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Abstract. Given any continuous nondecreasing function g : R → R, with g(t) = 0,
∀t ≤ 0, we show that there always exists some positive measure µ, concentrated on a set
of zero Newtonian capacity, for which the problem(

−∆u + g(u) = µ in Ω,

u = 0 on ∂Ω,
(0.1)

admits a solution. This provides an affirmative answer to Open problem 2 raised by

Brezis-Marcus-Ponce [3]. When N ≥ 3 and g(t) = et − 1, ∀t ≥ 0, Bartolucci-Leoni-

Orsina-Ponce [1] proved that any measure µ ≤ 4πHN−2 is good for problem (0.1). We

present examples of other good measures which are not ≤ 4πHN−2.
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1 Introduction

Let Ω ⊂ RN , N ≥ 2, be a smooth bounded domain. Let g : R → R be a
continuous nondecreasing function such that g(t) = 0, ∀t ≤ 0. Given a bounded
measure µ ∈M(Ω), then u is a solution of{

−∆u + g(u) = µ in Ω,

u = 0 on ∂Ω,
(1.1)

if u ∈ L1(Ω), g(u) ∈ L1(Ω), and

−
∫

Ω

u∆ζ +
∫

Ω

g(u)ζ =
∫

Ω

ζ dµ ∀ζ ∈ C2(Ω), ζ = 0 on ∂Ω.

We say that µ is a good measure (relative to g) if (1.1) has a solution u.
We observe that u, whenever it exists, is unique. The study of problem (1.1),
when µ ∈ L1(Ω), was initiated by Brezis-Strauss [5]. They established that every
measure in L1(Ω) is good. Later, Bénilan-Brezis [2] (see also Brezis-Véron [6])

1Proceedings of the Fifth European Conference on Elliptic and Parabolic Problems. A special
tribute to the work of Häım Brezis.
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proved that (1.1) need not have a solution for a given measure µ. In fact, if N ≥ 3
and g(t) = tp, ∀t ≥ 0, for some p ≥ N

N−2 , then there exists no u satisfying (1.1)
for µ = δa, a ∈ Ω.

Let G(g) denote the set of good measures associated to g. One can show (see
[3]) that G(g) is convex and closed with respect to the strong topology in M(Ω).

A measure µ is diffuse if µ(A) = 0 for every Borel set A ⊂ Ω such that
cap (A) = 0, where “cap” denotes the Newtonian (H1) capacity. If µ ∈M(Ω) and
µ+ is diffuse, then µ is good for every nonlinearity g (see [3, Corollary 3]). The
converse is also true. Namely, if µ is good for every g, then µ+ is diffuse (see [3,
Theorem 5]). We can summarize this as{

µ ∈M(Ω) : µ+ is a diffuse measure
}

=
⋂
g

G(g),

where the intersection is taken over all continuous nondecreasing functions g : R →
R such that g(t) = 0, ∀t ≤ 0.

One of our main results is the following

Theorem 1 Given any g, we have{
µ ∈M(Ω) : µ+ is a diffuse measure

}
$ G(g).

In other words, for any fixed g, there exists a measure µ ∈ M(Ω), µ ≥ 0, such
that µ ∈ G(g), but µ is not diffuse.

Theorem 1 gives a positive answer to Open problem 2 in [3]. As we shall
see below, the proof of Theorem 1 is constructive. In fact, it gives a recipe for
explicitly obtaining the measure µ. Of course, such µ will heavily depend on the
function g.

In dimension N ≥ 3, Theorem 1 can be improved. Recall that any Borel set
A ⊂ Ω such that HN−2(A) < ∞ has zero capacity (but the converse is false; see
[7]). When N ≥ 3, it is always possible to find good measures µ of the form
µ = αHN−2bK for some compact set K ⊂ Ω and α > 0. More precisely, we have

Theorem 2 Assume N ≥ 3. Given any g, there exists a compact set K ⊂ Ω,
HN−2(K) ∈ (0,∞), such that µ = αHN−2bK is good (relative to g) for every
α > 0.

