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Abstract. Given a smooth domain Ω ⊂ RN such that 0 ∈ ∂Ω and given

a nonnegative smooth function ζ on ∂Ω, we study the behavior near 0 of
positive solutions of −∆u = uq in Ω such that u = ζ on ∂Ω \ {0}. We prove

that if N+1
N−1

< q < N+2
N−2

, then u(x) ≤ C |x|−
2

q−1 and we compute the limit of

|x|
2

q−1 u(x) as x → 0. We also investigate the case q = N+1
N−1

. The proofs rely

on the existence and uniqueness of solutions of related equations on spherical

domains.
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1. Introduction and main results

Let Ω be a smooth open subset of RN , with N ≥ 2, such that 0 ∈ ∂Ω. Given
q > 1 and ζ ∈ C∞(∂Ω) with ζ ≥ 0 on ∂Ω, consider the problem

(1.1)


−∆u = uq in Ω,

u ≥ 0 in Ω,

u = ζ on ∂Ω \ {0}.

By a solution of (1.1) we mean a function u ∈ C2(Ω) ∩ C(Ω \ {0}) which satisfies
(1.1) in the classical sense. A solution may develop an isolated singularity at 0.
Our main goal in this paper is to describe the behavior of u in a neighborhood of
this point.
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In the study of boundary singularities of (1.1), one finds three critical exponents;
namely,

q1 = N+1
N−1 , q2 = N+2

N−2 and q3 = N+1
N−3 ,

with the usual convention if N = 2 or N = 3. When 1 < q < q1, it is proved
by Bidaut-Véron–Vivier [10] that for every solution u of (1.1) there exists α ≥ 0
(depending on u) such that

u(x) = α |x|−N dist(x, ∂Ω)
(
1 + o(1)

)
as x → 0.

In this paper we mainly investigate the case q1 ≤ q < q3.

The counterpart of (1.1) for an interior singularity,

−∆u = uq in Ω \ {x0},

where x0 ∈ Ω, was studied by P.-L. Lions [23] in the subcritical case 1 < q < N
N−2 ,

by Aviles [2] when q = N
N−2 and by Gidas-Spruck [18] in the range N

N−2 < q <
N+2
N−2 . We prove some counterparts of the works of Gidas-Spruck and Aviles in the
framework of boundary singularities.

When (1.1) is replaced by an equation with an absorption term,

(1.2) −∆u + uq = 0 in Ω,

the problem has been first addressed by Gmira-Véron [19] (and later to nonsmooth
domains in [17]). These results are important in the theory of boundary trace
of positive solutions of (1.2) which was developed by Marcus-Véron [24–26] using
analytic tools and by Le Gall [22] and Dynkin-Kuznetsov [15,16] with a probabilistic
approach. We refer the reader to Véron [30] for the case of interior singularities of
(1.2).

Let us first consider the case where Ω is the upper-half space RN
+ , and we look

for solutions of (1.1) of the form

u(x) = |x|−
2

q−1 ω
(

x
|x|

)
.

By an easy computation, ω must satisfy

(1.3)


−∆′ω = `N,qω + ωq in SN−1

+ ,

ω ≥ 0 in SN−1
+ ,

ω = 0 on ∂SN−1
+ ,

where ∆′ denotes the Laplace-Beltrami operator in the unit sphere SN−1,

`N,q = 2(N−q(N−2))
(q−1)2 and SN−1

+ = SN−1 ∩ RN
+ .

Concerning equation (1.3), we prove

Theorem 1.1.
(i) If 1 < q ≤ q1, then (1.3) admits no positive solution.

(ii) If q1 < q < q3, then (1.3) admits a unique positive solution.
(iii) If q ≥ q3, then (1.3) admits no positive solution.

In Section 3 we study uniqueness of solutions of (1.3) with `N,q replaced by any
` ∈ R. The proofs are inspired from some interesting ideas taken from Kwong [20]
and Kwong-Li [21]. The nonexistence of solutions of (1.3) when q ≥ q3 is based on
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a Pohožaev identity valid for spherical domains which are not necessarily spherical
caps and for solutions which may change sign; see Theorem 2.1 below.

The case N = 4 and q = 5 has been studied by several authors. In this setting,
q3 = 5 and the conclusion of Theorem 1.1 follows from a result obtained by Bandle-
Benguria [3]. The existence and non-existence of solutions of problem (1.3) on
spherical caps containing S3

+ was studied by Brezis-Peletier [12]; see also [4, 13].
Their results extend to S3 the celebrated Brezis-Nirenberg problem [11].

We now consider the case where Ω ⊂ RN is a smooth domain such that 0 ∈ ∂Ω.
Without loss of generality, we may assume that −eN is the outward unit normal
vector of ∂Ω at 0. We prove the following classification of isolated singularities of
solutions of (1.1):

Theorem 1.2. Assume that q1 < q < q2. If u satisfies (1.1), then either u can
be continuously extended at 0 or for every ε > 0 there exists δ > 0 such that if
x ∈ Ω \ {0}, x

|x| ∈ SN−1
+ and |x| < δ,

(1.4)
∣∣∣|x| 2

q−1 u(x)− ω
(

x
|x|

)∣∣∣ < ε,

where ω is the unique positive solution of (1.3).

When q2 < q < q3, we have a similar conclusion provided u satisfies the estimate

u(x) ≤ C|x|−
2

q−1 ∀x ∈ Ω,

for some constant C > 0; see Proposition 8.1 below. In the critical case q = q1

there is a superposition of the linear and nonlinear effects since their characteristic
exponents 2

q−1 and N − 1 coincide. The counterpart of Theorem 1.2 in this case is
the following:

Theorem 1.3. Assume that q = q1. If u satisfies (1.1), then either u can be
continuously extended at 0 or for every ε > 0 there exists δ > 0 such that if
x ∈ Ω \ {0} and |x| < δ,

(1.5)
∣∣∣|x|N−1

(
log 1

|x|
)N−1

2 u(x)− κxN

|x|

∣∣∣ < ε,

where κ is a positive constant depending only on the dimension N .

Our characterization of boundary isolated singularities is complemented by the
existence of singular solutions which has been recently obtained by del Pino-Musso-
Pacard [28]. We recall their result:

Theorem 1.4. Assume that Ω ⊂ RN is a smooth bounded domain. There exists
p ∈ (q1, q2) such that for every q1 ≤ q < p and for every ξ1, ξ2, . . . , ξk ∈ ∂Ω, there
exists a function u ∈ C2(Ω) ∩ C(Ω \ {ξ1, . . . , ξk}) satisfying

(1.6)
{−∆u = uq in Ω,

u ≥ 0 in Ω,

and such that
u(x) → +∞ as x → ξj

nontangentially for every j ∈ {1, 2, . . . , k}.
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In view of Theorems 1.2 and 1.3 any such solution must have the singular be-
havior we have obtained therein. In [28], the authors conjecture that such solutions
exist for every q1 ≤ q < q2.

Some of the main ingredients in the proofs of Theorems 1.2 and 1.3 are Theo-
rem 1.1 above concerning existence and uniqueness of positive solutions of (1.3), a
removable singularity result (see Theorems 7.1 and 7.2 below) and the following a
priori bound of solutions of (1.1):

Theorem 1.5. Assume that 1 < q < q2. Then, every solution of (1.1) satisfies

(1.7) u(x) ≤ C|x|−
2

q−1 ∀x ∈ Ω,

for some constant C > 0 independent of the solution.

We establish this estimate using a topological argument, called the Doubling
lemma (see Lemma 5.1 below), introduced by Poláčik-Quittner-Souplet [29]. It
is an open problem whether estimate (1.7) holds for every solution of (1.1) when
q ≥ q2.

Theorems 1.2, 1.3 and 1.5 have been announced in [8].

2. Pohožaev identity in spherical domains

We first prove the following Pohožaev identity in spherical domains.

Theorem 2.1. Let q > 1, ` ∈ R and S be a smooth domain in SN−1
+ . If v ∈

C2(S) ∩ C(S) satisfies

(2.1)

{
−∆′v = `v + |v|q−1

v in S,

v = 0 on ∂S,

then
(2.2)(

N−3
2 −N−1

q+1

)∫
S

|∇′v|2 φ dσ−N−1
2

( `(q−1)+N−1
q+1

)∫
S

v2φ dσ = 1
2

∫
∂S

|∇′v|2 〈∇′φ, ν〉 dτ,

where ν is the outward unit normal vector on ∂S, ∇′ the tangential gradient to
SN−1, and φ is a first eigenfunction of the Laplace-Beltrami operator −∆′ in
W 1,2

0 (SN−1
+ ).

We recall that the first eigenvalue of −∆′ in W 1,2
0 (SN−1

+ ) is N − 1 and the
eigenspace associated to this eigenvalue is spanned by the function φ(x) = xN

|x| .

Proof. Let
P = 〈∇′φ,∇′v〉∇′v.

By the Divergence theorem,

(2.3)
∫

S

div P dσ =
∫

∂S

〈P, ν〉 dτ.

Note that

div P = 〈∇′v,∇′φ〉∆′v + D2v(∇′v,∇′φ) + D2φ(∇′v,∇′v).

where D2v is the Hessian operator. Now,

D2v(∇′v,∇′φ) =
1
2
〈∇′ |∇′v|2 ,∇′φ〉.
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Using the classical identity
D2φ + φ g = 0

where g = (gi,j) is the metric tensor on SN−1, we get

D2φ(∇′v,∇′v) = −g(∇′v,∇′v)φ = −|∇′v|2φ.

We replace these identities in the expression of div P ,

div P = −〈∇′v,∇′φ〉
(
`v + |v|q−1

v
)

+
1
2
〈∇′ |∇′v|2 ,∇′φ〉 − |∇′v|2 φ.

Integrating over S, we obtain∫
S

div P dσ = −
∫

S

〈∇′v,∇′φ〉
(
`v+|v|q−1

v
)
dσ+

1
2

∫
S

〈∇′ |∇′v|2 ,∇′φ〉 dσ−
∫

S

|∇′v|2 φ dσ.

Note that∫
S

〈∇′v,∇′φ〉
(
`v + |v|q−1

v
)
dσ =

∫
S

〈
∇′

(
`
2v2 + 1

q+1 |v|
q+1

)
,∇′φ

〉
dσ

= −
∫

S

(
`
2v2 + 1

q+1 |v|
q+1

)
∆′φ dσ

= (N − 1)
∫

S

(
`
2v2 + 1

q+1 |v|
q+1

)
φ dσ,

and ∫
S

〈∇′ |∇′v|2 ,∇′φ〉 dσ = −
∫

S

|∇′v|2 ∆′φ dσ +
∫

∂S

|∇′v|2 〈∇′φ, ν〉 dτ

= (N − 1)
∫

S

|∇′v|2 φ dσ +
∫

∂S

|∇′v|2 〈∇′φ, ν〉 dτ.

These identities imply

(2.4)∫
S

div P dσ = − `(N−1)
2

∫
S

v2φ dσ − N−1
q+1

∫
S

|v|q+1
φ dσ + N−3

2

∫
S

|∇′v|2 φ dσ+

+ 1
2

∫
∂S

|∇′v|2 〈∇′φ, ν〉 dτ.

