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Abstract. We study the existence and non-existence of solutions of the problem{
−∆u+ eu − 1 = µ in Ω,

u= 0 on ∂Ω,
(0.1)

where Ω is a bounded domain in RN , N ≥ 3, and µ is a Radon measure. We prove that if
µ ≤ 4πHN−2, then (0.1) has a unique solution. We also show that the constant 4π in this condition
cannot be improved.

Résumé. Nous étudions l’existence et la non existence des solutions de l’équation{
−∆u+ eu − 1 = µ dans Ω,

u= 0 sur ∂Ω,
(0.2)

où Ω est un domaine borné dans RN , N ≥ 3, et µ est une mesure de Radon. Nous démontrons que
si µ vérifie µ ≤ 4πHN−2, alors le problème (0.2) admet une unique solution. Nous montrons que la
constante 4π dans cette condition ne peut pas être améliorée.
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1 Introduction

Let Ω ⊂ RN , N ≥ 2, be a bounded domain with smooth boundary. We consider the
problem {

−∆u+ eu − 1 = µ in Ω,
u= 0 on ∂Ω,

(1.1)

1To appear in Ann. Inst. H. Poincaré Anal. Non Linéaire
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where µ ∈M(Ω), the space of bounded Radon measures in Ω. We say that a function u is
a solution of (1.1) if u ∈ L1(Ω), eu ∈ L1(Ω) and the following holds:

−
∫

Ω
u∆ζ +

∫
Ω
(eu − 1)ζ =

∫
Ω
ζ dµ ∀ζ ∈ C2

0 (Ω). (1.2)

Here C2
0 (Ω) denotes the set of functions ζ ∈ C2(Ω) such that ζ = 0 on ∂Ω. A measure µ is a

good measure for problem (1.1) if (1.1) has a solution. We shall denote by G the set of good
measures. Problem (1.1) has been recently studied by Brezis, Marcus and Ponce in [1],
where the general case of a continuous nondecreasing nonlinearity g(u), with g(0) = 0, is
dealt with. Applying Theorem 1 of [1] to g(u) = eu− 1, it follows that for every µ ∈M(Ω)
there exists a largest good measure ≤ µ for (1.1), which we shall denote by µ∗.

In the case N = 2, the set of good measures for problem (1.1) has been characterized by
Vázquez in [9]. More precisely, a measure µ is a good measure if and only if µ({x}) ≤ 4π
for every x in Ω. Note that any µ ∈M(Ω) can be decomposed as

µ = µ0 +
∞∑
i=1

αi δxi ,

with µ0({x}) = 0 for every x in Ω, and δxi is the Dirac mass concentrated at xi. Using
Vázquez’s result, it is not difficult to check that (see [1, Example 5])

µ∗ = µ0 +
∞∑
i=1

min{4π, αi} δxi .

This paper is devoted to the study of problem (1.1) in the case N ≥ 3. First of all, let us
recall that if µ is a good measure, then (1.1) has a unique solution u (see [1, Corollary B.1]).
This solution can be either obtained as the limit of the sequence (un) of solutions of{

−∆un + min{eun − 1, n}= µ in Ω,
un = 0 on ∂Ω,

or as the limit of a sequence (vn) of solutions of{
−∆vn + evn − 1 = µn in Ω,

vn = 0 on ∂Ω,

with µn = ρn ∗ µ, where (ρn) is a sequence of mollifiers. If µ is not a good measure, then
both sequences (un) and (vn) converge to the solution u∗ of problem (1.1) with datum µ∗
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(see [1]). It has also been proved in [1] that the set G of good measures is convex and closed
with respect to the strong topology in M(Ω). Moreover, it is easy to see that if ν ≤ µ and
µ ∈ G, then ν ∈ G.

Before stating our results, let us briefly recall the definitions of Hausdorff measure and
Hausdorff dimension of a set. Let s ≥ 0, and let A ⊂ RN be a Borel set. Given δ > 0, let

Hs
δ(A) = inf

{∑
i

ωsr
s
i : K ⊂

⋃
i

Bri with ri < δ, ∀i
}
,

where the infimum is taken over all coverings of A with open balls Bri of radius ri < δ, and
ωs = πs/2

Γ( s
2
+1) . We define the (spherical) s-dimensional Hausdorff measure in RN as

Hs(A) = lim
δ↓0

Hs
δ(A),

and the Hausdorff dimension of A as

dimH (A) = inf
{
s ≥ 0 : Hs(A) = 0

}
.

Given a measure µ in M(Ω), we say that it is concentrated on a Borel set E ⊂ Ω if
µ(A) = µ(E ∩A) for every Borel set A ⊂ Ω. Given a measure µ in M(Ω), and a Borel set
E ⊂ Ω, the measure µ E is defined by µ E(A) = µ(E ∩A) for every Borel set A ⊂ Ω.

One of our main results is the following

Theorem 1 Let µ ∈ M(Ω). If µ ≤ 4πHN−2, that is, if µ(A) ≤ 4πHN−2(A) for every
Borel set A ⊂ Ω such that HN−2(A) <∞, then there exists a unique solution u of (1.1).

As a corollary of Theorem 1, we have

Corollary 1 Let µ ∈M(Ω). If µ ≤ 4πHN−2, then µ∗ = µ.