Theorem 2 is no longer true in dimension N = 2. In fact, problem (1.1) has
no solution when g(t) = et − 1, ∀t ≥ 0, and µ = αδa, a ∈ Ω, for any α > 4π (see
Vázquez [12]).

One can also construct good measures µ ≥ 0 concentrated on a set of zero
HN−2-measure. In fact,

Theorem 3 Assume N ≥ 3. For any g, there exists a good measure µ ≥ 0 such
that HN−2(supp µ) = 0.
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When N ≥ 3 and g(t) = et − 1, ∀t ≥ 0, it has been established in [1] that if
µ ≤ 4πHN−2, then µ is good. According to Theorems 2 and 3 above, there are
other good measures which are not ≤ 4πHN−2. The existence of such measures
was suggested by L. Véron in a personal communication.

The construction presented here has been applied in the study of other related
problems; see [4] and [8]. An alternative approach for obtaining good measures
which are not diffuse might be found in some recent work of Marcus-Véron [10].

This paper is organized as follows. In Section 2, we define a Cantor-type
set F associated to a subsequence (`kj

); as we shall see later on, the proofs of
Theorems 1–3 rely on suitable choices of (`k) and (kj). We then introduce a
positive measure µF supported on F . In Section 3, we estimate the potential
generated by µF in terms of (`kj ). In Section 4, we present the proofs of Theorems 2
and 3; as a corollary, we obtain Theorem 1 when N ≥ 3. Finally, in Section 5, we
prove Theorem 1 in the case N = 2.

2 Construction of the Cantor set F associated to
the subsequence (`kj

)

We shall assume for simplicity that Ω = Q1, the unit cube centered at 0. One of
the main ingredients in the proofs of Theorems 1–3 will be the construction of a
(generalized) Cantor set F ⊂ Ω; see e.g. [11]. We begin by describing the building
blocks used in the definition of F .

Let n ≥ 1 be an integer and let 0 < s � t. We shall associate to the triple
(s, t, n) a compact set E(s, t, n) ⊂ [− t

2 , t
2 ]N in the following way. Let

α =
t− ns

n− 1
. (2.1)

For j = 1, . . . , n, set

aj = (j − 1)(s + α)− t

2
and bj = aj + s.

In particular, a1 = − t
2 and bn = t

2 . We then define

E(s, t, n) =
⋃

1≤i1,...,iN≤n

[ai1 , bi1 ]× · · · × [aiN
, biN

].

Thus, the set E(s, t, n) is the union of nN cubes of side s, uniformly distributed
in [− t

2 , t
2 ]N . The distance between two components of E(s, t, n) is ≥ α.

We now turn to the construction of F .
Let (`k) be a decreasing sequence of positive numbers such that

`1 ≤
1
4

and `k+1 ≤ θ `k ∀k ≥ 1, (2.2)
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for some θ ∈ (0, 1
2 ). The Cantor set F associated to the subsequence (`kj ) is

defined by induction as follows.
Let F0 = Q1, k0 = 0 and `0 = 1. Let Fj be the set obtained after the j-th

step; Fj is the disjoint union of 2Nkj cubes Qi of side `kj
. Let x1, . . . , x2Nkj denote

the centers of each component of Fj (although it is not indicated, such points do
depend on j). We then set

Fj+1 =
2Nkj⋃
i=1

E
(
`kj+1 , γ`kj

, 2(kj+1−kj)
)

+ xi, (2.3)

where γ = 1
2 + θ ∈ ( 1

2 , 1). In particular, Fj+1 is the union of 2Nkj+1 disjoint cubes
of side `kj+1 . Moreover, since we are taking t = γ`kj , we have

d(Fj+1, ∂Fj) =
1− γ

2
`kj

=
1− 2θ

4
`kj

. (2.4)

We also point out that the distance between any two components of Fj+1 inside
the cube [−γ`kj

, γ`kj
]N + xi is ≥ α, where α is given by (2.1). Since (2.2) holds

with θ < 1
2 , we have

α ∼
`kj

2(kj+1−kj)
.

