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Abstract. We study the existence of solutions of the nonlinear problem{
−∆u + g(u) = µ in Ω,

u = 0 on ∂Ω,
(0.1)

where µ is a bounded measure and g is a continuous nondecreasing function such
that g(0) = 0. In this paper, we assume that the nonlinearity g satisfies

lim
t↑1

g(t) = +∞. (0.2)

Problem (0.1) need not have a solution for every measure µ. We prove that, given
µ, there exists a “closest” measure µ∗ for which (0.1) can be solved. We also
explain how assumption (0.2) makes problem (0.1) different compared to the case
where g(t) is defined for every t ∈ R.
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1 Introduction

Let Ω ⊂ RN , N ≥ 2, be a smooth bounded domain. In this paper, we are interested
in the existence of solutions of the following problem{

−∆u + g(u) = µ in Ω,

u = 0 on ∂Ω,
(1.1)

where µ is a bounded measure in Ω and g : (−∞, 1) → R is a continuous nonde-
creasing function such that g(0) = 0 and

lim
t↑1

g(t) = +∞. (1.2)
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By a solution u of (1.1) we mean that u ∈ L1(Ω), u ≤ 1 a.e., g(u) ∈ L1(Ω) and

−
∫

Ω

u∆ζ +
∫

Ω

g(u)ζ =
∫

Ω

ζ dµ ∀ζ ∈ C2(Ω), ζ = 0 on ∂Ω.

In particular, g(u) ∈ L1(Ω) implies that u < 1 a.e.
We observe that u, whenever it exists, is unique (see e.g. [4]). It has been proved

by Boccardo [2] (in the spirit of Brezis-Strauss [7]) that, for every µ ∈ L1(Ω),
problem (1.1) has a solution. Moreover, Boccardo also shows that (1.1) has no
solution if µ is a Dirac mass δa, with a ∈ Ω. Consequently, we say that µ is a good
measure (relative to g) if (1.1) has a solution u. We shall denote by G(g) the set
of good measures associated to g.

Our goal in this paper is to investigate under what conditions on g and µ

problem (1.1) admits a solution. We also point out to what extent assumption
(1.2) makes this problem different compared to the case where g is a continuous
function defined for every t ∈ R, which was recently studied by Brezis-Marcus-
Ponce [4].

We shall assume henceforth that, in addition to (1.2), g satisfies

g(t) = 0 ∀t ≤ 0. (1.3)

In particular, this implies that nonpositive measures are good for any g.
We denote byM(Ω) the space of bounded Radon measures in Ω, equipped with

its standard norm ‖ ‖M. Given ν ∈ M(Ω), we say that ν is diffuse if ν(A) = 0
for every Borel set A ⊂ Ω of zero H1-capacity (= Newtonian capacity). As we
shall see, this capacity — which will be denoted throughout this paper by “cap”
— plays an important role in the study of problem (1.1).

The first consequence of (1.2) is that if (1.1) has a solution, then µ+ is diffuse
(see Corollary 2 in Section 2 below). The converse is not true; more precisely,

Theorem 1 Given any g, there exists a diffuse measure µ ≥ 0 such that µ 6∈ G(g).

However, we shall see later on that every diffuse measure is good for some g

(see Theorem 15).

For a fixed nonlinearity g, a natural question is to characterize the set of good
measures associated to g. The next result gives a sufficient condition for a measure
to be good:
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Theorem 2 Assume
lim sup

t↑1

{
(1− t)

2−β
β g(t)

}
> 0 (1.4)

for some 0 < β < 2. If µ+� HN−2+β, then µ ∈ G(g).

Here, Hs denotes the s-dimensional Hausdorff measure of a set. By µ+ � Hs,
we mean that µ+(A) = 0 for every Borel set A ⊂ Ω such that Hs(A) = 0. We
point out that the dimension s = N−2+β in the statement of the theorem cannot
be improved. In fact, given β ∈ (0, 2), let

g(t) =
1

(1− t)
2−β

β

− 1 ∀t ∈ [0, 1).

For any α < N−2+β, one can find a compact set Kα ⊂ Ω, with Hα(Kα) ∈ (0,∞),
such that if θ > 0 is sufficiently large, then µ = θHαbKα is not good for g. This
is easy to see if α ≤ N − 2 since in this case any compact set K ⊂ Ω such that
Hα(K) < ∞ satisfies cap (K) = 0 (see e.g. [8]); thus, by Corollary 2 in Section 2, µ

is not good. In the remaining case, namely N−2 < α < N−2+β, the construction
of Kα is rather delicate and will be presented in Section 8 (see Theorem 18).

Even though the existence of solutions of problem (1.1) may fail for some diffuse
measures (by Theorem 1), L1(Ω) is not the largest set where (1.1) has a solution
for any g. For instance, let µ ∈ M(Ω) be such that v ≤ 1 a.e., where v is the
unique solution of {

−∆v = µ in Ω,

v = 0 on ∂Ω.
(1.5)

Then, µ is good for every g (see Proposition 7 in Section 7). The converse is also
true if µ+ is singular with respect to the Lebesgue measure in RN . In fact, we
have the following

Theorem 3 Let µ ∈M(Ω) be such that µ+ is singular. Then, µ ∈ G(g) for every
g if and only if v ≤ 1 a.e., where v is given by (1.5).

The characterization of the set of all measures in M(Ω) which are good for
every g will be given in Section 7.

Our method in the study of problem (1.1) starts with a standard procedure
which consists in approximating g with bounded continuous functions defined on
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the whole R. More precisely, let (gn) be a sequence of bounded functions gn : R →
R which are continuous, nondecreasing and satisfy the following conditions:

0 ≤ g1(t) ≤ g2(t) ≤ . . . ∀t ∈ R, (1.6)

gn(t) → g(t) ∀t < 1 (1.7)
and

gn(t) → +∞ ∀t ≥ 1. (1.8)

Since each gn is bounded, there exists a unique solution un of{
−∆un + gn(un) = µ in Ω,

un = 0 on ∂Ω.
(1.9)

Passing to the limit as n tends to infinity we get the following result:

Proposition 1 Given any µ ∈M(Ω), then un ↓ u∗ in Ω as n ↑ +∞, where u∗ is
the largest subsolution of (1.1). Moreover, we have

‖g(u∗)‖L1 ≤ ‖µ‖M (1.10)

and ∣∣∣∣ ∫
Ω

u∗∆ζ

∣∣∣∣ ≤ 2‖µ‖M‖ζ‖L∞ ∀ζ ∈ C2
0 (Ω). (1.11)

Here, we denote by

C2
0 (Ω) =

{
ζ ∈ C2(Ω) : ζ = 0 on ∂Ω

}
.

In the spirit of [4], we then define the reduced measure µ∗ as

µ∗ = −∆u∗ + g(u∗),

and we study the properties of µ∗. First of all, since u∗ is the largest subsolution
of (1.1), µ∗ is well-defined, independently of the sequence (gn). Note that µ∗ ≤ µ;
moreover, µ is a good measure if and only if µ = µ∗.

We have the following

Theorem 4 For every µ ∈M(Ω), there exist Borel sets Σ1,Σ2 ⊂ Ω such that

Σ1 ⊂ [u∗ = 1], cap (Σ2) = 0, and (µ− µ∗)
(
Ω \ (Σ1 ∪ Σ2)

)
= 0. (1.12)
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Note that, in the previous statement, the set [u∗ = 1] is well-defined up to sets
of zero H1-capacity. Indeed, any function v ∈ L1(Ω) such that ∆v ∈M(Ω) admits
a unique cap-quasicontinuous representative ṽ (see e.g. [1]); henceforth, we shall
always identify v and ṽ. We recall that ṽ is cap-quasicontinuous if, for every ε > 0,
there exists an open set ωε ⊂ Ω such that cap (ωε) < ε and ṽ|Ω\ωε

is continuous.
We remark that, in Theorem 4, both sets Σ1 and Σ2 have zero Lebesgue mea-

sure, so that we deduce the following

Corollary 1 For any measure µ, we have

(µ∗)a = µa,

where “a” denotes the absolutely continuous part with respect to the Lebesgue mea-
sure.

In view of Theorem 4, if µ is diffuse and µ
(
[u∗ = 1]

)
= 0, then it follows that

µ∗ = µ, hence µ is good. We use this idea in order to prove Theorem 2; in this
case the main effort is thus to estimate the (N − 2 + β)-Hausdorff measure of the
set [u∗ = 1]. This kind of estimate, which has an interest in its own, is given
by Theorem 12 in Section 4. In Section 5, we present another approach based
on energy estimates; in this case, the “smallness” of [u∗ = 1] is given in terms of
(Sobolev) capacities.

The next result says that µ∗ is the “best approximation” of µ in the class of
good measures relative to g. More precisely,

Theorem 5 Given µ ∈M(Ω), we have

‖µ− µ∗‖M = min
ν∈G

‖µ− ν‖M. (1.13)

In addition, µ∗ is the unique good measure for which the minimum in (1.13) is
attained.

We recall that when the function g is defined for every t ∈ R, it has been shown
in [4] that µ∗ is the largest good measure ≤ µ. In that case, the characterization
of µ∗ given in Theorem 5 is then a straightforward consequence. We stress the
following important difference in our case, namely there exist measures µ for which
the set

{
λ ∈ G(g) : λ ≤ µ

}
has no largest element (see Proposition 9 in Section 9).

Thus, the fact that µ∗ is the unique measure which achieves the minimum in (1.13)
needs a direct proof, which is more delicate.
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Finally, two further differences with the case studied in [4] are worth being
mentioned. When g(t) is defined for every t ∈ R, the set G of good measures is
convex, and the mapping µ 7→ µ∗ is a contraction. As we shall see in Section 9
below, these properties are no longer true when g satisfies (1.2). In fact, for any
such g we have

(a) G is not convex;

(b) the mapping µ 7→ µ∗ is not a contraction.

We would like to emphasize that throughout this paper we assume that Ω is
a domain of RN , with N ≥ 2. The case of dimension N = 1 is different and
has been studied by Vázquez [20]. We recall that in this case every measure is
diffuse — since cap ({x}) > 0 for every x — and the solutions of (1.1) are Lipschitz
continuous. In [20], Vázquez proves that

(a′) if
∫ 1

0

g = +∞, then every µ ∈M(Ω) is good;

(b′) if
∫ 1

0

g < +∞ and µ ∈M(Ω) satisfies ‖µ+‖M ≤ 2
√

2
(∫ 1

0

g

)1/2

, then µ is

good.

These two results have no counterpart when N ≥ 2. According to Theorem 1
above, for any g there exists a diffuse measure µ ≥ 0 such that µ is not good.
As we shall see in Section 8, such µ can be chosen so that εµ is not good for any
ε > 0.

The plan of this paper is the following:

1. Introduction;

2. Proofs of Proposition 1 and Theorem 4;

3. The reduced measure is the closest good measure;

4. Proof of Theorem 2;

5. Capacitary estimates related to problem (1.1);

6. Every diffuse measure is good for some g;

7. Measures which are good for every g;
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8. How to construct diffuse measures which are not good;

9. Further properties of µ∗ and G;

References.

2 Proofs of Proposition 1 and Theorem 4

We start by recalling that every measure µ can be uniquely decomposed as (see
e.g. [16])

µ = µd + µc,

where µd is diffuse and µc is concentrated on a set of zero capacity. In particular,
µ is diffuse if and only if µc = 0.

A useful characterization of measures which are diffuse is given by the following

Theorem 6 ([3, 17]) Let µ ∈M(Ω). Then, µ is diffuse if and only if

µ ∈ L1(Ω) + H−1(Ω).

