Reduced measures on the boundary

Haim Brezis and Augusto C. Ponce

Abstract. We study the existence of solutions of the nonlinear problem

{Au +g(u) =0 inQ, (0.1)

u =y on 0f,

where 1 is a bounded measure and g : R — R is a nondecreasing continuous function
with g(t) = 0, Vt < 0. Problem (0.1) admits a solution for every u € L'(9), but this
need not be the case when p is a general bounded measure. We introduce a concept of
reduced measure p* (in the spirit of [4]); this is the “closest” measure to p for which
(0.1) admits a solution.
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1 Introduction

Let Q C RN, N > 2, be a smooth bounded domain. Let g : R — R be a continuous,
nondecreasing function such that ¢g(0) = 0. In this paper, we are interested in the
problem

{—Au +g(u)=0 inQ, (11)

=y on 0f,

where p is a bounded measure on 9€2. The right concept of weak solution of (1.1)
is the following:

u € LY(Q), g(u)po € L}(Q) and
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where po(z) = d(z,09), Yz € Q, 2 denotes the derivative with respect to the
outward normal of 02, and

(1.2)

C{(Q) = {¢eC?*(©) ; ¢ =0o0n00}.

If u is a solution of (1.1), then u € W>?(€2), Vp < oo (see [3, Theorem 5]).

loc

It has been proved by H. Brezis (1972, unpublished; see [15]) that (1.1) admits
a unique weak solution when g is any L!-function (for a general nonlinearity



g). When g is a power, the study of (1.1) for measures was initiated by Gmira-
Véron [15] (in the same spirit as [1]). They proved that if g(t) = [t[P~'t and

1<p< %, then (1.1) has a solution for any measure p. They also showed

that if p > % and 1 = dq, a € 09, then (1.1) has no solution. The set of
measures p for which (1.1) has a solution has been completely characterized when
p > JEL. In this case, (1.1) has a solution if and only if y(A) = 0 for every Borel

set A C 0Q such that Cy/,, ,(A) = 0, where Cs,, ,» denotes the Bessel capacity on

99 associated to W2/PP". This result was established by Le Gall [17] (for p = 2)
and by Dynkin-Kuznetsov [12] (for p < 2) using probabilistic tools and by Marcus-
Véron [20] (for p > 2) using purely analytical methods; see also Marcus-Véron [21]
for a unified approach for any p > %

Our goal in this paper is to develop for (1.1) the same program as in [4] for
the problem

(1.3)

—Au+g(u) =X inQ,
u=0 on 0R,

where A, in this case, is a measure in 2. We shall analyze the nonexistence
mechanism behind (1.1) for a general nonlinearity g. In [4] we have shown that
the Newtonian (H') capacity in €2, capy:, plays a major role in the study of
(1.3); one of the main results there asserts that (1.3) has a solution for every g
if and only if A(E) = 0 for every Borel set E C  such that capyi(E) = 0. For
problem (1.1), the analogous quantity is the Hausdorff measure HV =1 on 9Q (i.e.,
(N — 1)-dimensional Lebesgue measure on 9€). In fact, many of the results in
[4] remain valid provided one replaces in the statements the H!-capacity by the
(N —1)-Hausdorff measure. Some of the proofs, however, have to be substantially
modified.

Concerning the function g we will assume throughout the rest of the paper that
g : R — R is continuous, nondecreasing, and that

g(t)=0 Vt<0. (1.4)

The space of bounded measures on 99 is denoted by M(99Q) and is equipped
with the standard norm

l[pellae = sup{/(9 pdu; e C(ON) and ||p||pe< 1}_
0

By a (weak) solution u of (1.1) we mean that (1.2) holds. A (weak) subsolution
of (1.1) is a function v satisfying

v e LYQ), g(v)po € L*(N) and
- [eacs [gwcs— [ Sedn vee @, czomn
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(1.5)

We will say that u € M(9Q) is a good measure if (1.1) admits a solution. If u is
a good measure, then equation (1.1) has exactly one solution u (see [20]; although



this result is stated there when ¢ is a power, the proof remains unchanged for a
general nonlinearity g). We denote by G the set of good measures (relative to g);
when we need to make explicit the dependence on g we shall write G(g). Recall
that L!-functions on 99 belong to G(g) for every g.