On the other hand, since v satisfies (2.1),∫
S

(
`v2 + |v|q+1 )

φ dσ = −
∫

S

(∆′v)vφ dσ

=
∫

S

〈∇′v,∇′(vφ)〉 dσ =
∫

S

|∇′v|2 φ dσ +
∫

S

〈∇′v,∇′φ〉v dσ.

Since v∇′v = 1
2∇

′(v2) and ∆′φ = −(N − 1)φ,∫
S

〈∇′v,∇′φ〉v dσ =
1
2

∫
S

〈∇′(v2),∇′φ〉 dσ = N−1
2

∫
S

v2φ dσ.

Thus, ∫
S

(
`v2 + |v|q+1 )

φ dσ =
∫

S

|∇′v|2 φ dσ + N−1
2

∫
S

v2φ dσ.

This implies ∫
S

|v|q+1
φ dσ =

∫
S

|∇′v|2 φ dσ +
(

N−1
2 − `

)∫
S

v2φ dσ.
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Inserting this identity in (2.4), we obtain

(2.5)∫
S

div P dσ =
(

N−3
2 − N−1

q+1

)∫
S

|∇′v|2 φ dσ−
( `(N−1)

2 + N−1
q+1

(
N−1

2 −`
))∫

S

v2φ dσ+

+ 1
2

∫
∂S

|∇′v|2 〈∇′φ, ν〉 dτ.

Since v vanishes on ∂S, ∇′v = 〈∇′v, ν〉ν and, in particular, |∇′v| = |〈∇′v, ν〉|.
Thus, ∫

∂S

〈P, ν〉 dτ =
∫

∂S

〈∇′φ,∇′v〉〈∇′v, ν〉 dτ =
∫

∂S

(
〈∇′v, ν〉

)2〈∇′φ, ν〉 dτ

=
∫

∂S

|∇′v|2 〈∇′φ, ν〉 dτ.

(2.6)

Combining (2.3), (2.5) and (2.6), we get the Pohožaev identity. ¤

Using the Pohožaev identity on SN−1
+ we can prove that the Dirichlet problem

(2.1) can only have trivial solutions for suitable values of q and `.

Corollary 2.1. Let N ≥ 4. If q ≥ q3 and ` ≤ −N−1
q−1 , then the function identically

zero is the only solution in C2(SN−1
+ ) ∩ C(SN−1

+ ) of the Dirichlet problem{
−∆′v = `v + |v|q−1

v in SN−1
+ ,

v = 0 on ∂SN−1
+ .

Proof. Let v be a solution of the Dirichlet problem. Applying the Pohožaev identity
with φ(x) = xN

|x| , the left-hand side of the Pohožaev identity is nonnegative, while
its right-hand side is nonpositive. Thus, both sides are zero. If at least one of the
inequalities q ≥ q3 or ` ≤ −N−1

q−1 is strict, then we immediately deduce that v = 0
in SN−1

+ .
If q = q3 and ` = −N−1

q−1 , then∫
∂SN−1

+

|∇′v|2 〈∇′φ, ν〉 dτ = 0.

Since 〈∇′φ, ν〉 < 0 on ∂SN−1
+ , we conclude that ∇′v = 0 on ∂SN−1

+ . Define the
function ṽ : SN−1 → R by

ṽ(x) =

{
v(x) if x ∈ SN−1

+ ,

0 otherwise.

Then, ṽ satisfies (in the sense of distributions)

−∆′ṽ = `ṽ + |ṽ|q−1
ṽ in SN−1.

Since ṽ vanishes in an open subset of SN−1, by the unique continuation principle
we have ṽ = 0 in SN−1 and the conclusion follows. ¤

Remark 2.1. When S $ SN−1
+ and q > q3, the previous non-existence result can

be improved if we define

(2.7) λ(S, φ) = sup
{

µ ≥ 0 :
∫

S

|∇′ζ|2φ dσ ≥ µ

∫
S

ζ2φ dσ, ∀ζ ∈ C∞
0 (S)

}
.
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This constant λ(S, φ) is actually zero if S = SN−1
+ . With this inequality (2.2) turns

into
(2.8)[(

N−3
2 − N−1

q+1

)
λ(S, φ)− N−1

2

( `(q−1)+N−1
q+1

)] ∫
S

v2φ dσ ≤ 1
2

∫
∂S

|∇′v|2 〈∇′φ, ν〉 dτ.

Therefore, the statement of Corollary 2.1 still holds if q > q3 and

(2.9) ` ≤ −N−1
q−1 + q(N−3)−N−1

(N−1)(q−1) λ(S, φ).

Note that λ(S, φ) tends to infinity as S shrinks to a point.

Remark 2.2. Brezis and Peletier proved in [12] a Pohožaev identity on the unit
ball B1 in R3 for the problem

(2.10)

{
−∆w = V (x)w + w5 in B1,

w = 0 on ∂B1.

Using a stereographic projection in R4, their identity gives a non-existence result
for solutions of the Dirichlet problem (2.1) when q = 5.

3. Uniqueness of solutions of a pde in SN−1
+

In this section we address the question of uniqueness of positive solutions of the
Dirichlet problem

(3.1)


−∆′v = `v + vq in SN−1

+ ,

v ≥ 0 in SN−1
+ ,

v = 0 on ∂SN−1
+ ,

where ` ∈ R. A solution of (3.1) is understood in the classical sense.

We shall prove the following results:

Theorem 3.1. Assume that N = 2. If q > 1, then for every ` ∈ R the Dirichlet
problem (3.1) has at most one positive solution.

Theorem 3.2. Assume that N ≥ 4. If 1 < q < q3, then for every ` ∈ R the
Dirichlet problem (3.1) has at most one positive solution.

Theorem 3.3. Assume that N = 3. Then, the Dirichlet problem (3.1) has at most
one positive solution under one of the following assumptions:

• for every 1 < q ≤ 5 and ` ∈ R,
• for every q > 5 and ` ≤ 2(3−q)

(q+3)(q−1) .

Remark 3.1. In dimension N = 3 we do not know whether the Dirichlet problem
(3.1) has a unique positive solution if q > 5 and ` > 2(3−q)

(q+3)(q−1) .

We first show that the graphs of two positive solutions of (3.1) must cross.

Lemma 3.1. Assume that v1 and v2 are positive solutions of (3.1). If v1 ≤ v2 in
SN−1

+ , then v1 = v2.
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Proof. Multiplying by v2 the equation satisfied by v1 and integrating by parts, we
get ∫

SN−1
+

〈∇v1,∇v2〉 dσ =
∫

SN−1
+

(
`v1 + (v1)q

)
v2 dσ.

Reversing the roles of v1 and v2, we also have∫
SN−1

+

〈∇v2,∇v1〉 dσ =
∫

SN−1
+

(
`v2 + (v2)q

)
v1 dσ.

Subtracting these identities, we have∫
SN−1

+

(
v1

q−1 − v2
q−1

)
v1v2 dσ = 0.

Since the integrand is nonnegative we must have v1
q−1 − v2

q−1 = 0 and the con-
clusion follows. ¤

We first consider first the case N = 2:

Proof of Theorem 3.1. Denoting by

θ = arccos x2
|x| ,

then a solution of (3.1) satisfies{
vθθ + `v + vq = 0 in

(
0, π

2

)
,

vθ(0) = 0, v(π
2 ) = 0.

Moreover, for every θ ∈ (0, π
2 ], vθ(θ) < 0. Indeed, we have vθ(π

2 ) < 0. Let

ρ = inf {θ > 0 : vθ(θ) < 0}
and assume by contradiction that ρ > 0. Then, from uniqueness of the Cauchy
problem, ρ = π

4 and, for every θ ∈ [0, π
2 ], v(θ) = v(π

2 − θ). Hence, vθ(0) > 0,
a contradiction (this argument is the 1-dimensional version of the moving plane
method). We conclude that v is strictly decreasing.
Let V : [0, v(0)] → R be the function defined by

(3.2) V (ξ) = vθ(v−1(ξ)).

Then, V is of class C1 in [0, v(0)). Since for every ξ ∈ [0, v(0)),

(v−1)ξ(ξ) =
1

vθ(v−1(ξ))
=

1
V (ξ)

,

we deduce that

(3.3) (V 2)ξ = 2V Vξ = 2V (vθθ ◦ v−1)(v−1)ξ = 2(vθθ ◦ v−1) = −2(`ξ + ξq).

Assume by contradiction that (3.1) has two distinct positive solutions, say v1 and
v2. We may assume they are both defined in terms of the variable θ. Then,
by the previous lemma, there exists c1 ∈ (0, π

2 ) such that v1(c1) = v2(c1). Let
c2 ∈ (c1,

π
2 ] be the smallest number such that v1(c2) = v2(c2) (this point c2 exists

since v1θ(c1) 6= v2θ(c1) and v1(π
2 ) = v2(π

2 )). Without loss of generality, we may
assume that, for every θ ∈ (c1, c2),

v1(θ) < v2(θ).
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Let V1 and V2 be the functions given by (3.2) corresponding to v1 and v2, respec-
tively. For i ∈ {1, 2}, let

αi = v1(ci) = v2(ci).
By (3.3), for every ξ ∈ (α2, α1),

(V1
2)ξ(ξ) = −2(`ξ + ξq) = (V2

2)ξ(ξ).

Hence, the function V1
2 − V2

2 is constant. On the other hand, since v1 < v2 and
v1, v2 are both decreasing, by uniqueness of the Cauchy problem,

v1θ(c1) < v2θ(c1) < 0 and v2θ(c2) < v1θ(c2) < 0.

Thus,
V1

2(α1)− V2
2(α1) > 0 and V1

2(α2)− V2
2(α2) < 0.

This is a contradiction. We conclude that problem (3.1) cannot have more than
one positive solution. ¤

Remark 3.2. In [6], the authors investigate the structure of the set of all (signed)
solutions of the equation

v′′ + `v + |v|q−1v = 0 in R.

Their proofs rely on the fact that the equation is autonomous (see [6, Lemma 1.1
and Theorem 1.1]) and the same strategy can also be applied to equations of the
form

(3.4) v′′ + `v + g(v) = 0,

where g ∈ C1(R), g(0) = 0, is such that the function r 7→ g(r)
r is increasing on

(0, +∞). The proof of Theorem 3.1 above can also be adapted to this more general
setting. We refer the reader to [7, Proposition 4.4] for a more general result.

In order to study (3.1) in the case of higher dimensions, the first step is to rewrite
the Dirichlet problem in terms of an ode. By an adaptation of the moving planes
method to SN−1 (see [27]), any positive solution v of (3.1) depends only on the
geodesic distance to the North pole:

θ = arccos xN

|x|

and v decreasing with respect to θ. Since in this case

∆′v =
1

(sin θ)N−2

d

dθ

(
(sin θ)N−2vθ

)
,

every solution of (3.1) satisfies the following ode in terms of the variable θ:

(3.5)

{
vθθ + (N − 2) cot θ vθ + `v + vq = 0 in

(
0, π

2

)
,

vθ(0) = 0, v(π
2 ) = 0.