We finally set

F =
∞⋂

j=0

Fj .

We would like to emphasize the main feature in the construction of F . In order
to obtain a standard Cantor set, inside each component Qi of Fj one would take
2N small cubes. In our case, we select 2N(kj+1−kj) small cubes inside Qi. This
possibility of choosing many more cubes turns out to be crucial in the proofs of
some of our main results.

3 Potential generated by the uniform measure µF

concentrated on F

In this section, we present some basic estimates which will be used throughout
this paper.

For each j ≥ 1, let µj = 1
|Fj+1|χFj+1 , where Fj+1 is given by (2.3). The uniform

measure concentrated on F , µF , is the weak∗ limit of (µj) in M(Ω) as j →∞. In
particular, µF ≥ 0 and µF (Ω) = 1. A key property satisfied by µF is given by the
next
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Lemma 1 For every x ∈ Fj+1, j ≥ 0, we have

µF

(
Br(x)

)
∼


1

2Nkj+1
if `kj+1 . r .

`kj

2(kj+1−kj) ,

1

2Nkj

(
r

`kj

)N

if
`kj

2(kj+1−kj) . r . `kj .
(3.1)

Here, we implicitly assume that k0 = 0. We say that a . b if there exists
C > 0, depending on N and θ, such that a ≤ C b. By a ∼ b, we mean that a . b
and b . a.

Proof. We shall use the same notation as in the construction of F . Note that if

`kj+1 . r .
`kj

2(kj+1−kj)
,

then Br(x) contains a single component Qi,n of Fj+1. Since

µF (Qi,n) =
1

2Nkj+1
,

the first estimate in (3.1) follows.
We now assume

`kj

2(kj+1−kj)
. r . `kj

.

Let Qi be the component of Fj containing x. Recall that there are 2N(kj+1−kj)

components Qi,n of Fj+1 contained in Qi. Thus, the number of cubes Qi,n

contained in Br(x) is of the order of 2N(kj+1−kj)
(

r
`kj

)N

. Since, for each Qi,n,

µF (Qi,n) = 1

2Nkj+1
, we then have

µF

(
Br(x)

)
∼ 2N(kj+1−kj)

(
r

`kj

)N

µF (Qi,n) =
1

2Nkj

(
r

`kj

)N

.

The proof of the lemma is complete.

Let v ∈ L1(Q1) be the unique solution of{
−∆v = µF in Q1,

v = 0 on ∂Q1.
(3.2)

A basic estimate satisfied by v is given by the following

Proposition 1 Assume N ≥ 3. Let F ⊂ Q1 be the Cantor set associated to the
subsequence (`kj

) and let v be the solution of (3.2). Then, there exist constants
C1, C2 > 0 (depending on N and θ) such that

C1

(
1

`N−2
k1

+
j∑

i=1

1
2Nki`N−2

ki

)
≤ v(x) ≤ C2

(
1

`N−2
k1

+
j∑

i=1

1
2Nki`N−2

ki

)
, (3.3)

for every x ∈ ∂Fj, j ≥ 1.
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Proof. Let

w(x) =
1

NωN

∫ ∞

0

µF

(
Br(x)

)
rN−1

dr ∀x ∈ Q1,

where ωN = |B1|. By (2.4), for every x ∈ ∂Fj we have

µF

(
Br(x)

)
= 0 if r . `kj ,

so that

w(x) ∼
∫ ∞

`kj

µF

(
Br(x)

)
rN−1

dr ∀x ∈ ∂Fj .