The proof of Theorem 1 relies on a decomposition lemma for Radon measures (see
Section 3 below) and on the following sharp estimate concerning the exponential summa-
bility for solutions of the Laplace equation. We denote by M

N
2 (Ω) the Morrey space with

exponent N
2 equipped with the norm ‖ · ‖N/2 (see Definition 1 below).

Theorem 2 Let f be a function in M
N
2 (Ω), and let u be the solution of{

−∆u= f in Ω,
u= 0 on ∂Ω.

(1.3)
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Then, for every 0 < α < 2NωN , it holds∫
Ω

e
2NωN−α
‖f‖N/2

|u|
≤ (NωN )2

α
diam(Ω)N . (1.4)

This theorem is the counterpart in the case N ≥ 3 of a result proved, for N = 2 and
f ∈ L1(Ω), by Brezis and Merle in [2]. Note that, for N = 2, the space M

N
2 (Ω) coincides

with L1(Ω).

As a consequence of Theorem 1, we have that the set of good measures G contains all
measures µ which satisfy µ ≤ 4πHN−2. If N = 2, then the result of Vázquez states that
the converse is also true. In our case, that is N ≥ 3, this is false. After this work was
completed, A.C. Ponce found explicit examples of good measures which are not ≤ 4πHN−2

(see [7, Theorems 2 and 3]). The existence of such measures was conjectured by L. Véron
in a personal communication.

We now present some necessary conditions a measure µ ∈ G has to satisfy. We start
with the following

Theorem 3 Let µ ∈ M(Ω). If µ(A) > 0 for some Borel set A ⊂ Ω such that dimH (A) <
N − 2, then (1.1) has no solution.

Observe that in the case of dimension N = 2, no measure µ satisfies the assumptions of
Theorem 3.

As a consequence of Theorem 3 we have

Corollary 2 Let µ ∈M(Ω). If µ+ is concentrated on a Borel set A ⊂ Ω with dimH (A) <
N − 2, then µ∗ = −µ−.

The next theorem, which is one of the main results of this paper, states that there exists
no solution of (1.1) if µ is strictly larger than 4πHN−2 on an (N − 2)-rectifiable set.

Theorem 4 Let µ ∈M(Ω). Assume there exist ε > 0 and an (N−2)-rectifiable set E ⊂ Ω,
with HN−2(E) > 0, such that µ E ≥ (4π + ε)HN−2 E. Then, (1.1) has no solution.

Corollary 3 Assume µ = α(x)HN−2 E, where E ⊂ Ω is (N − 2)-rectifiable and α is
HN−2 E-integrable. Then, µ∗ = min {4π, α(x)}HN−2 E.
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In Theorem 4 (and also in Corollary 3), the assumption that E is (N − 2)-rectifiable is
important. In fact, one can find (N −2)-unrectifiable sets F ⊂ Ω, with 0 < HN−2(F ) <∞,
such that ν = αHN−2 F is a good measure for every α > 0 (see [7]).

As a consequence of the previous results, we can derive some information on µ∗. To
this extent, let µ ∈ M(Ω). Since eu − 1 is bounded for u < 0, µ− will play no role in the
existence-nonexistence theory for (1.1). Therefore, we only have to deal with µ+, which we
recall can be uniquely decomposed as

µ+ = µ1 + µ2 + µ3 , (1.5)

where

µ1(A) = 0 for every Borel set A ⊂ Ω such that HN−2(A) <∞, (1.6)

µ2 = α(x)HN−2 E for some Borel set E ⊂ Ω, and some HN−2-measurable α, (1.7)

µ3(Ω\F ) = 0 for some Borel set F ⊂ Ω with HN−2(F ) = 0. (1.8)

By a result of Federer (see [4] and also [6, Theorem 15.6]), the set E can be uniquely
decomposed as a disjoint union E = E1 ∪ E2, where E1 is (N − 2)-rectifiable and E2 is
purely (N − 2)-unrectifiable. In particular,

µ2 = α(x)HN−2 E1 + α(x)HN−2 E2. (1.9)

Combining Corollaries 1–3, we establish the following

Theorem 5 Given µ ∈M(Ω), decompose µ+ as in (1.5)–(1.9). Then,

µ∗ = (µ1)∗ + (µ2)∗ + (µ3)∗ − µ−. (1.10)

In addition,

(µ1)∗ = µ1, (1.11)

(µ2)∗ = (α(x)HN−2 E1)∗ + (α(x)HN−2 E2)∗, (1.12)(
α(x)HN−2 E1

)∗ = min {4π, α(x)}HN−2 E1, (1.13)(
α(x)HN−2 E2

)∗ ≥ min {4π, α(x)}HN−2 E2, (1.14)

(µ3)∗(A) = 0 for every Borel set A ⊂ Ω with dimH (A) < N − 2. (1.15)
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In view of the examples presented in [7], one can find measures µ ≥ 0 for which equality
in (1.14) fails and such that (µ3)∗(F ) > 0 for some Borel set F ⊂ Ω, with HN−2(F ) = 0.

The plan of the paper is as follows. In the next section we will prove Theorem 2. In
Section 3 we will present a decomposition result for Radon measures. Theorem 1 will then
be proved in Section 4. Theorems 3 and 4 will be established in Section 5. The last section
will be devoted to the proof of Theorem 5 and Corollaries 1–3.

2 Proof of Theorem 2

We first recall the definition of the Morrey space Mp(Ω); see [5].