The heart of the matter is then to apply some ideas from Kwong [20] and Kwong-
Li [21], originally dealing with positive solutions of

(3.6)

 urr + (N − 2)
1
r

ur + `u + uq = 0 in (0, a),

ur(0) = 0, u(a) = 0.

By Lemma 3.1 and the discussion above, the graphs of two positive solutions of
(3.5) must intersect in (0, π

2 ). The number of intersection points could be arbitrarily
large but always finite in view of the uniqueness of the Cauchy problem. The next
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lemma allows us to reduce the problem to the case where there could be only one
intersection point. The argument relies on the shooting method and continuous
dependence arguments; we only give a sketch of the proof.

Lemma 3.2. Assume that (3.5) has two distinct positive solutions. Then, there
exists two positive solutions of (3.5) whose graphs intersect only once in the interval
(0, π

2 ).

Sketch of the proof. For each α > 0, let vα be the (unique) maximal solution of{
vθθ + (N − 2) cot θ vθ + `v + |v|q−1v = 0 in Iα = (0, mα) ⊂ (0, π),

vθ(0) = 0, v(0) = α.

This solution is first obtained on some interval [0, τα] by using the contraction
mapping principle to solve the integral equation

(3.7) v(θ) = α−
∫ θ

0

(sin σ)2−N

∫ σ

0

(sin τ)N−2(`v + |v|q−1v)(τ) dτ dσ

and then it is extended to its maximal interval Iα. By a standard concavity ar-
gument, one shows that mα = sup Iα = π. One then verifies that vα depends
continuously on α, uniformly when θ ∈ [0, π − ε] for any ε > 0 small enough, and
we can take ε = π

4 . Since

vα
θ (θ) = −(sin θ)2−N

∫ θ

0

(sin τ)N−2(`vα + |vα|q−1vα)(τ) dτ,

it follows that vα depends continuously on α in the C1([0, 3π
4 ])-topology.

If v1 and v2 are two distinct solutions of (3.5) we can suppose that v1(0) > v2(0).
We shall assume that their graphs have more than one intersection; we denote
by c1 and c2 their first and second intersections in (0, π

2 ), respectively. Given
α ∈ (0, v1(0)), we denote by σ1(α), . . . , σk(α) the points in (0, π

2 ) where v1 and vα

intersect, ordered increasingly. Then,

σ1(v2(0)) = c1 and σ2(v2(0)) = c2.

Since the derivatives of v1 and vα at σj(α) do not coincide, it follows from the
Implicit function theorem that the mapping α 7→ σj(α) is continuous.

We now show that there exists β ∈ (0, v2(0)) such that σ2(β) = π
2 . Assume by

contradiction that this is false. Then,

σ2(α) < π
2 ∀α ∈ (0, v2(0)).

We also have, in particular, σ1(α) < π
2 . By the Mean value theorem, there exists

τ(α) ∈ (σ1(α), σ2(α)) such that

v1θ(τ(α)) = vα
θ (τ(α)).

On the other hand, since vα → 0 uniformly on [0, π
2 ] and v1 > 0 on [0, π

2 ),

lim
α→0

σ1(α) = lim
α→0

σ2(α) = π
2

and thus
v1,θ(π

2 ) = lim
α→0

v1θ(τ(α)) = lim
α→0

vα
θ (τ(α)) = 0.

This is a contradiction.
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Let β ∈ (0, v2(0)) be the largest number in (0, v2(0)] such that

σ2(β) = π
2 .

It remains to show that vβ is positive and hence it is a solution of (3.5). More
generally, we show that the assertion

vα(θ) ≥ 0 ∀θ ∈ [0, σ2(α)] ∀α ∈ [γ, v2(0)]

holds with γ = β. Let α̂ be the infimum among all numbers γ for which this
property holds. By continuity of α 7→ σ2(α) and α 7→ vα, this property still holds
for α̂.

Assume by contradiction that α̂ > β. Then, there exists a sequence (αn) in
[β, α̂) such that αn → α̂ and a sequence (θn) with θn ∈ [0, σ2(αn)] such that

vαn(θn) < 0 ∀n ≥ 1.

Passing to a subsequence if necessary, we can assume that (θn) converges to some
point θ̂ ∈ [0, σ2(α̂)]. Since the function vα̂ is nonnegative,

vα̂(θ̂) = 0 and vα̂
θ (θ̂) = 0.

This is a contradiction with the uniqueness of the Cauchy problem. Therefore, vβ

is a solution of (3.5) which intersects only once v1 in (0, π
2 ). ¤

The next result is standard but we present a proof for the convenience of the
reader.

Lemma 3.3. Assume that v1 and v2 are positive solutions of (3.5) whose graphs
coincide at a single point of (0, π

2 ). If v1(0) > v2(0), then the function

θ ∈ (0, π
2 ) 7−→ v2(θ)

v1(θ)

is increasing.

Proof. Let J : [0, π
2 ] → R be the function defined as J = v1v2θ − v2v1θ. To prove

the lemma, it suffices to show that J > 0 in (0, π
2 ). Using the equations satisfied

by v1 and v2, one finds

Jθ = −(N − 2) cot θJ +
(
v1

q−1 − v2
q−1

)
v1v2.

Thus,
1

(sin θ)N−2

(
(sin θ)N−2J

)
θ

=
(
v1

q−1 − v2
q−1

)
v1v2.

Let σ ∈ (0, π
2 ) be such that v1(σ) = v2(σ). Since v1θ(σ) 6= v2θ(σ), we have v1 > v2

in (0, σ) and v1 < v2 in (σ, π
2 ), we conclude that the function

θ ∈ [0, π
2 ] 7−→ (sin θ)N−2J(θ)

is increasing in (0, σ) and decreasing in (σ, π
2 ). Since it vanishes at 0 and π

2 , we
have

(sin θ)N−2J > 0 in (0, π
2 ).

Thus J > 0 in (0, π
2 ) and the conclusion follows. ¤

The following identity will be needed in the proofs of Theorems 3.2 and 3.3.
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Lemma 3.4. Let v be a solution of (3.5), α = 2(N−2)
q+3 and β = 2(N−2)(q−1)

q+3 . Set

(3.8) w(θ) = (sin θ)α v(θ)

Let E : (0, π
2 ) 7→ R and G : (0, π

2 ) → R be the functions defined by

(3.9) E(θ) = (sin θ)β w2
θ

2
+ G(θ)

w2

2
+

wq+1

q + 1
,

(3.10) G(θ) =
((

α(N − 2− α) + `
)
(sin θ)2 + α(α + 3−N)

)
(sin θ)β−2.

Then,

(3.11) Eθ = Gθ
w2

2
.

Proof. Let w : (0, π
2 ) → R be the function defined by (3.8). Then,

wθθ+(N−2−2α) cot θ wθ+
(

α(N − 2− α) + ` +
α(α + 3−N)

(sin θ)2

)
w+

wq

(sin θ)α(q−1)
= 0.

Multiplying this identity by (sin θ)β , we get

(sin θ)β wθθ + (N − 2− 2α)(sin θ)β−1 cos θ wθ + G(θ) w + (sin θ)β−α(q−1)wq = 0

where G is defined by (3.10). We now observe that α and β satisfy

N − 2− 2α =
β

2
and β − α(q − 1) = 0.

The identity satisfied by w becomes

(sin θ)β wθθ +
β

2
(sin θ)β−1 cos θ wθ + G(θ) w + wq = 0.

Since
d

dθ

(
(sin θ)β (wθ)2

2

)
=

(
(sin θ)β wθθ +

β

2
(sin θ)β−1 cos θ wθ

)
wθ

and
d

dθ

(
G(θ)

w2

2

)
= G(θ)wwθ + Gθ(θ)

w2

2
identity (3.11) follows. ¤

The following proof is inspired from Kwong-Li [21].

Proof of Theorem 3.2. We use the notation of Lemma 3.4. We observe that E can
be continuously extended at 0 and π

2 . This is clear at π
2 , where we take

(3.12) E(π
2 ) =

(wθ(π
2 ))2

2
=

(vθ(π
2 ))2

2
.

To reach the conclusion at 0, it suffices to observe that for every θ ∈ (0, π
2 ),

(sin θ)β(wθ(θ))2 = (sin θ)β
(
α(sin θ)α−1 cos θ v(θ) + (sin θ)α vθ(θ)

)2

= (sin θ)2α+β−2
(
α cos θ v(θ) + sin θ vθ(θ)

)2

.

Since N ≥ 4,
2α + β − 2 = 2(N−3)

q+3

(
q + N−5

N−3

)
> 0,



ISOLATED BOUNDARY SINGULARITIES OF SEMILINEAR ELLIPTIC EQUATIONS 13

the right-hand side of the previous expression converges to 0 as θ → 0. We can
then set

(3.13) E(0) = 0.

Notice that

Gθ(θ) =
[(

α(N − 2− α) + `
)
β(sin θ)2 + α(α + 3−N)(β − 2)

]
(sin θ)β−3 cos θ.

By the choices of α and β,

α(α + 3−N)(β − 2) = 4(N−2)(N−3)2

(q+3)3

(
q + N−5

N−3

)(
N+1
N−3 − q

)
.

Since N ≥ 4 and 1 < q < N+1
N−3 , this quantity is positive. Hence, there exists ε > 0

such that
Gθ(θ) > 0 ∀θ ∈ (0, ε).

In view of the expression of Gθ, we have the following possibilities: either
(i) Gθ > 0 in (0, π

2 ),
or

(ii) there exists c ∈ (0, π
2 ) such that Gθ > 0 in (0, c) and Gθ < 0 in (c, π

2 ).
Assume by contradiction that (3.1) has more than one solution, hence by Lemma 3.2
problem (3.5) has two positive solutions v1 and v2 whose graphs intersect exactly
once in the interval (0, π

2 ). Without loss of generality, we may assume that v1(0) >
v2(0). For i ∈ {1, 2}, define wi and Ei accordingly.

First, assume that G satisfies property (i) above. Let

γ =
v2θ(π

2 )
v1θ(π

2 )
.

We have from (3.12) and (3.13)

(3.14) (E2 − γ2E1)(π
2 ) = 0 = (E2 − γ2E1)(0).

On the other hand, by Lemma 3.3 the function

θ ∈ (0, π
2 ) 7−→ v2(θ)

v1(θ)

is increasing. In particular, for every θ ∈ [0, π
2 ),

v2(θ)
v1(θ)

< lim
θ→π

2−

v2(θ)
v1(θ)

=
v2θ(π

2 )
v1θ(π

2 )
= γ.

Hence,

(w2)2 − γ2(w1)2 = (sin θ)2α
(
(v2)2 − γ2(v1)2

)
< 0 in (0, π

2 ).

Thus, by Lemma 3.4 and by assumption (i), we have for every θ ∈ (0, π
2 ),

(E2 − γ2E1)θ(θ) = Gθ(θ)
(
(w2)2 − γ2(w1)2

)
< 0.

