Reduced measures on the boundary

Haïm Brezis and Augusto C. Ponce

Abstract

We study the existence of solutions of the nonlinear problem $$
\left\{\begin{align*} -\Delta u+g(u)=0 & \text { in } \Omega, \tag{0.1}\\ u=\mu & \text { on } \partial \Omega, \end{align*}\right.
$$ where μ is a bounded measure and $g: \mathbb{R} \rightarrow \mathbb{R}$ is a nondecreasing continuous function with $g(t)=0, \forall t \leq 0$. Problem (0.1) admits a solution for every $\mu \in L^{1}(\partial \Omega)$, but this need not be the case when μ is a general bounded measure. We introduce a concept of reduced measure μ^{*} (in the spirit of [4]); this is the "closest" measure to μ for which (0.1) admits a solution.

Mathematics Subject Classification (2000). 31B35, 35J60
Key words. Elliptic equations, reduced measures, boundary value problems

1 Introduction

Let $\Omega \subset \mathbb{R}^{N}, N \geq 2$, be a smooth bounded domain. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous, nondecreasing function such that $g(0)=0$. In this paper, we are interested in the problem

$$
\left\{\begin{align*}
-\Delta u+g(u)=0 & \text { in } \Omega \tag{1.1}\\
u=\mu & \text { on } \partial \Omega
\end{align*}\right.
$$

where μ is a bounded measure on $\partial \Omega$. The right concept of weak solution of (1.1) is the following:

$$
\left\{\begin{array}{l}
u \in L^{1}(\Omega), g(u) \rho_{0} \in L^{1}(\Omega) \text { and } \tag{1.2}\\
-\int_{\Omega} u \Delta \zeta+\int_{\Omega} g(u) \zeta=-\int_{\partial \Omega} \frac{\partial \zeta}{\partial n} d \mu \quad \forall \zeta \in C_{0}^{2}(\bar{\Omega})
\end{array}\right.
$$

where $\rho_{0}(x)=d(x, \partial \Omega), \forall x \in \Omega, \frac{\partial}{\partial n}$ denotes the derivative with respect to the outward normal of $\partial \Omega$, and

$$
C_{0}^{2}(\bar{\Omega})=\left\{\zeta \in C^{2}(\bar{\Omega}) ; \zeta=0 \text { on } \partial \Omega\right\}
$$

If u is a solution of (1.1), then $u \in W_{\mathrm{loc}}^{2, p}(\Omega), \forall p<\infty$ (see [3, Theorem 5]).
It has been proved by H. Brezis (1972, unpublished; see [15]) that (1.1) admits a unique weak solution when μ is any L^{1}-function (for a general nonlinearity
$g)$. When g is a power, the study of (1.1) for measures was initiated by GmiraVéron [15] (in the same spirit as [1]). They proved that if $g(t)=|t|^{p-1} t$ and $1<p<\frac{N+1}{N-1}$, then (1.1) has a solution for any measure μ. They also showed that if $p \geq \frac{N+1}{N-1}$ and $\mu=\delta_{a}, a \in \partial \Omega$, then (1.1) has no solution. The set of measures μ for which (1.1) has a solution has been completely characterized when $p \geq \frac{N+1}{N-1}$. In this case, (1.1) has a solution if and only if $\mu(A)=0$ for every Borel set $A \subset \partial \Omega$ such that $C_{2 / p, p^{\prime}}(A)=0$, where $C_{2 / p, p^{\prime}}$ denotes the Bessel capacity on $\partial \Omega$ associated to $W^{2 / p, p^{\prime}}$. This result was established by Le Gall [17] (for $p=2$) and by Dynkin-Kuznetsov [12] (for $p<2$) using probabilistic tools and by MarcusVéron [20] (for $p>2$) using purely analytical methods; see also Marcus-Véron [21] for a unified approach for any $p \geq \frac{N+1}{N-1}$.

Our goal in this paper is to develop for (1.1) the same program as in [4] for the problem

$$
\left\{\begin{align*}
-\Delta u+g(u)=\lambda & \text { in } \Omega, \tag{1.3}\\
u=0 & \text { on } \partial \Omega,
\end{align*}\right.
$$

where λ, in this case, is a measure in Ω. We shall analyze the nonexistence mechanism behind (1.1) for a general nonlinearity g. In [4] we have shown that the Newtonian $\left(H^{1}\right)$ capacity in $\Omega, \operatorname{cap}_{H^{1}}$, plays a major role in the study of (1.3); one of the main results there asserts that (1.3) has a solution for every g if and only if $\lambda(E)=0$ for every Borel set $E \subset \Omega$ such that $\operatorname{cap}_{H^{1}}(E)=0$. For problem (1.1), the analogous quantity is the Hausdorff measure \mathcal{H}^{N-1} on $\partial \Omega$ (i.e., ($N-1$)-dimensional Lebesgue measure on $\partial \Omega$). In fact, many of the results in [4] remain valid provided one replaces in the statements the H^{1}-capacity by the ($N-1$)-Hausdorff measure. Some of the proofs, however, have to be substantially modified.

Concerning the function g we will assume throughout the rest of the paper that $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, nondecreasing, and that

$$
\begin{equation*}
g(t)=0 \quad \forall t \leq 0 \tag{1.4}
\end{equation*}
$$

The space of bounded measures on $\partial \Omega$ is denoted by $\mathcal{M}(\partial \Omega)$ and is equipped with the standard norm

$$
\|\mu\|_{\mathcal{M}}=\sup \left\{\int_{\partial \Omega} \varphi d \mu ; \varphi \in C(\partial \Omega) \text { and }\|\varphi\|_{L^{\infty} \leq 1}\right\}
$$

By a (weak) solution u of (1.1) we mean that (1.2) holds. A (weak) subsolution of (1.1) is a function v satisfying

$$
\left\{\begin{array}{l}
v \in L^{1}(\Omega), g(v) \rho_{0} \in L^{1}(\Omega) \text { and } \tag{1.5}\\
-\int_{\Omega} v \Delta \zeta+\int_{\Omega} g(v) \zeta \leq-\int_{\partial \Omega} \frac{\partial \zeta}{\partial n} d \mu \quad \forall \zeta \in C_{0}^{2}(\bar{\Omega}), \zeta \geq 0 \text { in } \Omega
\end{array}\right.
$$

We will say that $\mu \in \mathcal{M}(\partial \Omega)$ is a good measure if (1.1) admits a solution. If μ is a good measure, then equation (1.1) has exactly one solution u (see [20]; although
this result is stated there when g is a power, the proof remains unchanged for a general nonlinearity g). We denote by \mathcal{G} the set of good measures (relative to g); when we need to make explicit the dependence on g we shall write $\mathcal{G}(g)$. Recall that L^{1}-functions on $\partial \Omega$ belong to $\mathcal{G}(g)$ for every g.

In the sequel we denote by $\left(g_{k}\right)$ a sequence of functions $g_{k}: \mathbb{R} \rightarrow \mathbb{R}$ which are continuous, nondecreasing and satisfy the following conditions:

$$
\begin{gather*}
0 \leq g_{1}(t) \leq g_{2}(t) \leq \ldots \leq g(t) \quad \forall t \in \mathbb{R} \tag{1.6}\\
g_{k}(t) \rightarrow g(t) \quad \forall t \in \mathbb{R} \tag{1.7}
\end{gather*}
$$

We assume in addition that each g_{k} has subcritical growth, i.e., that there exist $C>0$ and $p<\frac{N+1}{N-1}$ (possibly depending on k) such that

$$
\begin{equation*}
g_{k}(t) \leq C\left(|t|^{p}+1\right) \quad \forall t \in \mathbb{R} \tag{1.8}
\end{equation*}
$$

A good example to keep in mind is $g_{k}(t)=\min \{g(t), k\}, \forall t \in \mathbb{R}$.
Since (1.8) holds, then for every $\mu \in \mathcal{M}(\partial \Omega)$ there exists a unique solution u_{k} of

$$
\left\{\begin{align*}
-\Delta u_{k}+g_{k}\left(u_{k}\right)=0 & \text { in } \Omega, \tag{1.9}\\
u_{k}=\mu & \text { on } \partial \Omega .
\end{align*}\right.
$$

The convergence of the sequence $\left(u_{k}\right)$ follows from the next result, established in [4, Section 9.3]:

Theorem 1 As $k \uparrow \infty, u_{k} \downarrow u^{*}$ in $L^{1}(\Omega)$, with $g\left(u^{*}\right) \rho_{0} \in L^{1}(\Omega)$, and u^{*} satisfies

$$
\left\{\begin{align*}
-\Delta u^{*}+g\left(u^{*}\right) & =0 \quad \tag{1.10}\\
& \text { in } \Omega \\
u^{*} & =\mu^{*} \quad
\end{align*} \text { on } \partial \Omega,\right.
$$

for some $\mu^{*} \in \mathcal{M}(\partial \Omega)$ such that $\mu^{*} \leq \mu$. In addition, u^{*} is the largest subsolution of (1.1).

Remark 1 An alternative approximation mechanism consists of keeping g fixed and considering a sequence of functions $\mu_{k} \in L^{1}(\partial \Omega)$ weakly converging to μ. Let v_{k} be the solution of (1.1) associated to μ_{k}. It would be interesting to prove that $v_{k} \rightarrow u^{*}$ in $L^{1}(\Omega)$ for some appropriate choices of sequences $\left(\mu_{k}\right)$ (for measures in Ω, see [4, Theorem 11]).