In the sequel we denote by (gx) a sequence of functions g : R — R which are
continuous, nondecreasing and satisfy the following conditions:

0<g(t) <) ... <glt) VEER, (L6)
ge(t) — g(t) VteR. (1.7)

We assume in addition that each g; has subcritical growth, i.e., that there exist
C>0andp< % (possibly depending on k) such that

ge(t) < C(|tP+1) VteR. (1.8)

A good example to keep in mind is gx(t) = min {g(t), k}, Vt € R.
Since (1.8) holds, then for every u € M(99) there exists a unique solution u
of

{—Auk +gr(ur) =0 in Q, (1.9)

ug = i on 0N,

The convergence of the sequence (uy) follows from the next result, established in
[4, Section 9.3]:

Theorem 1 As k 1 oo, ux | u* in LY(Q), with g(u*)po € LY(Q), and u* satisfies

(1.10)

—Au*+g(u*)=0 inQ,
u* =p*  on 09,

for some p* € M(09Q) such that p* < p. In addition, u* is the largest subsolution
of (1.1).

Remark 1 An alternative approximation mechanism consists of keeping g fized
and considering a sequence of functions u; € L'(9€2) weakly converging to u. Let
vk, be the solution of (1.1) associated to py. It would be interesting to prove that
vy — u* in LY(Q) for some appropriate choices of sequences (uz) (for measures in
Q, see [4, Theorem 11)).

An important consequence of Theorem 1 is that u* — and thus u* — does
not depend on the choice of the truncating sequence (gx). We call p* the reduced
measure associated to p. If g has subcritical growth, then pu* = p for every

u € M(0Q) (see Example 1 below). However, if ¢ has critical or supercritical
growth, then p* might be different from . In this case, p* depends both on the
measure g and on the nonlinearity g.

By definition, p* is a good measure < y (since (1.10) has a solution u*). One
of the main properties satisfied by p* is the following



Theorem 2 The reduced measure p* is the largest good measure < .

A consequence of Theorem 2 is
Corollary 1 There ezists a Borel set ¥ C 0Q with HN~Y(Z) = 0 such that

(11— u")(O2\ 5) = 0. (L11)

To see this, let u, and pg denote, respectively, the absolutely continuous and
the singular parts of u with respect to HY 1. Since u, € L'(99), then y, is good.
Thus, p, — g is also a good measure (see Proposition 1 below). We then conclude
from Theorem 2 that p, — p; < p* < p. Hence,

0<p—p* <p—patps =pd

and so j — p* is concentrated on a set of zero HY ~!'-measure.

Remark 2 Corollary 1 is the “best one can say” about pu — p* for a general
nonlinearity g. In fact, given any measure p > 0 concentrated on a set of zero
HN~L-measure, there exists some g such that pu* = 0 (see Theorem 7 below). In
particular, 4 — u* can be any nonnegative measure concentrated on a set of zero
HN~Lmeasure in 0.

It is not difficult to see that if u € M(9) and p* € L' (99Q), then u € G(g)
for every g (see Proposition 5 below). The converse is also true:

Theorem 3 Let yu € M(99Q). If u € G(g) for every g, then u* € LY(9%).

A key ingredient in the proof of Theorem 3 is the following

Theorem 4 For every compact set K C 082, we have
N—1 : 25y 9¢ . ,
HY7H(K) = inf ALl ¢ € CF(Q), ™ > 1 in some neighborhood of K ¢.
Q n

Remark 3 As we have already pointed out, the measure HY~! plays here the
same role as capy: in [4]. There, for every compact set K C Q we showed that

1
capy (K) = 5 inf {/ﬂ |Ap|; ¢ € C°(Q), ¢ > 1 in some neighborhood of K},

which is the counterpart of Theorem 4.

We now address a different question. Could it happen that, for some fixed
go, the only good measures p are those satisfying u+ € L'(9Q)? The answer is
negative. In fact,



Theorem 5 For any g, there exists a good measure yu > 0 such that u ¢ L'(02).

A natural question is to combine the results of [4] with those in the present
paper, i.e., consider the problem

—Au+g(u)=XA inQ, (1.12)
u=p '

on 012,

where A € M(Q) and u € M(99). We say that the pair (A,
has a solution in the usual weak sense (with g(u)py € LY(Q)
problem “uncouples”. More precisely,

w) is good if (1.12)
). Surprisingly, the

Theorem 6 Let A € M(Q) and p € M(09Q). The pair (X, ) is good if and only
if X is a good measure for (1.3) and u is a good measure for (1.1). Furthermore,

(A )™= (A", ).

This paper is organized as follows. In the next section we prove Theorem 2. In
Section 3, we present several properties satisfied by the mapping p — p* and by
the set of good measures G. Theorem 4 will be established in Section 4. We show
in Section 5 that for every singular measure p > 0 there exists some g such that
w* = 0; we then deduce Theorem 3 as a corollary. Theorem 5 will be proved in
Section 6. In Section 7, we give the explicit value of p* in the case where g(t) = t?,
t > 0, for any p > 1. In the last section we present the proof of Theorem 6.