This contradicts (3.14). Therefore, problem (3.1) cannot have two distinct positive
solutions if G satisfies (i).

Next, we assume that G satisfies property (ii) for some point c. Let

γ̃ =
v2(c)
v1(c)

.
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As in the previous case, (E2 − γ̃2E1)(0) = 0. By Lemma 3.3, we have
v2

v1
< γ̃ in (0, c) and

v2

v1
> γ̃ in (c, π

2 ).

Hence, by uniqueness of the Cauchy problem, (E2 − γ̃2E1)(π
2 ) > 0. By Lemma 3.4

and by assumption (ii), we have for every θ ∈ (0, π
2 ),

(E2 − γ̃2E1)θ(θ) = Gθ(θ)
(
(w2)2 − γ̃2(w1)2

)
≤ 0.

This is again a contradiction. Therefore, if G satisfies (ii), then problem (3.1) has
a unique positive solution. The proof of Theorem 3.2 is complete. ¤

When N = 3, the proof of uniqueness of positive solutions of (3.1) is inspired
from Kwong-Li [21] (Case 1 below) and Kwong [20] (Case 2 below).

Proof of Theorem 3.3. We split the proof in two cases:

Case 1. q > 1 and ` ≤ 2(3−q)
(q+3)(q−1) .

Let G : (0, π
2 ) → R be the function defined by (3.10). Since N = 3, we have

α = 2
q+3 and β = 2(q−1)

q+3 . Thus,

α(α + 3−N)(β − 2) = α2(β − 2) = − 32
(q+3)3 < 0.

Moreover, since by assumption ` ≤ 2(3−q)
(q+3)(q−1) , we have(

α(N − 2− α) + `
)
β + α(α + 3−N)(β − 2) = 2(q−1)

q+3

[
2(q−3)

(q+3)(q−1) + `
]
≤ 0.

Therefore, G satisfies
(iii) Gθ < 0 in (0, π

2 ).
We again consider the function E defined by (3.9), and satisfying (3.11). We observe
that E can be continuously extended at π

2 by (3.12), but not at 0 since E(θ) diverges
to +∞ as θ → 0.

Assume by contradiction that (3.1) has more than one solution, hence as above
problem (3.5) has two positive solutions v1 and v2 whose graphs intersect exactly
once in the interval (0, π

2 ), and v1(0) > v2(0). For i ∈ {1, 2}, define wi and Ei

accordingly.
Let

γ̂ =
v2(0)
v1(0)

.

By Lemma 3.3 we find

(w2)2 − γ̂2(w1)2 = (sin θ)2α
(
(v2)2 − γ̂2(v1)2

)
> 0 in (0, π

2 ).

By Lemma 3.4 and by assumption (iii), we have for every θ ∈ (0, π
2 ),

(3.15) (E2 − γ̂2E1)θ(θ) = Gθ(θ)
(
(w2)2 − γ̂2(w1)2

)
< 0.

By Lemma 3.3,

(E2 − γ̂2E1)(π
2 ) =

(v2θ(π
2 ))2 − γ̂2(v1θ(π

2 ))2

2
> 0.

Although E1 and E2 cannot be continuously extended at 0, one checks that

lim
θ→0

(
E2(θ)− γ̂2E1(θ)

)
= 0,
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by expanding the functions vi up to the order 2 at θ = 0. This contradicts (3.15).
Therefore, equation (3.1) has at most one positive solution.

Case 2. 1 < q ≤ 5 and ` > 2(3−q)
(q+3)(q−1) .

Since 1 < q ≤ 5, we have ` > − 1
8 , in particular ` ≥ − 1

4 . The remaining of the
argument only requires 1 < q ≤ 5 and ` ≥ − 1

4 .
Let z : (0, π

2 ) → R be the function defined as

z(θ) = (sin θ)
1
2 v(θ).

Then, z satisfies

(3.16) zθθ +
(

` +
1
4

+
1

4(sin θ)2

)
z +

zq

(sin θ)
q−1
2

= 0.

Assume by contradiction that (3.1) has more than one solution, hence by Lemma 3.2
problem (3.5) has two positive solutions v1 and v2 whose graphs intersect ex-
actly once in the interval (0, π

2 ). Without loss of generality, we may assume that
v1(0) > v2(0). Define z1 and z2 accordingly. Then,

z1 > z2 in (0, σ0) and z1 < z2 in (σ0,
π
2 ).

In addition,
z1(0) = z2(0) = z1(π

2 ) = z2(π
2 ) = 0.

Let
ξ0 = z1(σ0) = z2(σ0).

As a first claim, we show that z1 and z2 cannot be both decreasing in [σ0,
π
2 ]. Indeed,

if it holds, we may consider their inverses z−1
i : [0, ξ0] → [σ0,

π
2 ]. For i ∈ {1, 2}, let

Zi : [0, ξ0] → R be the function given by

Zi(ξ) = ziθ(z
−1
i (ξ))

Since
z1θ(σ0) < z2θ(σ0) < 0 and z2θ(π

2 ) < z1θ(π
2 ) < 0,

we have
(Z1(ξ0))2 > (Z2(ξ0))2 and (Z1(0))2 < (Z2(0))2.

From the Mean value theorem, there exists η ∈ (0, ξ0) such that

(3.17) (Z1
2)ξ(η) > (Z2

2)ξ(η).

On the other hand, for i ∈ {1, 2} and for every ξ ∈ (0, ξ0),

(3.18) ZiZiξ = ziθθ(z
−1
i (ξ)) = −

(
` +

1
4

+
1

4(sin z−1
i (ξ))2

)
ξ − ξq

(sin z−1
i (ξ))

q−1
2

.

Since z−1
1 (ξ) < z−1

2 (ξ) in (0, ξ0), we deduce that

(Z1
2)ξ = 2Z1Z1ξ < 2Z2Z2ξ = (Z2

2)ξ.

This contradicts (3.17) and proves the claim.
As a second claim, we show that z1 and z2 cannot be both increasing in (0, σ0).

Assuming that it holds, we may consider their inverses z−1
i : [0, ξ0] → [0, σ0]. For

i ∈ {1, 2}, let Yi : [0, ξ0] → R be the function defined for ξ > 0 as

Yi(ξ) = ziθ(z
−1
i (ξ))(sin z−1

i (ξ));
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Yi can be continuously extended to 0 by taking

(3.19) Yi(0) = 0.

Moreover, for ξ ∈ (0, ξ0],

Yi(ξ)− Yi(0)
ξ

=
1
2
(cos z−1

i (ξ)) +
viθ(z

−1
i (ξ))

vi(z−1
i (ξ))

(sin z−1
i (ξ)).

We deduce that Yi is differentiable at 0 and

(3.20) Y ′
i (0) =

1
2
.

Since z2 < z1 in (0, σ0), by uniqueness of the Cauchy problem we have

(3.21) (Y2(ξ0))2 > (Y1(ξ0))2.

On the other hand, for i ∈ {1, 2},

Yiξ =
(
ziθθ(z

−1
i (ξ))(sin z−1

i (ξ)) + ziθ(z
−1
i (ξ))(cos z−1

i (ξ))
) 1

ziθ(z
−1
i (ξ))

=
(
ziθθ(z

−1
i (ξ))(sin z−1

i (ξ))2
) 1

Yi
+ cos z−1

i (ξ).

Thus,

YiYiξ − Yi cos z−1
i (ξ) = −

(
(` + 1

4 )(sin z−1
i (ξ))2 + 1

4

)
ξ − (sin z−1

i (ξ))
5−q
2 ξq.

Since z−1
2 (ξ) > z−1

1 (ξ) in (0, ξ0) and ` ≥ − 1
4 ,

(` + 1
4 )(sin z−1

2 (ξ))2 ≥ (` + 1
4 )(sin z−1

1 (ξ))2.

Since q ≤ 5,

(sin z−1
2 (ξ))

5−q
2 ≥ (sin z−1

1 (ξ))
5−q
2 .

We deduce that

Y2Y2ξ − Y2 cos z−1
2 (ξ) ≤ Y1Y1ξ − Y1 cos z−1

1 (ξ).

Hence, (
(Y2)2 − (Y1)2

)
ξ
≤ 2(Y2 cos z−1

2 (ξ)− Y1 cos z−1
1 (ξ))

≤ 2 cos z−1
1 (ξ)(Y2 − Y1).

Let f : (0, ξ0) → R be the function defined by

f(ξ) =
2 cos z−1

1 (ξ)
Y1(ξ) + Y2(ξ)

.

Using this notation, (
(Y2)2 − (Y1)2

)
ξ
≤ f(ξ)

(
(Y2)2 − (Y1)2

)
.

Thus, for every ξ ∈ (0, ξ0],

(3.22)
(
(Y2)2 − (Y1)2

)
(ξ) ≥

(
(Y2)2 − (Y1)2

)
(ξ0) e

R ξ0
ξ f(τ) dτ .

Note that, in view of (3.19)–(3.20),

f(ξ) =
2
ξ
(1 + o(1)) as ξ → 0
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and thus
e

R ξ0
ξ f(τ) dτ = ξ2(1 + o(1)) as ξ → 0.

On the other hand,(
(Y2)2 − (Y1)2

)
(ξ) =

(
Y2(ξ) + Y1(ξ)

)(
Y2(ξ)− Y1(ξ)

)
= o(ξ2) as ξ → 0.

Thus, dividing both sides of (3.22) by ξ2 and letting ξ → 0, we get

0 ≥
(
(Y2)2 − (Y1)2

)
(ξ0).

This contradicts (3.21) and the second claim is proved.

We can now conclude the proof. It follows from equation (3.16) that both z1

and z2 are concave. Since z1 and z2 cannot be simultaneously increasing on (0, σ0)
or decreasing on (σ0,

π
2 ), at their intersection point there holds

z1θ(σ0) < 0 < z2θ(σ0).

Therefore, the maximum of z1 is achieved in (0, σ0) while the maximum of z2 is
achieved in (σ0,

π
2 ).

Denote the maximum of zi by mi. We first show that m2 > m1. Indeed, assume
by contradiction that m2 ≤ m1. Let σ̃2 ∈ (σ0,

π
2 ) be such that

z2(σ̃2) = m2.

Let σ̃1 be the largest number in (0, π
2 ) such that

z1(σ̃1) = m2.

The restrictions zi : [σ̃i,
π
2 ] → [0, m2] are both decreasing. Let Z̃i : [0, m2] → R be

the function defined as
Z̃i(ξ) = ziθ(z

−1
i (ξ)).

In the interval [0, m2] we have z−1
1 (ξ) < z−1

2 (ξ) and (3.18) holds. Thus, as in the
first claim,

(Z̃1
2)ξ < (Z̃2

2)ξ.

Since
(Z̃1(0))2 < (Z̃2(0))2 and (Z̃1(m2))2 ≥ 0 = (Z̃2(m2))2,

we have a contradiction.

We now show that m1 ≥ m2. Assume by contradiction that m1 < m2. Let
σ̂1 ∈ (0, σ) be such that

z1(σ̂1) = m1.

Let σ̂2 be the smallest number in (0, π
2 ) such that

z2(σ̂1) = m1.