Definition 1 Let p ≥ 1 be a real number. We say that a function f ∈ L1(Ω) belongs to
the Morrey space Mp(Ω) if

‖f‖
p

= sup
Br

1

r
N

“
1− 1

p

” ∫
Ω∩Br

|f(y)| dy < +∞,

where the supremum is taken over all open balls Br ⊂ RN .

The following theorem is well-known (for the proof, see for example [5, Section 7.9]).

Theorem 6 Let f ∈ Mp(Ω) for some p ≥ N
2 , and let u be the solution of{

−∆u= f in Ω,
u= 0 on ∂Ω.

If p > N
2 , then u belongs to L∞(Ω). If p = N

2 , then eβ|u| is uniformly bounded in L1(Ω)
norm, for every β < β0 = 2NωN

e ‖f‖
N/2

.

Theorem 2 in the Introduction improves the upper bound β0 given in [5]. It turns out that
the constant 2NωN

‖f‖
N/2

is sharp. Indeed we have the following

Example 1 Let E = {x = (x1, x2, . . . , xN ) ∈ RN : x1 = x2 = 0}, and let µ = 4πHN−2 E.

Define µn = ρn ∗ µ, where (ρn) is a sequence of mollifiers, and let un be the solution of{
−∆un = µn in B2(0),

un = 0 on ∂B2(0).
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By standard elliptic estimates, un → u in W 1,q
0 (B2(0)), for every q < N

N−1 and a.e., where
u is the solution of {

−∆u= 4πHN−2 E in B2(0),
u= 0 on ∂B2(0).

Using the Green representation formula, and setting ρ(x) = dist (x,E), one can prove that
u(x) behaves as −2 ln ρ(x), for any x in a suitable neighborhood of E ∩B1(0). Moreover, it
is easy to verify that

‖µn‖N/2
→ 2NωN as n→∞.

Then, by Fatou’s lemma

lim inf
n→+∞

∫
B2(0)

e
2NωN
‖µn‖N/2

un ≥
∫

B2(0)
eu = +∞.

We now turn to the proof of Theorem 2. We start with the following well-known

Lemma 1 Let f : [0, d] → R+ be a C1-function, and

g(r) = sup
t∈[0,r]

f(t).

Then, g is absolutely continuous on [0, d], and its derivative satisfies the following inequality:

0 ≤ g′(r) ≤ [f ′(r)]+ a.e., (2.1)

where s+ = max {s, 0} is the positive part of s ∈ R.

Proof. First of all, observe that since f is continuous, then so is g. We now prove that,
for every x < y in [0, d], there exist x̃ ≤ ỹ in [x, y] such that

0 ≤ g(y)− g(x) ≤ [f(ỹ)− f(x̃)]+. (2.2)

Indeed, if g(y) = g(x), then it is enough to choose x̃ = x and ỹ = y. If g(y) > g(x), then
let us define

x̃ = max
{
z ≥ x : g(z) = g(x)

}
and ỹ = min

{
z ≤ y : g(z) = g(y)

}
.

Clearly, since g is nondecreasing, we have x̃ ≤ ỹ. In order to prove (2.2), simply observe
that f(x̃) = g(x) and f(ỹ) = g(y). Indeed, if for example f(x̃) 6= g(x), then it must be
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f(x̃) < g(x), and this implies that g(z) = g(x) for some z > x, thus contradicting the
definition of x̃.

Since f is absolutely continuous, (2.2) implies that g is absolutely continuous, as re-
quired, so that g′(r) exists for almost every r. We now establish (2.1). Starting from (2.2),
and applying the mean value problem to f , we have that there exists ξ̃ ∈ [x̃, ỹ] such that

0 ≤ g(y)− g(x) ≤ [f(ỹ)− f(x̃)]+ = [f ′(ξ̃)]+ (ỹ − x̃) ≤ [f ′(ξ̃)]+ (y − x).

Dividing by y − x, and letting y → x, the result follows.

Proof of Theorem 2. We split the proof into two steps:

Step 1. Given f ∈ C∞c (Ω), f ≥ 0, let

v(x) =
1

N(N − 2)ωN

∫
Ω

(
1

|x− y|N−2
− 1
dN−2

)
f(y) dy ∀x ∈ Ω, (2.3)

where d is the diameter of Ω. Then, for every 0 < α < 2NωN , it holds∫
Ω

e
2NωN−α
‖f‖N/2

v(x)
dx ≤ (NωN )2

α
dN . (2.4)

Let us set
ν(x, r) =

∫
Br(x)

f(y) dy ∀x ∈ Ω.

In particular,

ν(x, r) ≤ ωNr
N‖f‖L∞ and ν ′(x, r) =

∫
∂Br(x)

f(y) dσ(y) ≤ NωNr
N−1‖f‖L∞ , (2.5)

where ′ denotes the derivative with respect to r and dσ is the (N − 1)-dimensional measure
on ∂Br(x). Then,

v(x) =
1

N(N − 2)ωN

∫ d

0

(
1

rN−2
− 1
dN−2

)( ∫
∂Br(x)

f(y) dσ(y)
)
dr

=
1

N(N − 2)ωN

∫ d

0

(
1

rN−2
− 1
dN−2

)
ν ′(x, r) dr.

Integrating by parts, we have

v(x) =
1

N(N − 2)ωN

(
1

rN−2
− 1
dN−2

)
ν(x, r)

∣∣∣∣d
0

+
1

NωN

∫ d

0

ν(x, r)
rN−1

dr.
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By (2.5),

lim
r→0

ν(x, r)
rN−2

= 0,

and so

v(x) =
1

NωN

∫ d

0

ν(x, r)
rN−1

dr.