Some of the results in this paper were announced in [4].

2 Proof of Theorem 2

The main ingredient in the proof of Theorem 2 is the following:

Lemma 1 Given f € L*(;podx), A € M(Q) and u € M(0R), let w € L*(Q) be
the unique solution of

o ) =
— Al = d)\ — —d Q).
/ch /Qf<+/ﬂc [ Srdn ¥CeCE@)

If w >0 a.e. in Q, then >0 on ON.

This result is fairly well-known. We present a proof for the convenience of the
reader. For measures in €2, the counterpart of Lemma 1 is the “Inverse” maximum
principle of [8] (see [4]).

Proof. Given ¢ € C®(99), ¢ > 0 on 99, let ¢ € C3(Q2), ¢ > 0 in Q, be such

tha —g—fl = ¢ on 0f). Let 0; | 0 be a sequence of regular values of (. For each

j=>1,set (; = ¢ — 5]‘ and wj = [C > 5]] In particular, Cj € 002(@]), Cj > 0in



wj, and —% > 0 on Jw;. By standard elliptic estimates (see [25]), we know that
w e I/Vl’p(Q)7 Vp < %; thus, w has a nonnegative L!-trace on dw;. Therefore,

loc
wch—/wjfm ijjdA—/awj%iij/wijj—l—/ijjd)\.

g

As j — oo, we conclude that

AWAC+/(sz+A§dA§0,
ag¢d“_Aﬂgvid“—<LwAC+Lf<+/§2<dA> > 0.

Since ¢ > 0 was arbitrary, we conclude that p > 0.

Thus,

We can now establish Theorem 2:

Proof of Theorem 2. Assume v is a good measure < pu. Let v denote the
solution of

v=v on Jf.

{—Av +g(v)=0 inQ,

Since v < p, it follows that v is a subsolution of (1.1). Thus, by Theorem 1,
v < u* a.e. Applying Lemma 1 to the function w = u* — v, we then conclude that
uwt—v>0.

3 Some properties of G and p*

Here is a list of properties which can be established exactly as in [4]. For this
reason, we shall omit their proofs.

Proposition 1 Suppose 1 is a good measure. Then, any measure ps < [y is
also a good measure.

Proposition 2 If u1, us are good measures, then so is sup {p1, pa}-
Proposition 3 The set G of good measures is convex.

Proposition 4 We have
G+ L' (00) Ccg.

Proposition 5 Let € M(99Q). Then, u € G if and only if p* € G.



Proposition 6 Let € M(9Q). Then, u € G if and only if ps € G, where ps
denotes the singular part of ju with respect to HN 1.

Proposition 7 Let p € M(0Q). Then, u € G if and only if there exist fy €
LY(Q; po dz) and vo € LY (Q) such that g(vo) € LY (2 po dz) and

%du:/szfoC—&-/(lvoA( V¢ € C2(Q). (3.1)

o0 371

Proposition 7 is the analog of a result of Gallouét-Morel [14]; see also [4, Theo-
rem 6].

Proposition 8 For every measure u, we have
0<p—p <put. (3.2)
Proposition 9 For every measure p, we have
()T =@ and (u)” =p". (3.3)
Proposition 10 Let pp € M(02). Then,
I = 1*llae = min flze = vl ag. (3-4)
Moreover, p* is the unique good measure which achieves the minimum in (3.4).
Proposition 11 Let u € M(99Q) and h € L*(Q; po dx). The problem

{—Av +g(w)=h inQ,

3.5
v=pu on I, (3:5)

has a solution if and only if p € G(g).
By a solution v of (3.5) we mean that v € L(Q) satisfies g(v) € L*(; po dx)

and
o _
—/ VAC +/ gw)¢ = / he — / % 4 vee @), (3.6)
0 Q Q a0 On
In view of Lemma 2 below such a solution, whenever it exists, is unique.

The proofs of Propositions 7 and 11 require an extra argument. We shall
present a proof based on Lemmas 2-6 below.

Given h € L*(Q; po dz), let A, (h) denote the set of measures u for which (3.5)
has a solution. By Lemma 2 below, A4(h) is closed with respect to the strong
topology in M(09Q). Our goal is to show that Ay(h) is independent of h and
Ag(h) = G(g), Vh. In the sequel, we shall denote by (y the solution of

—ACO =1 in Q,
Co=0 on 0.

We start with the following



Lemma 2 Let h; € L' podzx), i = 1,2. Given pu; € Ay(hi), let v; denote the
solution of (3.5) corresponding to h;, ;. Then,

/ |1 — vo +/ lg(v1) — g(v2)| G < / |h1 — ha| Co Jrc/ I — pal. (3.7
Q Q Q o0
Proof. Apply Lemma 1.5 in [20].