The restrictions zi : [0, σ̂i] → [0, m1] are both increasing. Let Ŷi : [0, m1] → R be
the function defined for ξ > 0 as

Ŷi(ξ) = ziθ(z
−1
i (ξ))(sin z−1

i (ξ))

and Ŷi(0) = 0. Then, Ŷi is differentiable at 0 and

Ŷ ′
i (0) =

1
2
.

Moreover, (
(Ŷ2)2 − (Ŷ1)2

)
(m1) > 0.
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In the interval [0, σ̂i] we have z−1
1 (ξ) < z−1

2 (ξ); thus, as in the second claim,(
(Ŷ2)2 − (Ŷ1)2

)
ξ
≤ 2 cos z−1

1 (ξ)
Ŷ2 + Ŷ1

(
(Ŷ2)2 − (Ŷ1)2

)
and we get a contradiction as before.

Finally, m2 > m1 ≥ m2, which is a contradiction. Therefore, problem (3.1) can
have at most one positive solution. ¤

4. Proof of Theorem 1.1

Proof of (i). Assume that 1 < q ≤ q1. Let φ be a positive eigenfunction of −∆′

in W 1,2
0 (SN−1

+ ) associated to the first eigenvalue N − 1, and let ω be a solution of
(1.3). Using φ as test function, we get∫

SN−1
+

〈∇′ω,∇′φ〉 dσ =
∫

SN−1
+

(`N,qω + ωq)φ dσ.

On the other hand, since φ is an eigenfunction of −∆′,∫
SN−1

+

〈∇′ω,∇′φ〉 dσ = (N − 1)
∫

SN−1
+

ωφ dσ.

Thus,

(4.1) (N − 1− `N,q)
∫

SN−1
+

ωφ dσ =
∫

SN−1
+

ωqφ dσ.

Since q ≤ q1, we have

N − 1− `N,q = (N−1)(q+1)
(q−1)2

(
q − N+1

N−1

)
≤ 0.

Hence, the left-hand side of (4.1) is nonpositive while the right-hand side is non-
negative. Thus, ∫

SN−1
+

ωqφ dσ = 0

We conclude that ω = 0 in SN−1
+ . Therefore, problem (1.3) has no positive solution.

¤

Proof of (ii). Since q > q1,

N − 1− `N,q = (N−1)(q+1)
(q−1)2

(
q − N+1

N−1

)
> 0.

Thus, the functional J : W 1,2
0 (SN−1

+ ) → R defined by

J (w) =
∫

SN−1
+

(
|∇′w|2 − `N,qw

2
)
dσ

is bounded from below by 0. On the other hand, since q < q3 we can minimize J
over the set {

w ∈ W 1,2
0 (SN−1

+ ) ;
∫

SN−1
+

(w+)q+1 dσ = 1
}

.
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Let w be a minimizer. Then, w+ is also a minimizer, whence w = w+ and this
function satisfies

−∆′w − `N,qw = λwq in SN−1
+

for some λ > 0. By standard elliptic regularity theory, w is smooth and vanishes on
∂SN−1

+ in the classical sense. The function λ
1

q−1 w is therefore a solution of (1.3).
For uniqueness, one applies Theorem 3.1 or Theorem 3.2 in the case N 6= 3.

If N = 3, then we can apply Theorem 3.3 since `q,3 = 2(3−q)
(q−1)2 always satisfies the

assumption therein. ¤

Proof of (iii). We may assume that N ≥ 4, for otherwise there is nothing to prove.
Note that if q ≥ q3,

N−1
q−1 − `N,q = − N−3

(q−1)2

(
q − N+1

N−3

)
≤ 0.

Applying Corollary 2.1, we deduce that (1.3) has no positive solution. ¤

5. The a priori estimate

In this section we establish Theorem 1.5 whose proof is based on the following
result.

Proposition 5.1. Assume that 1 < q < q2. Let 0 < r < 1
2 diam Ω and ζ ∈ C∞(∂Ω)

with ζ ≥ 0 on ∂Ω. Then, every solution of

(5.1)


−∆u = uq in Ω ∩ (B2r \Br),

u ≥ 0 in Ω ∩ (B2r \Br),

u = ζ on ∂Ω ∩ (B2r \Br),

satisfies

(5.2) u(x) ≤ C
[
dist(x, Γr)

]− 2
q−1 ∀x ∈ Ω ∩ (B2r \Br),

where Γr = Ω ∩ (∂B2r ∪ ∂Br) and C > 0 is a constant independent of u.

We denote by Br the ball of radius r centered at 0. The proof of this estimate is
based on two results: a Liouville theorem for the equation −∆u = uq in RN or in
RN

+ (see [14]) and the Doubling lemma of Poláčik-Quittner-Souplet [29] which we
recall:

Lemma 5.1. Let (X, d) be a complete metric space, Γ & X and γ : X \ Γ →
(0, +∞). Assume that γ is bounded on all compact subsets of X \ Γ. Given k > 0,
let y ∈ X \ Γ be such that

γ(y) dist(y, Γ) > 2k.

Then, there exists x ∈ X \ Γ such that
• γ(x) dist(x, Γ) > 2k;
• γ(x) ≥ γ(y);
• 2γ(x) ≥ γ(z), ∀z ∈ Bk/γ(x)(x).

Proof of Proposition 5.1. To simplify the notation we may assume that ζ ≡ 0.
Assume by contradiction that (5.2) is false. Then, for every integer k ≥ 1 there
exist 0 < rk < 1

2 diam Ω, a solution uk of (5.1) with r = rk, and yk ∈ Ω∩(B2rk
\Brk

)
such that

uk(yk) > (2k)
2

q−1
[
dist(yk, Γrk

)
]− 2

q−1 .
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Applying the previous lemma with

X = Ω ∩ (B2rk
\Brk

) and γ = u
q−1
2

k ,

one finds xk ∈ X \ Γrk
such that

(i) uk(xk) > (2k)
2

q−1
[
dist(xk, Γrk

)
]− 2

q−1 ;
(ii) uk(xk) ≥ uk(yk);

(iii) 2
2

q−1 uk(xk) ≥ uk(z), ∀z ∈ BRk
(xk) ∩ Ω, with Rk = k[uk(xk)]−

q−1
2 .

By (i) we have Rk < 1
2 dist(xk, Γrk

) and thus

BRk
(xk) ∩ Γrk

= ∅.
Since dist(xk, Γrk

) ≤ 1
2rk < 1

4 diam Ω, we also deduce from (i) that

uk(xk) ≥
(

8k

diam Ω

) 2
q−1

.

In particular,
uk(xk) → +∞ as k → +∞.

For every k ≥ 1, let

tk = [uk(xk)]−
q−1
2 ,

Dk =
{

ξ ∈ RN ; |ξ| ≤ k and xk + tkξ ∈ Ω
}

and

vk(ξ) =
1

uk(xk)
uk

(
xk + tkξ

)
∀ξ ∈ Dk.

Then, vk satisfies

−∆vk = vq
k, 0 ≤ vk ≤ 2

2
q−1 and vk(0) = 1.

Passing to a subsequence if necessary, we may assume that either
(A) for every a > 0 there exists k0 ≥ 1 such that if k ≥ k0, then Batk

(xk)∩∂Ω =
∅,

or
(B) there exists a0 > 0 such that for every k ≥ 1, Ba0tk

(xk) ∩ ∂Ω 6= ∅.
Since the sequence (vk) is uniformly bounded, it follows that (∆vk) is also uniformly
bounded. In both cases, by elliptic (interior and boundary) estimates, we have for
every 1 < p < +∞ and every s > 0,

‖vk‖W 2,p(Dk∩Bs) ≤ Cs,p.

If (A) holds, then up to a subsequence (vk) converges locally uniformly in RN to
some smooth function v such that

−∆v = vq, 0 ≤ v ≤ 2
2

q−1 and v(0) = 1.

On the other hand, if (B) holds, then up to a subsequence and a rotation of the
domain there exists some smooth function v defined in RN

+ such that (vk) converges
locally uniformly to v. Since the sequence (vk) is equicontinuous and for every k ≥ 1,
vk(0) = 0, we have v(0) = 1.

In both cases, we deduce that v is a nontrivial bounded solution of

−∆v = vq
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in RN or in RN
+ , which is impossible (see [14]). Therefore, estimate (5.2) must

hold. ¤

Proof of Theorem 1.5. It suffices to establish (1.7) if x ∈ Ω and |x| < 3
4 diam Ω.

For this purpose, we apply Proposition 5.1 with r = 2
3 |x|. Since dist(x, Γr) = 1

3r,
we deduce that

u(x) ≤ C
[
dist(x, Γr)

]− 2
q−1 = C

(r

3

)− 2
q−1

= C̃ |x|−
2

q−1 .

This establishes the result. ¤

6. The geometric and analytic framework

We recall some of the preliminaries and the geometric framework in [19] which
will be used in the remaining of the paper.

We denote by (x1, . . . , xN ) the coordinates of x ∈ RN and by B = {e1, . . . , eN}
the canonical orthonormal basis in RN . Since we are assuming that the outward
unit normal vector is −eN , ∂Ω is the graph of a smooth function in a neighborhood
of 0. In other words, there exist a neighborhood G of 0 and a smooth function
φ : G ∩ T0Ω → R such that

G ∩ ∂Ω =
{

(x′, xN ) ∈ RN−1 × R ; x′ ∈ G ∩ T0Ω and xN = φ(x′)
}

.

Furthermore,
φ(0) = 0 and ∇φ(0) = 0.

Let

(6.1) Φ(x) = y,

with

(6.2) yi = xi if i ∈ {1, . . . , N − 1} and yN = xN − φ(x′).

We can assume that Φ is a C∞ diffeomorphism from G to G̃ = Φ(G), and Φ(Ω∩G) =
G̃ ∩ RN

+ . To avoid introducing some additional notation, we will assume that

G̃ = B1.

Given ζ ∈ C∞(∂Ω), let z be the harmonic extension of ζ in Ω. Given a solution
u of (1.1), we denote

u(x)− z(x) = ũ(y), z(x) = z̃(y) and ζ(x) = ζ̃(y),

for every x = Φ−1(y) with y ∈ G̃ ∩ RN
+ . Since u is superharmonic and u = z on

∂Ω, we have ũ ≥ 0. On the other hand, a straightforward computation yields

∆u = ∆ũ + |∇φ|2 ũyN ,yN
− 2〈∇φ,∇ũyN

〉 − ũyN
∆φ.

Thus, ũ satisfies the equation

−∆ũ− |∇φ|2 ũyN ,yN
+ 2〈∇φ,∇ũyN

〉+ ũyN
∆φ = (ũ + z̃)q.

