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Abstract. We extend the method of sub and supersolutions in order to prove
existence of L1-solutions of the equation −∆u = f(x, u) in Ω, where f is a
Carathéodory function. The proof is based on Schauder’s fixed point theorem.

1. Introduction

We consider the following semilinear problem:

(1.1)

{
−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a smooth bounded domain and f : Ω×R → R is a Carathéodory
function.

The classical method of sub and supersolutions (see, e.g., [4,9]) asserts that if f
is smooth and if one can find smooth sub and supersolutions v1 ≤ v2 of (1.1), then
there exists a classical solution u of (1.1) such that v1 ≤ u ≤ v2.

The usual proof is based on a monotone iteration scheme; this requires f to
be Lipschitz (or locally Lipschitz). The argument also shows that there exist a
smallest and a largest solution u1 ≤ u2 in the interval [v1, v2]. Another proof,
based on Schauder’s fixed point theorem can be found in Akô [1]. In this case, the
existence of a smallest and a largest solution is proved separately, via a Perron-type
argument. Based on Akô’s strategy, Clément-Sweers [6] were able to implement
the method of sub-supersolutions when v1, v2 ∈ C(Ω) and f is only assumed to be
continuous. Other versions can also be found for instance in Deuel-Hess [8] (see also
Dancer-Sweers [7]) for H1-solutions and in Brezis-Marcus-Ponce [3, Theorem 4] for
L1-solutions and f continuous, nondecreasing. However, none of these results is
contained in the other. We shall compare them in Section 5 below.

In this paper, we extend the method of sub-supersolutions in order to establish
existence of L1-solutions of (1.1) in the sense of Definition 1.1 below. We follow
the strategy of [1, 6, 7] based on Schauder’s fixed point theorem. However, some of
the details had to be substantially modified.

We assume throughout that

(1.2) Ω is a smooth bounded domain

and

(1.3) f : Ω× R → R is a Carathéodory function.

The notion of solution we will consider is the following:

Definition 1.1. We say that u is an L1-solution of (1.1) if
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(i) u ∈ L1(Ω);
(ii) f(·, u)ρ0 ∈ L1(Ω);

(iii)

(1.4) −
∫

Ω

u∆ζ =
∫

Ω

f(x, u)ζ dx ∀ζ ∈ C2
0 (Ω).

Here, ρ0(x) = d(x, ∂Ω), ∀x ∈ Ω, and C2
0 (Ω) =

{
ζ ∈ C2(Ω); ζ = 0 on ∂Ω

}
. Note

that (1.4) makes sense in view of (i) and (ii).
We also consider L1-sub and L1-supersolutions in analogy with this definition.

For instance, u is an L1-subsolution of (1.1) if u satisfies (i)–(iii) with “≤” instead
of “=” in (1.4). We will systematically omit the term “L1” and simply say that u
is a solution of (1.1), meaning (1.4); similar convention for sub and supersolutions.

Our main result is

Theorem 1.1. Let v1 and v2 be a sub and a supersolution of (1.1), respectively.
Assume that v1 ≤ v2 a.e. and

(1.5) f(·, v)ρ0 ∈ L1(Ω) for every v ∈ L1(Ω) such that v1 ≤ v ≤ v2 a.e.

Then, there exist solutions u1 ≤ u2 of (1.1) in [v1, v2] such that any solution u of
(1.1) in the interval [v1, v2] satisfies

v1 ≤ u1 ≤ u ≤ u2 ≤ v2 a.e.

In general, (1.1) need not have a solution if (1.5) fails (see [13]). However,
Orsina-Ponce [13] were recently able to prove existence of solutions of (1.1) (and
(5.2) below) for some nonlinearities f which need not satisfy (1.5).

The paper is organized as follows. In Section 2, we develop some tools used in
the proof of Theorem 1.1. In Section 3, we recall some existence, compactness and
comparison results related to the linear equation −∆w = h when hρ0 ∈ L1(Ω). We
then establish Theorem 1.1 in Section 4. In the last section, we recover some known
results; we also apply Theorem 1.1 in order to study semilinear problems involving
measures.