Lemma 3 Assume g satisfies
git) <C(tP +1) VteR, (3.8)
for some p < % Then, for every h € L*(Q; po dz), we have Ay(h) = M(Q).

Proof. This result is established in [15] for b = 0. The same proof there also
applies for h € L>(£2). The general case when h € L'(£2; po dz) then follows by
density using Lemma 2 above.

Given p € M(99), let vi be the solution of

{—Avk + gr(vk) =h  in Q, (3.9)

v = p  on J€,
where (gi) is a sequence of functions satisfying (1.6)—(1.8).

Lemma 4 Given p € Ay(h), let v denote the solution of (3.5). Assume vy, satis-
fies (3.9). Then,

v — v in LYQ) and grp(vy) — g(v) in L' (% po dz). (3.10)

Proof The lemma follows by mimicking the proof of Proposition 3 in [4] and using
Lemma 2 above.

Lemma 5 Let hy,ha € LY(Q; podz). If hy < hy a.e., then Ay(h1) D Ay(h2).

Proof. Let p € Ay(h2) and let (gi) be a sequence satisfying (1.6)—(1.8). Denote
by v; k, @ = 1,2, the solution of

—Av; i+ gr(vik) = h;  in Q,
Vi =p on O

Let v; be such that v; ; | v; in L'(Q) as k | co. By Lemma 4 above, we have

9k (v2 ) — g(v2) in LI(Q;pO dzx).



By [4, Corollary B.2], hy < hg a.e. implies v1 i < vo 1 a.e.; thus, gr(v1 k) < gr(ve )
a.e. It then follows by dominated convergence that

gr(vig) — g(v1) in LY(Q; po dx).
Therefore, u € Ag(h1). This concludes the proof of the lemma.

Lemma 6 Assume p satisfies (3.1) for some fo € LY(Q; podx) and vy € L*(Q),
with g(vo) € L*(Q%;podx). Then, problem (3.5) has a solution for every h €
LY ($2; po dix).

m|[Goll L=~

. Si
o ince

Proof. Fix a < 1. Given m > 1, let M,,, =

avg +mfy < vy a.e. on the set [vg > M,,],

we have g(avy +m(y) € L(Q; po d); moreover,

_ ¢ o)
—/Q(owo—l—mco)A(—/Q(ozfo—km)C—a/{m o dp V¢ e C(Q).

Thus, ap € Ag(hy,), where

hm = afo+m+ g(avy +mdp).
Given h € L (Q; po dzx), let .
Ry = min {h, by, }
Since hyy, < hp a.e., it follows from Lemma 5 that ap € Ag(hn,), Ym > 1. Note
that h,, — h in L'(; po dz) as m — oo; thus, by Lemma 2 we get au € Ay(h).
Since this holds true for every o < 1, we must have p € A, (h).
Proof of Proposition 7. Clearly, if p is a good measure, then (3.1) holds.

Conversely, assume pu satisfies (3.1) for some vg, fo. It then follows from the
previous lemma that (3.5) has a solution for A = 0. In other words, u is good.

Proof of Proposition 11. If p is good, then (3.1) holds. Thus, by Lemma 6
above we conclude that problem (3.5) has a solution for every h € L'(; po dz).
Conversely, if (3.5) has a solution for some h € L'(Q;podz), then (3.1) holds.
Applying Proposition 7, we deduce that u is good.

4 Proof of Theorem 4

Given a compact set K C 02, we define the capacity

coa(K) = inf{/ |AC]; ¢ € C2(Q), —g—g > 1 in some neighborhood of K}.
Q n

In order to establish Theorem 4 we will need a few technical results. We start
with



Lemma 7 Let K C 9Q be a compact set. Given € > 0, there exists 1 € C3(Q)
such that ¢ > 0 in €, _g% > 1 in some neighborhood of K and

/Q|A¢| < cpa(K) +e. (4.1)

Proof. Given ¢ > 0, let ¢ € C3(Q) be such that _375 > 1 in some neighborhood

of K and
E
/Q 1A < cpn(K) + . (4.2)

We now extend ¢ as a C2-function in the whole space RY. We then let
fla) = [ e =) 5wl dy Vo e

where (pg) is any sequence of nonnegative mollifiers such that supp px C By,
vk > 1. As k — oo, we have

fr — |AC|  uniformly in Q. (4.3)

Let vx € C2(2) be the solution of

—A’Uk = fk in Q,
v =0 on 0f.