The next two results will be often used in this paper:

Theorem 7 ([6]) Let v ∈ L1(Ω) be such that ∆v ∈ M(Ω). Then, ∆v+ ∈
Mloc(Ω) and

(∆v+)d ≥ χ[v≥0](∆v)d in Ω, (2.1)

(−∆v+)c = (−∆v)+c in Ω. (2.2)

Moreover, if v ≥ 0 a.e., then

(∆v)d ≥ 0 in [v = 0]. (2.3)

Theorem 8 ([14]) Let v ∈ L1(Ω) be such that ∆v ∈M(Ω). If v ≥ 0 a.e., then

(∆v)c ≤ 0 in Ω. (2.4)

As a result, we get a necessary condition in order that (1.1) admit a solution.

Corollary 2 If µ is good, then µ+ is diffuse.

7



Proof. Applying Theorem 8 to v = 1− u we get

µc = (−∆u)c = (∆v)c ≤ 0.

Thus, µ+ = (µd)+ = (µ+)d and so µ+ is diffuse.

Let us also recall that, given ν ∈ M(Ω), there exists a unique function v ∈
L1(Ω) which satisfies

−
∫

Ω

v∆ζ =
∫

Ω

ζ dν ∀ζ ∈ C2
0 (Ω).

This function is called Stampacchia’s solution of the problem (see [19]){
−∆v = ν in Ω,

v = 0 on ∂Ω,
(2.5)

and it coincides with the notion of “renormalized solution” introduced in [9]. In
particular, Theorems 2.33 and 10.1 of [9] provide the following useful

Theorem 9 ([9]) Let v be the unique solution of (2.5). Let Φ ∈ W 2,∞(R) be
such that suppΦ′′ is compact. Then, we have

∆Φ(v) = Φ′(v)(∆v)d + Φ′′(v)|∇v|2 − Φ′(+∞)(∆v)−c + Φ′(−∞)(∆v)+c in Ω.

Here, we denote by Φ′(±∞) the limit of Φ′ as |x| → ±∞.

The proof of Proposition 1 follows along the same lines as in [4]. Below, we
present the proof for the convenience of the reader.

Proof of Proposition 1. Let un be the solution of (1.9). Since gn ≤ gn+1, by
a comparison principle (see e.g. [4, Appendix B]) we have un ≥ un+1. Hence, we
define u∗ such that

un ↓ u∗ a.e. in Ω.

Standard estimates imply that

‖gn(un)‖L1 ≤ ‖µ‖M; (2.6)

thus, ∣∣∣∣ ∫
Ω

un∆ζ

∣∣∣∣ = ∣∣∣∣ ∫
Ω

ζ dµ−
∫

Ω

gn(un)ζ
∣∣∣∣ ≤ 2‖µ‖M‖ζ‖L∞ ∀ζ ∈ C2

0 (Ω).

Clearly, u∗ ∈ L1(Ω) and (un) converges strongly to u∗ in L1(Ω). Moreover, it
follows from (2.6) that u∗ ≤ 1 a.e. Then, by using Fatou’s lemma, we deduce from
the previous estimates that
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(i) g(u∗) ∈ L1(Ω) and (1.10) holds;

(ii) ∆u∗ ∈M(Ω) and ‖∆u∗‖M ≤ 2‖µ‖M.

Finally, let v be any subsolution of (1.1), i.e. v ∈ L1(Ω), v ≤ 1 a.e., g(v) ∈ L1(Ω)
and

−
∫

Ω

v∆ζ +
∫

Ω

g(v)ζ ≤
∫

Ω

ζ dµ ∀ζ ∈ C2
0 (Ω), ζ ≥ 0 in Ω.

Since gn ≤ g, we have

−∆v + gn(v) ≤ −∆v + g(v) ≤ µ = −∆un + gn(un) in
[
C2

0 (Ω)
]∗

,

which yields v ≤ un a.e. Passing to the limit, we deduce that v ≤ u∗. This proves
that u∗ is the largest subsolution of (1.1).

Let
µ∗ = −∆u∗ + g(u∗) in D′(Ω). (2.7)

In view of Proposition 1, µ∗ ∈M(Ω). The reduced measure µ∗ is uniquely deter-
mined by the weak∗ limit of gn(un) in M(Ω). Indeed, comparing (2.7) with (1.9),
and using that un → u∗ in L1(Ω), we obtain the following

Lemma 1 Let (un) be the sequence defined in Proposition 1. Then,

gn(un) ∗
⇀ g(u∗) + (µ− µ∗) weak∗ in M(Ω). (2.8)

Note that, since ∆u∗ ∈ M(Ω), the function u∗ admits a unique cap-quasi-
continuous representative, which we are going to use henceforth as our standard
choice. In particular, we remark that the set [u∗ = 1] is uniquely defined up to
sets of zero capacity.

The main ingredient in the proof of Theorem 4 is the next

Proposition 2 Let u∗ be given by Proposition 1 and let µ∗ be the reduced measure
defined in (2.7). Then, we have

0 ≤ µ− µ∗ ≤ (µd)b[u∗=1] +µ+
c in Ω. (2.9)

In particular, 

(µ∗)d = µd in [u∗ < 1],

(µ∗)d ≥ 0 in [u∗ = 1],

(µ∗)c = −(µc)− in Ω,

(µ∗)− = µ− in Ω.

(2.10)
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Proof.
Step 1. Proof of (2.9).

Given δ > 0, let us define the function θδ(s) = min
{
1, 1

δ (s− 1 + 2δ)+
}
. Ap-

plying Theorem 9 with v = un and Φδ(s) =
∫ s

0
θδ(ξ) dξ we get, for any ζ ∈ C2

0 (Ω),
ζ ≥ 0 in Ω,∫

Ω

gn(un) θδ(un) ζ dx ≤
∫

Ω

θδ(un) ζ dµd +
∫

Ω

ζ dµ+
c +

∫
Ω

Φδ(un)∆ζ dx, (2.11)

which yields∫
[un>1−δ]

gn(un) ζ dx ≤
∫

Ω

θδ(un) ζ dµd +
∫

Ω

ζ dµ+
c +

∫
Ω

Φδ(un)∆ζ dx.

Since (u+
n ) is bounded in L∞(Ω) and (∆un) is bounded in M(Ω), the sequence

(θδ(un)) is bounded in H1
0 (Ω), converges weakly to θδ(u∗) in H1

0 (Ω) and weak∗ in
L∞(Ω). Moreover, since µd ∈ L1(Ω) + H−1(Ω) (by Theorem 6), we have

lim
n→+∞

∫
Ω

θδ(un) ζ dµd =
∫

Ω

θδ(u∗) ζ dµd.

Thus,

lim sup
n→+∞

∫
[un>1−δ]

gn(un) ζ dx ≤
∫

Ω

θδ(u∗) ζ dµd +
∫

Ω

ζ dµ+
c +

∫
Ω

Φδ(u∗)∆ζ dx.

Clearly, by dominated convergence we have, for a.e. δ > 0,

lim
n→+∞

∫
[un≤1−δ]

gn(un) ζ dx =
∫

[u∗≤1−δ]

g(u∗) ζ dx.

Therefore,

lim sup
n→+∞

∫
Ω

gn(un) ζ dx ≤

≤
∫

[u∗≤1−δ]

g(u∗) ζ dx +
∫

Ω

θδ(u∗) ζ dµd +
∫

Ω

ζ dµ+
c +

∫
Ω

Φδ(u∗)∆ζ dx,

for a.e. δ > 0. Since u∗ < 1 a.e., we have Φδ(u∗) → 0 a.e. By dominated
convergence, as δ → 0 we obtain

lim sup
n→+∞

∫
Ω

gn(un) ζ dx ≤
∫

Ω

g(u∗) ζ dx +
∫

[u∗=1]

ζ dµd +
∫

Ω

ζ dµ+
c .
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Comparing with (2.8) we get

µ− µ∗ ≤ (µd)b[u∗=1] +µ+
c .

Clearly, by Fatou’s lemma, µ∗ ≤ µ. We thus obtain (2.9).

Step 2. Proof of (2.10).

From (2.9) we immediately deduce that

(µ∗)d = µd in [u∗ < 1],

(µ∗)d ≥ 0 in [u∗ = 1].
(2.12)

Since µd ≥ (µ∗)d, (2.12) yields

(µd)− = (µ∗)−d in Ω. (2.13)

On the other hand, by (2.9),

µc − (µ∗)c ≤ µ+
c in Ω;

that is
(µ∗)c ≥ −µ−c in Ω.

Note that µ∗ ≤ µ and (µ∗)c ≤ 0 (by Corollary 2); thus,

(µ∗)c ≤ −µ−c in Ω.

We deduce that
(µ∗)c = −µ−c in Ω. (2.14)

Assertion (2.10) then follows from (2.12)–(2.14).

As a consequence of the previous result we have the

Proof of Theorem 4. Let Σ1 = [u∗ = 1] and let Σ2 ⊂ Ω be such that cap (Σ2) =
0 and µ+

c (Ω\Σ2) = 0. With this choice, (1.12) follows immediately from (2.9).

As a corollary of (2.10) we also have the

Corollary 3 Let µ ∈M(Ω). If µ ≥ 0, then µ∗ ≥ 0.
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We give an alternative characterization of u∗ in the next

Proposition 3 For every µ ∈ M(Ω), u∗ is the unique solution of the following
problem:

v ∈ W 1,1
0 (Ω), v ≤ 1 a.e., ∆v ∈M(Ω), g(v) ∈ L1(Ω),

(−∆v)d + g(v) = µd in [v < 1],

(−∆v)d ≤ µd in [v = 1],

(−∆v)c = −µ−c in Ω.

(2.15)

Proof. From (2.7) and (2.10), it follows that u∗ is indeed a solution of (2.15). We
now prove that the solution of (2.15) is unique. Assume that v1, v2 both satisfy
(2.15) and consider the function w = (v1 − v2)+. We first observe that ∆w is a
measure and, by (2.3),

(∆w)d ≥ 0 in [v1 ≤ v2]. (2.16)

By (2.15),
(∆v1)d ≥ g(v1)− µd in Ω. (2.17)

On the other hand, since [v1 > v2] ⊂ [v2 < 1], we have

(∆v2)d = g(v2)− µd in [v1 > v2]. (2.18)

Thus, by (2.17)–(2.18),

(∆w)d ≥
[
∆(v1 − v2)

]
d
≥ g(v1)− g(v2) ≥ 0 in [v1 > v2]. (2.19)

We deduce from (2.16) and (2.19) that

(∆w)d ≥ 0 in Ω. (2.20)

Since, by (2.2),
(−∆w)c =

[
−∆(v1 − v2)

]+
c

in Ω,

we get
(−∆w)c =

[
(−∆v1)c + (∆v2)c

]+ = 0 in Ω. (2.21)

From (2.20)–(2.21) we obtain that

∆w ≥ 0 in Ω.

Since w vanishes on ∂Ω, we have v1 ≤ v2 a.e. in Ω (see e.g. [4, Proposition B.1]).
Reversing the roles of the two functions we finally obtain that v1 = v2.
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Until now, we have studied problem (1.1) by approximating the nonlinearity g

using a sequence (gn), with µ fixed. Another possible approach is to fix g and to
approximate µ by ρn ∗ µ, where (ρn) is a sequence of mollifiers. More precisely,
ρn ∗ µ is given by

(ρn ∗ µ)(x) =
∫

Ω

ρn(x− y) dµ(y) ∀x ∈ Ω.

It turns out that the sequences of solutions in both cases converge to the same
limit. More precisely,

Theorem 10 Let µ ∈M(Ω). For each n ≥ 1, let vn be the solution of{
−∆vn + g(vn) = ρn ∗ µ in Ω,

vn = 0 on ∂Ω.
(2.22)

Then, vn → u∗ in L1(Ω), where u∗ is the function given by Proposition 1.