Define now
ψ(x, r) = sup

t∈[0,r]

ν(x, t)
tN−2

.

It follows from Lemma 1 that ψ(x, ·) is absolutely continuous. Then, integrating by parts,

v(x)≤ 1
NωN

∫ d

0

ψ(x, r)
r

dr = − 1
NωN

∫ d

0

(
ln

(
d

r

))′
ψ(x, r) dr =

=− 1
NωN

ψ(x, r) ln
(
d

r

)∣∣∣∣d
0

+
1

NωN

∫ d

0
ln

(
d

r

)
ψ′(x, r) dr.

By (2.5),

lim
r→0

ψ(x, r) ln
(
d

r

)
= 0,

and then, observing that ψ(x, d) ≥ ν(x,d)
dN−2 =

‖f‖
L1

dN−2 > 0,

v(x) ≤ 1
NωN

∫ d

0
ln

(
d

r

)
ψ′(x, r) dr =

∫ d

0

ψ(x, d)
NωN

ln
(
d

r

)
ψ′(x, r)
ψ(x, d)

dr.

Therefore, for any 0 < α < 2NωN ,

e
2NωN−α
‖f‖N/2

v(x)
≤ e

∫ d

0

(
2NωN − α

‖f‖N/2

)
ψ(x, d)
NωN

ln
(
d

r

)
ψ′(x, r)
ψ(x, d)

dr
.

Since
ψ′(x, r)
ψ(x, d)

dr is a probability measure on (0, d), Jensen’s inequality implies

e
2NωN−α
‖f‖N/2

v(x)
≤

∫ d

0

(
d

r

) 2NωN−α
‖f‖N/2

ψ(x,d)
NωN ψ′(x, r)

ψ(x, d)
dr.

Clearly,

ψ(x, d) ≤ sup
y∈Ω

ψ(y, d) = ‖f‖
N/2

and ψ(x, d) ≥
‖f‖

L1

dN−2
.
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Thus,

e
2NωN−α
‖f‖N/2

v(x)
≤ dN−α/NωN

‖f‖
L1

∫ d

0

ψ′(x, r)
r2−α/NωN

dr. (2.6)

Now, by (2.1) we have

ψ′(x, r) ≤
[(

ν(x, r)
rN−2

)′ ]+

≤ ν ′(x, r)
rN−2

,

so that ∫
Ω
ψ′(x, r) dx ≤ 1

rN−2

∫
Ω

( ∫
∂Br(x)

f(y) dσ(y)
)
dx

=
1

rN−2

∫
Ω

( ∫
∂Br(0)

f(y + x) dσ(y)
)
dx

=
1

rN−2

∫
∂Br(0)

( ∫
Ω
f(y + x) dx

)
dσ(y) ≤ NωNr ‖f‖L1 .

Hence, from (2.6),∫
Ω

e
2NωN−α
‖f‖N/2

v(x)
dx ≤ NωNd

N−α/NωN

∫ d

0

dr

r1−α/NωN
=

(NωN )2

α
dN

which is (2.4). This concludes the proof of Step 1.

Step 2. Proof of Theorem 2 completed.

Let f ∈ M
N
2 (Ω). Clearly, it suffices to prove the theorem for f ≥ 0. By extending f to

be identically zero outside Ω, we have∫
Br

f(y) dy ≤ ‖f‖
N/2

rN−2 for every ball Br ⊂ RN . (2.7)

Let (ρn) ⊂ C∞c (B1), ρn ≥ 0, be a sequence of mollifiers. Take (ζn) ⊂ C∞c (Ω) to be such
that 0 ≤ ζn ≤ 1 in Ω, and ζn(x) = 1 if d(x, ∂Ω) ≥ 1

n . Set fn = ζn(ρn ∗ f). We claim that

‖fn‖
N/2

≤ ‖f‖
N/2

∀n ≥ 1. (2.8)

In fact, given any ball Br(z) ⊂ RN , we have∫
Br(z)

fn(x) dx ≤
∫

Br(z)
(ρn ∗ f)(x) dx

=
∫

Br(z)

( ∫
RN

ρn(x− y)f(y) dy
)
dx

=
∫

RN

( ∫
Br(z−t)

f(y) dy
)
ρn(t) dt.
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Since (2.7) holds, we get∫
Br(z)

fn(x) dx ≤ ‖f‖
N/2

rN−2

∫
RN

ρn(t) dt = ‖f‖
N/2

rN−2,

which is precisely (2.8).
Let un be the unique solution of{

−∆un = fn in Ω,
un = 0 on ∂Ω.

We shall denote by vn the function given by (2.3), with f replaced by fn. Note that, by the
standard maximum principle, 0 ≤ un ≤ vn in Ω, ∀n ≥ 1. Given 0 < α < 2NωN , it follows
from (2.8) and the previous step that∫

Ω
e

2NωN−α
‖f‖N/2

un(x)
dx ≤

∫
Ω

e
2NωN−α
‖fn‖N/2

vn(x)
dx ≤ (NωN )2

α
dN ∀n ≥ 1. (2.9)

Since fn → f in L1(Ω), standard elliptic estimates imply that un → u in L1(Ω) and a.e..

Thus, as n→∞ in (2.9), it follows from Fatou’s lemma that e
2NωN−α
‖f‖N/2

u
∈ L1(Ω) and∫

Ω
e

2NωN−α
‖f‖N/2

u(x)
dx ≤ (NωN )2

α
dN .