An important consequence of Theorem 1 is that $u^{*}-$ and thus $\mu^{*}-$ does not depend on the choice of the truncating sequence $\left(g_{k}\right)$. We call μ^{*} the reduced measure associated to μ. If g has subcritical growth, then $\mu^{*}=\mu$ for every $\mu \in \mathcal{M}(\partial \Omega)$ (see Example 1 below). However, if g has critical or supercritical growth, then μ^{*} might be different from μ. In this case, μ^{*} depends both on the measure μ and on the nonlinearity g.

By definition, μ^{*} is a good measure $\leq \mu\left(\right.$ since (1.10) has a solution $\left.u^{*}\right)$. One of the main properties satisfied by μ^{*} is the following

Theorem 2 The reduced measure μ^{*} is the largest good measure $\leq \mu$.
A consequence of Theorem 2 is
Corollary 1 There exists a Borel set $\Sigma \subset \partial \Omega$ with $\mathcal{H}^{N-1}(\Sigma)=0$ such that

$$
\begin{equation*}
\left(\mu-\mu^{*}\right)(\partial \Omega \backslash \Sigma)=0 \tag{1.11}
\end{equation*}
$$

To see this, let μ_{a} and μ_{s} denote, respectively, the absolutely continuous and the singular parts of μ with respect to \mathcal{H}^{N-1}. Since $\mu_{\mathrm{a}} \in L^{1}(\partial \Omega)$, then μ_{a} is good. Thus, $\mu_{\mathrm{a}}-\mu_{\mathrm{s}}^{-}$is also a good measure (see Proposition 1 below). We then conclude from Theorem 2 that $\mu_{\mathrm{a}}-\mu_{\mathrm{s}}^{-} \leq \mu^{*} \leq \mu$. Hence,

$$
0 \leq \mu-\mu^{*} \leq \mu-\mu_{\mathrm{a}}+\mu_{\mathrm{s}}^{-}=\mu_{\mathrm{s}}^{+}
$$

and so $\mu-\mu^{*}$ is concentrated on a set of zero \mathcal{H}^{N-1}-measure.
Remark 2 Corollary 1 is the "best one can say" about $\mu-\mu^{*}$ for a general nonlinearity g. In fact, given any measure $\mu \geq 0$ concentrated on a set of zero \mathcal{H}^{N-1}-measure, there exists some g such that $\mu^{*}=0$ (see Theorem 7 below). In particular, $\mu-\mu^{*}$ can be any nonnegative measure concentrated on a set of zero \mathcal{H}^{N-1}-measure in $\partial \Omega$.

It is not difficult to see that if $\mu \in \mathcal{M}(\partial \Omega)$ and $\mu^{+} \in L^{1}(\partial \Omega)$, then $\mu \in \mathcal{G}(g)$ for every g (see Proposition 5 below). The converse is also true:

Theorem 3 Let $\mu \in \mathcal{M}(\partial \Omega)$. If $\mu \in \mathcal{G}(g)$ for every g, then $\mu^{+} \in L^{1}(\partial \Omega)$.
A key ingredient in the proof of Theorem 3 is the following
Theorem 4 For every compact set $K \subset \partial \Omega$, we have

$$
\mathcal{H}^{N-1}(K)=\inf \left\{\int_{\Omega}|\Delta \zeta| ; \zeta \in C_{0}^{2}(\bar{\Omega}),-\frac{\partial \zeta}{\partial n} \geq 1 \text { in some neighborhood of } K\right\} .
$$

Remark 3 As we have already pointed out, the measure \mathcal{H}^{N-1} plays here the same role as $\operatorname{cap}_{H^{1}}$ in [4]. There, for every compact set $K \subset \Omega$ we showed that

$$
\operatorname{cap}_{H^{1}}(K)=\frac{1}{2} \inf \left\{\int_{\Omega}|\Delta \varphi| ; \varphi \in C_{\mathrm{c}}^{\infty}(\Omega), \varphi \geq 1 \text { in some neighborhood of } K\right\},
$$

which is the counterpart of Theorem 4.
We now address a different question. Could it happen that, for some fixed g_{0}, the only good measures μ are those satisfying $\mu^{+} \in L^{1}(\partial \Omega)$? The answer is negative. In fact,

Theorem 5 For any g, there exists a good measure $\mu \geq 0$ such that $\mu \notin L^{1}(\partial \Omega)$.
A natural question is to combine the results of [4] with those in the present paper, i.e., consider the problem

$$
\left\{\begin{align*}
-\Delta u+g(u)=\lambda & \text { in } \Omega, \tag{1.12}\\
u=\mu & \text { on } \partial \Omega,
\end{align*}\right.
$$

where $\lambda \in \mathcal{M}(\Omega)$ and $\mu \in \mathcal{M}(\partial \Omega)$. We say that the pair (λ, μ) is good if (1.12) has a solution in the usual weak sense (with $g(u) \rho_{0} \in L^{1}(\Omega)$). Surprisingly, the problem "uncouples". More precisely,

Theorem 6 Let $\lambda \in \mathcal{M}(\Omega)$ and $\mu \in \mathcal{M}(\partial \Omega)$. The pair (λ, μ) is good if and only if λ is a good measure for (1.3) and μ is a good measure for (1.1). Furthermore, $(\lambda, \mu)^{*}=\left(\lambda^{*}, \mu^{*}\right)$.

This paper is organized as follows. In the next section we prove Theorem 2. In Section 3, we present several properties satisfied by the mapping $\mu \mapsto \mu^{*}$ and by the set of good measures \mathcal{G}. Theorem 4 will be established in Section 4. We show in Section 5 that for every singular measure $\mu \geq 0$ there exists some g such that $\mu^{*}=0$; we then deduce Theorem 3 as a corollary. Theorem 5 will be proved in Section 6. In Section 7, we give the explicit value of μ^{*} in the case where $g(t)=t^{p}$, $t \geq 0$, for any $p>1$. In the last section we present the proof of Theorem 6.

Some of the results in this paper were announced in [4].

2 Proof of Theorem 2

The main ingredient in the proof of Theorem 2 is the following:
Lemma 1 Given $f \in L^{1}\left(\Omega ; \rho_{0} d x\right), \lambda \in \mathcal{M}(\Omega)$ and $\mu \in \mathcal{M}(\partial \Omega)$, let $w \in L^{1}(\Omega)$ be the unique solution of

$$
-\int_{\Omega} w \Delta \zeta=\int_{\Omega} f \zeta+\int_{\Omega} \zeta d \lambda-\int_{\partial \Omega} \frac{\partial \zeta}{\partial n} d \mu \quad \forall \zeta \in C_{0}^{2}(\bar{\Omega}) .
$$

If $w \geq 0$ a.e. in Ω, then $\mu \geq 0$ on $\partial \Omega$.
This result is fairly well-known. We present a proof for the convenience of the reader. For measures in Ω, the counterpart of Lemma 1 is the "Inverse" maximum principle of [8] (see [4]).

Proof. Given $\phi \in C^{\infty}(\partial \Omega), \phi \geq 0$ on $\partial \Omega$, let $\zeta \in C_{0}^{2}(\bar{\Omega}), \zeta>0$ in Ω, be such that $-\frac{\partial \zeta}{\partial n}=\phi$ on $\partial \Omega$. Let $\delta_{j} \downarrow 0$ be a sequence of regular values of ζ. For each $j \geq 1$, set $\zeta_{j}=\zeta-\delta_{j}$ and $\omega_{j}=\left[\zeta>\delta_{j}\right]$. In particular, $\zeta_{j} \in C_{0}^{2}\left(\bar{\omega}_{j}\right), \zeta_{j} \geq 0$ in
ω_{j}, and $-\frac{\partial \zeta_{j}}{\partial n} \geq 0$ on $\partial \omega_{j}$. By standard elliptic estimates (see [25]), we know that $w \in W_{\text {loc }}^{1, p}(\Omega), \forall p<\frac{N}{N-1}$; thus, w has a nonnegative L^{1}-trace on $\partial \omega_{j}$. Therefore,

$$
-\int_{\omega_{j}} w \Delta \zeta_{j}=\int_{\omega_{j}} f \zeta_{j}+\int_{\omega_{j}} \zeta_{j} d \lambda-\int_{\partial \omega_{j}} \frac{\partial \zeta_{j}}{\partial n} w \geq \int_{\omega_{j}} f \zeta_{j}+\int_{\omega_{j}} \zeta_{j} d \lambda
$$

As $j \rightarrow \infty$, we conclude that

$$
\int_{\Omega} w \Delta \zeta+\int_{\Omega} f \zeta+\int_{\Omega} \zeta d \lambda \leq 0
$$

Thus,

$$
\int_{\partial \Omega} \phi d \mu=-\int_{\partial \Omega} \frac{\partial \zeta}{\partial n} d \mu=-\left(\int_{\Omega} w \Delta \zeta+\int_{\Omega} f \zeta+\int_{\Omega} \zeta d \lambda\right) \geq 0
$$

Since $\phi \geq 0$ was arbitrary, we conclude that $\mu \geq 0$.
We can now establish Theorem 2:
Proof of Theorem 2. Assume ν is a good measure $\leq \mu$. Let v denote the solution of

$$
\left\{\begin{aligned}
-\Delta v+g(v)=0 & \text { in } \Omega \\
v=\nu & \text { on } \partial \Omega
\end{aligned}\right.
$$

Since $\nu \leq \mu$, it follows that v is a subsolution of (1.1). Thus, by Theorem 1, $v \leq u^{*}$ a.e. Applying Lemma 1 to the function $w=u^{*}-v$, we then conclude that $\mu^{*}-\nu \geq 0$.

3 Some properties of \mathcal{G} and μ^{*}

Here is a list of properties which can be established exactly as in [4]. For this reason, we shall omit their proofs.

Proposition 1 Suppose μ_{1} is a good measure. Then, any measure $\mu_{2} \leq \mu_{1}$ is also a good measure.