Proof. By standard estimates we have

‖g(vn)‖L1(Ω) ≤ ‖ρn ∗ µ‖M(Ω) ≤ ‖µ‖M(Ω).

Thus, ∆vn is bounded in L1(Ω) and there exist v ∈ L1(Ω) and ν ∈ M(Ω) such
that, for a subsequence (still denoted (vn)), we have

vn → v strongly in L1(Ω) and a.e.

g(vn) ∗
⇀ g(v) + ν weak∗ in M(Ω).

By Fatou’s lemma, we have ν ≥ 0. Moreover, it follows that v satisfies

−∆v + g(v) = µ− ν in Ω. (2.23)

We now follow the outline of the proof of Proposition 2. Take θδ(vn)ζ as a test
function in (2.22), where ζ ∈ C2

0 (Ω). We get the analog of (2.11), namely∫
Ω

g(vn) θδ(vn) ζ dx ≤
∫

Ω

θδ(vn) (ρn∗µd) ζ dx+
∫

Ω

(ρn∗µ+
c ) ζ dx+

∫
Ω

Φδ(vn)∆ζ dx.

As in Step 1 of Proposition 2 we obtain, as n tends to infinity, that

ν ≤ (µd)b[v=1] +µ+
c in Ω. (2.24)

Thanks to (2.23)–(2.24), we obtain that v is a solution of (2.15) (see Step 2 of
Proposition 2). From the uniqueness result of Proposition 3, we conclude that
v = u∗. In particular, the whole sequence (vn) converges to u∗.
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3 The reduced measure is the closest good mea-

sure

We start with the following simple result:

Proposition 4 Let µ ∈M(Ω). If µ ∈ G(g) and ν ≤ µ, then ν ∈ G(g).

Proof. Let (un) be the sequence of functions satisfying (1.9). By standard esti-
mates (see e.g. [4]), we have∫

Ω

∣∣gn(un)− gn(u)
∣∣ ≤ ∫

Ω

∣∣g(u)− gn(u)
∣∣.

Thus, ∫
Ω

∣∣gn(un)− g(u)
∣∣ ≤ 2

∫
Ω

∣∣g(u)− gn(u)
∣∣→ 0 as n → +∞.

We conclude that gn(un) → g(u) in L1(Ω). Let (vn) be the sequence associated
to ν. By comparison, ν ≤ µ implies vn ≤ un a.e.; thus, gn(vn) ≤ gn(un) a.e.
Applying the Dominated convergence theorem, we conclude that gn(vn) → g(v∗)
in L1(Ω). We then deduce that v∗ is the solution of (1.1) with data ν, and so ν is
a good measure.

We also have the following

Lemma 2 For every µ, ν ∈M(Ω), we have∫
Ω

∣∣g(u∗)− g(v∗)
∣∣+ ∥∥(µ− µ∗)− (ν − ν∗)

∥∥
M ≤ ‖µ− ν‖M, (3.1)

where u∗, v∗ are the solutions of (1.1) with respect to µ∗, ν∗, resp.

Proof. Let vn denote the solution of{
−∆vn + gn(vn) = ν in Ω,

vn = 0 on ∂Ω.

By Lemma 1, we get

gn(un)− gn(vn) ∗
⇀ g(u∗)− g(v∗) + (µ− µ∗)− (ν − ν∗) weak∗ in M(Ω).

Since µ − µ∗ and ν − ν∗ are both singular with respect to the Lebesgue measure
(see Corollary 1), we have∥∥g(u∗)−g(v∗)+(µ−µ∗)−(ν−ν∗)

∥∥
M =

∫
Ω

∣∣g(u∗)−g(v∗)
∣∣+∥∥(µ−µ∗)−(ν−ν∗)

∥∥
M.
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On the other hand,∥∥gn(un)− gn(vn)
∥∥

L1 ≤ ‖µ− ν‖M ∀n ≥ 1.

Thus,∫
Ω

∣∣g(u∗)− g(v∗)
∣∣+ ∥∥(µ− µ∗)− (ν − ν∗)

∥∥
M ≤ lim inf

n→+∞

∥∥gn(un)− gn(vn)
∥∥

L1

≤ ‖µ− ν‖M,

which gives (3.1).

Our next result is the following

Theorem 11 For every µ, ν ∈M(Ω), we have

‖µ∗ − ν∗‖M ≤ 2‖µ− ν‖M. (3.2)

Proof. Let µ, ν ∈M(Ω). By Lemma 2, we have∥∥(µ− µ∗)− (ν − ν∗)
∥∥
M ≤ ‖µ− ν‖M.

Applying the triangle inequality, we obtain (3.2).

We now present the

Proof of Theorem 5. We shall split the proof into two steps.

Step 1. Proof of (1.13).

Given ν ∈ G, we have ν = ν∗. It then follows from Lemma 2 that∫
Ω

∣∣g(u∗)− g(v)
∣∣+ ‖µ− µ∗‖M ≤ ‖µ− ν‖M, (3.3)

where v is the solution of (1.1) with measure ν. In particular,

‖µ− µ∗‖M ≤ ‖µ− ν‖M,

which gives (1.13).

Step 2. µ∗ is the unique good measure which achieves the minimum in (1.13).

We now assume that ν ∈ G satisfies

‖µ− ν‖M = ‖µ− µ∗‖M. (3.4)
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By (3.3), we have ∫
Ω

∣∣g(u∗)− g(v)
∣∣ = 0.

Thus,
g(u∗) = g(v) a.e. (3.5)

We next observe that ν ≤ µ. In fact, note that

inf {µ, ν} = µ− (µ− ν)+. (3.6)

Moreover, due to Proposition 4, inf {µ, ν} ≤ ν implies that inf {µ, ν} is also a good
measure. It then follows from (3.6) and the minimality of ν that

‖µ− ν‖M ≤
∥∥µ− inf {µ, ν}

∥∥
M =

∥∥(µ− ν)+
∥∥
M .

Therefore, (µ − ν)− = 0; in other words, ν ≤ µ. In particular, v is a subsolution
of (1.1), so that v ≤ u∗ a.e. by Proposition 1.
We now split the proof into two cases:

Case 1. cap
(
[u∗ = 1]

)
= 0.

By Theorem 4, this implies (µ− µ∗)d = 0. Thus,

νd ≤ µd = (µ∗)d.

On the other hand, since v ≤ u∗ a.e., it follows from Theorem 8 that

νc = (−∆v)c ≤ (−∆u∗)c = (µ∗)c.

We conclude that
ν ≤ µ∗ ≤ µ.

By (3.4), we must have ν = µ∗.

Case 2. cap
(
[u∗ = 1]

)
> 0.

We first show that u∗ = v on a set of positive Lebesgue measure. By contra-
diction, suppose that v < u∗ a.e. Let α0, β0 ∈ [0, 1] be such that α0 < β0 and g

is increasing on [α0, β0]. Since (3.5) holds and v < u∗ a.e., the set
[
α0 < u∗ < β0

]
has zero Lebesgue measure. Let

w = min
{
β0,max {α0, u

∗}
}
− α0.

Thus, w ∈ H1
0 (Ω) and w achieves only the values 0 and β0 − α0. We conclude

that w = 0 a.e. In other words, u∗ ≤ α0 a.e. Since cap
(
[u∗ = 1]

)
> 0, we get a

contradiction.
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We now proceed with the proof of Case 2. Given ε > 0, let α, β ∈ (1 − ε, 1),
α < β, be such that g is increasing in [α, β]. Let Φε : R → R be a smooth function
such that Φε(t) = t if t ≤ α, Φε(t) = 1 if t ≥ β and Φ′(t) ≥ 0, ∀t ∈ R. We now
establish the following

Claim. For every ε > 0, we have

−∆
[
Φε(u∗)− Φε(v)

]
≥ 0 in D′(Ω). (3.7)

In fact, by Theorem 9,[
∆Φε(u∗)

]
d

= Φ′ε(u
∗)(∆u∗)d + Φ′′ε (u∗)|∇u∗|2

= Φ′ε(u
∗)
[
g(u∗)− (µ∗)d

]
+ Φ′′ε (u∗)|∇u∗|2 (3.8)

and, similarly,

[
∆Φε(v)

]
d

= Φ′ε(v)
[
g(v)− νd

]
+ Φ′′ε (v)|∇v|2. (3.9)

By construction of Φε, we have

Φ′ε(u
∗) = Φ′ε(v) a.e. (3.10)

This is clear if v ≤ u∗ ≤ α or β ≤ v ≤ u∗. Finally, if α < u∗ and v < β, then
u∗ = v a.e. since g is increasing in [α, β] and g(u∗) = g(v) a.e. We conclude that
(3.10) holds.
By (3.5) and (3.10) we then have

Φ′ε(u
∗)g(u∗)− Φ′ε(v)g(v) = 0 a.e. (3.11)

Note that
Φ′′ε (u∗) = Φ′′ε (v) a.e.

In addition, on the set where Φ′′ε (u∗) 6= 0, we have u∗ = v a.e., so that

∇u∗ = ∇v a.e. in
[
Φ′′ε (u∗) 6= 0

]
.

Thus,
Φ′′ε (u∗)|∇u∗|2 − Φ′′ε (v)|∇v|2 = 0 a.e. (3.12)

Finally, since Φ′ε(1) = 0 and (µ∗)d = µd on the set [u∗ < 1] (by Theorem 4), we
have

Φ′ε(u
∗)(µ∗)d = Φ′ε(u

∗)µd in Ω.
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Moreover, Φ′ε ≥ 0 and ν ≤ µ imply

Φ′ε(v)νd ≤ Φ′ε(v)µd in Ω.

Therefore,

Φ′ε(u
∗)(µ∗)d − Φ′ε(v)νd ≥

[
Φ′ε(u

∗)− Φ′ε(v)
]
µd = 0 in Ω. (3.13)

Subtracting (3.9) from (3.8), and then applying (3.11)–(3.13), we conclude that

−
(
∆
[
Φε(u∗)− Φε(v)

])
d
≥ 0 in Ω. (3.14)

On the other hand, since u∗ ≥ v a.e., we have Φε(u∗) − Φε(v) ≥ 0 a.e. It then
follows from Theorem 8 that

−
(
∆
[
Φε(u∗)− Φε(v)

])
c
≥ 0 in Ω. (3.15)

Combining (3.14) and (3.15), we obtain (3.7). This concludes the proof of the
claim.

According to the previous claim, the function Φε(u∗)−Φε(v) is superharmonic.
Moreover, since it is nonnegative and Φε(u∗) = Φε(v) a.e. on a set of positive
(Lebesgue) measure, we deduce from the strong maximum principle (see [1]; see
also [5]) that

Φε(u∗) = Φε(v) a.e. in Ω.

Since this holds true for every ε > 0, as we let ε ↓ 0 we conclude that u∗ = v a.e.
Thus, µ∗ = ν. The proof of Theorem 5 is complete.

4 Proof of Theorem 2

In order to establish Theorem 2, we shall assume the next result which will be
proved afterwards:

Theorem 12 Let v ∈ L1(Ω), v ≤ 1 a.e., be such that ∆v ∈ M(Ω). Assume g

satisfies (1.4) for some 0 < β < 2. If g(v) ∈ L1(Ω), then

HN−2+β
(
[v = 1]

)
= 0. (4.1)
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Proof of Theorem 2. Clearly, it suffices to establish the theorem for µ ≥ 0. Let
u∗ be the function given by Proposition 1. Since ∆u∗ ∈M(Ω) and g(u∗) ∈ L1(Ω),
it follows from Theorem 12 that

HN−2+β
(
[u∗= 1]

)
= 0.

By assumption, we have µ � HN−2+β . Thus, µ is diffuse and

µ
(
[u∗= 1]

)
= 0.

