morel [GM]). As a consequence of Corollary 2 we obtain that, for
every measure y of the form (0.19), the problem

(0.20)

—Au+g(u)=p in Q,
{ u=0 on 0,

admits a unique solution. In fact, the same conclusion was already known for any
distribution in L' + H~!, not necessarily in M(£2). (The proof, which combines
techniques from Brezis-Browder [BBr| and Brezis-Strauss [BS], is sketched in Ap-
pendix B below; see Theorem B.4). A very useful sharper version of the [BGO1]
decomposition is the following:

Theorem 3. Assume pi € M(R) is a diffuse measure. Then, there exist f € LY(Q)
and v € Co() N Hy such that

(0.21) /Cdu:/fg—/Vv-VC V¢ € Co(Q) N Hy.
Q Q Q
In addition, given any 0 > 0, then f and v can be chosen so that

(0.22) £l < lpllaes Nollze < dllullae and ol < 82||ullac.

The proof of Theorem 3 is presented in Appendix D below.

In Section 2 we present some basic properties of the good measures. Here is a
first one:
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Theorem 4. Suppose py is a good measure. Then any measure s < 1 s also a
good measure.

We now deduce a number of consequences:
Corollary 3. Let € M(Q). If ut is diffuse, then p is a good measure.

In fact, by Corollary 2, u* diffuse implies that u* is a good measure. Since
p < pt, it follows from Theorem 4 that u is a good measure.

Corollary 4. If 1 and py are good measures, then so is v = sup {p1, ua}.

Indeed, by Theorem 1 we have p; < v* and puo < v*. Thus v < v* < v, and
hence v = v* is good measure.

Corollary 5. The set G of good measures is conver.

Indeed, let pq, pus € G. For any t € [0, 1], we have

tpa + (1 — ) p2 < sup {u1, p2}-
Applying Corollary 4 and Theorem 4, we deduce that tu; + (1 —t)us € G.
Corollary 6. For every measure p € M(Q2) we have

(0.23) i = 1L aa = min 10 = e

Moreover, u* is the unique good measure which achieves the minimum.

Proof. Let v € G and write

w—vl=@-v)" +(p-v)" > (p-v)" =p—inf{uv}
But 7 = inf {u, v} € G by Theorem 4. Applying Theorem 1 we find 7 < p*. Hence
w—v|>p—v>p—p* >0,
and therefore
e =vlim = Ml = w1l
which gives (0.23). In order to establish uniqueness, assume v € G attains the
minimum in (0.23). Note that inf {u, v} is a good measure < p and
12 = inf {p, v} o < llie = vl
Thus, v = inf {u,v} < p. By Theorem 1, we deduce that v < p* < p. Since v

achieves the minimum in (0.23), we must have v = p*.

As we have already pointed out, the set G of good measures associated to (0.1)
depends on the nonlinearity g. Sometimes, in order to emphasize this dependence,
we shall denote G by G(g). By Corollary 3, if p € M(Q) and p* is diffuse, then
i € G(g) for every g satisfying (0.5). The converse is also true. More precisely,



NONLINEAR ELLIPTIC EQUATIONS WITH MEASURES REVISITED 9

Theorem 5. Let p € M(Q). Then p € G(g) for every g if and only if u* is
diffuse.

We also have a characterization of good measures in the spirit of the Baras-Pierre
result (0.3):

Theorem 6. A measure p € M(Q) is a good measure if and only if u admits a
decomposition

= fo—Avg in D'(Q),
with fo € LY(Q), vg € LY (Q) and g(vo) € L1 (Q).

Corollary 7. We have
G+ L'(N) Cg.
In Section 3 we discuss some properties of the mapping u — p*. For example,
we show that for every u,v € M(2), we have

(0.24) (n =) < (u—v)*.

Inequality (0.24) implies, in particular, that

(0.25) w<v] = [ <v]
and
(0.26) W' =v < fp—vl.

In Section 4 we examine another approximation scheme. We now keep g fixed
but we smooth p via convolution. Let u,, = p, * u and let u,, be the solution of

—Auy, + g(uy,) = pyp  in £,
0.27) { g(un) = p

u, =0 on 9.

We prove (assuming in addition g is convex) that u,, — u* in L'(2), where u* is
given by Proposition 1. In Section 5 we discuss other convergence results.

Theorem 5 is established in Section 6. In Section 7 we extend Proposition 1
to deal with the case where u € M(2) is a signed measure, but assumption (0.5)
is no longer satisfied. Finally, in Section 8 we present several examples where
the measure p* can be explicitly identified and in Section 9 we propose various
directions of research.

Part of the results in this paper were announced in [BMP].
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1. Construction of v* and p*. Proofs of Proposition 1 and Theo-
rems 1, 2.

We start with the

Proof of Proposition 1. Using Corollary B.2 in Appendix B we see that the sequence
(up,) is non-increasing. Also (see Corollary B.1)

[ gn (un)llzr < |l
and thus
[Aun||am < 2|l pa-

Consequently,
[unllr < Cllplm-

Therefore, (u,,) tends in L! to a limit denoted u*. By Dini’s lemma, g,, T g uniformly
on compact sets; thus

gn(un) — g(u™) a.e.

Hence g(u*) € L'(Q), (0.11)-(0.12) hold and, by Fatou’s lemma,

- [wact [gws [ can weci@, czome.
Q Q Q

Therefore u* is a subsolution of (0.1). We claim that u* is the largest subsolution.
Indeed let v be any subsolution of (0.1). Then

—Av+ g, (v) < —Av+g(v) <p in (CF)".
By comparison (see Corollary B.2)
v<u, a.e.

and, as n — o0,

v<u* a.e.

Hence u* is the largest subsolution.

Recall (see [FST], or Appendix A below) that any measure p on 2 can be
uniquely decomposed as a sum of two measures, p = pug + pe (“d” stands for
diffuse and “c” for concentrated), satisfying |uq|(A) = 0 for every Borel set A C
such that cap (A) = 0, and |u.|(Q2\ F') = 0 for some Borel set F' C € such that
cap (F) = 0. Note that a measure p is diffuse if and only if p. = 0, i.e., p = pq.

A key ingredient in the proof of Theorems 1 and 2 is the following version of
Kato’s inequality (see [K]) due to Brezis-Ponce [BP2].
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Theorem 7 (Kato’s inequality when Av is a measure). Let v € LY(Q) be
such that Av is a measure on Q. Then, for every open set w CC Q, Av™ is a
measure on w and the following holds:

(11) (AU+)d > X[’L]ZO](A/U)d in w,
(1.2) (—Avh)e = (—Av)T  inw.

Note that the right-hand side of (1.1) is well-defined because the function v is
quasi-continuous. More precisely, if v € L'(2) and Av is a measure, then there
exists ¥ : 2 — R quasi-continuous such that v = v a.e. in 2 (see [A1] and also [BP1,
Lemma 1]). Recall that ¥ is quasi-continuous if and only if, given any € > 0, one
can find an open set w. C 2 such that cap (w:) < € and 9|\, is continuous. In
particular, o is finite q.e. (= quasi-everywhere = outside a set of zero capacity). It
is easy to see that x[3>q] is integrable with respect to the measure |(Av)q4[. When

v € L' and Av is a measure, we will systematically replace v by its quasi-continuous
representative.

Here are two consequences of Theorem 7 which will be used in the sequel. The
first one was originally established by Dupaigne-Ponce [DP] and it is equivalent to
(1.2):

Corollary 8 (“Inverse” maximum principle). Let v € L'(Q) be such that Av
1s a measure. If v > 0 a.e. in (), then

(—Av). >0 in Q.

Another corollary is the following
Corollary 9. Let u € L'(Q) be such that Au is a measure. Then,

Here, Ty (s) = k — (k — s)™ for every s € R.
Proof. Let w CC €. Applying (1.1) and (1.2) to v = k — u, yields
(ATk(u))d = —(AU+)d S _X[UZO} (A"U)d = X[ugk} (Au)d inw

and
(ATy(u))e = (Au)f  in w.

Combining these two facts, we conclude that
ATy (u) < Xu<k (Au)a + (Auw)d  in D' (w).

Since w CC () was arbitrary, the result follows.

Let u* be the largest subsolution of (0.1), and define u* € M(Q2) by (0.13). We
have the following
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Lemma 1. The reduced measure pu* satisfies
* > —
H = fd — He -

Proof. Let (uy) be the sequence constructed in Proposition 1. By Corollary 9, we
have

(1.3) ATy (un) < X, <k (Aun)a + (Auy)d  in D(Q).
Since u,, satisfies (0.10),

(Aup)a = gn(tn) — pa  and  (Auy)e = —fic.
Inserting into (1.3) gives

— ATy (un) > Xjun <k {#d — gn(tn)} — pe
> Xfun<kiftd = gn(Te(un)) — pe - in D'(Q).

For every n > 1 we have v* < u,, < ui, so that

[u* < k] D [uy, < k] D [up <k

and
Xlun <kJHd = Xfuy <k g — X[ur<k]Hq -
Thus

By dominated convergence,
In(Ti(un)) — g(Te(u*)) in LY(Q), asn — oo.
As n — oo in (1.4), we get
—AT(u") + g(Th(u")) = Xjuy<kfid — Xu<kiptg — He  in D'(Q).
Let k — oo. Since both sets [u; = +o0] and [u* = 400] have zero capacity (recall

that u; and u* are quasi-continuous and, in particular, both functions are finite
q.e.), we conclude that

Pt = —Aut 4 g(u) > pl = pg = pe = pa — pe -
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This establishes the lemma.

Proof of Theorems 1 and 2. 1t follows from (0.14) and Lemma 1 that
pd — pe < pt < p

By taking the diffuse parts, we have

(1.5) (K*)a = pa.

Thus p — p* = (w — p*)c, which proves Theorem 2.

We now turn to the proof of Theorem 1. Let A be a good measure < u. We
must prove that A < p*. Denote by v the solution of (0.1) corresponding to A,

—Av+g(v) =X in Q,
{ v=0 on 0.
By (1.5),
Ad < pa = (1")a-

Since u* is the largest subsolution of (0.1), we also have

v<u* a.e.
By the “inverse” maximum principle,

Ac = (-Av)c < (=AuT)e = (17)e-

Therefore A < p*. This establishes Theorem 1.

The following lemma will be used later on:

Lemma 2. Given a measure y € M(Q), let (uy,) be the sequence defined in Propo-
sition 1. Then,

gn(un) = g(u) + (u— p*) = g(u*) + (p— p*)e  weak® in M(S).