This concludes the proof of the theorem.

3 A useful decomposition result

Our goal in this section is to establish the following:

Lemma 2 Let µ ∈ M(RN ), µ ≥ 0. Given δ > 0, there exists an open set A ⊂ RN such
that

(a) µ(Br\A) ≤ 2NωNr
N−2 for every ball Br ⊂ RN with 0 < r < δ;

(b) for every compact set K ⊂ A,

µ
(
N2δ(K)

)
≥ 4πHN−2

δ (K),

where N2δ(K) denotes the neighborhood of K of radius 2δ.
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Proof. Given a sequence of open sets (Ak)k≥0, for each k ≥ 1 we let

Rk = sup
{
r ∈ [0, δ) : µ(Br\Ak−1) ≥ 2NωNr

N−2 for some ball Br ⊂ RN
}
. (3.1)

We now construct the sequence (Ak) inductively as follows. Let A0 = φ. We have two
possibilities. If R1 = 0, then we take Ak = φ for every k ≥ 1. Otherwise, R1 > 0 and there
exists r1 ∈ (R1

2 , R1] and x1 ∈ RN such that

µ
(
Br1(x1)

)
≥ 2NωNr

N−2
1 .

Let A1 = Br1(x1). If R2 = 0, then we let Ak = φ for every k ≥ 2. Assume R2 > 0. In this
case, we may find r2 ∈ (R2

2 , R2] and x2 ∈ RN such that

µ
(
Br2(x2)\A1

)
≥ 2NωNr

N−2
2 .

Proceeding by induction, we obtain a sequence of balls Br1(x1), Br2(x2), . . . and open sets

Ak = Br1(x1) ∪ · · · ∪Brk(xk) (3.2)

such that
Rk

2
< rk ≤ Rk (3.3)

and
µ
(
Brk(xk)\Ak−1

)
≥ 2NωNr

N−2
k ∀k ≥ 1. (3.4)

Note that Rk → 0 as k →∞. In fact, by (3.3) and (3.4) we have

NωN

2N−3

∞∑
k=1

RN−2
k ≤ 2NωN

∞∑
k=1

rN−2
k ≤

∞∑
k=1

µ
(
Brk(xk)\Ak−1

)
= µ

( ⋃
k

Brk(xk)
)
≤ ‖µ‖M.

In particular,
∑

k R
N−2
k <∞, which implies the desired result.

Let

A =
∞⋃

j=1

Aj =
∞⋃

k=1

Brk(xk).

We claim that A satisfies (a) and (b).

Proof of (a).
Given Br ⊂ RN such that 0 < r < δ, let k ≥ 1 be sufficiently large so that Rk < r. By

the definition of Rk, we have µ(Br\Ak) ≤ 2NωNr
N−2. Since Ak ⊂ A, we have Br\A ⊂

Br\Ak and the result follows.
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Proof of (b).
Given a compact set K ⊂ A, let

J =
{
j ≥ 1 : Brj (xj) ∩K 6= φ

}
.

In particular,
K ⊂

⋃
j∈J

Brj (xj).

Moreover, since rj < δ, we have Brj (xj) ⊂ N2δ(K) for every j ∈ J . Thus,

µ
(
N2δ(K)

)
≥ µ

( ⋃
j∈J

Brj (xj)
)

≥ µ
( ⋃

j∈J

[
Brj (xj)\Aj−1

])
=

∑
j∈J

µ
(
Brj (xj)\Aj−1

)
≥ 2NωN

∑
j∈J

rN−2
j ≥ 2NωN

ωN−2
HN−2

δ (K).

Since 2NωN
ωN−2

= 4π, we get

µ
(
N2δ(K)

)
≥ 4πHN−2

δ (K).

This concludes the proof of Lemma 2.

4 Proof of Theorem 1

We first observe that, as a consequence of Theorem 2, we have the following

Proposition 1 Let µ ∈M(Ω) be such that

µ+(Ω ∩Br) ≤ 2NωNr
N−2 for every ball Br ⊂ RN .

Then, µ is a good measure for (1.1).

Proof. Since µ ≤ µ+, it is enough to show that µ+ is a good measure. Thus, without
loss of generality, we may assume that µ ≥ 0. Moreover, extending µ to be identically zero
outside Ω, we may also assume that µ ∈M(RN ) and

µ(Br) ≤ 2NωNr
N−2 for every ball Br ⊂ RN .

13



We shall split the proof of Proposition 1 into two steps:

Step 1. Assume there exists ε > 0 such that

µ(Br) ≤ 2NωN (1− ε)rN−2 for every ball Br ⊂ RN .

Then, µ is a good measure.

Let (ρn) ⊂ C∞c (B1), ρn ≥ 0, be a sequence of mollifiers. Set µn = ρn ∗µ. Proceeding as
in the proof of Theorem 2, Step 2, we have

‖µn‖N/2 ≤ 2NωN (1− ε) ∀n ≥ 1.

Let vn be the unique solution of {
−∆vn = µn in Ω,

vn = 0 on ∂Ω.

Applying Theorem 2 to α = 2NωN − ‖µn‖N/2 ≥ 2NωNε > 0, we conclude that∫
Ω

evn ≤ C ∀n ≥ 1, (4.1)

for some constant C > 0 independent of n. By standard elliptic estimates vn → v a.e.,
where v is a solution for {

−∆v= µ in Ω,
v= 0 on ∂Ω.