Rewriting this equation in terms of spherical coordinates, one obtains

(1 + η1) ũrr +
1
r2

∆′ũ +
N − 1 + η2

r
ũr + (ũ + z̃)q =

=
1
r2
〈∇′ũ,−→η3〉+

1
r
〈∇′ũr,

−→η4〉+
1
r2
〈∇′〈∇′ũ, eN 〉,−→η5〉.
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where

η1 = −2φr〈n, eN 〉+ |∇φ|2 〈n, eN 〉2,

η2 = −r〈n, eN 〉∆φ− 2〈∇′〈n, eN 〉,∇′φ〉+ r |∇φ|2 〈∇′〈n, eN 〉, eN 〉,
−→η3 = −

(
2φr − |∇φ|2 〈n, eN 〉 − r∆φ

)
eN ,

−→η4 = −
(
|∇φ|2 〈n, eN 〉 − 2φr

)
eN +

2
r
〈n, eN 〉∇′φ,

−→η5 = − |∇φ|2 eN +
2
r
∇′φ.

Taking into account the fact that φ(0) = 0 and ∇φ(0) = 0,

|φ(x)| ≤ Cr2, |Dφ(x)| ≤ Cr and
∣∣D2φ

∣∣ ≤ C.

Thus, for every j = 1, . . . , 5,

‖ηj(r, ·)‖L∞ ≤ Cr ∀r ∈ (0, 1).

Lemma 6.1. Let

(6.3) t = log 1
r , v(t, σ) = r

2
q−1 ũ(r, σ) and α(t, σ) = r

2
q−1 z̃(r, σ).

Then, v satisfies

(6.4) (1 + ε1) vtt + ∆′v −
(
N − 2(q+1)

q−1 + ε2

)
vt + (`N,q + ε3) v + (v + α)q =

= 〈∇′v,−→ε4 〉+ 〈∇′vt,
−→ε5 〉+ 〈∇′〈∇′v, eN 〉,−→ε6 〉,

where εj are functions defined in (0, +∞)× SN−1
+ satisfying the estimates

(6.5) ‖εj(t, ·)‖L∞ ≤ Ce−t ∀t ≥ 0,

for every j = 1, . . . , 6.

We refer the reader to [19] for the proof of Lemma 6.1 and for the explicit
expressions of the functions εj .

For every T ∈ R and δ > 0, let

QT = (T, +∞)× SN−1
+ and QT,δ = (T − δ, T + δ)× SN−1

+ .

We have the following W 2,p-estimates satisfied by v:

Proposition 6.1. Let v be defined as in Lemma 6.1. If v is uniformly bounded in
Q0, then for every 1 < p < +∞,

(6.6) ‖v‖W 2,p(QT,1) ≤ C
(
‖v‖L2(QT,2) + e−

2T
q−1

)
∀T ≥ 2,

for some constant C > 0 depending on ‖v‖L∞ and on p.

Proof. Since ∆′ is uniformly elliptic and Φ is a diffeomorphism, the operator L
given by

L(v) = (1 + ε1) vtt + ∆′v −
(
N − 2(q+1)

q−1 + ε2

)
vt+

− 〈∇′v,−→ε4 〉 − 〈∇′vt,
−→ε5 〉 − 〈∇′〈∇′v, eN 〉,−→ε6 〉



ISOLATED BOUNDARY SINGULARITIES OF SEMILINEAR ELLIPTIC EQUATIONS 23

is uniformly elliptic. Let δ ∈ (0, 1
2 ). By the Agmon-Douglis-Nirenberg estimates

(see [1]) applied to the restriction of v on the set QT,1+δ,

‖v‖W 2,p(QT,1+δ) ≤ C
(
‖v‖Lp(QT,1+2δ) + ‖(v + α)q‖Lp(QT,1+2δ)

)
.

Since v and α are uniformly bounded in Q0, for every s ∈ (1, 2) we have

‖(v + α)q‖Lp(QT,s) ≤ ‖v + α‖q−1
L∞(QT,s)‖v + α‖Lp(QT,s)

≤ C
(
‖v‖Lp(QT,s) + ‖α‖Lp(QT,s)

)
.

Since z̃ is uniformly bounded in Ω,

‖α‖Lp(QT,s) ≤ Ce−
2T

q−1 ‖z̃‖L∞(Ω) ≤ Ce−
2T

q−1 .

Thus,

(6.7) ‖v‖W 2,p(QT,1+δ) ≤ C
(
‖v‖Lp(QT,1+2δ) + e−

2T
q−1

)
.

In particular,
‖v‖W 2,p(QT,1) ≤ C

(
‖v‖Lp(Q

T, 3
2
) + e−

2T
q−1

)
.

By a bootstrap argument based on estimate (6.7) above and the Sobolev imbedding,
we also have

‖v‖Lp(Q
T, 3

2
) ≤ C

(
‖v‖L2(QT,2) + e−

2T
q−1

)
.

Combining these inequalities, the estimate follows. ¤

7. Removable singularities at 0

The goal of this section is to show that solutions of (1.1) which are not too large
in a neighborhood of 0 must be continuous at 0.

Theorem 7.1. Let q > q1 and let u be a solution of (1.1). If

(7.1) lim
x→0

|x|
2

q−1 u(x) = 0,

then u can be continuously extended at 0.

Proof. Let v be the function given by (6.3). By assumption (7.1), we have

(7.2) lim
t→+∞

v(t, ·) = 0 uniformly in SN−1
+ .

We now rewrite (6.4) under the form

(7.3) vtt −
(
N − 2(q+1)

q−1

)
vt + `N,qv + ∆′v + (v + α)q = H,

where H is given by

(7.4) H = −ε1vtt + ε2vt − ε3v + 〈∇′v,−→ε4 〉+ 〈∇′vt,
−→ε5 〉+ 〈∇′〈∇′v, eN 〉,−→ε6 〉.

Thus,

(7.5)
∫

SN−1
+

vvtt dσ −
(
N − 2(q+1)

q−1

) ∫
SN−1

+

vvt dσ + `N,q

∫
SN−1

+

v2 dσ +
∫

SN−1
+

v∆′v dσ+

+
∫

SN−1
+

v(v + α)q dσ =
∫

SN−1
+

vHdσ.
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Let

X(t) = ‖v(t, ·)‖L2(SN−1
+ ) ∀t ≥ 0.

Note that for every t > 0,

(7.6) XXt =
∫

SN−1
+

vvt dσ.

Using Hölder’s inequality we have

|XXt| ≤ ‖v(t, ·)‖L2(SN−1
+ )‖vt(t, ·)‖L2(SN−1

+ ).

Thus,

(7.7) |Xt| ≤ ‖vt(t, ·)‖L2(SN−1
+ ).

Computing the derivative with respect to t on both sides of identity (7.6), we get

(Xt)2 + XXtt =
∫

SN−1
+

(vt)2 dσ +
∫

SN−1
+

vvtt dσ = ‖vt(t, ·)‖2L2(SN−1
+ )

+
∫

SN−1
+

vvtt dσ.

From this identity and estimate (7.7), we deduce that

(7.8) XXtt ≥
∫

SN−1
+

vvtt dσ.

On the other hand, since the first eigenvalue of the Laplace-Beltrami operator −∆′

in W 1,2
0 (SN−1

+ ) is N − 1,

(N − 1)X2 ≤
∫

SN−1
+

|∇′v|2 dσ = −
∫

SN−1
+

v ∆′v dσ.

By Hölder’s inequality, ∫
SN−1

+

vH dσ ≤ X‖H(t, ·)‖L2(SN−1
+ ).

From the elementary inequality

(v + α)q ≤ 2q(vq + αq),

we get ∫
SN−1

+

v(v + α)q dσ ≤ 2q

∫
SN−1

+

(
vq+1 + vαq

)
dσ

It follows from Hölder’s inequality that

(7.9)
∫

SN−1
+

v(v + α)q dσ ≤ 2q
(
X2‖v(t, ·)‖q−1

L∞(SN−1
+ )

+ X‖α(t, ·)‖q

L2q(SN−1
+ )

)
.
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We may assume that u is a nontrivial solution of (1.1). By the strong maximum
principle, we have u > 0 in Ω, thus X > 0. Combining (7.5), (7.6) and (7.8)–(7.9),
one gets

Xtt −
(
N − 2(q+1)

q−1

)
Xt +

(
`N,q −N + 1 + 2q‖v(t, ·)‖q−1

L∞

)
X ≥

≥ −
(
‖H(t, ·)‖L2 + 2q‖α(t, ·)‖q

L2q

)
(to simplify the notation we drop the explicit dependence of the set SN−1

+ ). From
the definition of the function α, there exists C > 0 such that

2q‖α(t, ·)‖q
L2q ≤ Ce−

2qt
q−1 .

In view of (7.2), given ε > 0 there exists t0 > 0 such that

2q‖v(t, ·)‖q−1
L∞ ≤ ε on [t0,∞).

We deduce that for every t ≥ t0 we have

Xtt −
(
N − 2(q+1)

q−1

)
Xt + (`N,q −N + 1 + ε) X ≥ −‖H(t, ·)‖L2 − Ce−

2qt
q−1 .

We shall show that
X(t) ≤ Ce−

2t
q−1 ∀t ≥ 0,

and the conclusion will follow from a bootstrap argument. Note that the linear
equation

Ztt −
(
N − 2(q+1)

q−1

)
Zt + (`N,q −N + 1) Z = 0

has two linearly independent solutions:

Z1(t) = e−
q+1
q−1 t and Z2(t) = e(N− q+1

q−1 )t.

We can then take ε > 0 small enough so that the linear equation

Ztt −
(
N − 2(q+1)

q−1

)
Zt + (`N,q −N + 1 + ε) Z = 0

has two linearly independent solutions:

Z1,ε(t) = er1,εt and Z2,ε(t) = er2,εt

such that
r1,ε < − 2

q − 1
and r2,ε > 0.

In particular,
Z2,ε(t) → +∞ as t → +∞.

From assumption (7.1), v is bounded. In view of (6.5) and Proposition 6.1 with
p = 2, there exists C1 > 0 such that

‖H(t, ·)‖L2 ≤ C1e−t ∀t ≥ 0.

Thus,

Xtt −
(
N − 2(q+1)

q−1

)
Xt + (`N,q −N + 1) X ≥ −Ĉ1e−t.

Since
X(t) → 0 as t → +∞,

from the maximum principle there exists a constant C̃1 > 0 such that

X(t) ≤ C̃1(Z1,ε(t) + e−t).
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If r1,ε ≥ −1, then
X(t) ≤ 2C̃1Z1,ε(t).

Since r1,ε < − 2
q−1 , the estimate above implies that u is bounded and thus by

standard elliptic estimates u is continuous. Otherwise r1,ε < −1, in which case,

X(t) ≤ 2C̃1e−t.

Thus, by Proposition 7.1 for every T ≥ 2,

‖v‖W 2,2(QT,2) ≤ C̃1e−T .

In view of (6.5), there exists C2 > 0 such that

‖H(t, ·)‖L2 ≤ C2e−2t ∀t ≥ 0.

Thus,
Xtt −

(
N − 2(q+1)

q−1

)
Xt + (`N,q −N + 1) X ≥ −Ĉ2e−2t.

This implies as before that

X(t) ≤ C̃2(Z1,ε(t) + e−2t).

If r1,ε ≥ −2, then
X(t) ≤ 2C̃2Z1,ε(t)

and u is bounded. Otherwise r1,ε < −2, in which case,

X(t) ≤ 2C̃2 e−2t.