Thus,

w(x) ∼
j−1∑
i=1

∫ `ki

`ki+1

µF

(
Br(x)

)
rN−1

dr +
∫ ∞

`k1

µF

(
Br(x)

)
rN−1

dr ∼
j−1∑
i=1

(
Ai + Bi

)
+

1
`N−2
k1

,

where, by Lemma 1 and (2.2),

Ai =
∫ `ki

2(ki+1−ki)

`ki+1

µF

(
Br(x)

)
rN−1

dr ∼ 1
2Nki+1

∫ `ki

2(ki+1−ki)

`ki+1

dr

rN−1
∼ 1

2Nki+1`N−2
ki+1

and

Bi =
∫ `ki

`ki

2(ki+1−ki)

µF

(
Br(x)

)
rN−1

dr ∼ 1
2Nki`N

ki

∫ `ki

`ki

2(ki+1−ki)

r dr ∼ 1
2Nki`N−2

ki

.

Therefore,

w(x) ∼
j−1∑
i=1

(
1

2Nki+1`N−2
ki+1

+
1

2Nki`N−2
ki

)
+

1
`N−2
k1

∼
j∑

i=1

1
2Nki`N−2

ki

+
1

`N−2
k1

. (3.4)

In other words, w satisfies (3.3). On the other hand, we have

d(F1, ∂Q1) =
1− γ

2
=

1− 2θ

4
> 0.

Since w ≥ 0 and −∆w = µF in Q1 (see Lemma 2 below), there exist constants
C̃1, C̃2 > 0 such that

C̃1w ≤ v ≤ C̃2w on F1. (3.5)

Combining (3.4) and (3.5), we obtain (3.3). This concludes the proof of the propo-
sition.

We now establish a well-known fact used in the proof of Proposition 1:
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Lemma 2 Given µ ∈M(RN ), let

w(x) =
1

NωN

∫ ∞

0

µ
(
Br(x)

)
rN−1

dr ∀x ∈ RN . (3.6)

Then,
−∆w = µ in D′(RN ).

Proof. We shall prove the lemma for N ≥ 3; the case N = 2 is similar.
We make the change of variables r = s−

1
N−2 in (3.6). Since dr

rN−1 = − ds
N−2 , we get

N(N − 2)ωN w(x) = (N − 2)
∫ ∞

0

µ
({

y ∈ RN : |x− y| < r
}) dr

rN−1

=
∫ ∞

0

µ
({

y ∈ RN : |x− y| < s−
1

N−2

})
ds

=
∫ ∞

0

µ
({

y ∈ RN :
1

|x− y|N−2
> s
})

ds =
∫

RN

dµ(y)
|x− y|N−2

,

from which the result follows.

The counterpart of Proposition 1 in dimension N = 2 is given by

Proposition 2 Assume N = 2. Let F ⊂ Q1 be the Cantor set associated to the
subsequence (`kj ) and let v be the solution of (3.2). Then, for every j ≥ 1, we
have

v ∼

(
log

1
`k1

+
j∑

i=1

1
4ki

log
1

`ki

)
on ∂Fj . (3.7)

The proof of Proposition 2 follows along the same lines and shall be omitted.

4 Proofs of Theorems 2 and 3

We start by recalling the definition of the (spherical) Hausdorff measure Hs in
RN , where 0 ≤ s ≤ N . Let A ⊂ RN be a Borel set. Given δ > 0, let

Hs
δ(A) = inf

{∑
i

ωsr
s
i : K ⊂

⋃
i

Bri
with ri < δ, ∀i

}
,

where the infimum is taken over all coverings of A with open balls Bri of radii
ri < δ, and ωs = πs/2

Γ( s
2+1) . When s is a positive integer, then ωs is the measure of

the unit ball in Rs. We then set

Hs(A) = lim
δ↓0
Hs

δ(A).