Hence, by Fatou’s lemma and (4.1), it follows that ev ∈ L1(Ω). Since

−∆v + ev − 1 = µ+ ev − 1 in Ω,

µ + ev − 1 is a good measure. In particular, µ ≤ µ + ev − 1 and v ≥ 0, imply that µ is a
good measure as well.

Step 2. Proof of the proposition completed.

Let αn ↑ 1. For every n ≥ 1, the measure αnµ satisfies the assumptions of Step 1. Thus,
αnµ ∈ G, ∀n ≥ 1. Since αnµ → µ strongly in M(Ω) and G is closed in M(Ω), we have
µ ∈ G.

We recall the following result:

Lemma 3 If µ1, . . . , µk ∈M(Ω) are good measures for (1.1), then so is supi µi.

14



Proof. If k = 2, this is precisely [1, Corollary 4]. The general case easily follows by
induction on k.

We then have a slightly improved version of Proposition 1:

Proposition 2 Let µ ∈M(Ω). Assume there exists δ > 0 such that

µ+(Ω ∩Br) ≤ 2NωNr
N−2 for every ball Br ⊂ RN with r ∈ (0, δ).

Then, µ is a good measure for (1.1).

Proof. Let Bδ(x1), . . . , Bδ(xk) be a finite covering of Ω. For each i = 1, . . . , k, let µi =
µ Bδ(xi) ∈ M(Ω). It is easy to see that µi satisfies the assumptions of Proposition 1, so
that each µi is a good measure for (1.1). Thus, by the previous lemma, supi µi ∈ G. Since
µ ≤ supi µi, we conclude that µ is also a good measure for (1.1).

We can now present the

Proof of Theorem 1. As above, since µ ≤ µ+, it suffices to show that µ+ is a good
measure. In particular, we may assume that µ ≥ 0. Moreover, it suffices to establish the
theorem for a measure µ such that µ ≤ (4π − ε)HN−2 for some ε > 0. The general case
follows as in Step 2 of Proposition 1.

We first extend µ to be identically zero outside Ω. By Lemma 2, there exists an open
set Â1 ⊂ RN such that (a) and (b) hold with δ = 1 and A = Â1. By induction, given an
open set Âk−1 ⊂ RN , we apply Lemma 2 to µ Âk−1 and δk = 1

k to obtain an open set
Âk ⊂ Âk−1 such that

(ak) µ Âk−1(Br\Âk) ≤ 2NωNr
N−2 for every ball Br ⊂ RN with 0 < r < 1

k ;

(bk) for every compact set K ⊂ Âk,

µ
(
N2/k(K)

)
≥ µ Âk−1

(
N2/k(K)

)
≥ 4πHN−2

1/k (K).

By Proposition 2, each measure µ Ω\Â1, µ Â1\Â2, . . ., µ Âk−1\Âk is good. We now
invoke Lemma 3 to conclude that

µ Ω\Âk = sup
{
µ Ω\Â1, µ Â1\Â2, . . . , µ Âk−1\Âk

}

15



is a good measure for every k ≥ 1. Let Â =
⋂

k Âk. Since µ Ω\Âk → µ Ω\Â strongly
in M(Ω) and the set G of good measures is closed with respect to the strong topology, we
conclude that µ Ω\Â is also a good measure for (1.1).
We now claim that µ(Â) = 0. In fact, let K ⊂ Â be a compact set. In particular, K ⊂ Âk.
By (bk), we have

µ
(
N2/k(K)

)
≥ 4πHN−2

1/k (K) ∀k ≥ 1.

As k →∞, we conclude that
µ(K) ≥ 4πHN−2(K). (4.2)

In particular, HN−2(K) <∞. Recall that, by assumption,

µ(K) ≤ 4π(1− ε)HN−2(K). (4.3)

Combining (4.2) and (4.3), we get µ(K) = 0. Since K ⊂ Â is arbitrary, we conclude that
µ(Â) = 0. Therefore, µ = µ Ω\Â and so µ is a good measure. This concludes the proof
of Theorem 1.

5 Proof of Theorems 3 and 4

In this section we derive some necessary conditions for a measure to be good for problem
(1.1). Let us start with a regularity property for solutions of elliptic equations with measure
data.

Lemma 4 Let ν ∈M(Ω) and let u be the solution of the Dirichlet problem{
−∆u= ν in Ω,

u= 0 on ∂Ω.
(5.1)

If eu ∈ L1(Ω), then u+ belongs to W 1,p
0 (Ω) for every p < 2, and

‖u+‖
W 1,p

0
≤ C (p,meas Ω, ‖ν‖M, ‖eu‖L1) ∀p < 2. (5.2)

Proof. Let νn = ρn ∗ ν, where (ρn) is a sequence of mollifiers, and let un be the solution of{
−∆un = νn in Ω,

un = 0 on ∂Ω.
(5.3)
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Then it is well-known that the sequence (un) converges to u in W 1,q
0 (Ω), for every q < N

N−1

(see [8]).
Using Tk(u+

n ) = min {k,max {un, 0}} as a test function in (5.3), we have∫
Ω
|∇Tk(u+

n )|2 dx =
∫

Ω
Tk(u+

n ) νn dx ≤ k ‖νn‖L1 ≤ k ‖ν‖M.