We deduce from Theorem 4 that µ∗ = µ. In other words, µ ∈ G. This concludes
the proof of Theorem 2.

We shall split the proof of Theorem 12 into two cases, whether 0 < β < 1 or
1 ≤ β < 2. We first consider the case where 0 < β < 1. An important ingredient
is the following

Lemma 3 Let ν ∈M(Ω) and let v be the solution of{
−∆v = ν in Ω,

v = 0 on ∂Ω.
(4.2)

Given 0 < β < 1 and k ≥ 1, there exists a Borel set Ak ⊂ Ω such that∣∣v(x)− v(y)
∣∣ ≤ Ck |x− y|β ∀x, y ∈ Ω \Ak (4.3)

and
HN−2+β
∞ (Ak) ≤ C

k
‖ν‖M, (4.4)

for some constant C > 0 independent of k.

Given α ≥ 0, the Hausdorff content Hα
∞ of a Borel set A ⊂ RN is defined as

Hα
∞(A) = inf

{∑
i

rα
i : A ⊂

⋃
i

Bri(xi)
}

,

where the infimum is taken over all coverings of A with balls Bri(xi) of radii ri.
Note that we make no restriction on the size of such balls. In particular, for every
bounded set A we have Hα

∞(A) < ∞. It is easy to see that

Hα
∞(A) = 0 if and only if Hα(A) = 0. (4.5)
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Proof of Lemma 3. By linearity, it suffices to establish the lemma for ν ≥ 0.
Let

Ak =
{

x ∈ Ω : ν
(
Br(x)

)
≥ k rN−2+β for some r > 0

}
. (4.6)

(Here, ν is viewed as a measure in RN such that ν(RN \ Ω) = 0).
We claim that (4.3) and (4.4) hold for Ak. We begin by establishing (4.4). For
each x ∈ Ak, let rx > 0 be such that

ν
(
Brx

(x)
)
≥ k rN−2+β

x .

Clearly,
(
B5rx(x)

)
x∈Ak

is a covering of Ak. Applying Vitali’s covering lemma, we
may extract a subcovering

(
B5ri(xi)

)
of Ak such that the balls Bri(xi) are all

disjoint. We then have

HN−2+β
∞ (Ak) ≤

∑
i

(5ri)N−2+β

= C
∑

i

rN−2+β
i

≤ C

k

∑
i

ν
(
Bri(xi)

)
=

C

k
ν
(⋃

i

Bri(xi)
)
≤ C

k
‖ν‖M.

This is precisely (4.4). We now turn to the proof of (4.3). We shall closely follow
the argument presented in [8]. For simplicity, we assume N ≥ 3; the case N = 2
follows along the same lines.
Clearly, it suffices to prove (4.3) for the function w defined as

w(x) =
1

N(N − 2)ωN

∫
Ω

dν(z)
|z − x|N−2

∀x ∈ Ω,

where ωN = |B1| is the measure of the unit ball in RN . It is not difficult to see
that w can be rewritten as (see e.g. [18, Lemma 2])

w(x) =
1

NωN

∫ ∞

0

ν
(
Bs(x)

)
sN−1

ds.

Given x, y ∈ Ω \Ak, let δ = |x− y|. We then write

w(x)− w(y) =
1

NωN

∫ ∞

0

[
ν
(
Bs(x)

)
− ν
(
Bs(y)

)] ds

sN−1

=
1

NωN

{∫ 2δ

0

+
∫ ∞

2δ

}
.

(4.7)
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Since x, y 6∈ Ak,

ν
(
Bs(x)

)
, ν
(
Bs(y)

)
≤ k sN−2+β ∀s > 0.

We then have ∫ 2δ

0

≤
∫ 2δ

0

ν
(
Bs(x)

) ds

sN−1
≤ k

∫ 2δ

0

ds

s1−β
= Ck δβ . (4.8)

On the other hand, for s ≥ 2δ, we have Bs−δ(x) ⊂ Bs(y); thus,∫ ∞

2δ

≤
∫ ∞

2δ

[
ν
(
Bs(x)

)
− ν
(
Bs−δ(x)

)] ds

sN−1

≤
∫ ∞

δ

ν
(
Bs(x)

){ 1
sN−1

− 1
(s + δ)N−1

}
ds.

Since
1

sN−1
− 1

(s + δ)N−1
≤ C

δ

sN
∀s ≥ δ,

we then get ∫ ∞

2δ

≤ Cδ

∫ ∞

δ

ν
(
Bs(x)

) ds

sN
≤ Ck δ

∫ ∞

δ

ds

s2−β
≤ Ck δβ . (4.9)

It follows from (4.7)–(4.9) that

w(x)− w(y) ≤ Ck δβ = Ck |x− y|β .

Switching the roles between x and y we conclude that w satisfies (4.3). Since v−w

is a harmonic function, v also verifies (4.3). The proof of the lemma is complete.

Given a Borel set A ⊂ RN , let

Θ∗(x,A) = lim sup
t→0

∣∣A ∩Bt(x)
∣∣∣∣Bt(x)

∣∣ ,

where | · | denotes the Lebesgue measure in RN . This function gives the density of
points of A which are close to x. Clearly, 0 ≤ Θ∗(x,A) ≤ 1.

Another ingredient in the proof of Theorem 12 is the next

Lemma 4 Given a Borel set A ⊂ RN , let

F =
{

x ∈ RN : Θ∗(x,A) ≥ 1
4

}
. (4.10)
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Then, for every 0 ≤ α ≤ N we have

Hα
∞(F ) ≤ CHα

∞(A), (4.11)

for some C > 0 depending on N and α.

Proof. If α = 0, then the conclusion is clear. We now assume α > 0. Given ε > 0,
let
(
Bri(xi)

)
be a covering of A such that∑

i

rα
i ≤ Hα

∞(A) + ε. (4.12)

Let
F1 = F ∩

[⋃
i

B2ri(xi)
]

and F2 = F \
[⋃

i

B2ri(xi)
]
.

Clearly,
Hα
∞(F1) ≤

∑
i

(2ri)α ≤ 2α
[
Hα
∞(A) + ε

]
. (4.13)

We now prove a similar estimate for Hα
∞(F2). Since (4.10) holds, for each y ∈ F2

one can find sy > 0 sufficiently small so that∣∣A ∩Bsy/2(y)
∣∣ ≥ 1

8

∣∣Bsy/2(y)
∣∣. (4.14)

Applying Vitali’s covering lemma to
(
B5sy (y)

)
y∈F2

, we may extract a subcovering(
B5sj (yj)

)
of F2 such that the balls Bsj (yj) are disjoint. For each j, we define

Ij =
{
i : xi ∈ Bsj (yj)

}
.

In particular, the sets Ij are disjoint. We claim that

sα
j ≤ CN,α

∑
i∈Ij

rα
i ∀j ≥ 1. (4.15)

In order to establish (4.15), we first observe that

A ∩Bsj/2(yj) ⊂
⋃
i∈Ij

Bri(xi). (4.16)

In fact, given z ∈ A ∩ Bsj/2(yj), let i be such that z ∈ Bri(xi). We claim that
i ∈ Ij . Assume by contradiction that i 6∈ Ij , i.e. suppose xi 6∈ Bsj (yj). Since

sj ≤ d(xi, yj) ≤ d(xi, z) + d(z, y) < ri +
sj

2
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we deduce that sj

2 < ri and then d(xi, yj) < 2ri. In other words, yj ∈ B2ri(xi),
which contradicts the definition of F2, since yj ∈ F2. This establishes (4.16).
Applying (4.14) and (4.16), we have(sj

2

)N

=
1

ωN

∣∣Bsj/2(yj)
∣∣ ≤ 8

ωN

∣∣A ∩Bsj/2(yj)
∣∣ ≤ 8

ωN

∑
i∈Ij

∣∣Bri(xi)
∣∣ = 8

∑
i∈Ij

rN
i .

Since 0 < α ≤ N , we conclude that (4.15) holds. It now follows from (4.15) that

Hα
∞(F2) ≤

∞∑
j=1

(5sj)α ≤ 5αCN,α

∞∑
j=1

∑
i∈Ij

rα
i ≤ C

∑
i

rα
i ≤ C

[
Hα
∞(A) + ε

]
. (4.17)

Combining (4.13) and (4.17), we obtain

Hα
∞(F ) ≤ C

[
Hα
∞(A) + ε

]
.

Since ε > 0 was arbitrary, (4.11) follows.

We now present the

Proof of Theorem 12 when 0 < β < 1. Without loss of generality, we may
assume that v = 0 on ∂Ω; the general case follows by taking vϕ, where ϕ is any
function such that ϕ ∈ C∞

c (Ω) and 0 ≤ ϕ ≤ 1 in Ω.
Fix k ≥ 1 and let Ak be the set given by Lemma 3. We have

[v = 1] ⊂ Ak ∪ Ek,

where Ek = [v = 1] \Ak. We further decompose Ek as

Ek = Ek,1 ∪ Ek,2,

where

Ek,1 =
{

x ∈ Ek : Θ∗(x,Ak) ≥ 1
4

}
and Ek,2 =

{
x ∈ Ek : Θ∗(x,Ak) <

1
4

}
.

By Lemma 4, we have

HN−2+β
∞ (Ek,1) ≤ CHN−2+β

∞ (Ak). (4.18)

We now claim that

lim sup
t→0

1
tN−2+β

∫
Bt(x)

g(v) > 0 ∀x ∈ Ek,2. (4.19)
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In fact, given x ∈ Ek,2, let t0 > 0 be sufficiently small so that∣∣Ak ∩Bt(x)
∣∣ ≤ 1

4

∣∣Bt(x)
∣∣ ∀t ∈ (0, t0). (4.20)

Recall that x ∈ Ω \Ak and v(x) = 1. It follows from (4.3) that

v(y) ≥ 1− Ck |x− y|β ≥ 1− Ck tβ ∀y ∈ Bt(x) \Ak.

Since (1.4) holds, there exist C̃k > 0 and a sequence tn ↓ 0 such that

g(1− Ck tβn) ≥ C̃k

t2−β
n

∀n ≥ 1.

Thus, for every n ≥ 1 sufficiently large, we get

g
(
v(y)

)
≥ C̃k

t2−β
n

∀y ∈ Btn(x) \Ak.

Since (4.20) holds, we obtain∫
Btn(x)

g(v) ≥
∫

Btn(x)\Ak

g(v) ≥ 3
4

∣∣Btn(x)
∣∣ C̃k

t2−β
n

= Ck tN−2+β
n ,

which gives (4.19). It now follows from (4.19) that HN−2+β(Ek,2) = 0 (see e.g.
[15, p.77]); equivalently, we have

HN−2+β
∞ (Ek,2) = 0. (4.21)

We now deduce from (4.18) and (4.21) that

HN−2+β
∞ (Ek) ≤ CHN−2+β

∞ (Ak).

Therefore,

HN−2+β
∞

(
[v = 1]

)
≤ CHN−2+β

∞ (Ak) ≤ C

k
‖ν‖M.

Since this estimate holds true for every k ≥ 1, as we let k → +∞ we obtain

HN−2+β
∞

(
[v = 1]

)
= 0.

In view of (4.5), the result follows.

The proof of Theorem 12 in the case 1 ≤ β < 2 follows the same strategy,
although it is more technical. For this reason we shall indicate the main steps in
the proof. The counterpart of Lemma 3 is given by the following
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Lemma 5 Let ν ∈M(Ω) and let v be the solution of (4.2). Given 1 ≤ β < 2 and
k ≥ 1, there exists a Borel set Ak ⊂ Ω such that∣∣∣2 v(x+y

2 )− v(x)− v(y)
∣∣∣ ≤ Ck |x− y|β (4.22)

for every x, y ∈ Ω\Ak such that x+y
2 ∈ Ω \Ak; moreover,

HN−2+β
∞ (Ak) ≤ C

k
‖ν‖M, (4.23)

for some constant C > 0 independent of k.