Added note: After this paper was completed, the authors have been informed of
other related works of M. Marcus [12] (assuming f monotone) and M. C. Palmeri [14]
(with (1.5) replaced by a stronger assumption on f and without proving the exis-
tence of a smallest and a largest solution).

2. Boundedness and equi-integrability in L1
ρ0

We begin with the following well-known result. We shall present a proof below
for the convenience of the reader.

Theorem 2.1. Let g : Ω× R → R be a Carathéodory function such that

(2.1) g(·, v)ρ0 ∈ L1(Ω) for every v ∈ L1(Ω).

Then, the Nemytskii operator

(2.2)
G : L1(Ω) −→ L1(Ω; ρ0 dx)

v 7−→ g(·, v)

is continuous.

We first prove the
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Lemma 2.1. Let (wn) ⊂ L1(Ω) and let (En) be a sequence of measurable subsets
of Ω such that

(2.3) |En| → 0 and
∫

En

|wn| ≥ 1 ∀n ≥ 1.

Then, there exist a subsequence (wnk
) and a sequence of disjoint measurable sets

(Fk) such that

(2.4) Fk ⊂ Enk
and

∫
Fk

|wnk
| ≥ 1

2
∀k ≥ 1.

Proof. Let n1 := 1 and A1 := E1. By induction, we construct an increasing se-
quence of integers (nk) and measurable sets (Ak) as follows.
Let k ≥ 2. Assume we are given integers n1 < . . . < nk−1 and sets A1, . . . , Ak−1

(not necessarily disjoint) such that Aj ⊂ Ej and∫
Aj+1∪···∪Ak−1

|wnj | ≤
1
2
− 1

2k−1
∀j = 1, . . . , k − 2.

(This condition is vacuous when k = 2.)
Since |En| → 0, then for nk > nk−1 sufficiently large we have∫

Enk

|wnj | ≤
1
2k

∀j = 1, . . . , k − 1.

Let Ak := Enk
. Then, ∫

Aj+1∪···∪Ak

|wnj
| ≤ 1

2
− 1

2k
∀j = 1, . . . , k − 1.

Proceeding with this construction, one gets sequences (nk) and (Ak). We now set

Fk := Ak \
∞⋃

i=k+1

Ai.

Then, the sets Fk are disjoint and∫
Fk

|wnk
| = lim

i→∞

∫
Ak\(Ak+1∪···∪Ai)

|wnk
| ≥ 1

2
.

The proof of the lemma is complete. �

As a consequence of Lemma 2.1 we have

Proposition 2.1. Let g : Ω×R → R be a Carathéodory function and v1, v2 ∈ L1(Ω)
be such that v1 ≤ v2 a.e. Assume that

(2.5) g(·, v)ρ0 ∈ L1(Ω) for every v ∈ L1(Ω) such that v1 ≤ v ≤ v2 a.e.

Then, the set

(2.6) B =
{

g(·, v) ∈ L1(Ω; ρ0 dx); v ∈ L1(Ω) and v1 ≤ v ≤ v2 a.e.
}

is bounded and equi-integrable in L1(Ω; ρ0 dx).
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We recall that a set B ⊂ L1(Ω; ρ0 dx) is equi-integrable if for every ε > 0 there
exists δ > 0 such that

E ⊂ Ω and |E| < δ =⇒
∫

E

|g|ρ0 < ε ∀g ∈ B.

Here, |E| denotes the Lebesgue measure of E.

Proof of Proposition 2.1. Since Ω is bounded, it suffices to show that B is equi-
integrable. Assume by contradiction that B is not equi-integrable. Then, there
exist ε > 0, (un) ⊂ L1(Ω) with v1 ≤ un ≤ v2 a.e., and a sequence of measurable
sets (En) in Ω such that

|En| → 0 and
∫

En

g(x, un)ρ0 dx ≥ ε ∀n ≥ 1.

Applying Lemma 2.1 with wn = g(·, un)ρ0/ε, we can extract a subsequence (unk
)

and a sequence of disjoint measurable sets (Fk) in Ω such that

(2.7)
∫

Fk

∣∣g(x, unk
)
∣∣ρ0 dx ≥ ε

2
∀k ≥ 1.

Let

v(x) =

{
unk

(x) if x ∈ Fk for some k ≥ 1,

v1(x) otherwise.