Proposition 2 If μ_{1}, μ_{2} are good measures, then so is $\sup \left\{\mu_{1}, \mu_{2}\right\}$.
Proposition 3 The set \mathcal{G} of good measures is convex.
Proposition 4 We have

$$
\mathcal{G}+L^{1}(\partial \Omega) \subset \mathcal{G}
$$

Proposition 5 Let $\mu \in \mathcal{M}(\partial \Omega)$. Then, $\mu \in \mathcal{G}$ if and only if $\mu^{+} \in \mathcal{G}$.

Proposition 6 Let $\mu \in \mathcal{M}(\partial \Omega)$. Then, $\mu \in \mathcal{G}$ if and only if $\mu_{\mathrm{s}} \in \mathcal{G}$, where μ_{s} denotes the singular part of μ with respect to \mathcal{H}^{N-1}.

Proposition 7 Let $\mu \in \mathcal{M}(\partial \Omega)$. Then, $\mu \in \mathcal{G}$ if and only if there exist $f_{0} \in$ $L^{1}\left(\Omega ; \rho_{0} d x\right)$ and $v_{0} \in L^{1}(\Omega)$ such that $g\left(v_{0}\right) \in L^{1}\left(\Omega ; \rho_{0} d x\right)$ and

$$
\begin{equation*}
\int_{\partial \Omega} \frac{\partial \zeta}{\partial n} d \mu=\int_{\Omega} f_{0} \zeta+\int_{\Omega} v_{0} \Delta \zeta \quad \forall \zeta \in C_{0}^{2}(\bar{\Omega}) \tag{3.1}
\end{equation*}
$$

Proposition 7 is the analog of a result of Gallouët-Morel [14]; see also [4, Theorem 6].

Proposition 8 For every measure μ, we have

$$
\begin{equation*}
0 \leq \mu-\mu^{*} \leq \mu^{+} \tag{3.2}
\end{equation*}
$$

Proposition 9 For every measure μ, we have

$$
\begin{equation*}
\left(\mu^{*}\right)^{+}=\left(\mu^{+}\right)^{*} \quad \text { and } \quad\left(\mu^{*}\right)^{-}=\mu^{-} \tag{3.3}
\end{equation*}
$$

Proposition 10 Let $\mu \in \mathcal{M}(\partial \Omega)$. Then,

$$
\begin{equation*}
\left\|\mu-\mu^{*}\right\|_{\mathcal{M}}=\min _{\nu \in \mathcal{G}}\|\mu-\nu\|_{\mathcal{M}} \tag{3.4}
\end{equation*}
$$

Moreover, μ^{*} is the unique good measure which achieves the minimum in (3.4).
Proposition 11 Let $\mu \in \mathcal{M}(\partial \Omega)$ and $h \in L^{1}\left(\Omega ; \rho_{0} d x\right)$. The problem

$$
\left\{\begin{align*}
-\Delta v+g(v) & =h \quad \text { in } \Omega \tag{3.5}\\
v=\mu & \text { on } \partial \Omega
\end{align*}\right.
$$

has a solution if and only if $\mu \in \mathcal{G}(g)$.
By a solution v of (3.5) we mean that $v \in L^{1}(\Omega)$ satisfies $g(v) \in L^{1}\left(\Omega ; \rho_{0} d x\right)$ and

$$
\begin{equation*}
-\int_{\Omega} v \Delta \zeta+\int_{\Omega} g(v) \zeta=\int_{\Omega} h \zeta-\int_{\partial \Omega} \frac{\partial \zeta}{\partial n} d \nu \quad \forall \zeta \in C_{0}^{2}(\bar{\Omega}) \tag{3.6}
\end{equation*}
$$

In view of Lemma 2 below such a solution, whenever it exists, is unique.
The proofs of Propositions 7 and 11 require an extra argument. We shall present a proof based on Lemmas 2-6 below.

Given $h \in L^{1}\left(\Omega ; \rho_{0} d x\right)$, let $\mathcal{A}_{g}(h)$ denote the set of measures μ for which (3.5) has a solution. By Lemma 2 below, $\mathcal{A}_{g}(h)$ is closed with respect to the strong topology in $\mathcal{M}(\partial \Omega)$. Our goal is to show that $\mathcal{A}_{g}(h)$ is independent of h and $\mathcal{A}_{g}(h)=\mathcal{G}(g), \forall h$. In the sequel, we shall denote by ζ_{0} the solution of

$$
\left\{\begin{aligned}
-\Delta \zeta_{0}=1 & \text { in } \Omega \\
\zeta_{0}=0 & \text { on } \partial \Omega
\end{aligned}\right.
$$

We start with the following

Lemma 2 Let $h_{i} \in L^{1}\left(\Omega ; \rho_{0} d x\right), i=1,2$. Given $\mu_{i} \in \mathcal{A}_{g}\left(h_{i}\right)$, let v_{i} denote the solution of (3.5) corresponding to h_{i}, μ_{i}. Then,

$$
\begin{equation*}
\int_{\Omega}\left|v_{1}-v_{2}\right|+\int_{\Omega}\left|g\left(v_{1}\right)-g\left(v_{2}\right)\right| \zeta_{0} \leq \int_{\Omega}\left|h_{1}-h_{2}\right| \zeta_{0}+C \int_{\partial \Omega}\left|\mu_{1}-\mu_{2}\right| . \tag{3.7}
\end{equation*}
$$

Proof. Apply Lemma 1.5 in [20].

Lemma 3 Assume g satisfies

$$
\begin{equation*}
g(t) \leq C\left(|t|^{p}+1\right) \quad \forall t \in \mathbb{R} \tag{3.8}
\end{equation*}
$$

for some $p<\frac{N+1}{N-1}$. Then, for every $h \in L^{1}\left(\Omega ; \rho_{0} d x\right)$, we have $\mathcal{A}_{g}(h)=\mathcal{M}(\partial \Omega)$.
Proof. This result is established in [15] for $h=0$. The same proof there also applies for $h \in L^{\infty}(\Omega)$. The general case when $h \in L^{1}\left(\Omega ; \rho_{0} d x\right)$ then follows by density using Lemma 2 above.

Given $\mu \in \mathcal{M}(\partial \Omega)$, let v_{k} be the solution of

$$
\left\{\begin{align*}
-\Delta v_{k}+g_{k}\left(v_{k}\right)=h & \text { in } \Omega, \tag{3.9}\\
v_{k}=\mu & \text { on } \partial \Omega
\end{align*}\right.
$$

where $\left(g_{k}\right)$ is a sequence of functions satisfying (1.6)-(1.8).
Lemma 4 Given $\mu \in \mathcal{A}_{g}(h)$, let v denote the solution of (3.5). Assume v_{k} satisfies (3.9). Then,

$$
\begin{equation*}
v_{k} \rightarrow v \quad \text { in } L^{1}(\Omega) \quad \text { and } \quad g_{k}\left(v_{k}\right) \rightarrow g(v) \quad \text { in } L^{1}\left(\Omega ; \rho_{0} d x\right) \tag{3.10}
\end{equation*}
$$

Proof The lemma follows by mimicking the proof of Proposition 3 in [4] and using Lemma 2 above.

Lemma 5 Let $h_{1}, h_{2} \in L^{1}\left(\Omega ; \rho_{0} d x\right)$. If $h_{1} \leq h_{2}$ a.e., then $\mathcal{A}_{g}\left(h_{1}\right) \supset \mathcal{A}_{g}\left(h_{2}\right)$.
Proof. Let $\mu \in \mathcal{A}_{g}\left(h_{2}\right)$ and let $\left(g_{k}\right)$ be a sequence satisfying (1.6)-(1.8). Denote by $v_{i, k}, i=1,2$, the solution of

$$
\left\{\begin{aligned}
-\Delta v_{i, k}+g_{k}\left(v_{i, k}\right) & =h_{i} & & \text { in } \Omega, \\
v_{i, k} & =\mu & & \text { on } \partial \Omega
\end{aligned}\right.
$$

Let v_{i} be such that $v_{i, k} \downarrow v_{i}$ in $L^{1}(\Omega)$ as $k \uparrow \infty$. By Lemma 4 above, we have

$$
g_{k}\left(v_{2, k}\right) \rightarrow g\left(v_{2}\right) \quad \text { in } L^{1}\left(\Omega ; \rho_{0} d x\right)
$$

By [4, Corollary B.2], $h_{1} \leq h_{2}$ a.e. implies $v_{1, k} \leq v_{2, k}$ a.e.; thus, $g_{k}\left(v_{1, k}\right) \leq g_{k}\left(v_{2, k}\right)$ a.e. It then follows by dominated convergence that

$$
g_{k}\left(v_{1, k}\right) \rightarrow g\left(v_{1}\right) \quad \text { in } L^{1}\left(\Omega ; \rho_{0} d x\right) .
$$

Therefore, $\mu \in \mathcal{A}_{g}\left(h_{1}\right)$. This concludes the proof of the lemma.
Lemma 6 Assume μ satisfies (3.1) for some $f_{0} \in L^{1}\left(\Omega ; \rho_{0} d x\right)$ and $v_{0} \in L^{1}(\Omega)$, with $g\left(v_{0}\right) \in L^{1}\left(\Omega ; \rho_{0} d x\right)$. Then, problem (3.5) has a solution for every $h \in$ $L^{1}\left(\Omega ; \rho_{0} d x\right)$.