Since fr > 0, we have v > 0 in . Moreover, (4.3) implies

Ovy, ov .
Bn " 3 uniformly on 02, (4.4)

where v is the solution of

—Av=|A(| inQ,
v=20 on Of.

By the maximum principle, { < v in . Since ( = v = 0 on 02, we have

aC ov
—— < -
on = on o1,

which implies that —2% > 1 in some neighborhood of K. In view of (4.4), we can

fix ko > 1 sufficiently large so that 3;20 > « in some neighborhood of K, where

a < 1. We may also assume that
€
AkO

10




where Ay, = N1 () \ Q.
Set
w - vk(n

so that ¥ > 0 in Q and — > 1 in some neighborhood of K. Moreover,

1 1 1 3
/Q|A¢|:a/ﬂ|Aka|Sa(/ﬂ|A<|+Z> SQ(CBQ(K)-F;).

Therefore, by taking

K 3e
o = 7689( )+ 4 < ].,
coa(K) +e

we conclude that ) satisfies (4.1).
We next prove the

Lemma 8 Let K C 09 be a compact set. Given € > 0, there exists ¢ € C§(Q)

such that 0 < 1 < e in Q, —%% = > 1 in some neighborhood of K,
/ AY| <HNHK) 4+¢  and ’ il <l+e. (4.5)
Q Lo oo

Proof. Let § > 0 be such that
HNH(Ns(K) N 0Q2) < HNHK) +e.

We now fiz ¢ € CZ(Q2) such that ¢ > 0 in Q, — a< —llnNs( )N o, gf; =0in
0N\ Ns(K),0 < —g—fL < 1on 9df, and HP%HLQCS 1—|—€. Let a € (0, ¢) be sufficiently
small so that

/ |AC| < e.

[¢<al
Let -

u=a—(a—¢)" inQ.

In particular, 0 < u < € in Q. It is easy to see that Au € M(Q) and Au = A
in [ < a]. Since u is bounded and achieves its maximum everywhere on the set
[ > a], we can apply Corollary 1.3 in [5] to deduce that

—Au>0 in[¢ > a].

| Aufe = — / Au+ / IAC]

[¢>a] [¢<a]

/Au+2/\AC|< /Au+25.

[¢<a]

Thus,

11



On the other hand, proceeding as in the proof of Lemma 7, one can find 1 € C3(Q)
such that 0 < ¢ < ¢ in €, —2%21@89,

’w g’“ Fe<1+ 2, (4.7)
P0 ||, P0 || 1,00
and
/|Aw|§ | Aullag + €. (4.8)
Q

By (4.6) and (4.8), we have

/|A¢|§—/Au+35.
Q Q

Since u = ¢ in a neighborhood of 912,

ou oC
Ay = — = .
/Q a0 On a0 On

Thus,

/ |A| < —/ % +3e < HNTH(Ns(K) N 09Q) + 3e < HNHK) + 4e.
Q a0 On

This concludes the proof of the lemma.

Proof of Theorem 4. Given € > 0, let v € CZ(Q2) be the function given by
Lemma 7. Since ¢ > 0 in €2, we have —g—ﬁ > 0 on 09). Thus, integrating by parts
and using (4.1) we get

o _ _

N—lK < _
HY(K) 0 On

[ oavs [ jau] < conm) +e.
o0 o0

Since € > 0 was arbitrary, we deduce that
HNTHK) < copn(K).

The reverse inequality immediately follows from Lemma 8.

5 Nonnegative measures which are good for every
g must belong to L(99)

We start with

12



Theorem 7 Given a Borel set ¥ C 082 of zero HN ~1-measure, there exists g such
that

w=—p~  for every measure p concentrated on X.

In particular, for every nonnegative y € M(OQ) concentrated on a set of zero
HN~1-measure, there exists some g such that pu* = 0.

Proof. Let ¥ C 09 be a Borel set such that HVY~1(X) = 0. Let (K}) be an

increasing sequence of compact subsets of 3 such that

u*(E\UI@) = 0. (5.1)
k

For each k > 1, K, has zero HNfl—measure.r By Lemma 8, one can find ¢, € C2(9)
such that 0 < ¥ < min{%,on} in Q, f% > 1 in some neighborhood of Ky,
and

1
/|A¢,€|gf Vk > 1.
o k

In particular,

A
Ak — 0 in LY po dx).
Po
Passing to a subsequence if necessary, we may assume that
A A
ﬂ — 0 a.e. and M <G e L' Qpodr) VE>1.
Po Po

According to a theorem of De La Vallée-Poussin (see [6, Remarque 23] or [7,
Théoréme 11.22]), there exists a convex function h : [0,00) — [0,00) such that
h(0) =0, h(s) > 0 for s > 0,

tlirglo @ = +oo, and h(G) € L*(Q;podz).
Set h(s) = +oo for s < 0. Let g = h* be the convex conjugate of h. Note that h*
is finite in view of the coercivity of h, and we have h*(t) = 0 if ¢ < 0.