Proof. Let ¢ € C2(2). For every n > 1, we have

/gn<un)<=/unAg+/ch.

By Proposition 1, u,, — u* in L'(Q). Thus,

Jim I (un)¢ = / *A<+/Cdﬂ / (U*)<+/Qé“d(/~b—/~b*)-
In other words,

gn(un) = g(u*) + (u— p*)  weak™ in M(€),
Since (u*)q = pq4, the result follows.
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2. Good measures. Proofs of Theorems 4, 6.

We start with

Lemma 3. If  is a good measure with solution u, and wu, is given by (0.10), then

Up — u  in Wy (Q) and  gn(un) — g(u) in L'(Q).

Proof. We have
~Aup +gn(uy) =p and  —Au+g(u) =p in (CF)*,

so that
_A(un - u) + gn(un) - g(u) =0 in (C§>*

Thus
_A(un - u) + gn(un) - gn(u) = g(u) - gn(“) in (Cg)*

Hence, by standard estimates (see Proposition B.3),

/lgnun gn |</|g |_>O
/|gn<un>— |<2/|g )| = 0.
Q

Thus

In other words, g, (u,) — g(u) in L1(Q). This clearly implies that A(us,

in L1(Q) and thus u,, — u in Wy (Q).
We now turn to the
Proof of Theorem 4. Let uj p,ua,, € L'(Q2) be such that

_Aui,n + gn(ui,n) = p; in Q,
{ u;n, =0 on 0f),

for + = 1,2. Since ps < pq, we have

Uz p <UL,  a.e.

—u) —0

Thus gn(uz.n) < gn(uin) — g(u}) strongly in L' by Lemma 3. Hence g, (uz,) —

g(u3) strongly in L' and we have
—Auz +g(u3) = p2 in (CF)",
i.e., o is a good measure.

A simple property of G is
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Proposition 2. The set G of good measures is closed with respect to strong con-
vergence in M(S2).

Proof. Let (ug) be a sequence of good measures such that pp — p strongly in
M(Q). For each k > 1, let uy be such that

—Auy + g(ug) = pg  in Q,
up =0  on 9.

By standard estimates (see Corollary B.1),

(2.1) /Q 9Curs) — gluna)| < it — il an
and
(2'2) /S;lukl - u/f2| < CHA<uk1 - ng)HM < QCHNM - WmHM'

By (2.1) and (2.2), both (uy) and (g(ux)) are Cauchy sequences in L(2). Thus,
there exist u,v € L1(Q) such that

ur —u and g(ug) — v in L'(Q).
In particular, v = g(u) a.e. It is then easy to see that
—Au+g(u) =p in (C2)*.
Thus p is a good measure.

We next present a result slightly sharper than Theorem 6:
Theorem 6'. Let u € M(QQ). The following conditions are equivalent:
(a) pu is a good measure;
(b) u™ is a good measure;
(¢) pe is a good measure;
(d) u = fo—Avg in D'(Q), for some fo € L' and some vy € L' with g(vo) € L*.

Proof. (a) = (b). Since p and 0 are good measures, it follows from Corollary 4
that pu* = sup {u, 0} is a good measure.
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(b) = (a). Since p™ is a good measure and p < pt in Q, it follows from
Theorem 4 that p is a good measure.

(b) = (c). Note that we always have
(2.3) pe < pt.

Indeed, (1 — pic)a = (1F)a > 0 and (u" — pic)e = pd — pe > 0.

[Here and in the sequel we use the fact that (u*)q = (uq)™ and (u¥)e = ()™
which will be simply denoted p} and ug].

Since p™ is a good measure, it follows from (2.3) and Theorem 4 that . is also a
good measure.

(c) = (b). It is easy to see that, for every measure A,
(2.4) AT = sup { g, A\ }-

Assume p. is a good measure. Since pq is diffuse, Corollary 2 implies that 4 is also
a good measure. By Corollary 4 and (2.4), u™ = sup {1q, ptc } is a good measure as
well.

(a) = (d). Trivial.
(d) = (c). We split the argument into two steps.
Step 1. Proof of (d) = (c) if vg has compact support.
Since p = fo — Avg in D’(2) and vy has compact support, we have

M:fo—AUO in (Cg)*
Thus, p— fo+g(vo) is a good measure. Using the equivalence (a) < (c), we conclude

that pe = [p— fo + g(vo)]C is a good measure.

Step 2. Proof of (d) = (c¢) completed.
By assumption,
pu= fo—Avg inD'(Q).

In particular, we have Avy € M(Q), so that vy € W'lif(Q), Vp < 25 (see Theo-
rem B.1 below). Let (p,) C C°(£2) be such that 0 < ¢, < 1in Q and ¢, (z) =1
if d(z,0Q) > L. Then

Onpt = frn — A(@nUO) in D/(Q)7

where
fn = @nfo+2Vuo - Vo + v, € L'(Q).
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Moreover, since 0 < g(pnv9) < g(vg) a.e., we have g(p,v9) € L*(R2). Thus, by
Step 1,
Pnptc = (Pnpt)c €G Yn > 1.

Since ppte — pe strongly in M(Q) and G is closed with respect to the strong
topology in M(€2), we conclude that pu € G.

We may now strengthen Corollary 7:

Corollary 7. We have

where M4(Q2) denotes the space of diffuse measures.

Proof. Let u € G. By Theorem 6', p. is a good measure. Thus, for any v € Mg,
(1 + v)e = pc is a good measure. It follows from the equivalence (a) < (c) in the
theorem above that u+v € G.

Proposition 3. Assume
(2.5) g(2t) < C(g(t)+1) Vt=>0.

Then the set of good measures is a conver cone.

Remark 7. Assumption (2.5) is called in the literature the As-condition. It holds if
g(t) =tP for t > 0 (any p > 1), but (2.5) fails for g(t) = e’ — 1. In this case, the set
of good measures is not a cone. As we will see in Section 8, Example 5, if N = 2,
then for any a € Q2 we have ¢d, € G if ¢ > 0 is small, but ¢d, ¢ G if ¢ is large.

Proof of Proposition 3. Assume pu € G. Clearly, it suffices to show that 2u € G.
Let u be the solution of

—Au+g(u) =p in Q,
{ u=0 on 0.

Thus,
21 = —A2u) + 2g(u) in D'(Q).

By (2.5), g(2u) € L'. We can now invoke the equivalence (a) < (d) in Theorem 6’
to conclude that 2u € G.

3. Some properties of the mapping pu— p*.

We start with an easy result, which asserts that the mapping p — p* is order
preserving:
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Proposition 4. Let p,v € M(Q). If p < v, then pu* < v*.

Proof. Since the reduced measure p* is a good measure and p* < p < v, it follows
from Theorem 1 that p* < v*.

Next, we have

Theorem 8. If py, ue € M() are mutually singular, then

(3.1) (1 4 p2)™ = ()" + (p2)™

*

Proof. Since p1 and po are mutually singular, (u1)* and (u2)* are also mutually

singular (by (0.16)). In particular, we have

(3.2) (1)* + (p2)* < [(u1)* + (p2)*] " = sup { (u1)*, (u2)*}.

By Corollary 4, the right-hand side of (3.2) is a good measure. It follows from
Theorem 4 that (11)* 4+ (u2)* is also a good measure. Since

()" + (p2)* < pa + pe,
we conclude from Theorem 1 that
(3.3) ()" + (p2)™ < (1 + p2)™

We now establish the reverse inequality. Assume ) is a good measure < (p7+pu2).
By Radon-Nikodym, we may decompose A in terms of three measures:

A= Ao+ A1+ Ao,

where )\ is singular with respect to |u1| + |p2l|, and, for i = 1,2, A; is absolutely
continuous with respect to |x;]. Since Ao, A1, A2 < A1, each \;, 7 =0, 1,2, is a good
measure. Moreover, A\ < p1 + po implies

A <0, A <pr and Az < po.
Thus, in particular, \; < (p;)* for i = 1,2. Therefore,
A=+ A1+ Ao < ()" + (p2)™.
Since A was arbitrary, we have
(3.4) (11 + p2)" < (pa)" + (p2)"
Combining (3.3) and (3.4), the result follows.

Here are some consequences of Theorem 8:
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Corollary 10. For every p € M(R2), we have

(3.5) (1 )a = (pa)" =pa and (1")e = (pe)"
Also,
(3.6) (w)F =W and (u*)” =p".

Proof. Since pq is a good measure (see Corollary 2), we have (uq)* = pq-
Theorem 8,

p = (pa+ pe)” = (pa)” + (pe)™

Comparison between the diffuse and concentrated parts gives (3.5). Similarly,

since every nonpositive measure is good. This identity yields (3.6).
More generally, the same argument shows the following;:

Corollary 11. Let € M(QQ). For every Borel set E C €, we have

(3.7) (ule)” =u" e

19

By

Here u| g denotes the measure defined by p|g(A) = u(A N E) for every Borel set

AcC.
For simplicity, from now on we shall write iy = (*)a and pf = (1*)e.
The following result extends Corollary 7’:

Corollary 12. For every p € M(2) and v € Mq4(Q2),

(h+v) =p" +v

Proof. By Theorem 8 and Corollary 2, we have

(B+v)" = pe+ (pa +v)" = pe + pa+v = (ug +p3) +v=p" +v

Next, we have
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Theorem 9. Given u,v € M(Q), we have

(3.8) [inf {z,v}]" = inf {", 0"},
(3.9) [sup {1, v}]" = sup {u", "},
Proof.

Step 1. Proof of (3.8).
Clearly,

inf {*,v*} < [inf {u,y}}*.

Assume A is a good measure < inf {u,v}. By Theorem 1, A < p* and A < v*.
Thus, A <inf {g*,v*}, whence

[inf {y, v}] T <inf {u*,v*}).

Step 2. Proof of (3.9).

Applying the Hahn decomposition to u — v, we may write ) in terms of two
disjoint Borel sets F1, Fy C €2, 0 = E1 U Es, so that

uw>v inkE; and v>pu in Es.
By Proposition 4 and Corollary 11,
pole= (ple)" =2 wle)" =v' e
Thus, p* > v* on F;. Similarly, v* > u* on E5. We then have
(310)  sup{uv} = plptvle, and sup{u*,v*} = pLm+ e,
On the other hand, by Theorem 8 and Corollary 11,
(3.11) (ble,+vle)” = (ule)" + Wle)" =o' le+v" 6,

Combining (3.10) and (3.11), we obtain (3.9).