Proof. It suffices to consider the case where ν ≥ 0. Let Ak be given by (4.6).
Proceeding as in the proof of Lemma 3, we obtain (4.23). We assume N ≥ 3. We
now show that w defined by

w(x) = aN

∫
Ω

dν(z)
|z − x|N−2

∀x ∈ Ω,

where aN = 1
N(N−2)ωN

, satisfies property (4.22). Let x, y ∈ Ω\Ak be such that
x+y

2 ∈ Ω \Ak. Set δ = |x− y|. We have∣∣∣2 w(x+y
2 )− w(x)− w(y)

∣∣∣ ≤
≤ aN

∫
Ω

∣∣∣∣ 2∣∣z − x+y
2

∣∣N−2
− 1
|z − x|N−2

− 1
|z − y|N−2

∣∣∣∣ dµ(z).

We split this integral into two parts:

1
aN

∣∣∣2 w(x+y
2 )− w(x)− w(y)

∣∣∣ ≤ ∫
|z− x+y

2 |<2δ

+
∫

|z− x+y
2 |≥2δ

.

Note that B2δ

(
x+y

2

)
⊂ B 5δ

2
(x) ∩B 5δ

2
(y). Thus,∫

|z− x+y
2 |<2δ

≤ 2
∫

B2δ( x+y
2 )

dν(z)
|z − x+y

2 |N−2
+

∫
B5δ

2
(x)

dν(z)
|z − x|N−2

+
∫

B5δ
2

(y)

dν(z)
|z − y|N−2

≤ C

∫ 5δ
2

0

[
2ν
(
Bs(x+y

2 )
)

+ ν
(
Bs(x)

)
+ ν
(
Bs(y)

)] ds

sN−1

≤ Ck δβ .

On the other hand, we have∣∣∣∣ 2∣∣z − x+y
2

∣∣N−2
− 1
|z − x|N−2

− 1
|z − y|N−2

∣∣∣∣ ≤ C
δ2

|z − x+y
2 |N
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if
∣∣z − x+y

2

∣∣ ≥ 2δ. Therefore,∫
|z− x+y

2 |≥2δ

≤ Cδ2

∫
|z− x+y

2 |≥2δ

dν(z)
|z − x+y

2 |N

≤ CNδ2

∫ ∞

2δ

ν
(
Bs(x+y

2 )
) ds

sN+1

≤ CNk δ2

∫ ∞

2δ

ds

s3−β
≤ Ck δβ .

As in the proof of Lemma 3, we conclude that (4.22) holds.

We now present the

Proof of Theorem 12 completed. Assume 1 ≤ β < 2. Let Ek,1 and Ek,2 be
defined as in the case 0 < β < 1; in particular,

[v = 1] ⊂ Ak ∪ Ek,1 ∪ Ek,2.

By Lemma 4 we have

HN−2+β
∞ (Ek,1) ≤ CHN−2+β

∞ (Ak).

In order to establish the theorem, we are left to prove (4.21). Given x ∈ E2,k, let
Rx denote the reflexion with respect to x; namely,

Rx(y) = 2x− y ∀y ∈ RN .

We claim that

v(y) ≥ 1− Ck tβ ∀y ∈ Bt(x) \ (Ak ∪RxAk). (4.24)

In fact, for every y ∈ Bt(x)\(Ak∪RxAk), we have Rx(y) ∈ Ω\Ak. Since x ∈ Ω\Ak,
v(x) = 1 and v ≤ 1, we get

v(y) ≥ v(y) + v(Rxy)− 1 ≥ 1− Ck |x− y|β ≥ 1− Ck tβ ,

which is precisely (4.24). We now take t0 > 0 sufficiently small so that∣∣Ak ∩Bt(x)
∣∣ ≤ 1

4

∣∣Bt(x)
∣∣ ∀t ∈ (0, t0).

Therefore, ∣∣(Ak ∪RxAk) ∩Bt(x)
∣∣ ≤ 1

2

∣∣Bt(x)
∣∣ ∀t ∈ (0, t0).
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We can now proceed as in the case 0 < β < 1 to conclude that

lim sup
t→0

1
tN−2+β

∫
Bt(x)

g(v) > 0 ∀x ∈ Ek,2.

Thus,
HN−2+β
∞ (Ek,2) = 0.

As before, we deduce that (4.1) holds. The proof of Theorem 12 is complete.

5 Capacitary estimates related to problem (1.1)

In this section we prove some estimates on the capacity of the set [u∗ = 1]. They
should be compared with the result of Theorem 12 concerning the Hausdorff mea-
sure of this set. We assume throughout this section that g satisfies a slightly
stronger hypothesis than (1.4), namely

lim inf
t↑1

{
(1− t)

2−β
β g(t)

}
> 0. (5.1)

Given p > 1 and a Borel set E ⊂ Ω, we shall denote by capp (E) the capacity of
E associated to W 1,p

0 (Ω). Note that cap2 coincides with the H1-capacity, denoted
by cap elsewhere in this paper.

Our goal in this section is to establish the

Theorem 13 Let v ∈ L1(Ω), v ≤ 1 a.e., be such that ∆v ∈ M(Ω). Assume that
g satisfies (5.1) for some β ∈ (0, 1]. If g(v) ∈ L1(Ω) then

cap2−β

(
[v = 1]

)
= 0 (5.2)

Note that β ∈ (0, 1] implies 2− β ≥ 1, so that cap2−β is well-defined.

Proof.
Step 1. Proof of (5.2) if v ∈ W 1,1

0 (Ω).

Set η(s) = s+

1−s and let Tk(s) = min {s, k}. Since v ∈ W 1,1
0 (Ω), for every k ≥ 1

we have ∫
Ω

∇v · ∇Tk

(
η(v)

)
dx ≤ k ‖∆v‖M . (5.3)

Indeed, inequality (5.3) (which formally amounts to multiplying ∆v by Tk

(
η(v)

)
)

can be obtained by approximating v (e.g. through convolution) with smooth func-
tions vn such that ‖∆vn‖M ≤ ‖∆v‖M.
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We can rewrite (5.3) as ∫
[η(v)<k]

|∇v+|2

(1− v)2
dx ≤ k ‖∆v‖M. (5.4)

On the other hand, applying Hölder’s inequality with exponents 2
2−β and 2

β , we
have ∫

[η(v)<k]

|∇v+|2−β

(1− v)2(2−β)
dx ≤

≤

( ∫
[η(v)<k]

|∇v+|2

(1− v)2
dx

)1− β
2
( ∫

[η(v)<k]

1

(1− v)
2(2−β)

β

dx

) β
2

. (5.5)

It then follows from (5.4)–(5.5) and the definition of η that∫
[η(v)<k]

|∇v+|2−β

(1− v)2(2−β)
dx ≤ c

(
k ‖∆v‖M

)1− β
2

( ∫
[η(v)<k]

1+
η(v)

2−β
β

(1− v)
2−β

β

dx

) β
2

. (5.6)

By assumption (5.1) there exists a constant c0 > 0 such that

g(t)(1− t)
2−β

β ≥ c0 ∀t ∈ ( 1
2 , 1).

From (5.6), we obtain∫
[η(v)<k]

|∇v+|2−β

(1− v)2(2−β)
dx ≤

≤ c
(
k ‖∆v‖M

)1− β
2

( ∫
[η(v)<k]

[
1 + g(v) η(v)

2−β
β

]
dx

) β
2

≤ ck2−β‖∆v‖1−
β
2

M

(∫
Ω

1 + g(v) Tk(η(v))
2−β

β

k
2−β

β

dx

) β
2

.

(5.7)

Since g(v) ∈ L1(Ω) (which also implies that η(v) is finite a.e.) we have

lim
k→+∞

∫
Ω

1 + g(v) Tk(η(v))
2−β

β

k
2−β

β

dx = 0.

We then deduce from (5.7) that

lim
k→+∞

∫
Ω

∣∣∣∣∇Tk(η(v))
k

∣∣∣∣2−β

dx = 0. (5.8)
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Note that
Tk(η(v))

k
≥ 1 in [η(v) ≥ k].

Therefore,

cap2−β

(
[η(v) ≥ k]

)
≤
∫

Ω

∣∣∣∣∇Tk(η(v))
k

∣∣∣∣2−β

dx
k→+∞−−−−−→ 0.

Since

[v = 1] = [η(v) = +∞] =
∞⋂

k=1

[η(v) ≥ k],

we conclude that
cap2−β

(
[v = 1]

)
= 0 .

Step 2. Proof of Theorem 13 completed.

We replace v with vϕ where ϕ ∈ C∞
c (Ω) is a cut-off function, i.e. 0 ≤ ϕ ≤ 1 in

Ω and ϕ = 1 on a compact set K ⊂ Ω. Since v and ∇v ∈ L1
loc(Ω), it follows that

∆(vϕ) ∈ M(Ω). Moreover g(vϕ) ≤ g(v) a.e., hence g(vϕ) ∈ L1(Ω). We can then
apply the previous step to vϕ to deduce that cap2−β

(
[vϕ = 1]

)
= 0. Thus,

cap2−β

(
[v = 1] ∩K

)
= 0 for every compact K ⊂ Ω.

By subadditivity of cap2−β , we conclude that

cap2−β

(
[v = 1]

)
= 0.

It is well-known (see e.g. [15]) that cap1 (E) = 0 if and only if HN−1(E) = 0.
Thus, in the case β = 1, we recover Theorem 12 but with a totally different proof.
On the other hand, for any p > 1, capp (E) = 0 implies Hs(E) = 0 for any
s > N − p (but the converse is not true). Thus, for β ∈ (0, 1), Theorem 13 only
gives Hs

(
[v = 1]

)
= 0 for any s > N − 2 + β, which is not optimal in view of

Theorem 12.
However, it should be noticed that the proof of Theorem 13 only relies on

energy estimates, which remain true for more general operators, for instance in
the inhomogeneous case. Namely, assume A(x) =

(
ai,j(x)

)
is an N × N -matrix

with bounded measurable coefficients satisfying

λ1|ξ|2 ≤ A(x)ξ · ξ ≤ λ2|ξ|2 ∀ξ ∈ RN , for a.e. x ∈ Ω,
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where 0 < λ1 ≤ λ2. Proceeding as in the proof of Theorem 13, one deduces the
following result:

Theorem 14 Let v ∈ L1(Ω) be such that div (A(x)∇v) is a bounded measure “in
the sense of Stampacchia”, i.e. assume there exists µ ∈M(Ω) such that

−
∫

Ω

v div (A∗(x)∇ζ) dx =
∫

Ω

ζ dµ (5.9)

for every ζ ∈ C0(Ω) ∩H1
0 such that div (A∗(x)∇ζ) ∈ L∞(Ω). Assume g satisfies

(5.1) for some β ∈ (0, 1]. If g(v) ∈ L1(Ω), then we have

cap2−β

(
[v = 1]

)
= 0.

Proof. Let µn be a suitable smooth convolution of µ, and consider the solutions
vn of −div(A(x)∇vn) = µn in Ω,

vn ∈ H1
0 (Ω).

Multiplying this equation by Tk

(
η(vn)

)
(see the definition of η(s) in Step 1 of

Theorem 13), we get

λ1

∫
[η(vn)<k]

|∇v+
n |2

(1− vn)2
dx ≤

∫
Ω

(
A(x)∇vn

)
· ∇Tk

(
η(vn)

)
dx ≤ k ‖µn‖M ≤ k ‖µ‖M .