We claim that g satisfies all the required properties. In fact, let © be any measure
concentrated on ¥ and set v = (p*)*, where the reduced measure p* is computed
with respect to g. By Proposition 5, v is a good measure. Let u € L*(Q), u > 0
a.e., be such that g(u)py € L'(Q2) and

7/QUA<+/QQ(U)<:7/3 % 4 V¢ € C2(9). (5.2)

Qan

Recall that 1, > 0 in  and ¥ = 0 on 0€2; thus, —% >0 on 09). Using 9 as a
test function in (5.2), we get

V() < — /8 %k g, < — /Q [uA g + g(uu) - (5.3)

Qan

13



Note that
‘qu;g + g(u)wk‘ —0 a.e.

and

wkl

luly + g(u)] < ul22H p+<>¢—(’jpo

< g(u)po + h ('pfk') po + 2g(u)po
< 3g(u)po + Gpo € L' ().

By dominated convergence, we conclude that the right-hand side of (5.3) converges
to 0 as k — oco. Thus,

(W) () = v(E) =0 V> 1,
so that, by (5.1) and Proposition 8, (¢*)™(X) = 0. Since u is concentrated on X,
we have (p*)™ = 0; thus, by Proposition 9,
pr= )t = ()T =
which is the desired result.

We now present the

Proof of Theorem 3. Assume p € M(99) is good for every g. Given a Borel
set ¥ C 0N of zero HN~l-measure, let v = uT|x. By Theorem 7, there exists
some gg such that v* = 0. On the other hand, by Propositions 1 and 5, v is good
for gg. Thus, v = v* = 0. In other words,

pT(X) =0 for every Borel set ¥ C 99 such that HY~1(X) = 0.

We conclude that p € L*(99).

6 How to construct good measures which are not

in L1(892)

In this section, we establish Theorem 5. We shall closely follow the strategy used
in [24] to construct good measures for problem (1.3) which are not diffuse.
Let (¢) be a decreasing sequence of positive numbers such that

1 1
61 < 5 and Ek%‘rl < §£k Vk 2 1. (61)

We start by briefly recalling the construction of the Cantor set F' C [—5, %]N -1

associated to the subsequence (£y,;). We refer the reader to [24, Section 2] for
details.

14



We proceed by induction as follows. Let Fy = [—%, %]N_l, lo =1 and kg = 0.
Let F}; be the set obtained after the j-th step; F} is the union of 2(N=1k; cubes
Qi of side {;,. Inside each Q;, select 2N=1)(kj+1-ki) cubes Qin of side fg;

uniformly distributed in @Q;; the distance between the centers of any two cubes
] s
Qi,n 1S Z m Let

Fit = U Qin-
i,n

The set F' is given by

We now fix a diffeomorphism
®: (-1, DV = @((-1, 1)) con

and define F = ®(F). From now on, we shall identify F' with F, and simply
denote F' by F.

For each 7 > 1, let
1

Ky = WXF_M;

in particular, pu; € L'(99Q). The uniform measure concentrated on F, pp, is the
weak™ limit of (p;) in M(0Q) as j — oo. In particular, pp > 0 and pp(082) = 1.
An important property satisfied by pp is given by the next

Lemma 9 For every x € 0N2, we have

Lr.
N S— i <p< R
N1k, Zfzkurl ST R Sk
pe(Br(z)noQ) S92 T N T R (6.2)
r .
5(N—1)k; (gkj) if 2(kj+1]7kj) ST‘S%-

We say that a < b if there exists C' > 0, depending only on N, such that a < C'b.
By a ~ b, we mean that a < b and b S a. We refer the reader to [24] for a proof of
Lemma 9; although a slightly stronger assumption than (6.1) is made there, the
proof of (6.2) remains unchanged.

Let v € L'(Q) be the unique solution of

{Av =0 in (), (6.3)

v=pp on 0.

Our next step is to establish the following
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Proposition 12 Let F' C 09 be the Cantor set associated to the subsequence ()
and let v be the solution of (6.3). Assume that

— 1 V> 1. (6.4)

Then, there exists C > 0 such that

1 J 1 Ly,
v(:c)gC'{ — + g — <J>—|—
éi\/; ' i=1 2(N_1)k’[N. Y\,

1 A N+1
+ Z 2(N 1)k EN 1 (gk - ) } (65)

i=j+1 J+1

for every x € Q such that €y, < d(x,00) < by, j > 1.