We now show that p +— p* is non-expansive:
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Theorem 10. Given p,v € M(Q2), we have

(3.12) Wt =v < fp—vl.
More generally,

(3.13) (w"=v)T < (p-v)"

Proof. Clearly, it suffices to show that (3.13) holds. We split the proof into two
steps.

Step 1. Assume v < pu. Then we claim that
(3.14) pwr—=vt<pu-—w.

Indeed, let v, be the solution of (0.10) corresponding to the measure v. Since
v < u, we have
Up < U, ae, Vn>1.

Recall that g,, is nondecreasing; thus,

In (V) < gn(uy,) ae.
Let n — o0o. According to Lemma 2, we have

9(0") + (v = 1")e < g(u") + (1 — *)e.

Taking the concentrated part on both sides of this inequality yields

(v = v")e < (11— p)e.
Since vq = v and puq = p; (by Corollary 2), we have

v—v" <p—pt,

which is (3.14).

Step 2. Proof of (3.1) completed.
Recall that

(3.15) sup {p, v} =v + (n—v)".
Applying the previous step to the measures v and sup {u, v}, we have
(3.16) [ sup {4, V}]* — v <sup{pv}-—v=(u-v)t".

By (3.9), (3.15) and (3.16),

(u—v)* > [sup{p,v}]" —v* =sup{p*,v"} —v* = (u" —v")".

Therefore, (3.13) holds.
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4. Approximation of p by p, * p.

Let (p,) be a sequence of mollifiers in R such that supp p,, C B /n for every
n > 1. Given pu € M(Q), set

Hn = Pn * W,
that is,

(4.1) fin () = /Qpn(x —y)duly) VzeRY.

[The integral in (4.1) is well-defined in view of Proposition C.1 in Appendix C
below. Here, we identify y with i € [C(Q)]" defined there].

Let u,, be the solution of

(4.2)

—Au, + g(un) = pp in €,
{ u, =0  on 0.

Theorem 11. Assume in addition that g is convex. Then u, — u* in L'(Q),
where u* is given by Proposition 1.

Proof.
Step 1. The conclusion holds if x is a good measure.

In this case, there exists u = u* such that

(4.3) { —Au+g(u)=p in Q,

u=0 on 0.
Let w CC Q. For n > 1 sufficiently large, we have
—A(pp *u) + pp*g(u) = p, inw.
Thus, using the convexity of g,
Alpn *u—up) = pp * g(u) — g(un) = g(pn *u) — g(up) in w.
By the standard version of Kato’s inequality (see [K]),
(4.4) Alpn *u—un)™ > {g(pn *xu) — g(un)}+ >0 in D'(w).

Since

/|Aun| <Mpnlm <C V1,
Q
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we can extract a subsequence (uy, ) such that
Up, — v in L1(Q),
for some v € Wy'' (Q). As ny — oo in (4.4), we have
~A(u—v)T <0 inD(w).
Since w CC () was arbitrary,
(4.5) ~A(u—v)T <0 inD(Q).
On the other hand,
(4.6) (u—v)t e Wy'(Q).
From (4.5), (4.6) and the weak form of the maximum principle (see Proposition B.1)

we deduce that
(u—v)tT <0 ae.

Therefore,
v>Uu  a.e.

By Fatou’s lemma, v is a subsolution of (0.1); comparison with (4.3) yields,
v<u a.e.

We conclude that
v=1u a.e.

Since v is independent of the subsequence (uy, ), we must have
up, — u=u* in LY(Q).

Step 2. Proof of Theorem 11 completed.

Without loss of generality, we may assume that
U, — v in L' ().
By Fatou, once more, v is a subsolution of (0.1). Proposition 1 yields

v<u* a.e.
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Let u; denote the solution of

—Auy + g(uy,) = pp xp”  in Q,
uy, =0 on 0f.

By the previous step,
ut —u* in LY(Q).

On the other hand, we know from the maximum principle that
*
U, < U, a.e.

Thus, as n — oo,
u <wv a.e.

Since v < u* a.e., the result follows.

Open problem 1. Does the conclusion of Theorem 11 remain valid without the
convexity assumption on g ?

5. Further convergence results.

We start with the following
Theorem 12. Let (f,) C L(Q) and f € L'(Q). Assume
(5.1) fn— f weakly in L.

Let uy, (resp. w) be the solution of (0.1) associated with f,, (resp. f). Then u, — u
in L1(Q).

Proof. By definition,
—Au, +g(up) = f, and —Au-+g(u)=f in (C’g)*.

Using a device introduced by Gallouét-Morel [GM] (see also Proposition B.2 below),
we have, for every M > 0,

[ s [ 1n

[[un]=M] [[un]=M]

Thus

62 [w= [+ [ < [ inlseonis,

[un|=2M]  [lup|<M]  [[un|2M]
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On the other hand, ||Au,|/z1 < C implies ||uy||r < C, and thus
C
W > M) < =
meas[|u | > ]_ i

From (5.1) and a theorem of Dunford-Pettis (see, e.g., [DS, Corollary IV.8.11]) we
infer that (f,) is equi-integrable. Given 6 > 0, fix M > 0 such that

(5.3) [ ini<s vz

[[un]>M]
With this fixed M, choose |E| so small that
(5.4) g(M)|E| < 6.

We deduce from (5.2)—(5.4) that g(u,) is equi-integrable.

Passing to a subsequence, we may assume that u,, — v in L*(Q2) and a.e., for some
v € LY(Q). Then g(u,,) — g(v) a.e. By Egorov’s lemma, g(u,,) — g(v) in L*(€).
It follows that v is a solution of (0.1) associated to f. By the uniqueness of the
limit, we must have u,, — u in L'(Q).

Remark 8. Theorem 12 is no longer true if one replaces the weak convergence
fn — fin L', by the weak* convergence in the sense of measures. Here is an
example:

Example 1. Assume N > 3 and let g(t) = (t7)? with ¢ > ~5. Let f =1in Q.
We will construct a sequence (fx) in C2°(€2) such that

(5.5) fr = f i M(),

and such that the solutions uy, of (0.1) corresponding to fj converge to 0 in L'(Q).
Let (u) be any sequence in M(£2) converging weak* to f, as k — oo, and such that
each measure py is a linear combination of Dirac masses. (For example, each puy
can be of the form |Q|M =15 4,., where the M points a; are uniformly distributed
in Q). Recall that for u = d,, the corresponding u* in Proposition 1 is = 0 (see
[B4] or Theorem B.6 below). Similarly, for each uy, the corresponding u* is = 0.
Set Ay, = pn * pi, with the same notation as in Section 4. Let wu, ; denote the
solution of (0.1) relative to h,, ;. For each fized k we know, by Theorem 11, that
Up k — 0 strongly in L*(2) as n — oo. For each k, choose Ny > k sufficiently large
so that ||un, kllr < 1/k. Set fi = hn, i, so that uy = up,  is the corresponding
solution of (0.1). It is easy to check that, as k — oo,

fr >f=1 in M(Q), but up—0 in L'(Q).
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Our next result is a refinement of Theorem 12 in the spirit of Theorem 6. Let
we M(Q) and let (uy,) be a sequence in M(€2). Assume that

(5.6) w=f—Av in (C’g)*,

where f € LY, f, € L', ve L', v, € L, g(v) € L', and g(v,) € L.

By Theorem 6 we know that there exist v and u,, solutions of

(5.8) —Au+gu)=p nQ, w=0 ondQ,
—Auy + g(up) = pp, inQ, u, =0 on JN.

Theorem 13. Assume (5.6)—(5.9) and moreover

(5.10) [nllm < C,
(5.11) fn— f weakly in L',
(5.12) v, — v in L' and g(v,) — g(v) in L.

Then u, — u in L*(£2).

Proof. We divide the proof into two steps.
Step 1. Fix 0 < a < 1 and let u(«), uy,(a) be the solutions of

(5.13) —Au(a) + glu(e)) =ap  inQ, wula)=0 on 09,
(5.14) —Aup(a) + g(up (@) = ap, inQ, uy(a) =0 on Q.

Then u, (o) — u(a) in L1(Q).

Note that u(«) and u,(«) exist since ap = af — A(aw) and g(av) < g(v), so
that g(av) € L', and similarly for au,,. We may then apply Theorem 6 once more.
For simplicity we will omit the dependence in a and we will write u, u,, instead of
u(a), uy () (recall that in this step « is fized). Since

[Atn| a0 < 20| pin]l e < C,

we can extract a subsequence of (i,) converging strongly in L*(2) and a.e. Let
w e Wy (Q) be such that @,, — w in L*(Q) and a.e. We will prove that w
satisfies (5.13), and therefore, by uniqueness, w = @. Since w is independent of the
subsequence, we will infer that (@, ) converges to 4, which is the desired conclusion.
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We claim that
(5.15) g(uy,) is equi-integrable.

To establish (5.15) we argue as in the proof of Theorem 12. From (5.7) and (5.14)
we see that

(5.16) ~ Aty — avy) + [g(i) — g(av,)] = h, in (CF),
with
(5.17) hn = af, — glav,).

Using (5.11) and (5.12) we see that
(5.18) (hy) is equi-integrable.
From (5.16) and Proposition B.2 we obtain (as in the proof of Theorem 12) that,
for every M > 0,
(5,19 Y R I
[[@n —cvn |>M] [[En —cvn|>M]
On the other hand, for any Borel set E of €2, we have

(5.20) /E 9(iin) = /A 9lia) + /B 9(iin) + /C (i),

n

where

To handle the integral on A,,, write
[oa@y< [ et - g@n)l+ [ g
A, E
[|Tn —ovn|>M]
Thus, by (5.19),

(5.21) / 9lin) < [l [ gton).

[|tn—avn|>M]
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Next, on B,,, we have
Up < M + av,, < M + oy,

and thus
P < M
Un
l—«
Therefore
M
5.22 i) < <—>E
(522 [ s <o(72, )1

Finally we have

(5.23) /C i) < /E g(vn).

Combining (5.20)—(5.23) yields
M
.24 Uy) < nl +2 n — )| E|.
e [ [ 2 [ g +e(Z5)E
[lin—avn|>M]

But ||@, — av,||zr < C and therefore

(5.25) meas [|U, — av,| > M| < %

Given 0 > 0, fir M > 0 sufficiently large such that

|hn| <0 VYn2>1

[|Tn —cvn|>M]

(here we use (5.18) and (5.25)). With this fixed M, choose |E| so small that

M
2 . = )IE| <6 > 1.
ot +a(=5) I <8 Vo

This finishes the proof of (5.15).