Then, v1 ≤ v ≤ v2 a.e.; hence, v ∈ L1(Ω). Moreover,∫
Ω

∣∣g(x, v)
∣∣ρ0 dx ≥

∞∑
k=1

∫
Fk

∣∣g(x, unk
)
∣∣ρ0 dx = ∞.

This contradicts (2.5). Therefore, B is equi-integrable in L1(Ω; ρ0 dx). �

We now present the

Proof of Theorem 2.1. Assume vn → v in L1(Ω). Let (vnk
) be a subsequence such

that vnk
→ v a.e. and |vnk

| ≤ V a.e. for some function V ∈ L1(Ω). In particular,

g(·, vnk
) → g(·, v) a.e.

Moreover, by Proposition 2.1 above (applied to v1 = −V and v2 = V ), the sequence(
g(·, vnk

)
)

is equi-integrable in L1(Ω; ρ0 dx). It then follows from Egorov’s theorem
that

g(·, vnk
) → g(·, v) in L1(Ω; ρ0 dx).

Since the limit is independent of the subsequence (vnk
), we deduce that

G(vn) → G(v) in L1(Ω; ρ0 dx).

�
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3. Standard existence, compactness and comparison results

In this section, we recall some well-known results related to weak solutions of
the linear problem:

(3.1)
{−∆w = h in Ω,

w = 0 on ∂Ω.

We begin with the existence and compactness of weak solutions of (3.1):

Theorem 3.1. Given h ∈ L1(Ω; ρ0 dx), there exists a unique w ∈ L1(Ω) such that

(3.2) −
∫

Ω

w∆ζ =
∫

Ω

hζ ∀ζ ∈ C2
0 (Ω).

Moreover,
(i) For every 1 ≤ p < N

N−1 , w ∈ Lp(Ω) and

(3.3) ‖w‖Lp ≤ Cp‖hρ0‖L1 .

(ii) Given hn ∈ L1(Ω; ρ0 dx), n ≥ 1, let wn be the solution of (3.2) associated
to hn. If (hn) is bounded in L1(Ω; ρ0 dx), then (wn) is relatively compact
in Lp(Ω) for every 1 ≤ p < N

N−1 .

Proof. We refer the reader to [2] for the existence and uniqueness of w. We split
the proof of (i)–(ii) in two steps:
Step 1. Proof of (i).

Note that w satisfies

(3.4)
∣∣∣∣ ∫

Ω

w∆ζ

∣∣∣∣ ≤ ‖hρ0‖L1 ‖ζ/ρ0‖L∞ ∀ζ ∈ C2
0 (Ω).

Given f ∈ C∞(Ω), let ζ ∈ C2
0 (Ω) be the solution of{−∆ζ = f in Ω,

ζ = 0 on ∂Ω.

By standard Calderón-Zygmund estimates (see [10]),

(3.5) ‖ζ‖W 2,p′ ≤ C‖f‖Lp′ .

Since p′ > N , it follows from Morrey’s imbedding that

(3.6) ‖ζ/ρ0‖L∞ ≤ C
(
‖ζ‖L∞ + ‖∇ζ‖L∞

)
≤ C‖ζ‖W 2,p′ .

Combining (3.4)–(3.6), we get

(3.7)
∣∣∣∣ ∫

Ω

wf

∣∣∣∣ ≤ Cp‖hρ0‖L1‖f‖Lp′ ∀f ∈ C∞(Ω).

By duality, one deduces that w ∈ Lp(Ω) and (3.3) holds.

Step 2. Proof of (ii).
Given a smooth domain U ⊂⊂ Ω, let vn ∈ L1(U) be the solution of{−∆vn = hn in U,

vn = 0 on ∂U.

By standard elliptic estimates (see [15]),

(3.8) ‖vn‖W 1,p(U) ≤ Cp‖hn‖L1(U) ≤ Cp
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for every 1 ≤ p < N
N−1 . On the other hand, since wn − vn is harmonic in U , for

every ω ⊂⊂ U we have

(3.9) ‖wn − vn‖C1(ω) ≤ Cω‖wn − vn‖L1(U) ≤ Cω‖hnρ0‖L1 ≤ Cω.