J+1

Proof. We shall suppose for simplicity that Q = IR{_]X is the upper-half space. In
this case, the solution v of (6.3) can be explicitly written as (see Lemma 10 below)

- ~ st N N-1

T(N/2)

where cy = — 775>, Applying Lemma 9, we have
o0
v(z,t) S (Ai+ Bi) + Co, (6.6)
i=1
where
,
1 o (Fit1—k7) st
e e a—
¢ o(N=Dkita i (s2 +t2)%+1
ly, N
t ki S
B; = 9(N—1)k; pN—1 t, 2 4 42)5+1 ds,
ke ey (874 82)2

i st
00:/ st g
o, (52 +12) 5+
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An elementary (but tedious) computation using (6.4) shows that

1 gkwl N+ .
QUN—=1kiq1 pN—1 t it > Eki“’
A S 1 ki1 ¢ (6.7)
- if ¢t < lp,,,,
2(N*1)ki+1€]1€\£+11 <€;€H1 ) +1
1 0\ N
—_— | — if ¢ v
2Nk N1 ( t ) e > b
Bi S gv—nk gV T if Cr, <t < Ly, (6.8)
ki
t
if t < ¥,
2(N_1)ki+1€£i:11 <€k511+1) e Bhe
t]\fi—l if t > gkl,
Cosq ¢ (6.9)
~ ift <4,
ﬁkl

We now assume that £, ,, < t < f;,. Inserting (6.7)-(6.9) into (6.6), we obtain
(6.5). In order to conclude the proof of Proposition 12, we establish the following

Lemma 10 Given v € M(RN71), let w be the solution of

{—Aw:O n R_IX, (6.10)

w=v ona}Rf.

Then,

e st ~ _

where By(z) denotes the ball in ORY of radius s centered at z.

Proof. Assume = f € C>°(RY~!). Then, w is given as the Poisson integral of

f:
t N-1
w(z,t) =cn —— s f(x)dx VzeR vt > 0.
RN-1 (| Z\2+t2) 2

=cN f) ds
=c ds.
N/o 82+t2 ¥ d5< Bs<z)f
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Integrating by parts with respect to s, we obtain (6.11) for u = f. This establishes
(6.11) when g is a smooth function. The general case easily follows using a density
argument (see, e.g., [20, Lemma 1.4]).

We may now turn to the

Proof of Theorem 5. Let (k;) be an increasing sequence of positive integers
such that 4
g(2N7y < 2%k i > 1. (6.12)

Let (¢x) be any sequence satisfying (6.1) and such that

1 .

Let F' be the Cantor set associated to ({x;). Since

2(N 1)k; eN 1 1

2(1\[71)34)0 ElSj*>OO7

we have |F| = 0; thus, up ¢ L'(09Q). We claim that pp is a good measure. In
fact, let v be the solution of (6.3). A simple computation shows that

j L by .- 1 0, \VH! (N-1)
R 2] s
22(1\[71)]%’[?—1 (gk> + Z 2(N71)ki€g—l (fk > <C2

i=j+1 Jj+1

for some constant C' > 0 sufficiently large. It follows from Proposition 12 that
o(z) < C2WYIif gy < d(z,00) < b, V5> 1.

Denoting §2; = {x € Q; d(x,00) > Ly, }, we then have

v)po = / v)po +/ 9(v)po
/ Z J+1\Q O\

Z (C27D7) 6191\ + O(1).

Since [Q;41\Q;| < Cly,, we get

® g(C2N- 1)])
/Q Z — g T o). (6.13)

Note that, for j > 1 sufficiently large, we have C 20V-1J7 < 2Ni We deduce from
(6.12) and (6.13) that g(v) € L' (£2; po dx). By Proposition 7, we conclude that pup
is a good measure.
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7 The case where g(t) = tP

We describe here some examples where the measure p* can be explicitly identified.

Example 1 g(t) =7, ¢t >0, with 1 < p < 3.
In this case, every measure is good (see [15]); thus, pu* = u, Vu € M(9Q).

Example 2 g(t) = t#, ¢ > 0, with p > {41

By [21], a nonnegative measure v is good if and only if v(A) = 0 for every
Borel set A C 09 such that Cyp, v (A) = 0. Recall (see [13]) that any measure 4
can be uniquely decomposed as

W= p1 + po,

where 1 (A) = 0 for every Borel set A C € such that Cyp v (A) = 0, and py is
concentrated on a set of zero Cy/), ,v-capacity. Using the same argument as in 4,
Section 8], one then shows that for every p € M(9Q) we have

pE= =g
Here is an interesting

Open Problem 1 Let N =2 and g(t) = e’ — 1, t > 0. Is there a simple charac-
terization of the set of good measures relative to g7 Is there an explicit formula
of p* in terms of u?