We have the following
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Lemma 3 Let F be the Cantor set associated to the subsequence (`kj ). Then,

Hs(F ) ∼ lim inf
j→∞

2Nkj `s
kj

. (4.1)

Moreover, if Hs(F ) ∈ (0,∞), then

µF =
1

Hs(F )
HsbF . (4.2)

Proof.
Proof of (4.1). For j ≥ 1 fixed, let (Bi) be a covering of F with 2Nkj balls of
radii `kj

, where each ball Bi is concentric to some component of Fj . Then,

Hs
δ(F ) ≤ ωs 2Nkj `s

kj
,

for every δ > `kj
. Thus,

Hs(F ) ≤ ωs lim inf
j→∞

2Nkj `s
kj

, (4.3)

which gives . in (4.1).
Conversely, if lim inf

j→∞
2Nkj `s

kj
= 0, then it follows from (4.3) that Hs(F ) = 0 and

we are done. We now assume that

lim inf
j→∞

2Nkj `s
kj

> 0

(the limit above possibly being infinite). Given 0 < a < lim inf
j→∞

2Nkj `s
kj

, let j0 ≥ 1

be sufficiently large so that

2Nkj `s
kj
≥ a ∀j ≥ j0. (4.4)

It then follows from Lemma 1 and (4.4) that there exists C > 0 such that

µF

(
Br(x)

)
≤ Crs

a
∀x ∈ F, ∀r ∈ (0, `j0). (4.5)

Let δ ∈ (0, `j0) and let (Bri
) be a covering of F with balls of radii ri < δ. Without

loss of generality, we may assume that each Bri is centered at some point of F .
Thus, in view of (4.5), we have∑

i

rs
i ≥

a

C

∑
i

µF (Bri) ≥
a

C
µF

(⋃
i

Bri

)
=

a

C
µF (F ) =

a

C
.

This lower bound holds for any covering (Bri) such that ri < δ, ∀i. Therefore,

Hs(F ) ≥ Hs
δ(F ) ≥ ωs

C
a.
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Since a < lim inf
j→∞

2Nkj `s
kj

was arbitrary, we conclude that

Hs(F ) ≥ ωs

C
lim inf
j→∞

2Nkj `s
kj

.

This establishes (4.1).
Proof of (4.2). Assume Hs(F ) ∈ (0,∞). Let Qi be a component of Fj , j ≥ 1.
By symmetry, we have

Hs(F ) = 2NkjHs(Qi ∩ F ).

Since µF (Qi) = 2−Nkj , we get

µF (Qi) =
1

Hs(F )
HsbF (Qi). (4.6)

Given A ⊂ RN open, we may write A ∩ F =
⋃

i (Qi ∩ F ), where (Qi) is a family
of disjoint connected components among all Fj , j ≥ 1. It then follows from (4.6)
that

µF (A) =
1

Hs(F )
HsbF (A) for every open set A ⊂ RN .

Since µF and HsbF are Radon measures, (4.2) follows. This concludes the proof
of the lemma.

We recall the following result (see [3, Theorem 4]):

Proposition 3 Suppose µ1 ∈ M(Ω) is a good measure for problem (1.1). Then,
any measure µ2 ≤ µ1 is also good.

We now establish the

Proposition 4 Assume N ≥ 3. Let F be the Cantor set associated to the subse-
quence (`kj

). There exists C > 0 (depending on N and θ) such that if

∞∑
j=1

g

(
Cα0

j+1∑
i=1

1
2Nki`N−2

ki

)
2Nkj `N

kj
< ∞ for some α0 > 0, (4.7)

then α0µF ∈ G(g).

Proof. Let

a =
1

`N−2
k1

and bj =
j∑

i=1

1
2Nki`N−2

ki

∀j ≥ 1.

Let v be the solution of (3.2). By Proposition 1, there exists C2 > 0 such that

v(x) ≤ C2(a + bj) ∀x ∈ ∂Fj .
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Note that v is harmonic in (int Fj)\Fj+1. Thus, by the maximum principle,

v(x) ≤ C2(a + bj+1) ∀x ∈ Fj\Fj+1.