Proof. Fix $\alpha<1$. Given $m \geq 1$, let $M_{m}=\frac{m\left\|\zeta_{0}\right\|_{L^{\infty}}}{1-\alpha}$. Since

$$
\alpha v_{0}+m \zeta_{0} \leq v_{0} \quad \text { a.e. on the set }\left[v_{0} \geq M_{m}\right]
$$

we have $g\left(\alpha v_{0}+m \zeta_{0}\right) \in L^{1}\left(\Omega ; \rho_{0} d x\right) ;$ moreover,

$$
-\int_{\Omega}\left(\alpha v_{0}+m \zeta_{0}\right) \Delta \zeta=\int_{\Omega}\left(\alpha f_{0}+m\right) \zeta-\alpha \int_{\partial \Omega} \frac{\partial \zeta}{\partial n} d \mu \quad \forall \zeta \in C_{0}^{2}(\bar{\Omega})
$$

Thus, $\alpha \mu \in \mathcal{A}_{g}\left(\tilde{h}_{m}\right)$, where

$$
\tilde{h}_{m}=\alpha f_{0}+m+g\left(\alpha v_{0}+m \zeta_{0}\right) .
$$

Given $h \in L^{1}\left(\Omega ; \rho_{0} d x\right)$, let

$$
h_{m}=\min \left\{h, \tilde{h}_{m}\right\} .
$$

Since $h_{m} \leq \tilde{h}_{m}$ a.e., it follows from Lemma 5 that $\alpha \mu \in \mathcal{A}_{g}\left(h_{m}\right), \forall m \geq 1$. Note that $h_{m} \rightarrow h$ in $L^{1}\left(\Omega ; \rho_{0} d x\right)$ as $m \rightarrow \infty$; thus, by Lemma 2 we get $\alpha \mu \in \mathcal{A}_{g}(h)$. Since this holds true for every $\alpha<1$, we must have $\mu \in \mathcal{A}_{g}(h)$.
Proof of Proposition 7. Clearly, if μ is a good measure, then (3.1) holds. Conversely, assume μ satisfies (3.1) for some v_{0}, f_{0}. It then follows from the previous lemma that (3.5) has a solution for $h=0$. In other words, μ is good.
Proof of Proposition 11. If μ is good, then (3.1) holds. Thus, by Lemma 6 above we conclude that problem (3.5) has a solution for every $h \in L^{1}\left(\Omega ; \rho_{0} d x\right)$. Conversely, if (3.5) has a solution for some $h \in L^{1}\left(\Omega ; \rho_{0} d x\right)$, then (3.1) holds. Applying Proposition 7, we deduce that μ is good.

4 Proof of Theorem 4

Given a compact set $K \subset \partial \Omega$, we define the capacity

$$
c_{\partial \Omega}(K)=\inf \left\{\int_{\Omega}|\Delta \zeta| ; \zeta \in C_{0}^{2}(\bar{\Omega}),-\frac{\partial \zeta}{\partial n} \geq 1 \text { in some neighborhood of } K\right\} .
$$

In order to establish Theorem 4 we will need a few technical results. We start with

Lemma 7 Let $K \subset \partial \Omega$ be a compact set. Given $\varepsilon>0$, there exists $\psi \in C_{0}^{2}(\bar{\Omega})$ such that $\psi \geq 0$ in $\Omega,-\frac{\partial \psi}{\partial n} \geq 1$ in some neighborhood of K and

$$
\begin{equation*}
\int_{\Omega}|\Delta \psi| \leq c_{\partial \Omega}(K)+\varepsilon \tag{4.1}
\end{equation*}
$$

Proof. Given $\varepsilon>0$, let $\zeta \in C_{0}^{2}(\bar{\Omega})$ be such that $-\frac{\partial \zeta}{\partial n} \geq 1$ in some neighborhood of K and

$$
\begin{equation*}
\int_{\Omega}|\Delta \zeta| \leq c_{\partial \Omega}(K)+\frac{\varepsilon}{2} \tag{4.2}
\end{equation*}
$$

We now extend ζ as a C^{2}-function in the whole space \mathbb{R}^{N}. We then let

$$
f_{k}(x)=\int_{\mathbb{R}^{N}} \rho_{k}(x-y)|\Delta \zeta(y)| d y \quad \forall x \in \bar{\Omega}
$$

where $\left(\rho_{k}\right)$ is any sequence of nonnegative mollifiers such that supp $\rho_{k} \subset B_{1 / k}$, $\forall k \geq 1$. As $k \rightarrow \infty$, we have

$$
\begin{equation*}
f_{k} \rightarrow|\Delta \zeta| \quad \text { uniformly in } \bar{\Omega} . \tag{4.3}
\end{equation*}
$$

Let $v_{k} \in C_{0}^{2}(\bar{\Omega})$ be the solution of

$$
\left\{\begin{aligned}
-\Delta v_{k}=f_{k} & \text { in } \Omega, \\
v_{k}=0 & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Since $f_{k} \geq 0$, we have $v_{k} \geq 0$ in Ω. Moreover, (4.3) implies

$$
\begin{equation*}
\frac{\partial v_{k}}{\partial n} \rightarrow \frac{\partial v}{\partial n} \quad \text { uniformly on } \partial \Omega \tag{4.4}
\end{equation*}
$$

where v is the solution of

$$
\left\{\begin{array}{rlrl}
-\Delta v & =|\Delta \zeta| & & \text { in } \Omega \\
v=0 & & \text { on } \partial \Omega
\end{array}\right.
$$

By the maximum principle, $\zeta \leq v$ in Ω. Since $\zeta=v=0$ on $\partial \Omega$, we have

$$
-\frac{\partial \zeta}{\partial n} \leq-\frac{\partial v}{\partial n} \quad \text { on } \partial \Omega
$$

which implies that $-\frac{\partial v}{\partial n} \geq 1$ in some neighborhood of K. In view of (4.4), we can fix $k_{0} \geq 1$ sufficiently large so that $\frac{\partial v_{k_{0}}}{\partial n} \geq \alpha$ in some neighborhood of K, where $\alpha<1$. We may also assume that

$$
\int_{A_{k_{0}}}|\Delta \zeta|<\frac{\varepsilon}{4}
$$

where $A_{k_{0}}=N_{\frac{1}{k_{0}}}(\Omega) \backslash \bar{\Omega}$.
Set

$$
\psi=\frac{1}{\alpha} v_{k_{0}}
$$

so that $\psi \geq 0$ in Ω and $-\frac{\partial \psi}{\partial n} \geq 1$ in some neighborhood of K. Moreover,

$$
\int_{\Omega}|\Delta \psi|=\frac{1}{\alpha} \int_{\Omega}\left|\Delta v_{k_{0}}\right| \leq \frac{1}{\alpha}\left(\int_{\Omega}|\Delta \zeta|+\frac{\varepsilon}{4}\right) \leq \frac{1}{\alpha}\left(c_{\partial \Omega}(K)+\frac{3 \varepsilon}{4}\right) .
$$

Therefore, by taking

$$
\alpha=\frac{c_{\partial \Omega}(K)+\frac{3 \varepsilon}{4}}{c_{\partial \Omega}(K)+\varepsilon}<1
$$

we conclude that ψ satisfies (4.1).
We next prove the
Lemma 8 Let $K \subset \partial \Omega$ be a compact set. Given $\varepsilon>0$, there exists $\psi \in C_{0}^{2}(\bar{\Omega})$ such that $0 \leq \psi \leq \varepsilon$ in $\Omega,-\frac{\partial \psi}{\partial n} \geq 1$ in some neighborhood of K,

$$
\begin{equation*}
\int_{\Omega}|\Delta \psi| \leq \mathcal{H}^{N-1}(K)+\varepsilon \quad \text { and } \quad\left\|\frac{\psi}{\rho_{0}}\right\|_{L^{\infty}} \leq 1+\varepsilon \tag{4.5}
\end{equation*}
$$

Proof. Let $\delta>0$ be such that

$$
\mathcal{H}^{N-1}\left(N_{\delta}(K) \cap \partial \Omega\right) \leq \mathcal{H}^{N-1}(K)+\varepsilon
$$

We now fix $\zeta \in C_{0}^{2}(\bar{\Omega})$ such that $\zeta>0$ in $\Omega,-\frac{\partial \zeta}{\partial n}=1$ in $N_{\frac{\delta}{2}}(K) \cap \partial \Omega, \frac{\partial \zeta}{\partial n}=0$ in $\partial \Omega \backslash N_{\delta}(K), 0 \leq-\frac{\partial \zeta}{\partial n} \leq 1$ on $\partial \Omega$, and $\left\|\frac{\zeta}{\rho_{0}}\right\|_{L^{\infty}} \leq 1+\varepsilon$. Let $a \in(0, \varepsilon)$ be sufficiently small so that

$$
\int_{[\zeta<a]}|\Delta \zeta|<\varepsilon .
$$

Let

$$
u=a-(a-\zeta)^{+} \quad \text { in } \bar{\Omega} .
$$

In particular, $0 \leq u<\varepsilon$ in Ω. It is easy to see that $\Delta u \in \mathcal{M}(\Omega)$ and $\Delta u=\Delta \zeta$ in $[\zeta<a]$. Since u is bounded and achieves its maximum everywhere on the set [$\zeta \geq a]$, we can apply Corollary 1.3 in [5] to deduce that

$$
-\Delta u \geq 0 \quad \text { in }[\zeta \geq a]
$$

Thus,

$$
\begin{align*}
\|\Delta u\|_{\mathcal{M}} & =-\int_{[\zeta \geq a]} \Delta u+\int_{[\zeta<a]}|\Delta \zeta| \\
& \leq-\int_{\Omega} \Delta u+2 \int_{[\zeta<a]}|\Delta \zeta| \leq-\int_{\Omega} \Delta u+2 \varepsilon \tag{4.6}
\end{align*}
$$