Since ¢(@,) — g(w) a.e., we deduce from (5.15) and Egorov’s lemma that
g(@,) — g(w) in L'. We are now able to pass to the limit in (5.14) and con-
clude that w satisfies (5.13), which was the goal of Step 1.

Step 2. Proof of the theorem completed.
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Here the dependence on « is important and we return to the notation u(a) and
up (). From (5.8) and (5.13) we deduce that

(5.26) 1A (u(a) —u)llm < 2(1 = a)lullm

and similarly, from (5.9) and (5.14), we have

(5.27) [A(un (@) = un)lam < 2(1 = @) |pnllp < C(1 = ).

Estimates (5.26) and (5.27) yield

(5.28) [u(a) —ullLr + [lun(a) = unllr < C(1 - o),

with C' independent of n and «. Finally we write

(5:29)  flun —ullpr < flu(a) = ullzr + fun(a) = unllLr + lun(a) —u(a)lL:

Given € > 0, fix a < 1 so small that

(5.30) C(l—a)<e

and then apply Step 1 to assert that

(5.31) [un (@) —u(@)|zr <& VYn =N,

provided N is sufficiently large. Combining (5.28)—(5.31) yields
ltn — [ <2 ¥n >N,

which is the desired conclusion.

6. Nonnegative measures which are good for every g must be diffuse.

Let h : [0,00) — [0,00) be a continuous nondecreasing function with h(0) = 0.
Given a compact set K C €2, let

capp ,(K) = inf{/ h(JAg]); p € CF(02), 0<p <1, and p =1 on K},
Q

where, as usual, C2°(€Q) denotes the set of C'*°-functions with compact support in
Q.
We start with
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Proposition 5. Assume

t
(6.1) lim # =400 and ¢"(s)>0 fors>D0.

t—o0

If i is a good measure, then pt(K) = 0 for every compact set K C Q such that
capp 4+ (K) = 0.

Here, g* denotes the convex conjugate of g, which is finite in view of the coercivity
of g. Note that if ¢’(0) = 0, then ¢g*(s) > 0 for every s > 0.

Proof. Since p is a good measure, u* is also a good measure. Thus,
pt = A+ g(v) i (CR)

for some v € L1(2), v > 0 a.e., such that g(v) € L*(f).
Let ¢, € C(92) be such that 0 < ¢, < 11in 2, ¢, =1 on K, and

/g*(!Asonl) — 0.
Q

Passing to a subsequence if necessary, we may assume that
g (|Ap,|) = 0 ae. and g*(JAp,|) <G € LY Q) VYn>1.
Since ¢g*(s) > 0 if s > 0, we also have
On, |Apn| — 0 ace.

For every n > 1,

(6.2) pt(K) S/andfz/ﬂ[g(v)son—mson]

Note that
‘g(v)@n — vA<pn| —0 a.e.

and
l9(v)on — vAP,| < 29(v) + g* (|Apn|) < 29(v) + G € L1(Q).

By dominated convergence, the right-hand side of (6.2) converges to 0 as n — oo.
We then conclude that put(K) = 0.

As a consequence of Proposition 5 we have



NONLINEAR ELLIPTIC EQUATIONS WITH MEASURES REVISITED 31

Theorem 14. Given a Borel set ¥ C Q with zero H'-capacity, there exists g such
that

w*=—u~  for every measure p concentrated on 3.

In particular, for every nonnegative u € M(Q) concentrated on a set of zero H*-
capacity, there exists some g such that p* = 0.

Proof. Let ¥ C Q be a Borel set of zero H'-capacity. Let (K,) be an increasing
sequence of compact sets in ¥ such that

;ﬁ(z\UKn) — 0.

For each n > 1, K,, has zero H!-capacity. By Lemma E.1, one can find 1,, € C°(Q)
such that 0 <, <1 in (), ¥, = 1 in some neighborhood of K,, and

1
/|A¢n| <Ll s
Q n

In particular, A, — 0 in L'(Q2). Passing to a subsequence if necessary, we may
assume that

A, — 0 ae and |AY,|<GeL'(Q) Vn>1.

According to a theorem of De La Vallée-Poussin (see [DVP, Remarque 23| or [DM,
Théoréeme 11.22]), there exists a convex function h : [0,00) — [0,00) such that
h(0) =0, h(s) > 0 for s > 0,

lim @ = +o0o, and h(G)c L*(Q).

t—o0

By dominated convergence, we then have h(|Av,|) — 0 in L*(2). Thus,
(6.3) capp 5 (Kn) =0 Vn > 1.

Let g(t) = h*(t) if t > 0, and g(¢t) = 0 if ¢t < 0. By duality, h = ¢* on [0, c0).
Let u € M(2) be any measure concentrated on ¥. By Proposition 5, (6.3) yields

(b)) (Kp) =0 V¥n>1,

where the reduced measure p* is computed with respect to g. Thus, (u*)*(2) = 0.
Since p is concentrated on 3, we have (u*)™ = 0. Applying Corollary 10, we then
get
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which is the desired result.
We may now present the

Proof of Theorem 5. Assume p € M(2) is a good measure for every g. Given a
Borel set ¥ C Q with zero H!'-capacity, let A = u™|s. In view of Theorem 14,
there exists g for which A* = 0. On the other hand, by Theorems 4 and 6, \ is a
good measure for g. Thus, A = A* = 0. In other words, u*(X) = 0. Since ¥ was
arbitrary, u™ is diffuse. This establishes the theorem.

We conclude this section with the following

Open problem 2. Let g : R — R be any given continuous, nondecreasing function
satisfying (0.5). Can one always find some nonnegative p € M(Q) such that p is
good for g, but u is not diffuse?

After this paper was finished, A.C. Ponce [P] has given a positive answer to the
above problem.
7. Signed measures and general nonlinearities g.

Suppose that ¢ : R — R is a continuous, nondecreasing function, such that
g(0) = 0. But we will not impose in this section that ¢g(t) = 0 if ¢ < 0. We shall
follow the same approximation scheme as in the Introduction. Namely, let (g,,) be
a sequence of nondecreasing continuous functions, g, : R — R, g,,(0) = 0, satisfying
(0.8), such that both (g;F) and (g, ) verify (0.7), and

gt 19T, g, 19 (t) VteR asn | oo.
Let € M(2). For each n > 1, we denote by u,, the unique solution of

—Au, + g, (u,) = in €,
(7.1) { gn(un) =

u, =0 on 9.

First a simple observation:

Lemma 4. Assume pu > 0 or p < 0. Then there exists u* € L'(Q) such that
Uy — u* in LY(Q). If u > 0, then u* > 0 is the largest subsolution of (0.1). If
p <0, then u* < 0 is the smallest supersolution of (0.1). In both cases, we have

(72) | [ wad < 2l v e CG@)
and

(7.3) /Q )] < Il
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Proof. If u > 0, then u, > 0 a.e. In particular, g,(u,) = g (u,) for every n > 1.
Since (g;) satisfies the assumptions of Proposition 1, we conclude that u,, — u* in
L(€), where u* > 0 is the largest subsolution of (0.1).

If 4 <0, then u, <0, so that w,, = —u,, satisfies

_Awn + gn(wn) =K in Q’
{ wy, =0 on 01,

where g, (t) = g, (—t), Vt € R. Clearly, the sequence (g, ) satisfies the assumptions
of Proposition 1. Therefore, u, = —w, — —w* = u* in L1(Q). It is easy to see
that u* < 0 is the smallest supersolution of (0.1).

Given p € M(2) such that g > 0 or p <0, we define p* € M(Q) by
(7.4) p* = —Au* +g(u*) in (C3)*.

The reduced measure p* is well-defined because of (7.2) and (7.3). It is easy to see
that

(a) if p >0, then 0 < p* < p;
(b) if <0, then p < p* <O0.

We now consider the general case of a signed measure p € M(Q). In view of
(7.4), both measures (u*)* and (—u~)* are well-defined. Moreover,

—pu < (=pT) <0< () <t

The convergence of the approximating sequence (u,,) is governed by the following:

Theorem 15. Let u,, be given by (7.1). Then, u, — u* in L*(), where u* is the
unique solution of

(7.5)
uw =0 on O0N.

{ —Au* + g(u*) = (W) + (—p7)" in Q,

Proof. By standard estimates, ||Auy||pm < 2||p]| . Thus, without loss of generality,
we may assume that for a subsequence, still denoted (uy,), u, — u in L'(Q) and
a.e. We shall show that u satisfies (7.5); by uniqueness (see Corollary B.1), this
will imply that u is independent of the subsequence.

For each n > 1, let v,, v, be the solutions of

{ —Av, + gn(vn) = /UJ+ in €2,

7.6
(7.6) v, =0 on 012,



34 HAIM BREZIS(1):(2), MOSHE MARCUS®) AND AUGUSTO C. PONCE®)

and

(7.7)

~Ab, + g (0,) =p  inQ,
Up, =0 on 0f),

so that v, > 0 a.e., v, | v* and ¥, | ©* in L'(Q)). By comparison (see Corol-
lary B.2), we have

Thus,

(7.8) 9t () < g (un) < gy (0n) = gnlvn) ace.

By Lemma 2, we know that

Here, both reduced measures p* and (u+)* are computed with respect to the non-
linearity ¢g*; in particular, (see Corollary 10)

(7.9) po—pt = pt = ()"
We claim that
(7.10) g (un) = g (u) + ™ — (u)".

This will be a consequence of the following

Lemma 5. Let a,,b,,c, € L*(Q) be such that
an, <b, <c¢, ae.

Assume that a, — a, b, — b and ¢, — ¢ a.e. in Q for some a,b,c € L1 (Q). If
(Cn — an) = (¢ — a) weak* in M(Q), then

(7.11) (cn —by) = (c—b)  weak® in M(Q).
Proof. Since

(7'12) 0 S (Cn - bn) S (Cn - an) a.c.,
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the sequence (¢, — b,,) is bounded in L(£2). Passing to a subsequence if necessary,
we may assume that there exists A € M(2) such that

(Cn —by) = A
By (7.12), we have 0 < A < (¢—a). Thus, X is absolutely continuous with respect to
the Lebesgue measure. In other words, A € L*(Q2). Given M > 0, we denote by Sy,
the truncation operator Sps(t) = min {M, max {t,—M}}, Vt € R. By dominated
convergence, we have
Snr(an) — Syr(a)  strongly in L'(Q),
and similarly for Sy, (b,) and Sys(c,). Since

0< [(Cn — Sm(cn)) — (b — SM(bn»} < [(Cn = Smlen)) — (an — SM(an))] a.c.,
as n — oo we get
0 < A= (Sale) = Sn(b) < [(c— Sm(e)) = (a— Su(a)] ae.