There are some partial results in this direction; see [16] and also [23].

8 Proof of Theorem 6

We start with the following

Lemma 11 Let A € M(Q) and p € M(9). Assume that there exists w € L*(£2)
such that g(w) € LY (2; po dz) and

_ [ o< Ve
/QwA(Jr/Qg(w)CZ/di)\ /m Soau Ve CR@), ¢20. (81)

Then, the pair (A, p) is good.

Proof. Since (8.1) holds, there exist 1o € M(02) and a locally bounded measure
Ao in ©Q, with [, po d|Ao| < 0o, such that pg > p on 92, Xg > X in Q, and

- [wac+ [ gt = [ carn- [ Sidu veci@,
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(The existence of Ay and g is sketched in [4, Remark B.1]).

Let (gr) be a sequence of bounded functions satisfying (1.6)—(1.7). Let uy, wy be
the solutions associated to (A, i), (Ao, o), resp. Then, as in the proof of Lemma 5
above, we have

gr(ur) < g(wy) — g(w) in L'(; po da).
On the other hand, uy, | v in L*(Q)). Thus, by dominated convergence,
gr(ur) — g(u) in L'(Q; po dx).
We conclude that u satisfies (1.12). Therefore, (A, i) is good.

Proof of Theorem 6.

Step 1. Proof of
(i) = "), (8:2)
Let uj be such that

—Auy, + gr(ur) =X in Q,
ur = p on Jf.

Then, uy | @ in L'(Q2). By Fatou, we deduce that g(4) € L'(€; po dx) and

_/QaAng/ §</§d>\ / —=dp V¢ e Ci(Q), ¢ >0.

By [4, Remark B.1], there exist i € M(99) and a locally bounded measure A in
Q, with [, po d|A| < oo, such that

,/QﬁAg+/ )¢ = /(d)\ /emi" i V(e C3(9).

Note that A < X in © and i < poon 0. We claim that

(@) (Na= A= \)a;

(®) Ve =A\)ei

(c) fr=np"
The subscripts “d” and “c” denote the diffuse and the concentrated parts of the
measure with respect to capg: (see [13]). We then deduce from (a) and (b) that
A = \*; in particular, A € M(Q).

Proof of (a). The second equality in (a) is established in [4]. Proceeding exactly
as in the proof of Lemma 1 there, one shows that

A> Mg — AL
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Thus, (A\)q > M. Since A < A, we conclude that (A)q = Ag.

Proof of (b). Since the pair (\*,0) is good, it follows from Lemma 11 above
that (A\*, —p7) is also good. Let v; be the solution of (1.12) corresponding to
(A, —u7). By [4, Corollary B.2], we have v1 < uy a.e., Vk > 1. Thus,

vy <u a.e.
By the “Inverse” maximum principle (see [8]), we obtain
(A)e = (-Av)c < (Aid)e = (Ve (8.3)
We conclude from (a) and (8.3) that
A <A<A

In particular, A € M(Q). Since (), fi) is good, we can apply Lemma 11 to deduce

that (A, —(&)7) is also good. Let vs denote the corresponding solution. Clearly,
vy is a subsolution of (1.3). Thus,

vy <v*  a.e.,

where v* is the largest subsolution of (1.3), i.e., v* is the solution of (1.3) with
data A*. Applying the “Inverse” maximum principle, we conclude that

(5‘>c = (—Avg)e < (A )e = (A)e. (8.4)

We deduce from (8.3) and (8.4) that (A)c = (A*)c.

Proof of (¢). The argument in this case is the same as in the proof of (b) and
is omitted (one should use Lemma 1 in Section 2 above, instead of the “Inverse”
maximum principle).

It now follows from (a)—(c) that A = A* and /i = p*. This concludes the proof
of Step 1.

Step 2. Proof of the theorem completed.

Assume (A, p) is good. Thus, (A, u)* = (A, p). We deduce from the previous
step that \* = A and p* = p. In other words, A is a good measure for (1.3) and
w is good for (1.1). Similarly, the converse follows. The proof of Theorem 6 is
complete.

Open Direction 1 In all the problems above, the equation in §2 is nonlinear but
the boundary condition is the usual Dirichlet condition. It might be interesting
to investigate problems involving nonlinear boundary conditions. Here is a typical
example:

—Au+u=0 inQ,
(8.5)

ou
o, T9W=u onoQ,
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where g and p are as in the Introduction. This type of problems arises in Mechanics
for various choices of g, possibly graphs; see, e.g., [9]. They have been studied in
[2] when p € L?(09).
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