On the other hand, proceeding as in the proof of Lemma 7 , one can find $\psi \in C_{0}^{2}(\bar{\Omega})$ such that $0 \leq \psi \leq \varepsilon$ in $\Omega,-\frac{\partial \psi}{\partial n} \geq 1$ on $\partial \Omega$,

$$
\begin{equation*}
\left\|\frac{\psi}{\rho_{0}}\right\|_{L^{\infty}} \leq\left\|\frac{u}{\rho_{0}}\right\|_{L^{\infty}}+\varepsilon \leq 1+2 \varepsilon \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}|\Delta \psi| \leq\|\Delta u\|_{\mathcal{M}}+\varepsilon \tag{4.8}
\end{equation*}
$$

By (4.6) and (4.8), we have

$$
\int_{\Omega}|\Delta \psi| \leq-\int_{\Omega} \Delta u+3 \varepsilon
$$

Since $u=\zeta$ in a neighborhood of $\partial \Omega$,

$$
\int_{\Omega} \Delta u=\int_{\partial \Omega} \frac{\partial u}{\partial n}=\int_{\partial \Omega} \frac{\partial \zeta}{\partial n} .
$$

Thus,

$$
\int_{\Omega}|\Delta \psi| \leq-\int_{\partial \Omega} \frac{\partial \zeta}{\partial n}+3 \varepsilon \leq \mathcal{H}^{N-1}\left(N_{\delta}(K) \cap \partial \Omega\right)+3 \varepsilon \leq \mathcal{H}^{N-1}(K)+4 \varepsilon
$$

This concludes the proof of the lemma.
Proof of Theorem 4. Given $\varepsilon>0$, let $\psi \in C_{0}^{2}(\bar{\Omega})$ be the function given by Lemma 7 . Since $\psi \geq 0$ in Ω, we have $-\frac{\partial \psi}{\partial n} \geq 0$ on $\partial \Omega$. Thus, integrating by parts and using (4.1) we get

$$
\mathcal{H}^{N-1}(K) \leq-\int_{\partial \Omega} \frac{\partial \psi}{\partial n}=-\int_{\partial \Omega} \Delta \psi \leq \int_{\partial \Omega}|\Delta \psi| \leq c_{\partial \Omega}(K)+\varepsilon
$$

Since $\varepsilon>0$ was arbitrary, we deduce that

$$
\mathcal{H}^{N-1}(K) \leq c_{\partial \Omega}(K)
$$

The reverse inequality immediately follows from Lemma 8 .

5 Nonnegative measures which are good for every g must belong to $L^{1}(\partial \Omega)$

We start with

Theorem 7 Given a Borel set $\Sigma \subset \partial \Omega$ of zero \mathcal{H}^{N-1}-measure, there exists g such that

$$
\mu^{*}=-\mu^{-} \quad \text { for every measure } \mu \text { concentrated on } \Sigma .
$$

In particular, for every nonnegative $\mu \in \mathcal{M}(\partial \Omega)$ concentrated on a set of zero \mathcal{H}^{N-1}-measure, there exists some g such that $\mu^{*}=0$.

Proof. Let $\Sigma \subset \partial \Omega$ be a Borel set such that $\mathcal{H}^{N-1}(\Sigma)=0$. Let $\left(K_{k}\right)$ be an increasing sequence of compact subsets of Σ such that

$$
\begin{equation*}
\mu^{+}\left(\Sigma \backslash \bigcup_{k} K_{k}\right)=0 \tag{5.1}
\end{equation*}
$$

For each $k \geq 1, K_{k}$ has zero \mathcal{H}^{N-1}-measure. By Lemma 8 , one can find $\psi_{k} \in C_{0}^{2}(\bar{\Omega})$ such that $0 \leq \psi_{k} \leq \min \left\{\frac{1}{k}, 2 \rho_{0}\right\}$ in $\Omega,-\frac{\partial \psi_{k}}{\partial n} \geq 1$ in some neighborhood of K_{k}, and

$$
\int_{\Omega}\left|\Delta \psi_{k}\right| \leq \frac{1}{k} \quad \forall k \geq 1
$$

In particular,

$$
\frac{\Delta \psi_{k}}{\rho_{0}} \rightarrow 0 \quad \text { in } L^{1}\left(\Omega ; \rho_{0} d x\right) .
$$

Passing to a subsequence if necessary, we may assume that

$$
\frac{\Delta \psi_{k}}{\rho_{0}} \rightarrow 0 \quad \text { a.e. } \quad \text { and } \quad \frac{\left|\Delta \psi_{k}\right|}{\rho_{0}} \leq G \in L^{1}\left(\Omega ; \rho_{0} d x\right) \quad \forall k \geq 1
$$

According to a theorem of De La Vallée-Poussin (see [6, Remarque 23] or [7, Théorème II.22]), there exists a convex function $h:[0, \infty) \rightarrow[0, \infty)$ such that $h(0)=0, h(s)>0$ for $s>0$,

$$
\lim _{t \rightarrow \infty} \frac{h(t)}{t}=+\infty, \quad \text { and } \quad h(G) \in L^{1}\left(\Omega ; \rho_{0} d x\right)
$$

Set $h(s)=+\infty$ for $s<0$. Let $g=h^{*}$ be the convex conjugate of h. Note that h^{*} is finite in view of the coercivity of h, and we have $h^{*}(t)=0$ if $t \leq 0$.
We claim that g satisfies all the required properties. In fact, let μ be any measure concentrated on Σ and set $\nu=\left(\mu^{*}\right)^{+}$, where the reduced measure μ^{*} is computed with respect to g. By Proposition $5, \nu$ is a good measure. Let $u \in L^{1}(\Omega), u \geq 0$ a.e., be such that $g(u) \rho_{0} \in L^{1}(\Omega)$ and

$$
\begin{equation*}
-\int_{\Omega} u \Delta \zeta+\int_{\Omega} g(u) \zeta=-\int_{\partial \Omega} \frac{\partial \zeta}{\partial n} d \nu \quad \forall \zeta \in C_{0}^{2}(\bar{\Omega}) \tag{5.2}
\end{equation*}
$$

Recall that $\psi_{k} \geq 0$ in Ω and $\psi_{k}=0$ on $\partial \Omega$; thus, $-\frac{\partial \psi_{k}}{\partial n} \geq 0$ on $\partial \Omega$. Using ψ_{k} as a test function in (5.2), we get

$$
\begin{equation*}
\nu\left(K_{k}\right) \leq-\int_{\partial \Omega} \frac{\partial \psi_{k}}{\partial n} d \nu \leq-\int_{\Omega}\left|u \Delta \psi_{k}+g(u) \psi_{k}\right| \tag{5.3}
\end{equation*}
$$

Note that

$$
\left|u \Delta \psi_{k}+g(u) \psi_{k}\right| \rightarrow 0 \quad \text { a.e. }
$$

and

$$
\begin{aligned}
\left|u \Delta \psi_{k}+g(u) \psi_{k}\right| & \leq u \frac{\left|\Delta \psi_{k}\right|}{\rho_{0}} \rho_{0}+g(u) \frac{\psi_{k}}{\rho_{0}} \rho_{0} \\
& \leq g(u) \rho_{0}+h\left(\frac{\left|\Delta \psi_{k}\right|}{\rho_{0}}\right) \rho_{0}+2 g(u) \rho_{0} \\
& \leq 3 g(u) \rho_{0}+G \rho_{0} \in L^{1}(\Omega)
\end{aligned}
$$

By dominated convergence, we conclude that the right-hand side of (5.3) converges to 0 as $k \rightarrow \infty$. Thus,

$$
\left(\mu^{*}\right)^{+}\left(K_{k}\right)=\nu\left(K_{k}\right)=0 \quad \forall k \geq 1,
$$

so that, by (5.1) and Proposition $8,\left(\mu^{*}\right)^{+}(\Sigma)=0$. Since μ is concentrated on Σ, we have $\left(\mu^{*}\right)^{+}=0$; thus, by Proposition 9 ,

$$
\mu^{*}=\left(\mu^{*}\right)^{+}-\left(\mu^{*}\right)^{-}=-\mu^{-}
$$

which is the desired result.
We now present the
Proof of Theorem 3. Assume $\mu \in \mathcal{M}(\partial \Omega)$ is good for every g. Given a Borel set $\Sigma \subset \partial \Omega$ of zero \mathcal{H}^{N-1}-measure, let $\nu=\mu^{+}\left\lfloor_{\Sigma}\right.$. By Theorem 7 , there exists some g_{0} such that $\nu^{*}=0$. On the other hand, by Propositions 1 and $5, \nu$ is good for g_{0}. Thus, $\nu=\nu^{*}=0$. In other words,

$$
\mu^{+}(\Sigma)=0 \quad \text { for every Borel set } \Sigma \subset \partial \Omega \text { such that } \mathcal{H}^{N-1}(\Sigma)=0
$$

We conclude that $\mu^{+} \in L^{1}(\partial \Omega)$.

6 How to construct good measures which are not in $L^{1}(\partial \Omega)$

In this section, we establish Theorem 5. We shall closely follow the strategy used in [24] to construct good measures for problem (1.3) which are not diffuse.

Let $\left(\ell_{k}\right)$ be a decreasing sequence of positive numbers such that

$$
\begin{equation*}
\ell_{1}<\frac{1}{2} \quad \text { and } \quad \ell_{k+1}<\frac{1}{2} \ell_{k} \quad \forall k \geq 1 \tag{6.1}
\end{equation*}
$$

We start by briefly recalling the construction of the Cantor set $F \subset\left[-\frac{1}{2}, \frac{1}{2}\right]^{N-1}$ associated to the subsequence $\left(\ell_{k_{j}}\right)$. We refer the reader to [24, Section 2] for details.