Let M — oo in the expression above. We then get A = (¢ — b). This concludes the
proof of the lemma.

We now apply the previous lemma with a,, = g} (0,), b, = g,F (u,) and ¢, =
gn(vy). In view of (7.8) and (7.9), the assumptions of Lemma 5 are satisfied. It
follows from (7.11) that

(7.13) n(vn) = gt (un) = g(v*) — g7 (u).
Thus,

g:(un) = gn(vn) — [gn(vn) - gi(un)} = g+(u) + ,U+ - (N+)*a
which is precisely (7.10). A similar argument shows that

(7.14) G (un) = g~ (W) + 5~ + (—p7)"
We conclude from (7.10) and (7.14) that
(7.15) gn(un) = g(u) + p— (W) + (—p7)*].

Therefore, u satisfies (7.5), so that (7.5) has a solution u* = w. By uniqueness, the
whole sequence (uy,) converges to u* in L(2).

Motivated by Theorem 15, for any u € M(2), we define the reduced measure
p* by
(7.16) pr= ()T ()"
[This definition is coherent if 1 is either a positive or a negative measure].

One can derive a number of properties satisfied by p*. For instance, the state-
ments of Theorems 8-10 remain true. Moreover,
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Theorem 2'. There exists a Borel set ¥ C Q with cap (X) = 0 such that

= p*[(\E) = 0.

8. Examples.

We describe here some simple examples, where the measure p* can be explicitly
identified. Throughout this section, we assume again that g(t) = 0 for ¢ < 0.
Example 2. N =1 and g is arbitrary.

This case is very easy since every measure is diffuse (recall that the only set
of zero capacity is the empty set). Hence, by Corollary 2, every measure is good.
Thus, u* = p for every pu.

Example 3. N >2and g(t) =tP,t >0, with 1 <p < %

In this case, we have again p* = p since, for every measure p, problem (0.1)
admits a solution. This result was originally established in 1975 by Ph. Bénilan
and H. Brezis (see [BB, Appendix A], [B1], [B2], [B3], [B4] and also Theorem B.5
below). The crucial ingredient is the compactness of the imbedding of the space
{ue Wy Au e M}, equipped with the norm ||lul[w1.1 + [|Aufaq, into L7 for
every ¢ < 75 (see Theorem B.1 below).

Example 4. N >3 and ¢g(t) =t?, t > 0, with p > %
In this case, we have

Theorem 16. For every measure u, we have

(8.1) pt=p— (p2)*

Y

where p = py + po s the unique decomposition of p (in the sense of Lemma A.1)
relative to the W2’p,-capacity.

Proof. By a result of Baras-Pierre [BP] (already mentioned in the Introduction) we
know that a measure v > 0 is a good measure if and only if v is diffuse with respect
to the Wz’p/—capacity.

Set

(82) fi=p—(u2)" = —(p2)” and 7= (u2)".
We claim that

(8.3) (W)*=p and ()" =0.
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Clearly, ()T = (u1)". From the result of Baras-Pierre [BP], we infer that (u1)™" is
a good measure. By Theorem 4, [i is also a good measure. Thus, (f1)* = ji. Since
7 is a nonnegative measure concentrated on a set of zero W?2P-capacity, it follows
from [BP] that (#)* < 0. Since (7)* > 0, we conclude that (8.3) holds.
Applying Theorem 8, we get

pr=(i+o) = (1) + @) =p=p— ()",
which is precisely (8.1).

Remark 9. In this example we see that the measure p — p* is concentrated on a set
Y. whose W?2P -capacity is zero. This is a better information than the general fact
that u — u* is concentrated on a set ¥ whose H!-capacity is zero.

Example 5. N =2 and g(t) =e' — 1, ¢ > 0.
In this case, the identification of p* relies heavily on a result of Vézquez [Va).

Theorem 17. Given any measure p, let

H= p1 T+ 2

where po is the purely atomic part of u (this corresponds to the decomposition of
in the sense of Lemma A.1, where Z consists of countable sets). Write

(84) H2 = Z O,/Z'(Sai
with a; € Q distinct, and ) |a;| < co. Then

(8.5) we=pu— Z ; — 4m) "

Proof. By a result of Vazquez [Va], we know that a measure v is a good measure
if and only if v({z}) < 47 for every z € Q. (The paper of Vazquez deals with the
equation (0.1) in all of R? but the conclusion, and the proof, are the same for a
bounded domain).

Clearly, u1({z}) = 0, Va € Q. From the result of Vazquez [Va] we infer that p
is a good measure. Thus,

(8.6) (11)* = pr.
Let a € Q and a € R. It is easy to see from [Va] that

(8.7) (dg)* = min {e, 47} 0q.
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An induction argument applied to Theorem 8 and the continuity of the mapping
W — p* show that

(8.8) pr= ()" A+ (p2)* = ()" + Z iba, )

By (8.6)—(8.8), we have

(8.9) w —ul—l—me{al,@r}é = — Z i — 4m) 0,

This establishes (8.5).

We conclude this section with two interesting questions:

Open problem 3. Let N = 2 and g(t) = (¢!’ — 1), t > 0. Is there an explicit
formula for p* 7

Open problem 4. Let N > 3 and g(t) = (e — 1), t > 0. Is there an explicit
formula for p* 7

A partial answer to Open problem 4 has been obtained by Bartolucci-Leoni-
Orsina-Ponce [BLOP]. More precisely, they have established the following:

Theorem 18. Any measure v such that p < 4rHN =2 is a good measure.

Here, H™V =2 denotes the (N —2)-Hausdorff measure. The converse of Theorem 18
is not true. This was suggested by L. Véron in a personal communication; explicit
examples are given in [P]. The characterization of good measures is still open; see
however [MV5].

9. Further directions and open problems.

9.1. Vertical asymptotes.

Let g : (—00,4+1) — R be a continuous, nondecreasing function such that g(¢) =
0, Vt <0, and such g(t) — 400 as t — +1. Let (g,,) be a sequence of functions g, :
R — R which are continuous, nondecreasing and satisfy the following conditions:

(9.1) 0<gi(t) <g(t) <...<g(t) VE<1,

(9.2) gn(t) — g(t) Vt<1 and gn( ) — 400 Vit >1.

If N > 2, then we also assume that

(9.3) each g, has subcritical growth, i.e., g,(t) < C(|t|P+1) VteR,

for some constant C' and some p < N 5, possibly depending on n.
Given p € M(Q), let u,, be a solution of (0.10). Then w,, | u* in Q as n T oc.
Moreover (0.11) and (0.12) hold. We may therefore define pu* € M(Q) by (0.13).
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Open problem 5. Study the properties of u* and the reduced measure p*.

Clearly, u* is the largest subsolution. But there are some major differences in

this case. When N > 2, Dupaigne-Ponce-Porretta [DPP] have shown that for any
such g one can find a nonnegative measure p for which the set {v € G ; v < u}
has no largest element. In particular, for such measure u, the reduced measure p*
cannot be the largest good measure < p. They have also proved that the set of
good measures G is not convex for any g. We refer the reader to [DPP] for other
results.

Similar questions arise when ¢ is a multivalued graph. For example,

0 ifr<1,
g(r) = [O, OO) ifr= 1,
0 ifr>1.

This is a simple model of one-sided variational inequality. The objective is to solve
in some natural “weak” sense the multivalued equation

—Au+g(u) > p in £,
{ u=0 on 01,

for any given pu € M(Q). This problem has been recently studied by Brezis-
Ponce [BP4]. There were some partial results; see, e.g., Baxter [Ba], Dall’Aglio-Dal
Maso [DD], Orsina-Prignet [OP], Brezis-Serfaty [BSe], and the references therein.

9.2. Nonlinearities involving Vu.

Consider the model problem:

(0.4) —Au+u|Vul* = in Q,
u=0 on 01,

where p € M(Q). Problems of this type have been extensively studied and it is
known that they bear some similarities with the problems discussed in this paper.
In particular, it has been proved in [BGO2] that (9.4) admits a solution if and only
if the measure p is diffuse, i.e., |u|(A) = 0 for every Borel set A C 2 such that
cap (A) = 0. Moreover, the solution is unique (see [BM]). When p is a general
measure, not necessarily diffuse, it would be interesting to apply to (9.4) the same
strategy as in this paper. More precisely, to prove that approximate solutions
converge to the solution of (9.4), where p is replaced by its diffuse part pq (in the
sense of Lemma A.1, relative to the Borel sets whose H'-capacity are zero):

{ —Au+u|Vul* = ug  in Q,

(9:5) u=0 on 09,
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which possesses a unique solution. There are several “natural” approximations.
For example, one may truncate the nonlinearity g(u, Vu) = u|Vu|? and replace it
by gn(u, Vu) = pren i e g(u, Vu). It is easy to see (via a Schauder fixed point

argument in VVO1 ’1) that the corresponding equation
—Auy + gn(up, Vu,) =p  in €,
(9.6) ( )
U, =0 on 0,

admits a solution u,,.
Open problem 6. Is it true that (u,) converges to the solution of (9.5)7

Another possible approximation consists of smoothing pu: let u,, be a solution of

9.7
(97) u, =0  on 01,

{ —Auy + up|Vup|? = pn,  in Q,
where p,, = pp * p, as in Section 4. It has been proved by Porretta [Po] that if
pw > 0, then u, — wu in L'(Q), where u is the solution of (9.5). We have been
informed by A. Porretta that the same conclusion holds for any measure u, by
using a substantial modification of the argument in [Po].