Letting n→∞, by weak lower semicontinuity we obtain∫
Ω
|∇Tk(u+)|2 dx ≤ k‖ν‖M. (5.4)

On the other hand, assumption eu ∈ L1(Ω) implies, for every k > 0,

ek meas {u > k} ≤
∫
{u>k}

eu dx ≤ ‖eu‖L1 ,

and so
meas {u > k} ≤ e−k‖eu‖L1 . (5.5)

For every η > 1 we have{
|∇u+| > η

}
=

{
|∇u| > η

u > k

}
∪

{
|∇u| > η

0 ≤ u ≤ k

}
,

so that, by (5.4) and (5.5),

meas
{
|∇u+| > η

}
≤meas {u > k}+ meas

{
|∇u| > η

0 ≤ u ≤ k

}
≤ e−k‖eu‖L1 +

1
η2

∫
Ω
|∇Tk(u+)|2 dx ≤ C

(
e−k +

k

η2

)
,

where C = max {‖eu‖L1 , ‖ν‖M}. Minimizing on k, we find

meas
{
|∇u+| > η

}
≤ C

1 + 2 ln η
η2

.

Therefore, |∇u+| belongs to the Marcinkiewicz space of exponent p, for every p < 2. Since Ω
is bounded, it follows that |∇u+| ∈ Lp(Ω), for every p < 2, and that (5.2) holds.

Theorem 3 can now be obtained as a consequence of the above results.

Proof of Theorem 3. By inner regularity, it is enough to prove that if µ ∈ M(Ω) is
a good measure for problem (1.1), then µ(K) ≤ 0 for every compact set K ⊂ Ω with
dimH(K) < N − 2.
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By Lemma 3, if µ is a good measure, then so is µ+ = sup {µ, 0}. Let v ≥ 0 be the
solution of problem (1.1) with datum µ+. In particular, v satisfies∫

Ω
∇v∇ζ +

∫
Ω
(ev − 1) ζ =

∫
Ω
ζ dµ+ ∀ζ ∈ C∞c (Ω). (5.6)

Take now a compact set K ⊂ Ω with dimH (K) < N − 2, and let q be such that 2 < q <

N − dimH(K). Then the q-capacity of K is zero (see e.g. [3]), and there exists a sequence
of smooth functions ζn ∈ C∞c (Ω) such that

0 ≤ ζn ≤ 1 in Ω, ζn = 1 in K, ζn → 0 in W 1,q
0 (Ω) and a.e. (5.7)

Using ζn as test function in (5.6) yields

0 ≤ µ+(K) ≤
∫

Ω
ζn dµ

+ =
∫

Ω
∇v∇ζn +

∫
Ω
(ev − 1) ζn.

Since, by Lemma 4, v ∈ W 1,q′

0 (Ω), the right-hand side tends to 0 as n → ∞. Hence,
µ+(K) = 0, which implies µ(K) ≤ 0, as desired.

Before presenting the proof of Theorem 4, we need some preliminary lemmas. The first
one is well-known (see e.g. [3]).

Lemma 5 If f ∈ L1(RN ), then, for every 0 ≤ s < N ,

lim
r→0

1
rs

∫
Br(x)

|f(y)| dy = 0 Hs-a.e. in RN .

In the following, we will denote the angular mean of a function w ∈ L1(RN ) on the
sphere centered at x ∈ RN with radius r > 0 by

w(x, r) = −
∫

∂Br(x)
w dσ =

1
NωNrN−1

∫
∂Br(x)

w dσ. (5.8)

The next result provides an estimate of the asymptotic behavior, as r → 0, of the
angular mean of a function in terms of its Laplacian.

Lemma 6 Let w ∈ L1(RN ) be such that ∆w ∈M(RN ). Set µ = −∆w. Then,

1
NωN

lim inf
r→0

µ(Br(x))
rN−2

≤ lim inf
r→0

w(x, r)
ln (1/r)

≤ lim sup
r→0

w(x, r)
ln (1/r)

≤ 1
NωN

lim sup
r→0

µ(Br(x))
rN−2

.
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Proof. We claim that, for every 0 < r < s < 1, we have

w(x, r)− w(x, s) =
1

NωN

∫ s

r

µ(Bρ(x))
ρN−1

dρ. (5.9)

Indeed, if µ ∈ L1(RN ), then, integrating by parts, we have∫
Bρ(x)

µ(y) dy = −NωNρ
N−1w ′(x, ρ), (5.10)

where ′ denotes the derivative with respect to ρ. Integrating (5.10) from r to s we have

w(x, r)− w(x, s) =
1

NωN

∫ s

r

1
ρN−1

( ∫
Bρ(x)

µ(y) dy
)
dρ,

which is precisely (5.9) if µ ∈ L1(RN ). The general case then follows by regularizing via
convolution and taking the limit. Thus, from (5.9) we have

1
NωN

inf
0<ρ<s

(
µ(Bρ(x))
ρN−2

)
ln

(s
r

)
≤ w(x, r)− w(x, s) ≤ 1

NωN
sup

0<ρ<s

(
µ(Bρ(x))
ρN−2

)
ln

(s
r

)
.

Dividing by ln (1/r) and letting r → 0 yields

1
NωN

inf
0<ρ<s

(
µ(Bρ(x))
ρN−2

)
≤ lim inf

r→0

w(x, r)
ln (1/r)

≤ lim sup
r→0

w(x, r)
ln (1/r)

≤ 1
NωN

sup
0<ρ<s

(
µ(Bρ(x))
ρN−2

)
,

and the conclusion follows by letting s→ 0.