We can continue this argument and deduce in finitely many steps that

X(t) ≤ 2C̃kZ1,ε(t).

Applying Proposition 6.1 with p > N
2 , we deduce that for every T ≥ 2,

‖v‖W 2,p(QT,1) ≤ C
(
Z1,ε(T ) + e−

2T
q−1

)
≤ C e−

2T
q−1 .

Thus, by Morrey’s embedding,

‖v‖L∞(QT,1) ≤ C e−
2T

q−1 .

This implies that u is bounded and hence continuous in Ω. ¤

The conclusion of Theorem 7.1 is false with the critical exponent q = q1. In fact,
combining Theorem 1.3 and the result of del Pino-Musso-Pacard mentioned in the
Introduction (Theorem 1.4), when q = q1 there exist solutions of (1.1) such that

u(x) ∼ xN |x|−N
(
log 1

|x|
)−N−1

2

in a neighborhood of 0. These solutions are necessarily discontinuous at 0 but, since
2

q1−1 = N − 1,

lim
x→0

|x|
2

q1−1 u(x) = 0.

The right statement in this case is the following:

Theorem 7.2. Let q = q1 and let u be a nonnegative solution of (1.1). If

lim
x→0

|x|N−1
(
log 1

|x|
)N−1

2 u(x) = 0,

then u can be continuously extended at 0.
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Proof. Let
W (t) = t

N−1
2 ‖v(t, ·)‖L2(SN−1

+ ) ∀t ≥ 0,

where v is the function given by (6.3). By assumption, W (t) → 0 as t → +∞. As
in the proof of Theorem 7.1, for any ε > 0 there exists t0 > 0 such that for every
t ≥ t0,

Wtt +
(
N − N−1

t

)
Wt +

1
t

(
−N(N−1)

2 + ε + N2−1
4t

)
W ≥

≥ −t
N−1

2 ‖H(t, ·)‖L2 − C t
N−1

2 e−(N+1)t.

The linear equation

Wtt +
(
N − N−1

t

)
Wt +

1
t

(
−N(N−1)

2 + N2−1
4t

)
W = 0

has two linearly independent solutions W1 and W2 such that for t sufficiently large
(see Lemma A.2 below)

W1(t) = t
N−1

2 e−Nt(1 + o(1)) and W2(t) = t
N−1

2 (1 + o(1)).

We can then take ε > 0 small enough so that the linear equation

Wtt +
(
N − N−1

t

)
Wt +

1
t

(
−N(N−1)

2 + ε + N2−1
4t

)
W = 0

has two linearly independent solutions W1,ε and W2,ε such that

W1,ε(t) ≤ Ct
N−1

2 e−(N−1)t

and
W2,ε(t) → +∞ as t → +∞.

In view of (6.5) and Proposition 6.1 with p = 2, there exists C1 > 0 such that

‖H(t, ·)‖L2 ≤ C1t
−N−1

2 e−t ∀t > 0.

Thus,

Wtt +
(
N − N−1

t

)
Wt +

1
t

(
−N(N−1)

2 + ε + N2−1
4t

)
W ≥ −Ce−t.

Since
W (t) → 0 as t → +∞,

from the maximum principle there exists a constant C̃1 > 0 such that

W (t) ≤ C̃1(W1,ε(t) + e−t).

Thus,
W (t) ≤ Ĉ1e−t.

By Proposition 6.1 with p = 2, for every T ≥ 2,

‖v‖W 2,2(QT,2) ≤ Ĉ1t
−N−1

2 e−T .

In view of (6.5), there exists Ĉ2 > 0 such that

‖H(t, ·)‖L2 ≤ Ĉ2t
−N−1

2 e−2t ∀t ≥ 0.

We can continue this argument as in the previous theorem and deduce after finitely
many steps that

W (t) ≤ ĈkW1,ε(t) ≤ C̃ t
N−1

2 e−(N−1)t,

which implies that u is bounded and hence continuous in Ω. ¤
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8. Proof of Theorem 1.2

We first establish the following

Proposition 8.1. Let q1 ≤ q < q3, with q 6= q2. If u is a solution of (1.1) such
that

|x|
2

q−1 u(x) is bounded in Ω,

then

(8.1) lim
x→0

∣∣∣|x| 2
q−1 u(x)− (w ◦ Φ−1)

(
x
|x|

)∣∣∣ = 0,

where w is a solution of (1.3) and Φ is the diffeomorphism defined by (6.1)–(6.2).

Proof. Let v be the function given by (6.3). We first rewrite equation (6.4) under
the form

(8.2) vtt + `N,qv + ∆′v + (v + α)q −
(
N − 2(q+1)

q−1

)
vt = H,

where H is given by (7.4). Multiplying (8.2) by vt and integrating over SN−1
+ yields∫

SN−1
+

vtvtt dσ + `N,q

∫
SN−1

+

vtv dσ +
∫

SN−1
+

vt ∆′v dσ +
∫

SN−1
+

vt(v + α)q dσ+

−
(
N − 2(q+1)

q−1

) ∫
SN−1

+

(vt)2 dσ =
∫

SN−1
+

vtH dσ.

Thus,

(8.3)
d

dt

∫
SN−1

+

[
(vt)2

2
+

`N,qv
2

2
− |∇

′v|2

2
+

(v + α)q+1

q + 1

]
dσ−

(
N − 2(q+1)

q−1

) ∫
SN−1

+

(vt)2 dσ =

=
∫

SN−1
+

[
vtH + αt(v + α)q

]
dσ.

From our assumption on u, v is bounded. It follows from (6.6) and the Sobolev
imbedding that v, vt and ∇′v are uniformly bounded in SN−1

+ ×R+. In particular,∣∣∣∣ ∫
SN−1

+

(vt)2

2
+

`N,qv
2

2
− |∇′v|2

2
+

(v + α)q+1

q + 1
dσ

∣∣∣∣ ≤ C in R+

for some constant C > 0. On the other hand,∫
SN−1

+

|vtH| dσ ≤ Ce−t.

Moreover, since v is bounded and α satisfies (6.7), we have∫
SN−1

+

|αt|(v + α)q dσ ≤ Ce−
2t

q−1 .
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Thus, integrating (8.3) on (0, +∞), we obtain∣∣∣N − 2(q+1)
q−1

∣∣∣ ∫ +∞

0

∫
SN−1

+

v2
t dσ < +∞.

Since q 6= q2, N − 2(q+1)
q−1 6= 0. Hence,∫ +∞

0

∫
SN−1

+

v2
t dσ < +∞.

By (6.6) and Morrey’s estimates, vt is uniformly continuous on Q0. We deduce that

vt(t, ·) → 0 uniformly in SN−1
+ as t → +∞.

We now prove that

v(t, ·) → w uniformly in SN−1
+ as t → +∞,

where w is a nonnegative solution of (1.3). For this purpose, we study the limit set
of the trajectories of v, namely the set

Γ =
⋂
τ>0

⋃
t≥τ

{v(t, .)},

where the closure is computed with respect to the usual norm in C0(SN−1
+ ). Since Γ

is the intersection of a decreasing family of closed connected subsets of C0(SN−1
+ ),

Γ is closed and connected. In addition, since v is uniformly continuous in Q0, it
follows from the Arzelà-Ascoli theorem that Γ is also compact and nonempty.

We claim that every w ∈ Γ satisfies problem (1.3). Indeed, let (tk) be a sequence
of nonnegative real numbers such that tk → +∞ and

v(tk, ·) → w uniformly in SN−1
+ .

Clearly, w is nonnegative and w = 0 on ∂SN−1
+ . For each k ≥ 1, let

Vk : (s, σ) ∈ [0, 1]× SN−1
+ 7−→ v(tk + s, σ).

For every ϕ ∈ C∞
0 (SN−1

+ ) and for every ε ∈ (0, 1), from the equation satisfied by v
we have∫ ε

0

∫
SN−1

+

[
(Vk)ttϕ+`N,qVkϕ+Vk∆′ϕ+

(
Vk+α(tk+s, σ)

)q
ϕ−

(
N − 2(q+1)

q−1

)
(Vk)tϕ

]
dσ ds =

=
∫ tk+ε

tk

∫
SN−1

+

Hϕ dσ ds.

As k → +∞, ∫ tk+ε

tk

∫
SN−1

+

Hϕ dσ ds → 0.

Since vt → 0 uniformly as t → +∞, we also have∫ ε

0

∫
SN−1

+

(Vk)tϕ dσ ds → 0.
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Note that∫ ε

0

∫
SN−1

+

(Vk)ttϕ dσ ds =
∫

SN−1
+

[
vt(tk + ε, σ)− vt(tk, σ)

]
ϕ dσ → 0.

Since the sequence (Vk) is bounded in C1, passing to a subsequence if necessary,
we may assume that for some continuous function W ,

Vk → W uniformly in [0, 1]× SN−1
+ .

We conclude that for every ε ∈ (0, 1),∫ ε

0

∫
SN−1

+

[
`N,qWϕ + W∆′ϕ + W qϕ

]
dσ dt = 0.

Dividing both sides by ε and letting ε → 0, we get∫
SN−1

+

[
`N,qW (0, σ)ϕ + W (0, σ)∆′ϕ + (W (0, σ))qϕ

]
dσ = 0.

Since w = W (0, ·), we conclude that w satisfies (1.3). Hence, every element of Γ is
a nonnegative solution of (1.3). By Theorem 1.1 the set of nonnegative solutions is
{0, ω}, where ω is the unique positive solution of (1.3). Since these solutions form
a discrete subset of C0(SN−1

+ ) and Γ is connected, Γ contains a single element. In
particular,

v(t, ·) → w uniformly in SN−1
+ as t → +∞.

The proposition follows from this convergence. ¤

Proof of Theorem 1.2. Let u be a solution of (1.1). Since q < q2, by Theorem 1.5
there exists C > 0 such that for every x ∈ Ω,

0 ≤ |x|
2

q−1 u(x) ≤ C.

Thus, by Proposition 8.1, there exists a solution w of (1.3) such that (8.1) holds.
Either w is the unique positive solution of (1.3) (see Theorem 1.1) or w = 0. If
w = 0, then

lim
x→0

|x|
2

q−1 u(x) = 0

and, by Theorem 7.1 u can be continuously extended at 0. ¤

9. Proof of Theorem 1.3

We first prove an estimate which improves Theorem 1.5 when q = q1, except
that we do not know whether the constant C below can be chosen independently
of the solution.

Theorem 9.1. Assume that q = q1. Then, every solution of (1.1) satisfies

u(x) ≤ C|x|−(N−1)
(
log 1

|x|
)−N−1

2 ∀x ∈ Ω,

for some constant C > 0 (possibly depending on the solution).

In the proof of this result we need the following lemma:
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Lemma 9.1. Let q = q1 and E = ker [∆′ + (N − 1)I]. Given a solution of (1.1),
denote by v the function given by (6.3). If

v = v1 + v2

is the decomposition of v as the orthogonal projections in L2(SN−1
+ ) onto E and

E⊥, respectively, then

(9.1) ‖v1(t, ·)‖L2(SN−1
+ ) ≤ C t−

N−1
2 and ‖v2(t, ·)‖L2(SN−1

+ ) ≤ C e−
t
2 ∀t > 0.