9.3. Measures as boundary data.

Consider the problem
(9.8)

where p is a measure on 02 and g : R — R is a continuous, nondecreasing function
satisfying (0.5). It has been proved by H. Brezis (1972, unpublished) that (9.8)
admits a unique weak solution when p is any L' function (for a general nonlin-
earity g). When g is a power, the study of (9.8) for measures was initiated by
Gmira-Véron [GV], and has vastly expanded in recent years; see the papers of
Marcus-Véron [MV1], [MV2], [MV3], [MV4]. Important motivations coming from
the theory of probability — and the use of probabilistic methods — have reinvig-
orated the whole subject; see the pioneering papers of Le Gall [LG1], [LG2], the
recent books of Dynkin [D1], [D2], and the numerous references therein. It is known
that (9.8) has no solution if g(¢) = t?, t > 0, with p > p. = % and pu = d,, a € OS2
(see [GV]). Therefore, it is interesting to develop for (9.8) the same program as in
this paper. More precisely, let (gx) be a sequence of functions g; : R — R which
are continuous, nondecreasing, and satisfy (0.7) and (0.8). Assume in addition
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that each gy is, e.g., bounded. Then, for every pu € M(952), there exists a unique
solution u; of

—Aug + gr(ug) =0 in €,
9.9) { K+ gk (ug)

ug = p on 082,
in the sense that u; € L'(Q2) and

(9.10) —/QukAu/ng(uwc:— Ly vee @),

o0 371

where % denotes the derivative with respect to the outward normal of €.
We have the following;:

Theorem 19. Ask | oo, ug | u* in LY(Q), where u* satisfies

—Au"+g(u*)=0 in €,
(9.11) { 9(w’)

w* o on 08,

u*

for some p* € M(0) such that p* < p. More precisely, g(u*)po € L*(Q), where
po(z) = d(z,0%), and

0 _
(9.12) —/QU*AC-F/QQ(U*)QZ— —Cd,ﬁ V¢ € C2(Q).

90 On

In addition, u* is the largest subsolution of (9.8), i.e., if v € LY(Q) is any function
satisfying g(v)po € L'(Q) and

o _
(9.13) —/QUAC+/Qg(v)C§—/m aC du VCeC2Q), C20inQ,

on
then v < u* a.e. in ).

Proof. By comparison (see Corollary B.2), we know that (uy) is non-increasing. By
standard estimates, we have

1wl + [ aitwm < Cllalaony i = 1.

In addition, (see [B5, Theorem 3|)

||Uk||cl(w) S Cw Vk Z 1,
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for every w CC Q. Thus, u converges in L' (Q) to a limit, say u*. Moreover,

gr(ur) = g(u”) in Lig ().
Let ¢y € C2(Q) be the solution of

—AC() =1 in Q,
{ (o =0 on 0N.

Since (gk (Uk)Co) is uniformly bounded in L!(€2), then up to a subsequence

(9.14) gr(ur)Co = g(u™)Go + A in [C(Q)],

for some A € M(99Q), A > 0. We claim that

(9.15) /ng(uk)CH/Qg(u*)C%-/ gc 8( dA\ VCGCO( )

In fact, given ¢ € C2(Q), define v = (/Cp. It is easy to see that v € C(2) and
v = 8—5 6%0 on 0. Using « as a test function in (9.14), we obtain (9.15).
Let k — 00 in (9.10). In view of (9.15), we conclude that u* satisfies (9.12), where

*

u* is given by

” 1
po= A+ B A< .
on
Finally, it follows from Corollary B.2 that if v is a subsolution of (9.8), then v < uy
a.e., Vk > 1, and thus v < u™* a.e.

Some natural questions have been addressed and the following results will be
presented in a forthcoming paper (see [BP3)):

(a) the reduced measure p* is the largest good measure < p; in other words, if
v € M(09) is a good measure (i.e., (9.8) has a solution with boundary data v) and
if v < p, then v < p*;

(b) u— p* is concentrated on a subset of 9 of zero HY ~l-measure (i.e., (N —1)-
dimensional Lebesgue measure on 0f2) and this fact is “optimal”, in the sense that
any measure v > 0 which is singular with respect to HV~!|sq can be written as
v =p— pu* for some p > 0 and some g;

c) if u is a measure on OS2 which is good for every g, then pu* € L1(9Q);

d) given any g, there exists some measure x> 0 on 02 which is good for g, but

(
(
p & LY(09).
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When g(t) =7, t > 0, with p > &1, a known result (see, e.g., [MV3]) asserts that

€ M(09) is a good measure if and only if u*(A) = 0 for every Borel set A C 99
such that Cy/p, v (A) = 0, where Cs/,, ,» refers to the Bessel capacity on 9. In this
case, we have

(e) the reduced measure p* is given by pu* = p— (u2)*, where p = py + 2 is the
decomposition of y, in the sense of Lemma A.1, relative to Cy/y, ;-

In contrast with Example 5, we do not know what the reduced measure y* is when
N =2and g(t)=e" —1,t > 0.

Similar issues can be investigated for the parabolic equations

w-Butg=p fu—dutgw =0,
u(0) = p.

Appendix A: Decomposition of measures into diffuse and concentrated
parts.

The following result is taken from [FST|. We reproduce their proof for the con-
venience of the reader.

Lemma A.1. Let u be a bounded Borel measure in RN and let Z be a collection
of Borel sets such that:

(a) Z is closed with respect to finite or countable unions;
(b) A€ Z and A’ C A Borel = A’ € Z.

Then p can be represented in the form

(A1) p=p1 + pia,

where py and po are bounded Borel measures such that

ur1(A)=0 VA€ Z and s vanishes outside a set Ag € Z.

This representation is unique.

Proof. First assume that p is nonnegative. Denote
X, =sup{u(d); Ac Z}.
Let {A,} be an increasing sequence of sets in Z such that

1(An) — X
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Let Ag = J,, An and put
p1(B) = w(BNAG), p2(B) = p(BN Ay,

for every Borel set B. Since Ag € Z, it remains to verify that u; vanishes on sets
of Z. By contradiction, suppose that there exists E € Z such that pi(F) > 0. Let
E, = ENA§. Then p(Ey) > 0 and E; € Z. It follows that Ao U By € Z and
p(Ao U Ey) > X,,. Contradiction.

If 11 is a signed measure, apply the above to 4™ and p~. The uniqueness is obvious.

Appendix B: Standard existence, uniqueness and comparison results.

In this appendix, we collect some well-known results (and a few new ones) which
are used throughout this paper. For the convenience of the reader, we shall sketch
some of the proofs.

We start with the existence, uniqueness and regularity of solutions of the linear
problem

—Au = in €,
(B.1) { "

u=0 on 01,

where p € M(Q).
Theorem B.1. Given € M(R), there exists a unique u € L*(Q) satisfying

(B.2) —/QuAC:/QCdu V¢ € C2(9).

Moreover, u € Wol’q(Q) for every 1 < ¢ < %, with the estimates

(B.3) [ull o < ClIVul[Le < Cllpl| a1,
where q% = é— % In particular, uw € LP(Q) for every 1 < p < %, and u satisfies
(B.4) / Vu- Vi) = / Ydp Y e WyT(),

Q Q

for anyr > N.

The proof of Theorem B.1 relies on a standard duality argument and shall be
omitted; see [S, Théoréeme 8.1].

We now establish a weak form of the maximum principle:
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Proposition B.1. Let v € W) () be such that

(B.5) —/vAgogo Vo e C(Q), ¢ >0 in Q.
Q

Then

(B.6) —/vAggo V¢ e C3(Q), ¢=0inQ
Q

and, consequently,

(B.7) v<0 a.e
Proof. From (B.5) we have

/QVU-Vgogo Vo e CX(Q), ¢ >0in Q
so that, by density of C>(Q) in C2(Q),

/QVU'V(,OSO Vo € CZ(Q), ¢ >0 in Q.

Let () be a sequence in C°(Q2) such that 0 <~,, <1, v, (z) = 1 if d(z,00Q) > %,
and |V(,| < Cn, Vn > 1. For any ¢ € C2(Q), ¢ > 0, we have

(B.8) / Vo - (V¢ + (V) = / V- V(1mC) < 0.
Q Q
Note that

/ V|| Vy,|¢ < Cn / IVol¢ < C / Vv -0 asn — oo.
Q

d(x,00)< d(z,0Q)<1

1
n

Thus, as n — oo in (B.8), we obtain
/W-vggo V¢ e C3(Q), ¢=0in €,
Q

which yields (B.6) since v € Wy (). Inequality (B.7) is a trivial consequence of
(B.6).
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Lemma B.1. Let p: R — R, p(0) = 0, be a bounded nondecreasing continuous
function. Given f € LY(Q), let u € L1 (Q) be the unique solution of

_ _ 200
(B.9) /Q UAC /Q fC Ve e @)
Then

(B.10) /pr(u) > 0.

Assume for the

Proof. Clearly, it suffices to establish the lemma for p € C%(R).
= 0, we have p(u) €

moment f € C°°(Q). In this case, u € C2(2). Since p(0)
C2(Q). Using p(u) as a test function in (B.9), we get

/pr(U)z/Qp’(u)\Vuon.

This establishes the lemma for f smooth. The general case when f is just an
L'-function, not necessarily smooth, easily follows by density.

Proposition B.2. Given f € L*(Q), let u be the unique solution of (B.9). Then,
for every M > 0, we have

(B.11) /fzo and / f<o.
] [ ]

[u>M u<—M

In particular,

(B.12) / fsgn(u) > 0.

Above, we denote by sgn the function sgn (f) = 1if ¢t > 0, sgn(t) = -1 if t <0,
and sgn (0) = 0.

Proof. Clearly, it suffices to establish the first inequality in (B.11). Let (p,) be a
sequence of continuous functions in R such that each p,, is nondecreasing, p, (t) = 1
ift > M and p,(t) =0ift < M — % By the previous lemma,

/ fon(u) >0 Vn>1.
Q

As n — oo, the result follows.
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Proposition B.3. Let v e LY (Q), f € LY(Q) and v € M(Q) satisfy

_ _ 20
(B.13) /QUAC—i—/QfC /diy V¢ € C2(9).
Then
(B.14) [ 1<

[v>0]
and thus
(B.15) /fsgn(v)S ][ m-

Q

Proof. Let v, = p, * v (here we use the same notation as in Section 4). Let v,
denote the solution of (B.13) with v replaced by v,,. By Lemma B.1, we have

[ 0= 1pe) = 0
Q

where p is any function satisfying the assumptions of the lemma. Thus, if 0 <
p(t) <1, Vt € R, then we have

fo(vn) < [ vap(on) < [ () < 0¥ me
Jy o < [Lroten) <

Let n — oo to get

(B.16) / ) < I e

Apply (B.16) to a sequence of nondecreasing continuous functions (p,,) such that
pn(t) =0if t <0 and p,(t) =1if t > L. As n — oo, we obtain (B.14).

An easy consequence of Proposition B.3 is the following

Corollary B.1. Let g: R — R be a continuous, nondecreasing function such that
g(0) =0. Given p € M(2), then the equation

(B.17)

—Au+g(u) =p in £,
{ u=0 on 09,
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has at most one solution u € L'(Q) with g(u) € L*(Q)). Moreover,

(B.18) /Q 9(w)| < llullpc and /Q Aul < 2]l

If (B.17) has a solution for pi, pus € M(S2), say ui,us, resp., then

(B.19) ] fite) = gtu)]” < fm = )

In particular,

(B.20) /Q lg(us) — guz)| < lan — pizll .