Since the solutions in the sense of Stampacchia are unique and stable, vn converges
to v in L1(Ω). Therefore, as n → +∞, we obtain

λ1

∫
[η(v)<k]

|∇v+|2

(1− v)2
dx ≤ k ‖µ‖M .

Henceforth, one can follow the proof of Step 1 of Theorem 13 in order to conclude.

In particular, if v satisfies the assumptions of Theorem 14, then

Hs
(
[v = 1]

)
= 0 for any s > N − 2 + β, if β ∈ (0, 1). (5.10)

Note that
HN−1

(
[v = 1]

)
= 0 if β = 1. (5.11)

It is an open problem whether (5.10) holds with s = N − 2 + β, where β ∈ (0, 2),
β 6= 1. Note that, in the inhomogeneous case, it is not clear how to implement an
approach based on Hölder continuity, as used in the proof of Theorem 12.

30



Remark 1 In the same spirit, the proof of Theorem 13 extends to nonlinear op-
erators, as e.g. the p-Laplacian, for functions v which satisfy −div(|∇v|p−2∇v) ∈
M(Ω) “in the renormalized sense” (see [9] for the precise definition). In this case,
one can prove with the same method that if (5.1) holds true for some β ∈ (0, 1]
and g(v) ∈ L1(Ω), then

capq

(
[v = 1]

)
= 0 with q =

(2− β)p
2(1− β) + βp

.

Note that if β = 1, then it still holds that

cap1

(
[v = 1]

)
= 0 = HN−1

(
[v = 1]

)
.

6 Every diffuse measure is good for some g

Our goal in this section is to establish the following

Theorem 15 Let µ ∈ M(Ω) be such that µ+ is diffuse. Then, there exists some
g such that µ ∈ G(g).

We shall start with the

Proposition 5 Let g1, g2 be such that g1 ≤ g2. Then, G(g1) ⊂ G(g2).

Proof. Given µ ∈ G(g1), let u be the solution of{
−∆u + g1(u) = µ in Ω,

u = 0 on ∂Ω.

Let µ∗ be the reduced measure relative to g2 and denote by u∗ the solution of{
−∆u∗ + g2(u∗) = µ∗ in Ω,

u∗ = 0 on ∂Ω.

Since µ∗ ≤ µ and g2 ≥ g1, we have u∗ ≤ u (see [4, Corollary B.2]). In other words,
u− u∗ ≥ 0 in Ω and u− u∗ = 0 on the set [u∗= 1]. Thus, by (2.3) we have

(µ∗ − µ)d =
[
∆(u− u∗)

]
d
≥ 0 in [u∗= 1].

This implies (µ∗)d = µd in [u∗= 1]. On the other hand, by Theorem 4,

(µ∗)d = µd in [u∗< 1].
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We conclude that
(µ∗)d = µd. (6.1)

Finally, since µ is a good measure relative to g1, we have µc ≤ 0. Thus, by (2.10),

(µ∗)c = −(µc)− = µc. (6.2)

It follows from (6.1) and (6.2) that µ = µ∗ ∈ G(g2). This concludes the proof of
the proposition.

Related to the previous result, we point out the following

Open Problem. Assume g1 ≤ g2 and G(g1) = G(g2). Is it true that g1 = g2 ?

We now establish the

Lemma 6 Let µ ∈ M(Ω) be a nonnegative diffuse measure. Given ε > 0, s0 ∈
(0, 1), and a continuous nondecreasing function g : (−∞, 1) → R satisfying (1.2)–
(1.3), then there exists g̃ : (−∞, 1) → R with

g̃ ≥ g in (−∞, 1), g̃ = g in (−∞, s0], (6.3)

and such that
µ
(
[v = 1]

)
< ε, (6.4)

where v is the largest subsolution of the problem{
−∆u + g̃(u) = µ in Ω,

u = 0 on ∂Ω.

Proof. Fix t0 ∈ (s0, 1). Let gk : (−∞, 1) → R be any increasing sequence of
continuous, nondecreasing functions, such that

gk(t) = g(t) if t ≤ s0,

gk(t) ≥ k if t ≥ t0,

gk(t) ≥ g(t) ∀t ∈ (−∞, 1).

For each k ≥ 1, let µk denote the reduced measure of µ relative to gk. We shall
denote by vk the corresponding solution. In particular, by Proposition 1,∫

Ω

|∆vk| ≤ 2‖µk‖M ≤ 2‖µ‖M (6.5)

32



and ∫
Ω

gk(vk) ≤ ‖µ‖M. (6.6)

In view of (6.6), we have∣∣[vk ≥ t0]
∣∣ ≤ 1

k

∫
Ω

gk(vk) ≤ 1
k
‖µ‖M → 0 (6.7)

as k → +∞. On the other hand, the sequence (vk) is non-increasing; thus, there
exists v ∈ L1(Ω) such that vk ↓ v in L1(Ω). By (6.7), we have v ≤ t0 a.e. Moreover,
since 0 ≤ vk ≤ 1 a.e., it follows from (6.5) that (vk) is bounded in L∞(Ω)∩H1

0 (Ω).
We then conclude that vk → v µ-a.e. in Ω (see e.g. [6, Lemma 2.1]). Therefore,

µ
(
[vk > t0]

)
→ 0 as k → +∞.

The lemma then follows by taking g̃ = gk0 for some k0 ≥ 1 sufficiently large.

We now present the

Proof of Theorem 15. We shall split the proof of the theorem into two steps.

Step 1. Given µ ∈ M(Ω) diffuse and nonnegative, there exists g satisfying (1.2)–
(1.3) such that µ ∈ G(g).

We begin by constructing a sequence (gk) as follows. Let g0(t) = t
1−t , ∀t ∈

[0, 1). Given gk, we apply Lemma 6 to g = gk, ε = 1
2k and s0 = 1 − 1

2k . Set
gk+1 = g̃, where g̃ is the function given by Lemma 6. In particular, the sequence
(gk) is nondecreasing and

gk = gk0 in
(
−∞, 1− 1

2k0

]
∀k ≥ k0.

Set
g(t) = lim

k→+∞
gk(t) ∀t ∈ (−∞, 1).

We claim that µ ∈ G(g). In fact, let µk denote the reduced measure of µ relative
to gk. In particular, µk is also a diffuse measure. Since g ≥ gk, it follows from
Proposition 5 that µk ∈ G(g) for every k ≥ 1. Let vk be the solution of{

−∆vk + gk(vk) = µk in Ω,

vk = 0 on ∂Ω.

By Theorem 4 and the choice of gk, we have

‖µ− µk‖M ≤ µ
(
[vk = 1]

)
≤ 1

2k
.
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Thus,
µk → µ strongly in M(Ω).

Since G(g) is closed, we conclude that µ ∈ G(g) as claimed.

Step 2. Proof of the theorem completed.

Let µ ∈M(Ω) be such that µc ≤ 0; in other words, µ+ is diffuse. We can then
apply the previous step to µ+ to conclude that there exists g such that µ+ ∈ G(g).
Since µ ≤ µ+, by Proposition 4 we deduce that µ is also good for g.

7 Measures which are good for every g

In this section we characterize the set of measures which are always good. In
order to do so, we first need to recall some notions about obstacle problems with
measure data. Throughout this section, we denote by β any maximal monotone
graph (m.m.g.) of the form

β(t) =


b(t) if t < 1,

[b(1),∞) if t = 1,

∅ if t > 1.

(7.1)

where b : (−∞, 1] → R is a nondecreasing continuous function such that b(t) = 0
if t ≤ 0. Given a bounded measure µ in Ω, we say that w is a solution of{

−∆w + β(w) 3 µ in Ω,

w = 0 on ∂Ω,
(7.2)

if w ∈ L1(Ω), w ≤ 1 a.e., ∆w ∈ M(Ω), and there exists a nonnegative diffuse
measure ν ∈M(Ω) such that νa ∈ β(w) a.e., νs is concentrated on the set [w = 1],
and

−
∫

Ω

w∆ζ +
∫

Ω

ζ dν =
∫

Ω

ζ dµ ∀ζ ∈ C2
0 (Ω). (7.3)

(Here, νa and νs denote the absolutely continuous and the singular parts of ν with
respect to the Lebesgue measure in RN ).
In particular, the measure µ + ∆w is diffuse and

µ + ∆w = ν ≥ inf β(1) in [w = 1]. (7.4)

Problem (7.2) has been studied by Dall’Aglio-Leone [11], Dall’Aglio-Dal Ma-
so [10], Brezis-Ponce [6]; see also the references therein. It turns out that (7.2) has
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a solution if and only if µ+ is diffuse; moreover, this solution is unique and is the
largest solution of the problem

−∆v + b(v) ≤ µ in Ω,

v ≤ 1 in Ω,

v = 0 on ∂Ω.

(7.5)

Our goal in this section is to establish the following

Theorem 16 Let µ ∈ M(Ω). Then, µ is good for every g if and only if µ+ is
diffuse and

µ + ∆w0 ∈ L1(Ω),

where w0 is the unique solution of the obstacle problem{
−∆w0 + β0(w0) 3 µ in Ω,

w0 = 0 on ∂Ω,
(7.6)

with β0(s) = 0 if s < 1 and β0(1) = [0,∞).

Remark 2 It is known from [2] that if µ ∈ L1(Ω), then problem (1.1) has a
solution for every g. This is consistent with Theorem 16. Indeed, let w0 be the
solution of (7.6) with µ ∈ L1(Ω). Then, in view of (2.3), we have

µ + ∆w0 ≤ µ on [w0 = 1].

Since µ + ∆w0 is a nonnegative measure and it is concentrated on [w0 = 1], we
conclude that

0 ≤ µ + ∆w0 ≤ µ in Ω.

Hence, µ ∈ L1(Ω) implies that µ + ∆w0 ∈ L1(Ω).

In the proof of Theorem 16 we shall need the next two lemmas:

Lemma 7 Let β be a m.m.g. and let µ ∈M(Ω) be such that µ+ is diffuse. If

µ+
a ∈ L∞(Ω) and ‖µ+

a ‖L∞ < inf β(1), (7.7)

then ∣∣[w = 1]
∣∣ = 0, (7.8)

where w is the solution of (7.2).
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Proof. By (2.3), we have (∆w)d ≤ 0 on the set [w = 1]. Thus,

µd ≥ (µ + ∆w)d = µ + ∆w ≥ inf β(1) in [w = 1].

Comparing the absolutely continuous part of both sides, we get

µa = (µd)a ≥ inf β(1) a.e. in [w = 1].

In view of (7.7), we deduce that (7.8) holds.

Lemma 8 Let µ ∈M(Ω) be such that µ+ is diffuse. Given two m.m.g. β1, β2, let
wi be the solution of (7.2) associated to βi, i = 1, 2. If β1 ≥ β2, then

0 ≤ µ + ∆w1 ≤ µ + ∆w2 in [w1 = 1]. (7.9)

Proof. By comparison, we have w2 − w1 ≥ 0 a.e. In particular, w2 − w1 = 0 in
[w1 = 1]. Applying (2.3), we get[

∆(w2 − w1)
]
d
≥ 0 in [w1 = 1].

Thus, on the set [w1 = 1], we have

µ + ∆w1 = (µ + ∆w1)d ≤ (µ + ∆w2)d = µ + ∆w2.

Since w1 is the solution of (7.2) with β = β1, we have ν1 = µ+∆w1 ≥ 0 in Ω. We
conclude that (7.9) holds.

Proof of Theorem 16.

Proof of (⇐). We shall establish a slightly more general result:

Proposition 6 Let µ ∈M(Ω) be such that µ+ is diffuse. Assume that

µ + ∆w ∈ L1(Ω), (7.10)

where w is the unique solution of (7.2). Then, µ is good for every g such that
g ≥ β.

