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Abstract

Given α > 0 and a bounded domain Ω ⊂ RN , we show that for every finite energy solution u ≥ 0 of the equation

−∆u +
1

uα
= f(x) in Ω, (1)

the set [u = 0] has Hausdorff dimension at most N − 2 + 2
α+1

. The proof is based on a removable singularity
property of the Laplacian ∆. To cite this article: J. Dávila, A. C. Ponce, C. R. Acad. Sci. Paris, Ser. I XXX
(XXXX).

Résumé

Étant donnés α > 0 et un domaine borné Ω ⊂ RN , nous prouvons que pour toute solution d’énergie finie u ≥ 0 de
l’équation (1), l’ensemble [u = 0] a une dimension de Hausdorff inférieure ou égale à N−2+ 2

α+1
. La démonstration

de ce résultat repose sur une propriété de singularité éliminable du laplacien ∆. Pour citer cet article : J. Dávila,
A. C. Ponce, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Version française abrégée

Soit Ω ⊂ RN , N ≥ 2, un domaine borné. Étant donné α > 0, on considère l’équation des films minces
(1), où f ∈ L1(Ω). On s’intéresse à déterminer une borne supérieure de la dimension de Hausdorff de
l’ensemble de rupture [u = 0]. Dans cette direction, Dupaigne-Ponce-Porretta [6] ont montré le

Théorème 0.1 Si u ∈ L1(Ω), u ≥ 0 p.p., vérifie (1) au sens des distributions, alors

HN−2+ 2
α+1 ([u = 0]) = 0. (2)
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Nous prouvons le résultat suivant :

Théorème 0.2 Soit u ∈ H1(Ω) ∩C0 avec u ≥ 0 p.p. et tel que l’ensemble [u = 0] a mesure de Lebesgue
nulle. On suppose que u satisfait (5) au sens des distributions, avec α > 0 et f ∈ L1(Ω). Alors, u−α ∈
L1

loc(Ω), −∆u + u−α ≤ f dans D′(Ω) et l’ensemble [u = 0] vérifie (2).

Le théorème ci-dessus est une amélioration des résultats récemment obtenus par Jiang-Lin [9] et Guo-
Wei [8]. En vu des exemples présentés dans [6], l’Éq. (2) est optimale.

Le Théorème 0.2 est une conséquence de [6, Theorem 12] (voir Theorem 2.1 ci-dessous) et d’une
propriété de singularité éliminable satisfaite par le laplacien :

Théorème 0.3 Soient u ∈ H1(Ω) et Σ ⊂ Ω un ensemble relativement fermé. Supposons que u ≥ 0 p.p.
dans Ω et ∆u ≥ ν dans D′(Ω \Σ) pour une mesure finie ν dans Ω. Si u = 0 q.p.(= quasi-partout) sur Σ,
alors ∆u ≥ νbΩ\Σ dans D′(Ω).

1. Introduction

Let Ω ⊂ RN , N ≥ 2, be a bounded domain. A simplified model for the thickness u ≥ 0 of a thin film
in Ω is given by the equation (see [11])

−∆u +
1
uα

= f(x) in Ω, (3)

where α > 0. In this paper, we are motivated by the following question: what is the Hausdorff dimension
of the rupture set [u = 0] ?

An answer has been recently provided by Dupaigne-Ponce-Porretta [6]; see Theorem 2.1 below. As a
corollary of their result, one immediately deduces the following

Theorem 1.1 Given α > 0, let u ∈ L1(Ω), u ≥ 0 a.e., be such that u−α ∈ L1(Ω). Assume that u satisfies
(3) in the sense of distributions, where f ∈ L1(Ω). Then,

HN−2+ 2
α+1 ([u = 0]) = 0. (4)

We denote by Hβ the Hausdorff measure of dimension β ≥ 0. Recall (see [1]) that every function
u ∈ L1(Ω) such that ∆u is a finite measure is well-defined outside some set of zero Newtonian (H1)
capacity, denoted “cap”. Assertion (4) then makes sense since for any Borel set E ⊂ Ω with zero capacity
we have HN−2+θ(E) = 0, ∀θ > 0.