We now recall the following unpublished result of H. Brezis from 1972 (see, e.g.,
[GV]):

Proposition B.4. Given f € L*(; pgdx) and h € L*(0R), there exists a unique
u € LY(2) such that

0 _
(B.21) —/uAg:/fg—/ o V¢ € CF(Q).
Q Q a0 On
In addition, there exists C > 0 such that
(B.22) lullr < C ([[fpollzr ) + 1PllLr00)) -

We now establish the following

Lemma B.2. Given f € LY(Q;podz), let u € LY(Q) be the unique solution of
(B.21) with h =10. Then

(B.23) k / lu| = 0 as k — oo.

d(z,00)< +

Proof.
Step 1. Proof of the lemma when f > 0.

Since f > 0, we have u > 0. Let H € C?(R) be a nondecreasing concave function
such that H(0) = 0, H"(t) = —1if t <1 and H(t) = 1 if ¢ > 2. We denote by
Co € C3(Q), o > 0, the solution of

_ACO =1 in Q,
{ (o =0 on 0N.
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For any k > 1, let wy, = + H(k(y). By construction, w; € C3(Q) and
Awy = kH" (k¢o)[Véo|? + H' (kCo) Ao < —kxXgo<1)[Vol*.
Thus,

(B.24) —/ uAwy, >k / IV ¢o|*u.
Q
[Co<%]
Use wy, as a test function in (B.21) (recall that A = 0). It follows from (B.24) that

(B.25) k / |VCO|2u§/kaf.

[Co<$]

By Hopf’s lemma, we have |V(y|? > ag > 0 in some neighborhood of 92 in Q. In
particular, there exists ¢ > 0 such that c(o(z) < d(z,09) < 1(y(z) for all z € Q.
Thus, for k£ > 1 sufficiently large, we have

(B.26) ok / |Vo|2u < / wy, f.

d(z,00)<t N
Note that the right-hand side of (B.26) tends to 0 as k — oo. In fact, we have
wy, < Clo, Yk > 1, and wy, < £ H(k(o) — 0 a.e. Thus, by dominated convergence,

(B.27) /wkf—>0 as k — oo.
Q

Combining (B.26) and (B.27), we obtain (B.23).
Step 2. Proof of the lemma completed.
Let v € L'() denote the unique solution of

(B.28) - [ vac= [ 11ic ve e ci@).

By comparison, we have |u| < v. On the other hand, v satisfies the assumption of
Step 1. Thus,

(B.29) k / lu| <k / v—0 ask— oo
d(z,0Q)< + d(z,0Q)<+

This establishes Lemma B.2.

The next result is a new variant of Kato’s inequality, where the test function (
need not have compact support in €:
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Proposition B.5. Let u € LY(Q) and f € L'(Q; po dx) be such that

(B.30) /uAC</fC V¢ e C2(Q), ¢ >0 in Q.

Then

(B.31) /Q +AC<[/]fC VCEC’O()C>OmQ
u>0

Proof. We first notice that

(B.32) —/ ut Ap < / fo YoeC(02), ¢ >0in .
Q

[u>0]
In fact, by (B.30) we have —Au < f in D’(2). Then, Theorem 7 yields
(—AuT)a < Xz (—Au)a < Xz f and  (—AuT)e = (Au) < (f)F =0.

Thus,
—Au+ = (—AU+)d + (—AU+)C S X[uEO}f in DI(Q),
which is precisely (B.32).

Let (k) C C°(Q) be a sequence such that 0 < v < 1in Q, v, (z) = 1if d(x, 9Q) >
5, IVl <k, and ||Avg||L= < Ck% Given ¢ € CZ(Q ), ¢ > 0, we apply (B.32)
Wlth @ = (Y, to get

(B.33) /Q waews [ fon.
u>0

Consider again the unique solution v > 0 of (B.28). By comparison we have u < v
a.e. and thus ™ < v a.e. From Lemma B.2 we see that

(B.34) / ut V¢ V| < Ck / ut —0 ask — oo.
¢ d(z,00)< +
Similarly,
(B.35) / utC|Ay| < Ck / ut — 0 ask — oco.
Q

d(z,0Q)< +
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Let k — oo in (B.33). Using (B.34) and (B.35), we obtain (B.31).

Remark B.1. There is an alternative proof of Proposition B.5. First, one shows
that (B.30) implies that there exist two measures p < 0, A < 0, where u € M(99)
and A is locally bounded in §, with [, po d|A| < oo, satisfying

(B.36) —/QuAg:/Qngr/dix—/m%du V¢ € C3(Q).

[The existence of A is fairly straightforward, and the existence of u is a consequence
of Herglotz’s theorem concerning positive superharmonic functions].

Then, inequality (B.31) follows from (B.36) using the same strategy as in the proof
of Lemma 1.5 in [MV2].

As a consequence of Proposition B.5, we have the following

Corollary B.2. Let g1,92 : R — R be two continuous nondecreasing functions
such that g1 < go. Let u € LY(Q), k = 1,2, be such that gi(ux) € L*(Q; po dx). If

(B.37) — / (s — 1) AC +/ [g2(u2) — g1 (u)]C <0 VC € CEED, ¢ >0 in ©,
Q Q

then

(B.38) us <up  a.e.

Proof. Applying Proposition B.5 to u = uy —uy and f = g1(u1) — g2(usz), we have

_/(UQ —u1)TAC < —/ [92(u2) — g1 (u1)] ¢ <0 V¢ e C2(Q), ¢>0in Q.
Q Q

This immediately implies that uo < uq a.e.

We now present some general existence results for problem (B.17). Below, g :
R — R denotes a continuous, nondecreasing function, such that g(0) = 0.

Theorem B.2 (Brezis-Strauss [BS]). For every f € L*(), the equation

(B.39)

—Au+g(u)=f inQ,
{ u=0 on 09,

has a unique solution v € L'(Q) with g(u) € L*(Q).
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Proof. We first observe that if f € C°°(2), then (B.39) always has a solution
u € C1(Q) (easily obtained via minimization).

For a general f € L'(Q2), let (f,) be a sequence of smooth functions on Q, converging
to f in L1(Q). For each f,, let u,, denote the corresponding solution of (B.39). By
(B.20), the sequence (g(u,,)) is Cauchy in L' (). We then conclude from (B.3) that
(uy,) is also Cauchy in L!(Q), so that

up —u and  g(u,) — g(u) in LY(Q).

Thus u is a solution of (B.39). The uniqueness follows from Corollary B.1.

Theorem B.3 (Brezis-Browder [BBr]). For every T € H~ (), the equation

(B.40) { —Au+gu)=T inQ,

u=0 on 01,

has a unique solution u € H}(Q)) with g(u) € L*(Q).

Proof. Assume g is uniformly bounded. In this case, the existence of u presents no
difficulty, e.g., via a minimization argument in Hg (). In particular, we see that
u € H} ().

For a general nonlinearity g, let (g, ) be the sequence given by g, (t) = g(¢) if |t| < n,
gn(t) = g(n) if t > n, and g, (t) = g(—n) if t < —n. Let u,, € H}(Q) be the solution
of (B.40) corresponding to g,,. Note that u,, satisfies

/QVun~Vv—|—/an(un)v:<T,v> Yo € Hi (Q).

Using v = u,, as a test function, we get

1/2
/|Vun|2+/gn(un)un:<T,un>§C(/ |vun\2> .
Q Q Q

Thus,

(B.41) / gn(un)u, < C and / |Vu,|? < C,
Q Q

for some constant C' > 0 independent of n > 1. Since (u,,) is uniformly bounded in
H}(Q), then up to a subsequence we can find u € Hg () such that

u, — u in L' and a.e.
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By (B.41), for any M > 0, we also have

[ lontunl = 57 [ ontuun < 1.

[lun|=>M]

We claim that
gn(uy) is equi-integrable.

In fact, for any Borel set E C (), we estimate

C
Llanwl= [ laatwdl+ [ lutua)] < AwlEl+ 57

[lun|<M] [lun|=M]

where Ay = max {g(M),—g(—M)}. Given € > 0, let M > 0 sufficiently large so
that < < e. With M fixed, we take |E| small enough so that Ay|E| < e. We
conclude that

/ |gn(un)| <26 Vn >1.
E

Thus, (gn(un)) is equi-integrable. Since u,, — w a.e., it follows from Egorov’s lemma
that g, (u,) — g(u) in L'(Q)). Therefore, u satisfies (B.40). By Proposition B.3,
this solution is unique.

Combining the techniques from both proof, we have the following:

Theorem B.4. For every f € LY(Q) and every T € H~1(Q), the equation

{—Au+g(u):f+T in Q,

B.42
( ) u=20 on 051,

has a unique solution u € L'(Q) with g(u) € L*(Q).

Proof. Let f, be a sequence in C*°(Q) converging to f in L'(Q). Since f, + T €
H~! we can apply Theorem B.3 to obtain a solution u, of (B.42) for f,, +T. For
every ni,ne > 1, we have

(B43) _A(unl - unz) + g(un1) - g(un2> = fn1 - fnz in (Cg)*

It follows from Proposition B.3 that

/Q‘g(unl) — g(un,)| < /Q s — sl

Thus, (g(uy)) is a Cauchy sequence. Returning to (B.43), we conclude from (B.3)
that (u,) is Cauchy in L'(Q). Passing to the limit as n — oo, we find a solution
u € L'(Q) of (B.42). By Proposition B.3, the solution is unique.
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Corollary B.3. Let p € M(Q). If u is diffuse, then (B.17) admits a unique
solution u € L*(Q) with g(u) € L1 (Q).

Proof. 1t suffices to observe that, by a result of Boccardo-Gallouét-Orsina [BGO1],
every diffuse measure p belongs to L' + H 1.

Concerning the existence of solutions for every measure p € M(£2), we have

Theorem B.5 (Bénilan-Brezis [BB]). Assume N > 2 and

(B.44) lgt)| < C(Jt|P +1) VteR,
for some p < % Then, for every p € M(), problem (B.17) has a unique
solution u € L'(€).

Assumption (B.44) is optimal, in the sense that if N > 3, g(t) = [t|P~t and
p > %, then (B.17) has no weak solution for u = d,, where a € Q:

Theorem B.6 (Bénilan-Brezis [BB]; Brezis-Véron [BV]). Assume N > 3.
If p > %, then, for any a € €0, the problem

—Au+ [uPtu =4, inQ,
u=0 on 0N,

has no solution u € LP(2).