Proof. We first assume µ+
a ∈ L∞(Ω). Let β1 be a m.m.g. such that

β ≤ β1 ≤ g and ‖µ+
a ‖L∞ < inf β1(1).
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Let w1 be the solution of (7.2) with obstacle β1. We claim that

µ + ∆w1 ∈ L1(Ω). (7.11)

In fact, since w1 is the solution of an obstacle problem, the measure (µ + ∆w1)s
is concentrated on the set [w1 = 1]. By Lemma 8 above, we have

0 ≤ (µ + ∆w1)s ≤ (µ + ∆w)s = 0 in [w1 = 1].

This establishes (7.11).
On the other hand, it follows from Lemma 7 that the set [w1 = 1] has zero Lebesgue
measure. We conclude that

µ + ∆w1 = b1(w1) a.e.

In other words, w1 verifies{
−∆w1 + b1(w1) = µ in Ω,

w1 = 0 on ∂Ω.

Since
∣∣[w1 = 1]

∣∣ = 0, by a variant of the De La Vallée-Poussin theorem (see [12,
Remark 23] or [13, Theorem II.22]), one can find g1 satisfying (1.2) such that

b1 ≤ g1 ≤ g and g1(w1) ∈ L1(Ω).

Thus, in view of Proposition 4, µ is a good measure for g1. By Proposition 5, we
deduce that µ is also good for g. Since g ≥ β was arbitrary, the result follows
when µ+

a ∈ L∞(Ω).
In order to establish the proposition for any measure µ satisfying (7.10), we let

µn = min
{
µa, n

}
+ µs ∀n ≥ 1.

Proceeding as in the proof of (7.11), for every n ≥ 1 we have

µn + ∆wn ∈ L1(Ω),

where wn is the solution of (7.2) with data µn. Moreover, (µn)+a ∈ L∞(Ω). Thus,
µn is good for every g ≥ β. As n → +∞, we deduce that µ is also good for any
such g.

Proof of (⇒). We shall need the following
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Lemma 9 Let µ ∈M(Ω). Assume that µ is good for every g,

µ+
a ∈ L∞(Ω) and ‖µ+

a ‖L∞ ≤ inf β(1). (7.12)

Let w be the solution of (7.2). Then,{
−∆w + b(w) = µ in Ω,

w = 0 on ∂Ω.
(7.13)

Proof. By making a small perturbation of µ, it suffices to establish the result
when

‖µ+
a ‖L∞ < inf β(1). (7.14)

By Lemma 7 above, we know that
∣∣[w = 1]

∣∣ = 0. Thus, one can find a continuous
nondecreasing function H : (−∞, 1) → R, H ≥ b, satisfying (1.2) and such that
H(w) ∈ L1(Ω). We now take a sequence of functions (gn) such that

gn ≤ H ∀n ≥ 1 and gn ↓ b as n ↑ +∞.

Since µ is good for every gn, there exists vn satisfying (1.1) with nonlinearity gn.
Clearly, vn ↑ v, where v ∈ L1(Ω) and v ≤ 1 a.e. By Fatou, v verifies (7.5); in
particular, v ≤ w a.e. Thus, ∣∣[v = 1]

∣∣ ≤ ∣∣[w = 1]
∣∣ = 0. (7.15)

On the other hand, note that

gn(vn) → b(v) a.e. on [v < 1]. (7.16)

Thus, by (7.15)–(7.16), we have

gn(vn) → b(v) a.e.

Since gn(vn) ≤ H(w) a.e., it follows by dominated convergence that

gn(vn) → b(v) in L1(Ω).

We deduce that v satisfies (7.13). In particular, v is also a solution of (7.2). By
uniqueness, we conclude that v = w. This establishes the lemma.

We can now conclude the proof of Theorem 16.
Let µ be a measure such that µ is good for every g. We assume in addition that

µ+
a ∈ L∞(Ω). Let bn : (−∞, 1] → R be a sequence of nondecreasing continuous
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functions such that bn(t) = 0 if t ≤ 0, bn(1) = ‖µ+
a ‖L∞ and bn(t) ↓ 0 uniformly

away from t = 1. By Lemma 9, equation (7.13) has a solution vn ≤ 1 associated
to bn. Note that vn ↑ v, where v ∈ L1(Ω), v ≤ 1 a.e. Moreover, passing to a
subsequence if necessary, we have

bn(vn) ⇀ f weakly in L∞(Ω)

for some f ∈ L∞(Ω) with ‖f‖L∞ ≤ ‖µ+
a ‖L∞ .

We claim that v = w0 a.e. In fact, note that v satisfies{
−∆v = µ− f in Ω,

v = 0 on ∂Ω.

Since
0 ≤ bn(vn) ≤ bn(v) a.e. ∀n ≥ 1,

as n → +∞ we obtain
0 ≤ f ≤ α χ[v=1] a.e.,

where α = ‖µ+
a ‖L∞ . This implies that f is nonnegative and concentrated on the

set [v = 1]. Therefore, v verifies problem (7.6) and so v = w0 as claimed. We
conclude that

µ + ∆w0 = f ∈ L∞(Ω).

This establishes the theorem under the additional assumption that µ+
a ∈ L∞(Ω).

The general case easily follows by using an approximation argument.

Before proving Theorem 3, we start with the following

Proposition 7 Given µ ∈M(Ω), let v be the unique solution of{
−∆v = µ in Ω,

v = 0 on ∂Ω.
(7.17)

If v ≤ 1 a.e., then µ is good for every g.

Proof. Let α < 1. Since v ≤ 1 a.e., αv is a supersolution of problem (1.1) with
data αµ. Thus, by Proposition 4, αµ is good for every α < 1. Since G(g) is closed
with respect to the strong topology in M(Ω), we deduce that µ ∈ G(g) for every
g.

We now present the
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Proof of Theorem 3. The implication “⇐” already follows from Proposition 7
above. We now establish the reverse implication. Let µ be a singular measure
which is good for every g. In particular, µ+ is diffuse. Let ν = µ + ∆w0, where
w0 is the solution of (7.6). In view of the definition of β0, ν is a nonnegative
diffuse measure concentrated on the set [w0 = 1]. By (2.3), on this set we have
(∆w0)d ≤ 0, so that

0 ≤ ν ≤ µ.

On the other hand, by Theorem 16, we know that ν ∈ L1(Ω). Since µ is singular,
we conclude that ν = 0, hence w0 coincides with the unique solution v of (7.17).
Since w0 ≤ 1 a.e., the result follows.

8 How to construct diffuse measures which are

not good

Our goal in this section is to establish Theorem 1. The main ingredient is the
following

Lemma 10 Given g, there exists v ∈ C0(Ω) such that

∆v ∈ L1(Ω), v ≤ 1 in Ω, cap
(
[v = 1]

)
> 0 and g(v) ∈ L1(Ω). (8.1)

Proof. Let (`k) be a decreasing sequence of positive numbers such that

`k ≤ θ`k−1 ∀k ≥ 2, (8.2)

for some θ ∈ (0, 1
2 ). Let (kj) be an increasing sequence of nonnegative integers.

Both sequences (`k) and (kj) will be explicitly chosen later on.
We now briefly recall the construction presented in [18] of the Cantor set F asso-
ciated to the subsequence (`kj

). We shall assume for simplicity that Ω = Q1, the
unit cube centered at 0.
We first define a decreasing sequence of sets (Fj)j≥0 as follows. Let F0 = Q1,
k0 = 0 and `0 = 1. We now proceed by induction. Assume Fj−1, j ≥ 1, is the
union of 2Nkj−1 disjoint cubes of length `kj−1 . Let Qi be any component of Fj−1,
and let Q̃i ⊂ Qi be a smaller cube concentric to Qi (so that the ratio between their
lengths is 1

2 + θ ∈ ( 1
2 , 1)). Inside Q̃i, we select 2N(kj−kj−1) cubes Qi,s of length

`kj , uniformly distributed in Q̃i. Set

Fj =
⋃
i,s

Qi,s.
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Thus, Fj ⊂ Fj−1 and Fj is the union of 2Nkj disjoint cubes of length `kj . The
Cantor set associated to the subsequence (`kj ) is then defined as

F =
∞⋂

j=1

Fj .

We now split the proof of the lemma into two cases, whether N ≥ 3 or N = 2:

Case 1. N ≥ 3

We start with the following

Claim 1. For every j ≥ 1, we have

cap (Fj , Fj−1) ≤ Cθ 2Nkj `N−2
kj

, (8.3)

where cap (Fj , Fj−1) denotes the H1-capacity of the set Fj with respect to Fj−1.

Since Fj−1 has 2Nkj−1 connected components, it suffices to show that

cap (Fj ∩Qi, Qi) ≤ Cθ 2N(kj−kj−1)`N−2
kj

, (8.4)

where Qi is any component of Fj−1. Note that each component Qi,s of Fj ∩ Qi

has length `kj and (see [18])

d(Qi,s, ∂Qi) ≥
1− 2θ

4
diam Qi.

Hence,
cap (Qi,s, Qi) ≤ Cθ `N−2

kj
. (8.5)

Recall that Qi contains 2N(kj−kj−1) components Qi,s. By the subadditivity of the
capacity, we conclude that (8.4) holds. This concludes the proof of the claim.

By (8.3) and Theorem E.1 in [4], there exists vj ∈ C∞
c (Fj−1) such that 0 ≤

vj ≤ 1 in Ω, vj = 1 on Fj , and∫
Ω

|∆vj | ≤ C 2Nkj `N−2
kj

. (8.6)

Our aim is to construct the function v of the form

v =
∞∑

j=1

αjvj , (8.7)

where (αj) is a sequence of positive numbers to be chosen later on such that

∞∑
j=1

αj = 1. (8.8)
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Clearly, v ∈ C0(Ω) and v ≤ 1 in Ω. Moreover, v = 1 precisely on
⋂

j Fj = F .
We claim that one can choose (`k), (kj) and (αj) such that

∞∑
j=1

1
2Nkj `N−2

kj

< ∞, (8.9)

∞∑
j=1

αj 2Nkj `N−2
kj

< ∞, (8.10)

∞∑
j=1

g

( j∑
i=1

αi

)
2Nkj `N

kj
< ∞. (8.11)

In fact, let
αj = 3 · 2−2j ∀j ≥ 1,

so that (8.8) holds. Let (kj) be any increasing sequence of positive numbers such
that

g(1− 2−2j)

2
N

N−2 kj
≤ 1

2j
∀j ≥ 1.

Finally, we take (`k) satisfying (8.2) (with, say, θ = 3
4 ) and

2Nkj `N−2
kj

= 2j ∀j ≥ 1.

It immediately follows that (8.9) and (8.10) hold. After some straightforward
computation, the left-hand side of (8.11) can be estimated by

∞∑
j=1

g(1− 2−2j)
(

2j

22kj

) N
N−2

≤
∞∑

j=1

g(1− 2−2j)

2
N

N−2 kj
,

which is finite in view of our choice of (kj). We conclude that (8.9)–(8.11) hold.
By construction, [v = 1] coincides with F . On the other hand, by [18], we know
that cap (F ) > 0 if and only if

∞∑
j=1

1
2Nkj `N−2

kj

< ∞. (8.12)

In view of (8.9), we deduce that cap (F ) > 0. Thus,

cap
(
[v = 1]

)
> 0. (8.13)

By (8.6), (8.7) and (8.10), we have

∆v ∈ L1(Ω). (8.14)
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Finally, it follows from (8.11) that

g(v) ∈ L1(Ω). (8.15)

The proof of the lemma is complete when N ≥ 3.

Case 2. N = 2.