We proceed by induction as follows. Let $F_{0}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{N-1}, \ell_{0}=1$ and $k_{0}=0$. Let F_{j} be the set obtained after the j-th step; F_{j} is the union of $2^{(N-1) k_{j}}$ cubes Q_{i} of side $\ell_{k_{j}}$. Inside each Q_{i}, select $2^{(N-1)\left(k_{j+1}-k_{j}\right)}$ cubes $Q_{i, n}$ of side $\ell_{k_{j+1}}$ uniformly distributed in Q_{i}; the distance between the centers of any two cubes $Q_{i, n}$ is $\gtrsim \frac{\ell_{k_{j}}}{2^{\left(k_{j+1}-k_{j}\right)}}$. Let

$$
F_{j+1}=\bigcup_{i, n} Q_{i, n}
$$

The set F is given by

$$
F=\bigcap_{j=0}^{\infty} F_{j} .
$$

We now fix a diffeomorphism

$$
\Phi:(-1,1)^{N-1} \rightarrow \Phi\left((-1,1)^{N-1}\right) \subset \partial \Omega
$$

and define $\hat{F}=\Phi(F)$. From now on, we shall identify \hat{F} with F, and simply denote \hat{F} by F.

For each $j \geq 1$, let

$$
\mu_{j}=\frac{1}{\mathcal{H}^{N-1}\left(F_{j+1}\right)} \chi_{F_{j+1}}
$$

in particular, $\mu_{j} \in L^{1}(\partial \Omega)$. The uniform measure concentrated on F, μ_{F}, is the weak * limit of $\left(\mu_{j}\right)$ in $\mathcal{M}(\partial \Omega)$ as $j \rightarrow \infty$. In particular, $\mu_{F} \geq 0$ and $\mu_{F}(\partial \Omega)=1$. An important property satisfied by μ_{F} is given by the next

Lemma 9 For every $x \in \partial \Omega$, we have

$$
\mu_{F}\left(B_{r}(x) \cap \partial \Omega\right) \lesssim \begin{cases}\frac{1}{2^{(N-1) k_{j+1}}} & \text { if } \ell_{k_{j+1}} \lesssim r \lesssim \frac{\ell_{k_{j}}}{2^{\left(k_{j+1}-k_{j}\right)}} \tag{6.2}\\ \frac{1}{2^{(N-1) k_{j}}}\left(\frac{r}{\ell_{k_{j}}}\right)^{N-1} & \text { if } \frac{\ell_{k_{j}}}{2^{\left(k_{j+1}-k_{j}\right)}} \lesssim r \lesssim \ell_{k_{j}}\end{cases}
$$

We say that $a \lesssim b$ if there exists $C>0$, depending only on N, such that $a \leq C b$. By $a \sim b$, we mean that $a \lesssim b$ and $b \lesssim a$. We refer the reader to [24] for a proof of Lemma 9; although a slightly stronger assumption than (6.1) is made there, the proof of (6.2) remains unchanged.

Let $v \in L^{1}(\Omega)$ be the unique solution of

$$
\left\{\begin{array}{rlrl}
-\Delta v & =0 & & \text { in } \Omega \tag{6.3}\\
v=\mu_{F} & & \text { on } \partial \Omega
\end{array}\right.
$$

Our next step is to establish the following

Proposition 12 Let $F \subset \partial \Omega$ be the Cantor set associated to the subsequence $\left(\ell_{k_{j}}\right)$ and let v be the solution of (6.3). Assume that

$$
\begin{equation*}
\frac{2^{k_{j+1}} \ell_{k_{j+1}}}{2^{k_{j}} \ell_{k_{j}}} \sim 1 \quad \forall j \geq 1 \tag{6.4}
\end{equation*}
$$

Then, there exists $C>0$ such that

$$
\begin{align*}
v(x) \leq C\left\{\frac{1}{\ell_{k_{1}}^{N-1}}+\sum_{i=1}^{j} \frac{1}{2^{(N-1) k_{i}} \ell_{k_{i}}^{N-1}}\right. & \left(\frac{\ell_{k_{j}}}{\ell_{k_{i}}}\right)+ \\
& \left.+\sum_{i=j+1}^{\infty} \frac{1}{2^{(N-1) k_{i}} \ell_{k_{i}}^{N-1}}\left(\frac{\ell_{k_{i}}}{\ell_{k_{j+1}}}\right)^{N+1}\right\} \tag{6.5}
\end{align*}
$$

for every $x \in \Omega$ such that $\ell_{k_{j+1}}<d(x, \partial \Omega) \leq \ell_{k_{j}}, j \geq 1$.
Proof. We shall suppose for simplicity that $\Omega=\mathbb{R}_{+}^{N}$ is the upper-half space. In this case, the solution v of (6.3) can be explicitly written as (see Lemma 10 below)

$$
v(z, t)=N c_{N} \int_{0}^{\infty} \frac{s t}{\left(s^{2}+t^{2}\right)^{\frac{N}{2}+1}} \mu_{F}\left(B_{s}(z) \cap \partial \mathbb{R}_{+}^{N}\right) d s \quad \forall z \in \mathbb{R}^{N-1} \quad \forall t>0
$$

where $c_{N}=\frac{\Gamma(N / 2)}{\pi^{N / 2}}$. Applying Lemma 9, we have

$$
\begin{equation*}
v(z, t) \lesssim \sum_{i=1}^{\infty}\left(A_{i}+B_{i}\right)+C_{0} \tag{6.6}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{i} & =\frac{1}{2^{(N-1) k_{i+1}}} \int_{\ell_{k_{i}+1}}^{\frac{\ell_{k_{i}}}{2^{\left(k_{i+1}-k_{i}\right)}}} \frac{s t}{\left(s^{2}+t^{2}\right)^{\frac{N}{2}+1}} d s \\
B_{i} & =\frac{t}{2^{(N-1) k_{i}} \ell_{k_{i}}^{N-1}} \int_{\frac{\ell_{k_{i}}}{\left.2^{\left(k_{i}+1\right.}-k_{i}\right)}}^{\ell_{k_{i}}} \frac{s^{N}}{\left(s^{2}+t^{2}\right)^{\frac{N}{2}+1}} d s \\
C_{0} & =\int_{\ell_{k_{1}}}^{\infty} \frac{s t}{\left(s^{2}+t^{2}\right)^{\frac{N}{2}+1}} d s
\end{aligned}
$$

An elementary (but tedious) computation using (6.4) shows that

$$
\begin{align*}
& A_{i} \lesssim \begin{cases}\frac{1}{2^{(N-1) k_{i+1}} \ell_{k_{i+1}^{N-1}}^{N}}\left(\frac{\ell_{k_{i+1}}}{t}\right)^{N+1} & \text { if } t>\ell_{k_{i+1}}, \\
\frac{1}{2^{(N-1) k_{i+1}} \ell_{k_{i+1}}^{N-1}}\left(\frac{t}{\ell_{k_{i+1}}}\right) & \text { if } t \leq \ell_{k_{i+1}},\end{cases} \tag{6.7}\\
& B_{i} \lesssim \begin{cases}\frac{1}{2^{(N-1) k_{i}} \ell_{k_{i}}^{N-1}}\left(\frac{\ell_{k_{i}}}{t}\right)^{N+1} & \text { if } t>\ell_{k_{i}}, \\
\frac{1}{2^{(N-1) k_{i}} \ell_{k_{i}}^{N-1}} & \text { if } \ell_{k_{i+1}}<t \leq \ell_{k_{i}}, \\
\frac{1}{2^{(N-1) k_{i+1}} \ell_{k_{i+1}}^{N-1}}\left(\frac{t}{\ell_{k_{i+1}}}\right) & \text { if } t \leq \ell_{k_{i+1}},\end{cases} \tag{6.8}\\
& C_{0} \lesssim \begin{cases}\frac{1}{t^{N-1}} & \text { if } t>\ell_{k_{1}}, \\
\frac{t}{\ell_{k_{1}}^{N}} & \text { if } t \leq \ell_{k_{1}} .\end{cases} \tag{6.9}
\end{align*}
$$

We now assume that $\ell_{k_{j+1}}<t \leq \ell_{k_{j}}$. Inserting (6.7)-(6.9) into (6.6), we obtain (6.5). In order to conclude the proof of Proposition 12, we establish the following

Lemma 10 Given $\nu \in \mathcal{M}\left(\mathbb{R}^{N-1}\right)$, let w be the solution of

$$
\left\{\begin{align*}
-\Delta w=0 & \text { in } \mathbb{R}_{+}^{N}, \tag{6.10}\\
w=\nu & \text { on } \partial \mathbb{R}_{+}^{N} .
\end{align*}\right.
$$

Then,

$$
\begin{equation*}
w(z, t)=N c_{N} \int_{0}^{\infty} \frac{s t}{\left(s^{2}+t^{2}\right)^{\frac{N}{2}+1}} \nu\left(\tilde{B}_{s}(z)\right) d s \quad \forall z \in \mathbb{R}^{N-1} \quad \forall t>0 \tag{6.11}
\end{equation*}
$$

where $\tilde{B}_{s}(z)$ denotes the ball in $\partial \mathbb{R}_{+}^{N}$ of radius s centered at z.
Proof. Assume $\mu=f \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{N-1}\right)$. Then, w is given as the Poisson integral of f :

$$
w(z, t)=c_{N} \int_{\mathbb{R}^{N-1}} \frac{t}{\left(|x-z|^{2}+t^{2}\right)^{\frac{N}{2}}} f(x) d x \quad \forall z \in \mathbb{R}^{N-1} \quad \forall t>0
$$

Thus,

$$
\begin{aligned}
w(z, t) & =c_{N} \int_{0}^{\infty} \frac{t}{\left(s^{2}+t^{2}\right)^{\frac{N}{2}}}\left(\int_{\partial \tilde{B}_{s}(z)} f\right) d s \\
& =c_{N} \int_{0}^{\infty} \frac{t}{\left(s^{2}+t^{2}\right)^{\frac{N}{2}}} \frac{d}{d s}\left(\int_{\tilde{B}_{s}(z)} f\right) d s
\end{aligned}
$$

Integrating by parts with respect to s, we obtain (6.11) for $\mu=f$. This establishes (6.11) when μ is a smooth function. The general case easily follows using a density argument (see, e.g., [20, Lemma 1.4]).