Appendix C: Correspondence between [Co(ﬁ)}* and [C’(ﬁ)]*
In this section we establish the following
Proposition C.1. Given pu € [Co(ﬁ)]*, there exists a unique fi € [C’(ﬁ)]* such
that
(C.1) f=pu onCo() and |a|(00Q)=0.

In addition, the map p— [i is a linear isometry.
In order to prove Proposition C.1, we shall need the following

Lemma C.1. Given ¢ > 0, there exists § > 0 such that if ( € Co(Q), |¢] <1 in Q,
and supp ¢ C Q\Qs, then

(1, QY < e.

Here, we denote by Qs the set {z € Q; d(z,00Q) > §}.
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Proof. We argue by contradiction. Assume there exist g > 0 and a sequence
(Cn) C Co(R2) such that |¢,| < 1in €, supp ¢, C Q\Q4,,, and

(U, Cn) >e0 Yn > 1.

Without loss of generality, we may assume that each (, has compact support in

Q) (this is always possible, by density of C2°(Q2) in Cy(€2)). In particular, we can
extract a subsequence ((y,) such that supp (,, are all disjoint. For any k& > 1, let

G = Z?Zl Cn, - By construction,
||C~I<:||L°° <1 and Suppék c Q.

Moreover, .
keo < {1, Ce) < llpallaa-

Since k > 1 was arbitrary, this gives a contradiction.

Proof of Proposition C.1. Let u € [C’O(ﬁ)r. Given ¢ € C(Q), let (¢,) be any

sequence in Cy(£2) such that
HCnHLOO S C and Cn _>< in Lfooc(Q)
It easily follows from Lemma C.1 that ({u,(,)) is Cauchy in R. In particular, the
limit lim (u,(,) exists and is independent of the sequence ((,). Set
<ﬂv C> = nh—{%o <:u7 Cn>

Clearly, fi is a continuous linear functional on C'(€2) and

In addition, Lemma C.1 implies that |i](9€) = 0; in particular, |||
The uniqueness of fi follows immediately from (C.1).

o = |1l (o)

Appendix D: A new decomposition for diffuse measures.

The goal of this section is to establish Theorem 3. Let G denote the Green
function of the Laplacian in 2. Given pu € M(), pu > 0, set

G(1)(x) = /Q Gz, y) du(y).

Note that G(u) is well-defined for every = € Q, possibly taking values +oc.
We first present some well-known results in Potential Theory:
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Lemma D.1. Let p € M(Q), u > 0, be such that G(u) < oo everywhere in Q.
Given € > 0, there exists L C ) compact such that

(D.1) p(O\L) <e and G(ulr) € Co().

Proof. 1f p has compact support in €2, then Lemma D.1 is precisely Theorem 6.21
in [H]. For an arbitrary p € M(Q), u > 0, such that G(u) < oo in §2, we proceed as
follows. By inner regularity of u, there exists K C € compact such that pu(Q\K) <
5. Since G(u| k) < G(u), the function G(u| i) is also finite everywhere in 2. Then,
by Theorem 6.21 in [H], there exists L C {2 compact such that

plx(Q\L) < 5 and  G(u|lrnr) € Co(Q).

DO | ™

We conclude that (D.1) holds with L replaced by K N L.

As a consequence of Lemma D.1, we have

Proposition D.1. Let u € W, (Q) be such that Au is a diffuse measure in Q.

Then, there exists a sequence (u,) C Co(S2) such that Au, € M(Q2), Vn > 1,

(D.2) u=> up, ae inQ and [Aullp = [[Aun|um
n=1

n=1
Proof. We shall split the proof of Proposition D.1 into three steps.

Step 1. Let i > 0 be a measure such that G(u) < oo everywhere in €. Then, there
exist disjoint Borel sets A,, C €2 such that

(D.3) u(Q\ U An> =0 and G(ula,) € Co(Q) Vn>1.

This result easily follows from Lemma D.1 by an induction argument.

Step 2. Let u > 0 be a diffuse measure in 2. Then, there exist disjoint Borel sets
A,, C ) such that

(D.4) M(Q\ D An) =0 and G(pla,) € Co(Q) Vn > 1.

For each k > 1, let
Ey={z€Q; G(u)(z) <k}.
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Since G(u) is lower semicontinuous (by Fatou), Fj is closed in 2. Clearly, we have
G(ple,) < kin Ejy and G(p| g, ) is harmonic in Q\ E),. Therefore, by the maximum
principle, G(p| g, ) < k everywhere in (.

Applying the previous step to the measures p|g,\ g, ,, one can find disjoint Borel
sets A,, C Q such that

,u(F\ U An> =0 and G(ula,) € Co(Q) VYn>1,

where

F={zecQ; Gu)(z) < oo}.
Since p is diffuse and Q\F has zero capacity (see e.g. [H, Theorem 7.33]), we have

w(Q\F) = 0. Thus, N
N(Q\ L_J An) =0,

from which the result follows.

Step 3. Proof of Proposition D.1 completed.

Set ;4 = —Au. Applying Step 2 to u, one can find disjoint Borel sets (A,,) such
that

Similarly, there exist disjoint Borel sets (B,,) such that

e <Q\ U Bn> =0 and G(u |p,) € Co(Q) Yn>1.

Since - -
p=pt =T = ptla, =Y n LB
n=1 n=1
we have - -
n=1 n=1
and

IAua = Nt Lan g+ D e L Ly
n=1 n=1

This concludes the proof of the proposition.
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We can now present the

Proof of Theorem 3. Let u € W' (Q) be the unique solution of

—Au=p in (C3)*.

Let (u,) C Cp(f2) be the sequence given by Proposition D.1. For § > 0 fixed, take
wy, € C2(Q) such that

4]
lun = wnllLe < o5 and - [|Awn[|pr < [[Aun ] pg-

Let
v = Z(un—wn) and f:—ZAwn.
n=1 n=1
Since
(D.5) [vllzee <) [lun — wa = <6,

n=1

we have v € Cy(Q) and ||v||L~ < §. Moreover,
(D.6) 1l < D NAwallee <Y AU an = flalla
n=1 n=1

implies f € L'(€2). Finally, by construction, we have

(D.7) p=f—Av in (C3)*.

In particular, Av = f — p is a measure and ||Av||apm < 2||p||ar. Thus,

(D.8) IVollZe < [lvll e [Av]lam < 28] ullaa.

Since v € Cp(Q) N HE, (0.21) immediately follows from (D.7). Moreover, replacing
d by gHHHM in (D.5) and (D.8), we conclude that (0.22) holds. The proof of

Theorem 3 is complete.

Note that our construction of f € L' and v € L* satisfying (0.21) is not linear
with respect to . Here is a natural question:



NONLINEAR ELLIPTIC EQUATIONS WITH MEASURES REVISITED 59

Open problem 7. Can one find a bounded linear operator
T : p€ Myg(Q) — (f,v) € Lt x L™

such that (0.21) and (0.22) hold?

After receiving a preprint of our work, A. Ancona [A2] has provided a negative
answer to the question above.
Appendix E: Equivalence between capy: and capa -

Given a compact set K C €, let capu ; (i) denote the capacity associated to
the Laplacian. More precisely,

capp 1 (K) = inf {/ |Ap|; e C(Q), ¢ > 1 in some neighborhood of K}.
Q

In order to avoid confusion, throughout this section we shall denote by cap: the
Newtonian capacity with respect to {2 (which we simply denote cap everywhere else
in this paper).

The main result in this appendix is the following

Theorem E.1. For every compact set K C ), we have

(E.1) capp 1 (K) = 2cap i (K).

Remark E.1. In an earlier version of this work, we had only established the equiv-
alence between cap: and capp ;- The exact formula (E.1) has been suggested to
us by A. Ancona.

We first prove the following

Lemma E.1. Let K C Q be a compact set. Given € > 0, there exists 1 € C°(Q)
such that 0 <y <1 in Q, ¢ =1 in some neighborhood of K, and

(E.2) /Q|Az/)| < 2capyi(K) +e.

Proof. Let w CC () be an open set such that K C w and

cap 1 (@) < cappgs (K) + .
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Let u denote the capacitary potential of @. More precisely, let u € H(Q) be such
that v =1 in w and

/Q |Vu|2 = cap1 (@).

Note that u is superharmonic in © and harmonic in Q\@. In particular, 0 < u < 1.
Since supp Au C [u = 1], u is continuous (see [H, Theorem 6.20]) and

\MMMF:i/Au:—/uAm:/HMP:%mp@)
Q Q Q
Given 0 > 0 small, set
(u—209)"
=5

Since v has compact support in €2, we have

v =

(E.3) tAsz&

Moreover, Av is a diffuse measure (note that v € H}(€)) and
(E.4) supp Av C [v =0]U [v = 1].
Thus, by Corollary 1.3 in [BP2|, we have
(E.5) Av>0 infv=0 and Av<0 in [v=1].
It then follows from (E.3)—(E.5) that
B0la=2 [ 180l
[v=1]

Since Av = L5 Aw in [v = 1], we conclude that

2
[Av|a < HHAUHM-

Using the same notation as in Section 4, we now take n > 1 sufficiently large so that
the function ¥ = p,, * v has compact support in €2 and ¥ = 1 in some neighborhood
of K. We claim that v satisfies all the required properties. In fact, since 0 <y <1
in 2, we only have to show that (E.2) holds. Note that

2
/ AY] < [Avlln < —2— || Aullps = —2— capyp (@).
o 1-96 5

1—
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Choosing § > 0 so that

) . €
5 cap 1 (W) < 1

1—
we have

d
/ |AY| <2 (1 - ﬁ) capp1 (@) < 2capyi(K) + ¢,
0 _

which is precisely (E.2).
We now present the

Proof of Theorem E.1. In view of Lemma E.1, it suffices to show that

1
(E-6) capg (K) < 5 cap (K.

Let ¢ € C(f2) be such that ¢ > 1 in some neighborhood of K. Set ¢ =
min {1,¢"}. For n > 1 sufficiently large, the function @, = p, * ¢ belongs to
C° () and ¢, = 1 in some neighborhood of K. We then have

capy: (K) < / Vel < / Vol = / V-V — - / 2.
Q Q Q Q

Recall that ¢ has compact support in €2 and 0 < ¢ < 1. Thus, fQ Ap =0 and we

have
1 1
cap g (K g—/ @——A@S—/Agp.
mE) <= [ (p-35)a0 <3 | 180

Since ¢ was arbitrary, we conclude that (E.6) holds. This establishes Theorem E.1.
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