Under the assumptions of Theorem 1.1, Jiang-Lin [9] proved that the dimension of the rupture set
[u = 0] is at most N − 2 + 4

α+2 , which is strictly larger than N − 2 + 2
α+1 . The dimension provided by

Theorem 1.1 cannot be improved. Indeed, in [6, Lemma 10] the authors show that for any 0 < θ < 2
α+1

there exists uθ ∈ H1(Ω) ∩ C0 such that u−α
θ ∈ L1(Ω), uθ solves (3) for some fθ ∈ L1(Ω), and 0 <

HN−2+θ([uθ = 0]) < ∞.
The assumption “u−α ∈ L1(Ω)” in Theorem 1.1 is needed in order to give a meaning to (3) in the

sense of distributions. Jiang-Lin [9] and Guo-Wei [8] also considered a different notion of solution of (3).
Following [9], we then say that u is a finite energy solution of (3) if u ∈ H1(Ω) ∩ C0, u ≥ 0 in Ω,
u1−α ∈ L1(Ω) and

−∆u +
1
uα

= f(x) in [u > 0], (5)

in the sense of distributions.

Remark 1 Finite energy solutions can be seen as critical points of the energy functional associated to
(3). Actually, it follows from Theorem 1.2 below that finite energy solutions satisfy (3) in the sense of
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distributions, with right-hand side f(x) + µ for some nonpositive measure µ concentrated on the set
[u = 0].

In [8,9], it is proved that if u is a finite energy solution of (3) and α > 1, then Hµ1([u = 0]) = 0, where
µ1 = N − 2 + 4

α+1 . This dimension is also strictly larger than the one provided by Theorem 1.1. This
raises the question of whether (4) still holds for finite energy solutions. We show that this is indeed the
case. In fact, one of our main results is the

Theorem 1.2 Let u ∈ H1(Ω) ∩ C0 be such that u ≥ 0 a.e. and [u = 0] has zero Lebesgue measure.
Assume that u satisfies (5), where α > 0 and f ∈ L1(Ω). Then, (4) holds. Moreover, u−α ∈ L1

loc(Ω) and

−∆u +
1
uα

≤ f in D′(Ω). (6)

One major difference with respect to the results contained in [8,9] is that we do not assume that
u1−α ∈ L1

loc(Ω) but only that [u = 0] has zero Lebesgue measure (see Remark 2 below); we conclude a
posteriori that u−α ∈ L1

loc(Ω).
Theorem 1.2 will be derived from the Hausdorff dimension estimates provided in [6] combined with the

following “removable singularity” result:

Theorem 1.3 Let u ∈ H1(Ω) and Σ ⊂ Ω be a relatively closed set. Assume that u ≥ 0 a.e. in Ω and

∆u ≥ ν in D′(Ω \ Σ) (7)

for some ν ∈Mloc(Ω). If u = 0 q.e. in Σ, then

∆u ≥ νbΩ\Σ in D′(Ω). (8)

In other words, ∆u ∈Mloc(Ω) and ∆u ≥ 0 in Σ.

Throughout the paper, for every open set A ⊂ RN we denote by Mloc(A) the space of locally finite
measures in A. More precisely, µ ∈Mloc(A) if and only if for every open set ω ⊂⊂ A there exists Cω > 0
such that |µ|(ω) ≤ Cω; µ ∈ M(A) if the constant Cω can be chosen independently of ω. We say that
u = 0 q.e. (=quasi-everywhere) in Σ if there exists a Borel set E ⊂ Σ of zero capacity such that u(x) = 0,
∀x ∈ Σ \ E. This property makes sense for every function u ∈ H1(Ω); see Section 2 below.

Note that from (7) one can only infer that ∆u ∈ Mloc(Ω \ Σ); under the assumptions of Theorem 1.3
we are able to prove that ∆u ∈ Mloc(Ω). Similar properties had been investigated by the authors (see
[4,5]).

Combining results in [6] and [10], one obtains the following theorem related to problem (3):

Theorem 1.4 Let u ∈ L1(Ω) be such that ∆u ∈ M(Ω). If |u|−α ∈ L1(Ω) for some α ≥ 1, then either
u ≥ 0 a.e. or u ≤ 0 a.e.