Thus, by a standard diagonalization argument there exists a subsequence (wnk
)

such that wnk
→ w a.e. in Ω. On the other hand, by (i) the sequence (wn) is

bounded in Lp(Ω) for every 1 ≤ p < N
N−1 . The conclusion then follows from

Egorov’s theorem. �

We also need the following version of Kato’s inequality (see [3, Proposition B.5]):

Proposition 3.1. Let w ∈ L1(Ω) and h ∈ L1(Ω; ρ0 dx) be such that

−
∫

Ω

w∆ζ ≤
∫

Ω

hζ ∀ζ ∈ C2
0 (Ω), ζ ≥ 0 in Ω.

Then,

−
∫

Ω

w+∆ζ ≤
∫

[w≥0]

hζ ∀ζ ∈ C2
0 (Ω), ζ ≥ 0 in Ω.

Corollary 3.1. If u, v are solutions of (1.1), then max {u, v} is a subsolution.

Proof. Apply Proposition 3.1 with w = v − u and h = f(·, v)− f(·, u). Then,

−
∫

Ω

(v − u)+∆ζ ≤
∫

[v≥u]

[
f(x, v)− f(x, u)

]
ζ dx ∀ζ ∈ C2

0 (Ω), ζ ≥ 0 in Ω.

Since max {u, v} = u + (v − u)+, the result follows. �

4. Proof of Theorem 1.1

We split the proof in two steps:

Step 1. Problem (1.1) has a solution u such that v1 ≤ u ≤ v2 a.e.

Given (x, t) ∈ Ω× R, let

g(x, t) :=


v1(x) if t < v1(x),
t if v1(x) ≤ t ≤ v2(x),
v2(x) if v2(x) < t.

Then, g : Ω× R → R is a Carathéodory function and, by (1.5), we have

g(·, v)ρ0 ∈ L1(Ω) for every v ∈ L1(Ω).

We now consider
G : L1(Ω) −→ L1(Ω; ρ0 dx)

v 7−→ g(·, v)

and
K : L1(Ω; ρ0 dx) −→ L1(Ω)

h 7−→ w

where w is the unique solution of

(4.1)
{−∆w = h in Ω,

w = 0 on ∂Ω.
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By Theorems 2.1 and 3.1, KG : L1(Ω) → L1(Ω) is continuous. Moreover, by Propo-
sition 2.1 (applied to f), G

(
L1(Ω)

)
is a bounded subset of L1(Ω; ρ0 dx). Hence, by

Theorem 3.1, KG is compact and there exists C > 0 such that

‖K(G(v))‖L1 ≤ C1‖G(v)ρ0‖L1 ≤ C ∀v ∈ L1(Ω).

It then follows from Schauder’s fixed point theorem that KG has a fixed point
u ∈ L1(Ω). In other words, u satisfies

(4.2)

{
−∆u = g(x, u) in Ω,

u = 0 on ∂Ω.

We claim that u is a solution of (1.1) and

(4.3) v1 ≤ u ≤ v2 a.e.

It suffices to prove (4.3). We show that u ≤ v2 a.e.; the proof of the inequality
v1 ≤ u a.e. is similar. Note that

g(·, u) = g(·, v2) a.e. on the set [u ≥ v2].

Thus, applying Proposition 3.1 to w = u− v2, we get

−
∫

Ω

w+∆ζ ≤
∫

[u≥v2]

[
g(x, u)− g(x, v2)

]
ζ dx = 0 ∀ζ ∈ C2

0 (Ω), ζ ≥ 0 in Ω.

We easily deduce that w+ ≤ 0 a.e.; hence, w+ = 0 a.e. This implies u ≤ v2 a.e.
The proof of Step 1 is complete.

Step 2. There exist a smallest and a largest solution u1 ≤ u2 of (1.1) in the interval
[v1, v2].
(In [7], the proof of this step is based on Zorn’s lemma. We could have followed
their approach, but we present a different argument.)

We prove the existence of the largest solution u2; the existence of u1 is similar.
Let

A = sup
{∫

Ω

w ; v1 ≤ w ≤ v2 a.e. and w is a solution of (1.1)
}

.