We may now turn to the
Proof of Theorem 5. Let $\left(k_{j}\right)$ be an increasing sequence of positive integers such that

$$
\begin{equation*}
g\left(2^{N j}\right) \leq 2^{2 k_{j}} \quad \forall j \geq 1 \tag{6.12}
\end{equation*}
$$

Let $\left(\ell_{k}\right)$ be any sequence satisfying (6.1) and such that

$$
\ell_{k_{j}}=\frac{1}{2^{j+k_{j}}} \quad \forall j \geq 1
$$

Let F be the Cantor set associated to $\left(\ell_{k_{j}}\right)$. Since

$$
2^{(N-1) k_{j}} \ell_{k_{j}}^{N-1}=\frac{1}{2^{(N-1) j}} \rightarrow 0 \quad \text { as } j \rightarrow \infty
$$

we have $|F|=0$; thus, $\mu_{F} \notin L^{1}(\partial \Omega)$. We claim that μ_{F} is a good measure. In fact, let v be the solution of (6.3). A simple computation shows that

$$
\sum_{i=1}^{j} \frac{1}{2^{(N-1) k_{i}} \ell_{k_{i}}^{N-1}}\left(\frac{\ell_{k_{j}}}{\ell_{k_{i}}}\right)+\sum_{i=j+1}^{\infty} \frac{1}{2^{(N-1) k_{i}} \ell_{k_{i}}^{N-1}}\left(\frac{\ell_{k_{i}}}{\ell_{k_{j+1}}}\right)^{N+1} \leq C 2^{(N-1) j}
$$

for some constant $C>0$ sufficiently large. It follows from Proposition 12 that

$$
v(x) \leq \tilde{C} 2^{(N-1) j} \quad \text { if } \ell_{k_{j+1}}<d(x, \partial \Omega) \leq \ell_{k_{j}} \quad \forall j \geq 1
$$

Denoting $\Omega_{j}=\left\{x \in \Omega ; d(x, \partial \Omega)>\ell_{k_{j}}\right\}$, we then have

$$
\begin{aligned}
\int_{\Omega} g(v) \rho_{0} & =\sum_{j=1}^{\infty} \int_{\Omega_{j+1} \backslash \Omega_{j}} g(v) \rho_{0}+\int_{\Omega \backslash \Omega_{1}} g(v) \rho_{0} \\
& \leq C \sum_{j=1}^{\infty} g\left(\tilde{C} 2^{(N-1) j}\right) \ell_{k_{j}}\left|\Omega_{j+1} \backslash \Omega_{j}\right|+O(1)
\end{aligned}
$$

Since $\left|\Omega_{j+1} \backslash \Omega_{j}\right| \leq C \ell_{k_{j}}$, we get

$$
\begin{equation*}
\int_{\Omega} g(v) \rho_{0} \leq C \sum_{j=1}^{\infty} \frac{g\left(\tilde{C} 2^{(N-1) j}\right)}{2^{2\left(j+k_{j}\right)}}+O(1) \tag{6.13}
\end{equation*}
$$

Note that, for $j \geq 1$ sufficiently large, we have $\tilde{C} 2^{(N-1) j} \leq 2^{N j}$. We deduce from (6.12) and (6.13) that $g(v) \in L^{1}\left(\Omega ; \rho_{0} d x\right)$. By Proposition 7, we conclude that μ_{F} is a good measure.

7 The case where $g(t)=t^{p}$

We describe here some examples where the measure μ^{*} can be explicitly identified.
Example $1 g(t)=t^{p}, t \geq 0$, with $1<p<\frac{N+1}{N-1}$.
In this case, every measure is good (see [15]); thus, $\mu^{*}=\mu, \forall \mu \in \mathcal{M}(\partial \Omega)$.
Example $2 g(t)=t^{p}, t \geq 0$, with $p \geq \frac{N+1}{N-1}$.
By [21], a nonnegative measure ν is good if and only if $\nu(A)=0$ for every Borel set $A \subset \partial \Omega$ such that $C_{2 / p, p^{\prime}}(A)=0$. Recall (see [13]) that any measure μ can be uniquely decomposed as

$$
\mu=\mu_{1}+\mu_{2}
$$

where $\mu_{1}(A)=0$ for every Borel set $A \subset \partial \Omega$ such that $C_{2 / p, p^{\prime}}(A)=0$, and μ_{2} is concentrated on a set of zero $C_{2 / p, p^{\prime}}$-capacity. Using the same argument as in [4, Section 8], one then shows that for every $\mu \in \mathcal{M}(\partial \Omega)$ we have

$$
\mu^{*}=\mu-\mu_{2}^{+} .
$$

Here is an interesting

Open Problem 1 Let $N=2$ and $g(t)=\mathrm{e}^{t}-1, t \geq 0$. Is there a simple characterization of the set of good measures relative to g ? Is there an explicit formula of μ^{*} in terms of μ ?

There are some partial results in this direction; see [16] and also [23].

8 Proof of Theorem 6

We start with the following
Lemma 11 Let $\lambda \in \mathcal{M}(\Omega)$ and $\mu \in \mathcal{M}(\partial \Omega)$. Assume that there exists $w \in L^{1}(\Omega)$ such that $g(w) \in L^{1}\left(\Omega ; \rho_{0} d x\right)$ and

$$
\begin{equation*}
-\int_{\Omega} w \Delta \zeta+\int_{\Omega} g(w) \zeta \geq \int_{\Omega} \zeta d \lambda-\int_{\partial \Omega} \frac{\partial \zeta}{\partial n} d \mu \quad \forall \zeta \in C_{0}^{2}(\bar{\Omega}), \zeta \geq 0 \tag{8.1}
\end{equation*}
$$

Then, the pair (λ, μ) is good.
Proof. Since (8.1) holds, there exist $\mu_{0} \in \mathcal{M}(\partial \Omega)$ and a locally bounded measure λ_{0} in Ω, with $\int_{\Omega} \rho_{0} d\left|\lambda_{0}\right|<\infty$, such that $\mu_{0} \geq \mu$ on $\partial \Omega, \lambda_{0} \geq \lambda$ in Ω, and

$$
-\int_{\Omega} w \Delta \zeta+\int_{\Omega} g(w) \zeta=\int_{\Omega} \zeta d \lambda_{0}-\int_{\partial \Omega} \frac{\partial \zeta}{\partial n} d \mu_{0} \quad \forall \zeta \in C_{0}^{2}(\bar{\Omega})
$$

(The existence of λ_{0} and μ_{0} is sketched in [4, Remark B.1]).
Let $\left(g_{k}\right)$ be a sequence of bounded functions satisfying (1.6)-(1.7). Let u_{k}, w_{k} be the solutions associated to $(\lambda, \mu),\left(\lambda_{0}, \mu_{0}\right)$, resp. Then, as in the proof of Lemma 5 above, we have

$$
g_{k}\left(u_{k}\right) \leq g_{k}\left(w_{k}\right) \rightarrow g(w) \quad \text { in } L^{1}\left(\Omega ; \rho_{0} d x\right) .
$$

On the other hand, $u_{k} \downarrow u$ in $L^{1}(\Omega)$. Thus, by dominated convergence,

$$
g_{k}\left(u_{k}\right) \rightarrow g(u) \quad \text { in } L^{1}\left(\Omega ; \rho_{0} d x\right)
$$

We conclude that u satisfies (1.12). Therefore, (λ, μ) is good.

Proof of Theorem 6.

Step 1. Proof of

$$
\begin{equation*}
(\lambda, \mu)^{*}=\left(\lambda^{*}, \mu^{*}\right) . \tag{8.2}
\end{equation*}
$$

Let u_{k} be such that

$$
\left\{\begin{aligned}
-\Delta u_{k}+g_{k}\left(u_{k}\right)=\lambda & \text { in } \Omega, \\
u_{k}=\mu & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Then, $u_{k} \downarrow \hat{u}$ in $L^{1}(\Omega)$. By Fatou, we deduce that $g(\hat{u}) \in L^{1}\left(\Omega ; \rho_{0} d x\right)$ and

$$
-\int_{\Omega} \hat{u} \Delta \zeta+\int_{\Omega} g(\hat{u}) \zeta \leq \int_{\Omega} \zeta d \lambda-\int_{\partial \Omega} \frac{\partial \zeta}{\partial n} d \mu \quad \forall \zeta \in C_{0}^{2}(\bar{\Omega}), \zeta \geq 0
$$

By [4, Remark B.1], there exist $\hat{\mu} \in \mathcal{M}(\partial \Omega)$ and a locally bounded measure $\hat{\lambda}$ in Ω, with $\int_{\Omega} \rho_{0} d|\hat{\lambda}|<\infty$, such that

$$
-\int_{\Omega} \hat{u} \Delta \zeta+\int_{\Omega} g(\hat{u}) \zeta=\int_{\Omega} \zeta d \hat{\lambda}-\int_{\partial \Omega} \frac{\partial \zeta}{\partial n} d \hat{\mu} \quad \forall \zeta \in C_{0}^{2}(\bar{\Omega})
$$

Note that $\hat{\lambda} \leq \lambda$ in Ω and $\hat{\mu} \leq \mu$ on $\partial \Omega$. We claim that
(a) $(\hat{\lambda})_{\mathrm{d}}=\lambda_{\mathrm{d}}=\left(\lambda^{*}\right)_{\mathrm{d}}$;
(b) $(\hat{\lambda})_{\mathrm{c}}=\left(\lambda^{*}\right)_{\mathrm{c}}$;
(c) $\hat{\mu}=\mu^{*}$.