Proof. Denoting by φ1 the first eigenfunction of ∆′ with ‖φ1‖L1 = 1, we have

v1(t, σ) = y(t)φ1(σ) where y(t) =
∫

SN−1
+

v(t, σ)φ1(σ) dσ.

Since q = q1, equation (7.3) becomes

(9.2) vtt + Nvt + (N − 1)v + ∆′v + (v + α)q1 = H,

with H defined in (7.4). Since α ≥ 0, we have (v + α)q1 ≥ vq1 . Thus,

vtt + Nvt + (N − 1)v + ∆′v + vq1 ≤ H.

By Jensen’s inequality,

yq1 ≤
∫

SN−1
+

vq1φ1 dσ.

Multiplying (9.2) by φ1 and integrating over SN−1
+ , we get

y′′ + Ny′ + yq1 ≤
∫

SN−1
+

Hφ1 dσ.

By Theorem 1.5, v is uniformly bounded in R+×SN−1
+ . In particular, by (6.5) and

Proposition 6.1 with p = 2, we have for every t ≥ 0,∫
SN−1

+

Hφ1 dσ ≤ C e−t.

Thus,
y′′ + Ny′ + yq1 ≤ C e−t.

Applying Lemma A.1 we deduce that

y(t) ≤ Ct−
N−1

2 ∀t > 0.

This proves the first estimate in (9.1).

In order to prove the estimate for v2, let

Y (t) = ‖v2(t, ·)‖L2(SN−1
+ ) ∀t ≥ 0.

Since v(t, σ) = y(t)φ1(σ) + v2(t, σ), we have

vt = ytφ1 + (v2)t and vtt = yttφ1 + (v2)tt.

Using the orthogonality between φ1 and v2,

Y Yt =
∫

SN−1
+

v2(v2)t dσ =
∫

SN−1
+

v2

[
ytφ1 + (v2)t

]
dσ =

∫
SN−1

+

v2vt dσ.



32 MARIE-FRANÇOISE BIDAUT-VÉRON, AUGUSTO C. PONCE, AND LAURENT VÉRON

From the first equality, we have

|Yt| ≤ ‖v2(t, ·)‖L2 .

One also shows that

Y Ytt ≥
∫

SN−1
+

v2vtt dσ.

On the other hand, since the second eigenvalue of the Laplace-Beltrami operator
−∆′ in W 1,2

0 (SN−1
+ ) is 2N ,

2NY 2 ≤
∫

SN−1
+

|∇′v2|2 dσ = −
∫

SN−1
+

v2 ∆′v2 dσ = −
∫

SN−1
+

v2 ∆′v dσ.

Multiply (9.2) by v2 and integrate over SN−1
+ . As in the proof of Theorem 7.1, for

every ε > 0 there exists t1 > 0 such that for every t ≥ t1,

Ytt + NYt − (N + 1− ε)Y ≥ −C e−t.

Note that for ε > 0 small the linear equation

Ztt + NZt − (N + 1− ε)Z = 0

has two linearly independent solutions Z1,ε and Z2,ε such that

Z1,ε(t) = er1,εt and Z2,ε(t) = er2,εt

with

r1,ε ≤ −1
2

and r2,ε > 0.

Since Y (t) → 0 as t → +∞, applying the maximum principle one deduces that

Y (t) ≤ C(Z1,ε(t) + e−t).

In particular,
Y (t) ≤ Ce−

t
2 .

This gives the estimate for v2. ¤

Proof of Theorem 9.1. By Lemma 9.1 above, we have

‖v(t, ·)‖L2 ≤ C t−
N−1

2 ∀t > 0.

Inserting this estimate into (6.6) for some p > N
2 , by Morrey’s estimates the result

follows. ¤

Proof of Theorem 1.3. By Theorem 9.1, the function w : [0, +∞) → R given by

w(t, σ) = t
N−1

2 v(t, σ)

is bounded. By a straightforward computation, w satisfies

(9.3) wtt +
(
N − N−1

t

)
wt +

(
N − 1 + N2−1

4t2

)
w + ∆′w+

+
1
t

(
wq1 − N(N−1)

2 w
)

= t
N−1

2 H,



ISOLATED BOUNDARY SINGULARITIES OF SEMILINEAR ELLIPTIC EQUATIONS 33

where H is given by (7.4). Let φ : SN−1
+ → R be the function defined by φ(σ) = σN

|σ| ;

we recall that φ is an eigenfunction of −∆′ in W 1,2
0 (SN−1

+ ) associated to the first
eigenvalue N − 1. Let

z(t) =
∫

SN−1
+

w(t, σ)φ(σ) dσ ∀t ≥ 0.

Multiplying (9.3) by φ and integrating over SN−1
+ , we obtain the following equation

satisfied by z:

ztt +
(
N − N−1

t

)
zt + N2−1

4t2 z +
1
t

∫
SN−1

+

wq1φ dσ − N(N−1)
2t z = t

N−1
2

∫
SN−1

+

Hφ dσ.

Thus,

ztt +
(
N − N−1

t

)
zt +

1
t

(
θzq1 − N(N−1)

2 z
)

= Ψ,

where

θ =
∫

SN−1
+

φq1+1 dσ

and

Ψ = t
N−1

2

∫
SN−1

+

Hφ dσ − N2−1
4t2 z +

1
t

∫
SN−1

+

[
(zφ)q1 − wq1

]
φ dσ.

By Lemma 9.1, we have

(9.4) ‖z(t)φ− w(t, ·)‖L2 ≤ C t
N−1

2 e−
t
2 .

Since
|(zφ)q1 − wq1 | ≤ q1|zφ− w|

[
(zφ)q1−1 + wq1−1

]
,∫

SN−1
+

∣∣(zφ)q1 − wq1
∣∣φ dσ ≤ ‖zφ− w‖L2

[
zq1−1‖φq1−1‖L2 + ‖wq1−1‖L2

]
.

Since z is bounded in R+ and w is bounded in R+ × SN−1
+ , we deduce that∫

SN−1
+

∣∣(zφ)q1 − wq1
∣∣φ dσ ≤ C t

N−1
2 e−

t
2 .

Combining Lemma 6.1, Proposition 6.1 (with p = 2) and Proposition 9.1,

‖H(t, ·)‖L2 ≤ C t−
N−1

2 e−t.

Thus,

‖Ψ(t, .)‖L∞ ≤ C
(
e−t + t−2 + t

N−3
2 e−

t
2

)
≤ C̃ t−2.

By a straightforward modification of the end of the proof of [9, Corollary 4.2], z
admits a limit κ ≥ 0 when t → +∞, where κ satisfies

θκq1 − N(N−1)
2 κ = 0.
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Therefore, either κ = 0 or κ =
(

N(N−1)
2θ

)N−1
2

.
By (9.4) we deduce that, as t → +∞,

t
N−1

2 v(t, ·) → κφ in L2(SN−1
+ ).

By Proposition 6.1 with p > N
2 and Morrey’s estimates, we conclude that

t
N−1

2 v(t, ·) → κφ uniformly in SN−1
+ .

Rewriting the convergence in terms of u, we conclude that either (1.5) holds or

(9.5) |x|N−1
(
log 1

|x|
)N−1

2 u(x) → 0 as x → 0.

If (9.5) holds, then u must be continuous in view of Theorem 7.2. ¤

Appendix A. Some ode lemmas

We gather in this section a couple of ode results which are used in this paper.
These results are presumably well-known to specialists:

Lemma A.1. Given T > 0, let y ∈ C2([T, +∞)) be a nonnegative function such
that {

ytt + ayt + byq ≤ c e−t in (T, +∞),

lim
t→+∞

y(t) = 0,

where q, a > 1 and b, c > 0. Then, there exists C > 0 such that

(A.1) 0 ≤ y(t) ≤ C t−
1

q−1 ∀t ≥ T.

Proof. Given A > 0, let

z(t) = y(t) + Ae−t ∀t ≥ T.

Then, z satisfies

ztt + azt + bzq ≤
[
c− (a− 1)A

]
e−t + b(zq − yq).

By convexity of the function t ∈ R+ 7→ tq,

yq ≥ zq + qzq−1(y − z) = zq − qzq−1Ae−t.

Thus,

(A.2) ztt + azt + bzq ≤
[
c− (a− 1 + bqzq−1)A

]
e−t.

Since a > 1 and z(t) → 0 as t → +∞, we can choose T1 > T and A > 0 sufficiently
large so that the right-hand side of (A.2) is negative on [T1, +∞). Thus,

(A.3) ztt + azt + bzq ≤ 0 in [T1, +∞).

Let w = z1−q. By a straightforward computation, we have

(A.4) wtt + awt ≥ −(q − 1)
ztt + azt

zq
.

Combining (A.3)–(A.4), we deduce that

wtt + awt ≥ b(q − 1) in [T1, +∞).

The function x = wt satisfies

xt + ax ≥ b(q − 1) in [T1, +∞).
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Thus, taking T2 > T1 sufficiently large,

x(t) ≥ b(q−1)
a + c1e−at ≥ b(q−1)

2a ∀t ≥ T2.

Since wt = x, choosing T3 > T2 large enough, we then get

w(t) ≥ b(q−1)
4a t ∀t ≥ T3.

Therefore,

z(t) ≤
(

4a
b(q−1) t−1

) 1
q−1 ∀t ≥ T3.

We can now enlarge the constant in the right-hand side so that this estimate holds
for every t ≥ T . This implies (A.1). ¤

Lemma A.2. Let a, a1, b, b1 ∈ R with a 6= 0. Then, the equation

ytt +
(
a− a1

t

)
yt + 1

t

(
b− b1

t

)
y = 0 in (0, +∞),

has two linearly independent solutions y1 and y2 such that

y1(t) = ta1+
b
a e−at(1 + o(1)) and y2(t) = t−

b
a (1 + o(1))

for t sufficiently large.

Proof. Let
z(t) = e

at
2 t−

a1
2 y(t).

Then, z satisfies the equation

ztt −
(

a2

4 − A1
t + A2

t2

)
z = 0,

where A1 = b + aa1
2 and A2 = b1 + a1

2 + a2
1
4 . By [5, pp. 126–127], the equation

satisfied by z has two linearly independent solutions with the following asymptotic
behaviors as t → +∞:

z1(t) = e−
at
2 t

A1
a (1 + o(1)) and z2(t) = e

at
2 t−

A1
a (1 + o(1)).

Rewriting these formulas in terms of the function y, the result follows. ¤
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[7] M.-F. Bidaut-Véron, M. Jazar, and L. Véron, Separable solutions of some quasilinear equa-

tions with source reaction. J. Differential Equations 244 (2008), 274–308.
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[8] M.-F. Bidaut-Véron, A. C. Ponce, and L. Véron, Boundary singularities of positive solutions
of some nonlinear elliptic equations. C. R. Math. Acad. Sci. Paris 344 (2007), 83–88.
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Université François Rabelais
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