Assume that lim
j→∞

bj < ∞. In this case, we have v ∈ L∞(Ω); hence, g(α0v) ∈

L1(Ω). We then conclude that α0µF + g(α0v) is good. By Proposition 3, α0µF is
also a good measure.
We now assume that

lim
j→∞

bj = ∞. (4.8)

Since
|Fj\Fj+1| ≤ |Fj | = 2Nkj `N

kj
,

then, for every α > 0, we have∫
Ω

g(αv) =
∞∑

j=1

∫
Fj\Fj+1

g(αv) +
∫

Ω\F1

g(αv)

≤
∞∑

j=1

g
(
C2α(a + bj+1)

)
2Nkj `N

kj
+ O(1).

Using (4.8), we have C2α(a + bj+1) ≤ 2C2αbj+1 for every j ≥ 1 sufficiently large.
Therefore, if (4.7) holds with C = 2C2, then g(α0v) ∈ L1(Ω), so that α0µF +g(α0v)
is a good measure. Applying Proposition 3 above, we conclude that α0µF ∈ G(g).

We now present the

Proof of Theorem 2. Set `k = 2−
N

N−2 k, ∀k ≥ 1. We now fix an increasing
sequence of positive integers (kj) such that

g(j2)

2
2N

N−2 kj
≤ 1

2j
∀j ≥ 1. (4.9)

Let F be the Cantor set associated to the subsequence (`kj ). We claim that αµF

is good for every α > 0.
In fact, since 2Nki`N−2

ki
= 1 for every i ≥ 1, we have

j+1∑
i=1

1
2Nki`N−2

ki

= j + 1 ≤ 2j ∀x ∈ Fj\Fj+1.

Moreover,

2Nkj `N
kj

=
1

2
2N

N−2 kj
.

Thus, for every β > 0, we have

∞∑
j=1

g

(
β

j+1∑
i=1

1
2Nki`N−2

ki

)
2Nkj `N

kj
≤

∞∑
j=1

g
(
2βj

)
2

2N
N−2 kj

. (4.10)
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Since 2βj ≤ j2 for j ≥ 1 sufficiently large, it then follows from (4.9) that the
right-hand side of (4.10) is finite for every β > 0. Applying Proposition 4, we
conclude that αµF is a good measure for every α > 0.
On the other hand, since 2Nkj `N−2

kj
= 1, ∀j ≥ 1, we deduce from Lemma 3 that

HN−2(F ) ∈ (0,∞). Thus, by (4.2), we have

µF =
1

HN−2(F )
HN−2bF .

Therefore, αHN−2bF is good for every α > 0.

Proof of Theorem 3. Let (kj) be an increasing sequence of positive integers
such that

g(j3)

2
2N

N−2 kj
≤ 1

2j
∀j ≥ 1. (4.11)

Let
`k =

1

j
1

N−2 2
Nk

N−2
if kj−1 < k ≤ kj ,

with the convention that k0 = 0. Let F be the Cantor set associated to the
subsequence (`kj

). By Lemma 3, we know that HN−2(F ) = 0. We now show that
µF is a good measure relative to g.
Since 2Nki`N−2

ki
= 1

i , we have

j+1∑
i=1

1
2Nki`N−2

ki

=
(j + 1)(j + 2)

2
≤ 3j2.

Moreover,

2Nkj `N
kj

=
1

j
N

N−2 2
2N

N−2 kj
≤ 1

2
2N

N−2 kj
.

Thus, for every β > 0, we have

∞∑
j=1

g

(
β

j+1∑
i=1

1
2Nki`N−2

ki

)
2Nkj `N

kj
≤

∞∑
j=1

g(3βj2)

2
2N

N−2 kj
. (4.12)

Since 3βj2 ≤ j3 for j ≥ 1 sufficiently large, it then follows from (4.11) that the
right-hand side of (4.12) is finite for every β > 0. Applying Proposition 4, we
conclude that µF is a good measure. The proof of Theorem 3 is complete.