The subscripts "d" and "c" denote the diffuse and the concentrated parts of the measure with respect to $\operatorname{cap}_{H^{1}}($ see $[13])$. We then deduce from (a) and (b) that $\hat{\lambda}=\lambda^{*}$; in particular, $\hat{\lambda} \in \mathcal{M}(\Omega)$.
Proof of (a). The second equality in (a) is established in [4]. Proceeding exactly as in the proof of Lemma 1 there, one shows that

$$
\hat{\lambda} \geq \lambda_{\mathrm{d}}-\lambda_{\mathrm{c}}^{-} .
$$

Thus, $(\hat{\lambda})_{d} \geq \lambda_{d}$. Since $\hat{\lambda} \leq \lambda$, we conclude that $(\hat{\lambda})_{d}=\lambda_{d}$.
Proof of (b). Since the pair $\left(\lambda^{*}, 0\right)$ is good, it follows from Lemma 11 above that $\left(\lambda^{*},-\mu^{-}\right)$is also good. Let v_{1} be the solution of (1.12) corresponding to $\left(\lambda^{*},-\mu^{-}\right)$. By [4, Corollary B.2], we have $v_{1} \leq u_{k}$ a.e., $\forall k \geq 1$. Thus,

$$
v_{1} \leq \hat{u} \quad \text { a.e. }
$$

By the "Inverse" maximum principle (see [8]), we obtain

$$
\begin{equation*}
\left(\lambda^{*}\right)_{\mathrm{c}}=\left(-\Delta v_{1}\right)_{\mathrm{c}} \leq(-\Delta \hat{u})_{\mathrm{c}}=(\hat{\lambda})_{\mathrm{c}} \tag{8.3}
\end{equation*}
$$

We conclude from (a) and (8.3) that

$$
\lambda^{*} \leq \hat{\lambda} \leq \lambda
$$

In particular, $\hat{\lambda} \in \mathcal{M}(\Omega)$. Since $(\hat{\lambda}, \hat{\mu})$ is good, we can apply Lemma 11 to deduce that $\left(\hat{\lambda},-(\hat{\mu})^{-}\right)$is also good. Let v_{2} denote the corresponding solution. Clearly, v_{2} is a subsolution of (1.3). Thus,

$$
v_{2} \leq v^{*} \quad \text { a.e. }
$$

where v^{*} is the largest subsolution of (1.3), i.e., v^{*} is the solution of (1.3) with data λ^{*}. Applying the "Inverse" maximum principle, we conclude that

$$
\begin{equation*}
(\hat{\lambda})_{\mathrm{c}}=\left(-\Delta v_{2}\right)_{\mathrm{c}} \leq\left(-\Delta v^{*}\right)_{\mathrm{c}}=\left(\lambda^{*}\right)_{\mathrm{c}} \tag{8.4}
\end{equation*}
$$

We deduce from (8.3) and (8.4) that $(\hat{\lambda})_{c}=\left(\lambda^{*}\right)_{c}$.
Proof of (c). The argument in this case is the same as in the proof of (b) and is omitted (one should use Lemma 1 in Section 2 above, instead of the "Inverse" maximum principle).

It now follows from $(a)-(c)$ that $\hat{\lambda}=\lambda^{*}$ and $\hat{\mu}=\mu^{*}$. This concludes the proof of Step 1.

Step 2. Proof of the theorem completed.
Assume (λ, μ) is good. Thus, $(\lambda, \mu)^{*}=(\lambda, \mu)$. We deduce from the previous step that $\lambda^{*}=\lambda$ and $\mu^{*}=\mu$. In other words, λ is a good measure for (1.3) and μ is good for (1.1). Similarly, the converse follows. The proof of Theorem 6 is complete.

Open Direction 1 In all the problems above, the equation in Ω is nonlinear but the boundary condition is the usual Dirichlet condition. It might be interesting to investigate problems involving nonlinear boundary conditions. Here is a typical example:

$$
\left\{\begin{array}{cl}
-\Delta u+u=0 & \text { in } \Omega \tag{8.5}\\
\frac{\partial u}{\partial n}+g(u)=\mu & \text { on } \partial \Omega
\end{array}\right.
$$

where g and μ are as in the Introduction. This type of problems arises in Mechanics for various choices of g, possibly graphs; see, e.g., [9]. They have been studied in [2] when $\mu \in L^{2}(\partial \Omega)$.

Acknowledgments

We warmly thank M. Marcus and L. Véron for interesting discussions. The first author (H.B.) is partially sponsored by an EC Grant through the RTN Program "Front-Singularities", HPRN-CT-2002-00274. H.B. is also a member of the Institut Universitaire de France. The second author (A.C.P.) is supported by the NSF grant DMS-0111298 and Sergio Serapioni, Honorary President of Società Trentina Lieviti-Trento (Italy).

References

[1] Ph. Bénilan and H. Brezis, Nonlinear problems related to the Thomas-Fermi equation. J. Evol. Equ. 3 (2004), 673-770. Dedicated to Ph. Bénilan.
[2] H. Brezis, Problèmes unilatéraux, J. Math. Pures Appl. (9) 51 (1972), 1-168.
[3] H. Brezis, Semilinear equations in \mathbb{R}^{N} without condition at infinity. Appl. Math. Optim. 12 (1984), 271-282.
[4] H. Brezis, M. Marcus, and A. C. Ponce, Nonlinear elliptic equations with measures revisited. To appear in Annals of Math. Studies, Princeton University Press. Part of the results were announced in a note by the same authors: A new concept of reduced measure for nonlinear elliptic equations, C. R. Acad. Sci. Paris, Ser. I 339 (2004), 169-174.
[5] H. Brezis and A. C. Ponce, Kato's inequality when Δu is a measure. C. R. Math. Acad. Sci. Paris, Ser. I 338 (2004), 599-604.
[6] C. De La Vallée Poussin, Sur l'intégrale de Lebesgue. Trans. Amer. Math. Soc. 16 (1915), 435-501.
[7] C. Dellacherie and P.-A. Meyer, Probabilités et potentiel. Chapitres I à IV, Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. XV, Actualités Scientifiques et Industrielles, No. 1372, Hermann, Paris, 1975.
[8] L. Dupaigne and A. C. Ponce, Singularities of positive supersolutions in elliptic PDEs. Selecta Math. (N.S.) 10 (2004), 341-358.
[9] G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics, SpringerVerlag, Berlin, 1976.
[10] E. B. Dynkin, Diffusions, superdiffusions and partial differential equations, American Mathematical Society Colloquium Publications, vol. 50. American Mathematical Society, Providence, RI, 2002.
[11] E. B. Dynkin, Superdiffusions and positive solutions of nonlinear partial differential equations, University Lecture Series, vol. 34. American Mathematical Society, Providence, RI, 2004.
[12] E. B. Dynkin and S. E. Kuznetsov, Superdiffusions and removable singularities for quasilinear partial differential equations. Comm. Pure Appl. Math. 49 (1996), 125-176.
[13] M. Fukushima, K. Sato, and S. Taniguchi, On the closable parts of preDirichlet forms and the fine supports of underlying measures. Osaka J. Math. 28 (1991), 517-535.
[14] T. Gallouët and J.-M. Morel, Resolution of a semilinear equation in L^{1}. Proc. Roy. Soc. Edinburgh Sect. A 96 (1984), 275-288.
[15] A. Gmira and L. Véron, Boundary singularities of solutions of some nonlinear elliptic equations. Duke Math. J. 64 (1991), 271-324.
[16] M. Grillot and L. Véron, Boundary trace of the solutions of the prescribed Gaussian curvature equation. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 527-560.
[17] J.-F. Le Gall, The Brownian snake and solutions of $\Delta u=u^{2}$ in a domain. Probab. Theory Related Fields 102 (1995), 393-432.
[18] J.-F. Le Gall, A probabilistic Poisson representation for positive solutions of $\Delta u=u^{2}$ in a planar domain. Comm. Pure Appl. Math. 50 (1997), 69-103.
[19] M. Marcus and L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case. Arch. Rational Mech. Anal. 144 (1998), 201-231.
[20] M. Marcus and L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case. J. Math. Pures Appl. 77 (1998), 481-524.
[21] M. Marcus and L. Véron, Removable singularities and boundary traces. J. Math. Pures Appl. 80 (2001), 879-900.
[22] M. Marcus and L. Véron, Capacitary estimates of solutions of a class of nonlinear elliptic equations. C. R. Math. Acad. Sci. Paris 336 (2003), 913918.
[23] M. Marcus and L. Véron. Nonlinear capacities associated to semilinear elliptic equations. In preparation.
[24] A. C. Ponce, How to construct good measures. Proceedings of the Fifth European Conference on Elliptic and Parabolic Problems. A special tribute to the work of Haïm Brezis.
[25] G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus, Séminaire de Mathématiques Supérieures, No. 16 (Été, 1965), Les Presses de l'Université de Montréal, Montreal, 1966.

H. Brezis
Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie
Boîte courier 187
75252 Paris Cedex 05
France
e-mail: brezis@ann.jussieu.fr
Rutgers University
Dept. of Mathematics, Hill Center, Busch Campus
110 Frelinghuysen Rd.
Piscataway, NJ 08854
USA
e-mail: brezis@math.rutgers.edu
A.C. Ponce
Institute for Advanced Study
Princeton, NJ 08540
USA
e-mail: augponce@math.ias.edu