As in the previous case, we start with the

Claim 2. For every j ≥ 1, we have

cap (Fj , Fj−1) ≤ Cθ 4kj

(
log

1
`kj

)−1

. (8.16)

The argument is similar to the proof of Claim 1. It suffices to observe that the
analog of (8.5) is

cap (Qi,s, Qi) ≤ Cθ

(
log

1
`kj

)−1

. (8.17)

We now conclude the proof of the lemma. Let (αj) be defined as before. Take
an increasing sequence of positive integers (kj) such that

g(1− 2−2j)

44kj
≤ 1

2j
∀j ≥ 1.

Finally, let (`k) satisfying (8.2) and

`kj = 4−4kj ·2−j

∀j ≥ 1.

With such choices, one can easily check that

∞∑
j=1

1
4kj

log
1

`kj

< ∞, (8.18)

∞∑
j=1

αj 4kj

(
log

1
`kj

)−1

< ∞, (8.19)

∞∑
j=1

g

( j∑
i=1

αi

)
4kj `2kj

< ∞. (8.20)

Let v be given by (8.7), where vj ∈ C∞
c (Fj−1) is such that 0 ≤ vj ≤ 1 in Ω, vj = 1

on Fj , and ∫
Ω

|∆vj | ≤ C 4kj

(
log

1
`kj

)−1

.
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(The existence of such vj follows from Claim 2 above.) In particular, [v = 1] = F .
By (8.18), we have (see [18, Lemma 4])

cap
(
[v = 1]

)
> 0.

Moreover, proceeding as before, we deduce from (8.19) and (8.20) that

∆v ∈ L1(Ω) and g(v) ∈ L1(Ω).

This concludes the proof of the lemma.

Using Lemma 10, we establish the following

Proposition 8 For every g, there exist a nonnegative function h0 ∈ L1(Ω) and a
compact set K0 ⊂ Ω, with |K0| = 0 and cap (K0) > 0, such that for any measure
σ ≥ 0 supported in K0 we have

(h0 + σ)∗ = h0, (8.21)

where (h0 + σ)∗ is the reduced measure associated to h0 + σ.

Proof. Take K0 = [v = 1] and f0 = −∆v + g(v), where v is the function
constructed in Lemma 10. We begin with the following

Claim. If λ is a good measure ≥ f0, then λ(K0) = 0.

We first observe that λ is a diffuse measure. In fact, since λ is good, we have
λc ≤ 0 by Corollary 2. On the other hand, λ ≥ f0 implies λc ≥ 0. Thus, λc = 0,
so that λ is diffuse. Let u be the solution of{

−∆u + g(u) = λ in Ω,

u = 0 on ∂Ω.

Clearly, u ≥ v a.e. Moreover, since v = 1 in K0, we have u− v = 0 in K0. Thus,
by (2.3),

f0 − λ = ∆(u− v) =
[
∆(u− v)

]
d
≥ 0 in K0.

In other words, λ ≤ f0 in K0; thus, λ = f0 in K0. Since |K0| = 0, we deduce that
λ(K0) = 0. This establishes the claim.

Let h0 = f+
0 . We now show that h0 and K0 satisfy the desired properties. In

fact, let σ ≥ 0 be a measure concentrated on K0. Since h0 +σ ≥ 0, it follows from
Corollary 3 that

0 ≤ (h0 + σ)∗ ≤ h0 + σ in Ω.
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Moreover, by Corollary 1, [
(h0 + σ)∗

]
a

= h0 a.e. in Ω.

Thus,
f0 ≤ h0 ≤ (h0 + σ)∗ ≤ h0 + σ in Ω.

In particular,
[
(h0 + σ)∗

]
s

is concentrated on K0. By our previous claim, we have[
(h0 + σ)∗

]
s
= 0 in K0. Therefore,

(h0 + σ)∗ =
[
(h0 + σ)∗

]
a

= h0 in Ω.

Remark 3 A slight modification in the construction of v, given by Lemma 10,
allows to obtain the following further property in the statement of Proposition 8:
given any ε > 0 and any ball Br ⊂⊂ Ω, one can choose h0 and K0 such that

‖h0‖L1 < ε and K0 ⊂ Br.

Theorem 1 is now a consequence of Proposition 8:

Proof of Theorem 1. Given g, let h0,K0 be as in the statement of Proposition 8.
Since cap (K0) > 0, there exists a diffuse measure σ ≥ 0 concentrated on K0 such
that σ(K0) = 1 (see e.g. [8]). Let µ = h0 + σ. By Proposition 8, we have µ 6= µ∗.
Thus, µ 6∈ G(g).

A slightly stronger version of Theorem 1 is the following

Theorem 17 Given g, let h0 ∈ L1(Ω) and K0 ⊂ Ω be given by Proposition 8. Let
σ be a nonnegative diffuse measure supported in K0. If σ is good, then

‖σ‖M < ‖h0‖L1 . (8.22)

Proof. Assume σ is good. By Proposition 8, we have (h0 +σ)∗ = h0. Recall that,
by Theorem 5, (h0 + σ)∗ is the closest good measure to h0 + σ. Thus,

‖σ‖M =
∥∥(h0 + σ)− (h0 + σ)∗

∥∥
M <

∥∥(h0 + σ)− σ
∥∥
M = ‖h0‖L1 .
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Corollary 4 Given g, there exists a diffuse measure µ ≥ 0 such that εµ is not
good for any ε > 0.

Proof. Using Remark 3, we can take sequences of disjoint compact sets (Kj) in
Ω and L1-functions (hj), such that each pair Kj , hj satisfies the assumptions of
Proposition 8 and

‖hj‖L1 ≤ 1
4j

.

Let h =
∑

j hj ∈ L1(Ω). For each j ≥ 1, we fix a diffuse measure σj ≥ 0
concentrated on Kj such that ‖σj‖M = 1

2j . Let µ =
∑

j σj ∈ M(Ω). Assume by
contradiction that εµ is good for some ε > 0. Since

εµ ≥ εσj ∀j ≥ 1,

then εσj is also good. By Theorem 17, this gives

ε <
‖hj‖L1

‖σj‖M
≤ 1

2j
∀j ≥ 1.

As j → +∞, we get a contradiction.

Imposing some additional assumption on the nonlinearity g one can construct
a measure µ of the form µ = θHαbK , for some α > N − 2, such that µ 6∈ G(g). To
this purpose, one first needs a slight modification of Lemma 10:

Lemma 11 Assume g is given by

g(t) =
1

(1− t)
2−β

β

− 1 ∀t ∈ [0, 1), (8.23)

where β ∈ (0, 2). Then, for any α ∈ (0, β), there exists ṽ ∈ C0(Ω) such that

∆ṽ ∈ L1(Ω), ṽ ≤ 1 in Ω, HN−2+α
(
[ṽ = 1]

)
∈ (0,∞) and g(ṽ) ∈ L1(Ω).

(8.24)

Proof. We just need to adapt the proof of Lemma 10. We shall consider both
cases N ≥ 3 and N = 2 simultaneously. Let ṽ be given by (8.7). Using the same
notation as before, we let

αj = am2−mNj ,

where
α

N − 2 + α
< m <

(2− α)β
(2− β)α

α

N − 2 + α
(8.25)
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and the constant am is chosen so that (8.8) holds. Observe that the range of
admissible m given by (8.25) is nonempty since 0 < α < β < 2.
Next, we let kj = j and

`k = 2−
Nk

N−2+α ∀k ≥ 1. (8.26)

With (`k) defined as above, one can show that (see e.g. [18])

HN−2+α(F ) ∈ (0,∞),

where F =
⋂

j Fj = [ṽ = 1]. We now prove (8.11) (or, equivalently, (8.20) if
N = 2). Note that, with our choices of (αj) and (`k), the left-hand side of (8.11)
reduces to

∞∑
j=1

2mNj 2−β
β 2Nj 2−

N2j
N−2+α =

∞∑
j=1

2Nj (m 2−β
β − 2−α

N−2+α ),

which is finite, by (8.25). We now assume N ≥ 3. Note that (8.10) becomes
∞∑

j=1

2−mNj 2Nj 2−
N(N−2)j
N−2+α =

∞∑
j=1

2−Nj (m− α
N−2+α ) < ∞,

which clearly holds in view of (8.25). Similarly, if N = 2, then one easily checks
that (8.19) is also satisfied. Proceeding as in the proof of Lemma 10, we conclude
that (8.24) holds.

As a consequence, we have the following

Theorem 18 Given β ∈ (0, 2), let g be given by (8.23). Then, for any α ∈ (0, β),
there exist θ0 > 0 and K ⊂ Ω compact, HN−2+α(K) ∈ (0,∞), such that

θHN−2+αbK ∈ G(g) implies θ < θ0. (8.27)

Proof. Let
h̃0 =

[
−∆ṽ + g(ṽ)

]+ and K = [ṽ = 1],

where ṽ is given by Lemma 11 above. Proceeding as in the proof of Proposition 8,
we have (

h̃0 + θHN−2+αbK
)∗ = h̃0 ∀θ > 0.

Therefore, if θHN−2+αbK is good, then as in the proof of Theorem 17 we conclude
that

θHN−2+α(K) < ‖h̃0‖L1 .

In other words, (8.27) holds with θ0 = ‖h̃0‖L1

HN−2+α(K)
.
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9 Further properties of µ∗ and G
In this section we prove some properties of the reduced measures, which should be
compared with those in [4]. In particular, we start by showing that the reduced
measure µ∗ need not be the largest good measure ≤ µ, contrarily to what happens
when g is everywhere defined. In fact, we have

Proposition 9 There exists µ ∈M(Ω), µ ≥ 0, for which the set{
λ ∈ G : λ ≤ µ

}
(9.1)

has no largest element.

Proof. Let K0, h0 be given by Proposition 8. Let σ be the capacitary measure
associated to K0. In particular, σ is a nonnegative measure concentrated on K0;
moreover, σ is good (see Proposition 7). Let µ = h0 + σ. By Proposition 8,
µ 6∈ G(g). Assume by contradiction that the set given by (9.1) has a largest
element, say ν ≤ µ. Clearly, ν ≥ h0 and ν ≥ σ. Thus,

ν ≥ sup {h0, σ} = h0 + σ = µ.

We deduce that ν = µ, so that µ is a good measure. This is a contradiction.

Note that the same argument can be used to establish the next results (in what
follows, σ is the capacitary measure associated to K0, with K0 and h0 being given
by Proposition 8).

Proposition 10 There exist good measures µ, ν ≥ 0 such that sup {µ, ν} is not
good.

Proof. Take µ = h0, ν = σ and use Proposition 8.

Proposition 11 There exist diffuse measures µ, ν ≥ 0 such that ν ≤ µ but µ∗−ν∗

is not ≥ 0.

Proof. Take µ = h0 + σ and ν = σ.

Similarly, the mapping µ 7→ µ∗ is not a contraction. More precisely,
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Proposition 12 There exist diffuse measures µ, ν ≥ 0 such that

‖µ− ν‖M < ‖µ∗ − ν∗‖M.

Proof. Take µ = h0 + σ and ν = σ.

We conclude with the following

Proposition 13 The set G is not convex.

Proof. By Theorem 1, there exists µ diffuse such that µ 6∈ G. Applying Theorem 3
in [4], we can decompose µ as

µ = f + ∆v,

where f ∈ L1(Ω), v ∈ H1
0 (Ω) ∩ C(Ω) and ‖v‖L∞≤ 1

3 . In particular, 2f ∈ G and
∆(2v) ∈ G; however,

2f + ∆(2v)
2

= µ 6∈ G.
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[1] A. Ancona, Une propriété d’invariance des ensembles absorbants par perturba-
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Faculté de Mathématiques et d’Informatique
33, rue Saint-Leu 80039 Amiens Cedex 1
France

A.C. Ponce
Institute for Advanced Study
Princeton, NJ 08540
USA

A. Porretta
Dipartimento di Matematica
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