5 Proof of Theorem 1

When N ≥ 3, Theorem 1 follows from Theorem 2 (or Theorem 3) and the following
well-known
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Proposition 5 Let K ⊂ Ω be a compact set. If HN−2(K) < ∞, then cap (K) = 0.

We refer the reader to e.g. [7] for a proof of Proposition 5.

We now deal with the case N = 2. We shall need the following

Lemma 4 Assume N = 2. Let F ⊂ Ω be the Cantor set associated to the subse-
quence (`kj

). Then,

cap (F ) = 0 if and only if
∞∑

j=1

1
4kj

log
1

`kj

= ∞. (5.1)

When F is a standard Cantor set, (5.1) is Carleson’s test (see [7, p.31]) for
determining whether F has zero capacity. The same proof as in [7] can be used
to establish Lemma 4. We present a different argument based on Proposition 2
above.
Proof of Lemma 4. (⇐) Suppose

∞∑
j=1

1
4kj

log
1

`kj

= ∞.

It then follows from Proposition 2 that v = +∞ on F , where v is the solution
of (3.2). Since v is superharmonic, we can apply Theorem 7.33 in [9] to conclude
that cap (F ) = 0.
(⇒) Assume that

∞∑
j=1

1
4kj

log
1

`kj

< ∞. (5.2)

Let v be the solution of (3.2). It follows from (5.2) and Proposition 2 that v is
uniformly bounded in Ω. Thus, the measure µF is diffuse. Since µF is concentrated
in F , we must have cap (F ) > 0. The proof of Lemma 4 is complete.

Remark 1 Here is the counterpart of (5.1) in dimension N ≥ 3:

cap (F ) = 0 if and only if
∞∑

j=1

1
2Nkj `N−2

kj

= ∞. (5.3)

The proof of (5.3) follows along the same lines.

The analog of Proposition 4 in dimension N = 2 is given by the next
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Proposition 6 Assume N = 2. Let F be the Cantor set associated to the subse-
quence (`kj

). There exists C > 0 (depending on θ) such that if

∞∑
j=1

g

(
Cα0

j+1∑
i=1

1
4ki

log
1

`ki

)
4kj `2kj

< ∞ for some α0 > 0, (5.4)

then α0µF ∈ G(g).

The proof of Proposition 6 is based on Proposition 2 and shall be omitted.

We may now present the

Proof of Theorem 1 completed. Let `k = 4−4k

, ∀k ≥ 1. We now fix an
increasing sequence of positive integers (kj) such that

g(j2)

44kj
≤ 1

2j
∀j ≥ 1. (5.5)

Let F be the Cantor set associated to the subsequence (`kj
). Note that

1
4ki

log
1

`ki

= log 4 ∀i ≥ 1.

In particular,
j+1∑
i=1

1
4ki

log
1

`ki

= (j + 1) log 4 ≤ 4j.

It then follows from Lemma 4 that cap (F ) = 0. We now show that µF is a good
measure.
Since

|Fj\Fj+1| ≤ |Fj | = 4kj `2kj
=

1

42 4kj−kj

≤ 1

44kj
,

then, for every β > 0, we have

∞∑
j=1

g

(
β

j+1∑
i=1

1
4ki

log
1

`ki

)
4kj `2kj

≤
∞∑

j=1

g(4βj)

44kj
. (5.6)

In view of (5.5), we conclude that the right-hand side of (5.6) is finite for every
β > 0. Thus, by Proposition 6 above, µF is good. The proof of Theorem 1 is
complete.

Acknowledgments
The author is deeply grateful to H. Brezis for his encouragement; this work is
dedicated to him with admiration and gratitude.
We warmly thank L. Orsina, I. Shafrir, and L. Véron for interesting discussions.
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