Clearly, A < ∞. Before we proceed, let us prove the following

Claim. If w1, w2 are two solutions of (1.1) such that v1 ≤ w1, w2 ≤ v2 a.e., then
(1.1) has a solution w such that

(4.4) v1 ≤ max {w1, w2} ≤ w ≤ v2 a.e.

Indeed, by Corollary 3.1, max {w1, w2} is a subsolution of (1.1). Applying Step 1
above with max {w1, w2} and v2, one finds a solution w of (1.1) satisfying (4.4).
This establishes the claim.

It follows from the claim above that one can find a nondecreasing sequence of
solutions (wn) of (1.1) such that

(4.5) v1 ≤ wn ≤ v2 a.e. and
∫

Ω

wn → A.

By monotone convergence, there exists w0 ∈ L1(Ω) such that wn → w0 a.e.,

v1 ≤ w0 ≤ v2 a.e. and
∫

Ω

wn →
∫

Ω

w0 = A.
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On the other hand, by Proposition 2.1 the sequence
(
f(·, wn)

)
is equi-integrable in

L1(Ω; ρ0 dx). It then follows from Egorov’s theorem that

f(·, wn) → f(·, w0) in L1(Ω; ρ0 dx).

Thus, w0 is a solution of (1.1) and ∫
Ω

w0 = A.

By the claim above, w0 is the largest solution of (1.1) in the interval [v1, v2]. The
proof of Theorem 1.1 is complete. �

5. Some consequences and further results

In this section, we discuss some consequences of Theorem 1.1. In what follows,
we denote by v1, v2 sub and supersolutions of (1.1) satisfying v1 ≤ v2 a.e. Using
standard regularity theory, in each case one shows that the solution provided in
Theorem 1.1 lies in a better space.

Corollary 5.1. If v1, v2 ∈ C2(Ω) and f ∈ C1(Ω × R), then (1.1) has a classical
solution u ∈ C2(Ω) such that v1 ≤ u ≤ v2 in Ω.

Corollary 5.2. If v1, v2 ∈ L∞(Ω) and f ∈ C(Ω × R), then (1.1) has a solution
u ∈ C1,α(Ω), ∀α ∈ (0, 1), such that v1 ≤ u ≤ v2 in Ω.

Corollary 5.2 is established in [6] for functions v1, v2 ∈ C(Ω).

Corollary 5.3. If v1, v2 ∈ L1(Ω) and f is a Carathéodory function satisfying

(5.1) f(·, v) ∈ L
2N

N+2 (Ω) for every v ∈ L1(Ω) such that v1 ≤ v ≤ v2 a.e.,

then (1.1) has a solution u ∈ H1
0 (Ω) such that v1 ≤ u ≤ v2 a.e.

Corollary 5.3 is stated in [7] under the assumption that f(·, v) ∈ Lp for some
p > 2N

N+2 .

We now apply Theorem 1.1 to study semilinear problems with measure data,
namely

(5.2)

{
−∆u = f(x, u) + µ in Ω,

u = ν on ∂Ω,

where µ is a bounded measure in Ω and ν is a bounded measure on ∂Ω. We say
that u is a solution of (5.2) if u ∈ L1(Ω), f(·, u)ρ0 ∈ L1(Ω) and

−
∫

Ω

u∆ζ =
∫

Ω

f(x, u)ζ +
∫

Ω

ζ dµ−
∫

∂Ω

∂ζ

∂n
dν ∀ζ ∈ C2

0 (Ω),

where n denotes the outward unit norm on ∂Ω. This type of problem has been
extensively studied in [3, 5] when f is of the form f(x, t) = −g(t), where g is
continuous, nondecreasing and g(0) = 0.

Applying Theorem 1.1 we deduce the following corollary which extends results
in [3, 5]:

Corollary 5.4. If v1 ≤ v2 are sub and supersolutions of (5.2) and f is a Cara-
théodory function satisfying (1.5), then (5.2) has a solution u ∈ L1(Ω) such that
v1 ≤ u ≤ v2 a.e.
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Proof. Let w ∈ L1(Ω) be the unique solution of (see [11,15]){−∆w = µ in Ω,

w = ν on ∂Ω.

Let ũ := u − w. The resulting equation in terms of ũ satisfies the assumptions of
Theorem 1.1. Hence, (5.2) has a solution. �
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