An immediate consequence of Lemmas 5 and 6 is the following

Corollary 4 Let w ∈ L1(RN ) be such that ∆w ∈ L1(RN ). Then,

lim
r→0

w(x, r)
ln (1/r)

= 0 for HN−2-a.e. x ∈ RN .

We can now prove Theorem 4.

Proof of Theorem 4. By contradiction, assume that µ is a good measure for problem
(1.1), so that (4π+ ε)HN−2 E is also a good measure. Let u be the solution of (1.1) with
datum (4π + ε)HN−2 E and let v the solution of{

−∆v= (4π + ε) HN−2 E in Ω,
v= 0 on ∂Ω.
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Since E is (N − 2)-rectifiable, then (see [6])

lim
r→0

HN−2(E ∩Br(x))
rN−2

= ωN−2 for HN−2-a.e. x ∈ E.

Thus, from Lemma 6 we obtain

lim
r→0

v(x, r)
ln (1/r)

=
(4π + ε)ωN−2

NωN
=

4π + ε

2π
for HN−2-a.e. x ∈ E. (5.11)

On the other hand, the function w = v − u satisfies −∆w = eu − 1 ∈ L1(Ω), so that, by
Corollary 4,

lim
r→0

w(x, r)
ln (1/r)

= lim
r→0

v(x, r)− u(x, r)
ln (1/r)

= 0 for HN−2-a.e. x ∈ Ω. (5.12)

Combining (5.11) and (5.12) we deduce

lim
r→0

u(x, r)
ln (1/r)

=
4π + ε

2π
> 2 for HN−2-a.e. x ∈ E.

Thus, for HN−2-a.e. x ∈ E, there exists δ = δ(x) > 0 such that

u(x, r)
ln(1/r)

> 2 ∀r ∈ (0, δ). (5.13)

Since ∫
Bδ(x)

eu(y) dy =
∫ δ

0

( ∫
∂Br(x)

eu dσ

)
dr = NωN

∫ δ

0
rN−1

(
−
∫

∂Br(x)
eudσ

)
dr,

by Jensen’s inequality and (5.13), it follows that∫
Bδ(x)

eu(y) dy ≥ NωN

∫ δ

0
rN−1eu(x,r) dr ≥ NωN

∫ δ

0
rN−3 dr =

NωN

N − 2
δN−2.

Consequently, as δ → 0, we obtain

lim inf
δ→0

1
δN−2

∫
Bδ(x)

eu(y) dy > 0 for HN−2-a.e. x ∈ E,

which contradicts Lemma 5 being HN−2(E) > 0.
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6 Proof of Theorem 5

We first establish Corollaries 1–3.

Proof of Corollary 1. Let µ ∈ M(Ω) be such that µ ≤ 4πHN−2. It follows from
Theorem 1 that µ is a good measure. Since µ∗ is the largest good measure ≤ µ, we must
have µ = µ∗.

Proof of Corollary 2. By Corollary 10 in [1], for every µ ∈M(Ω) we have

µ∗ = (µ+)∗ + (−µ−)∗ = (µ+)∗ − µ−. (6.1)

Assume that there exists a Borel set A ⊂ Ω, with dimH (A) < N−2, such that µ+ = µ+ A.
We claim that (µ+)∗ = 0.
By contradiction, suppose that (µ+)∗ 6= 0. Since 0 ≤ (µ+)∗ ≤ µ+, the measure (µ+)∗ is also
concentrated on A. In addition, (µ+)∗ 6= 0 implies (µ+)∗(A) > 0. Applying Theorem 3, we
conclude that (µ+)∗ is not a good measure, which is a contradiction. Thus, (µ+)∗ = 0. It
then follows from (6.1) that µ∗ = −µ−.

Proof of Corollary 3. Without loss of generality we can assume that α(x) ≥ 0 for HN−2-
a.e. in x ∈ E. Let ν = min {4π, α(x)}HN−2 E. Since ν ≤ 4πHN−2, Theorem 1 implies
that ν is a good measure. Clearly, ν ≤ µ; thus, ν ≤ µ∗. Since µ∗ ≤ µ = α(x)HN−2 E,

there exists an HN−2-measurable function β, such that µ∗ = β(x)HN−2 E. Assume by
contradiction that β 6= min {4π, α}. Since

min {4π, α} ≤ β ≤ α,

we conclude that there exists ε > 0 and a Borel set F ⊂ E, with HN−2(F ) > 0, such that

(4π + ε) ≤ β HN−2-a.e. on F .

Since E is (N − 2)-rectifiable and F ⊂ E, then F is also (N − 2)-rectifiable (see e.g. [6,
Lemma 15.5]). Moreover,

(4π + ε)HN−2 F ≤ βHN−2 F ≤ µ∗.

Thus, (4π + ε)HN−2 F is a good measure. But this contradicts Theorem 4. Therefore,
β = min {4π, α} and so µ∗ = ν.

We now present the
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Proof of Theorem 5. Clearly, the measures µ1, µ2, µ3 and −µ− are singular with respect
to each other; (1.10) then follows from Theorem 8 in [1]. For the same reason, (1.12) holds.
Next, Corollaries 1–3 imply (1.11), (1.13) and (1.15). Finally, since min {4π, α}HN−2 E2

is a good measure by Theorem 1, we have (1.14).
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