Simple examples show that the conclusion of Theorem 1.4 is no longer true if one only assumes |u|−α ∈
L1(Ω) for some 0 < α < 1.

2. Proofs of the main results

Let us first recall the following result established in [6, Theorem 12]:

Theorem 2.1 Let u ∈ L1(Ω), u ≥ 0 a.e., be such that ∆u ∈ M(Ω). If u−α ∈ L1(Ω) for some α > 0,
then

HN−2+ 2
α+1 ([u = 0]) = 0. (9)

Theorem 1.1 trivially follows from Theorem 2.1 as a special case.
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It is well-known (see e.g. [7]) that for every u ∈ H1(Ω), its precise representative ũ is quasicontinuous.
More precisely, for every ε > 0 there exists an open set ω ⊂⊂ Ω such that cap (ω) < ε and ũ is continuous
on Ω \ ω. We shall systematically identify u and ũ and say that u is quasicontinuous, meaning ũ. Since ũ
is well-defined outside some set of zero capacity, the value of u(x) (i.e. ũ(x)) makes sense q.e.

Proof of Theorem 1.3. Replacing Ω by an open set Ω′ ⊂⊂ Ω if necessary we may assume that ν ∈M(Ω).
Moreover, we can always suppose that u is defined in RN and u ∈ H1(RN ).
Fix δ > 0 and an open set D ⊂⊂ Ω. Given ρ ∈ C∞

0 (B1), consider ρn(x) = nNρ(nx), ∀x ∈ RN , and
un = ρn ∗ u. In particular, since un(x) → u(x) q.e. in Ω and u = 0 q.e. on Σ, we have cap (Kn) → 0 as
n →∞, where Kn =

[
un ≥ δ

2

]
∩D ∩ Σ. Let ζn ∈ C∞

0 (Ω) be such that

0 ≤ ζn ≤ 1 in Ω, ζn = 1 on a neighborhood of Kn,

∫
Ω

|∇ζn|2 ≤ 2 cap (Kn).

In particular, ζn → 0 in H1
0 (Ω). Clearly, D ∩ Σ ⊂ [un < δ] ∪Kn; hence,

D ∩ Σ ⊂ int
(
[un < δ] ∪ [ζn = 1]

)
.

We thus have
supp

{
Sδ(un) (1− ζn)

}
∩D ∩ Σ = ∅, (10)

where Sδ : R → R is the function given by

Sδ(t) =


0 if t ≤ δ,
t− δ

δ
if δ < t < 2δ,

1 if t ≥ 2δ.

Note that, by (7), we have ∆u ∈ Mloc(Ω \ Σ). Moreover, u ∈ H1(Ω) implies that ∆u does not charge
sets of zero capacity. In other words, (∆u)d = ∆u in Ω (the subscript “d” denotes the diffuse part of the
measure with respect to capacity; see [2] for details). It then follows from (7) that

∆u = (∆u)d ≥ νd in D′(Ω \ Σ). (11)

Let ϕ ∈ C∞
0 (D) be such that ϕ ≥ 0 in Ω. Write∫

Ω

u∆ϕ =
∫

Ω

u∆
[
(1− Sδ(u))ϕ

]
+

∫
Ω

u∆
[(

Sδ(u)− Sδ(un)
)
ϕ
]
+

+
∫

Ω

u∆
[
Sδ(un) ζnϕ

]
+

∫
Ω

u∆
[
Sδ(un) (1− ζn)ϕ

]
=: I + II + III + IV. (12)

We now estimate I–IV separately. Note that

I =
∫

Ω

∇u · ∇Sδ(u) ϕ−
∫

Ω

∇u · ∇ϕ (1− Sδ(u))

=
1
δ

∫
[δ<u<2δ]

|∇u|2ϕ−
∫

Ω

∇u · ∇ϕ (1− Sδ(u)) ≥ −
∫

Ω

∇u · ∇ϕ (1− Sδ(u)).
(13)

Since Sδ(un) → Sδ(u) in H1(Ω), we have

II = −
∫

Ω

∇u · ∇
[(

Sδ(un)− Sδ(u)
)
ϕ
]
→ 0 as n →∞. (14)

We now observe that ζn → 0 in H1
0 (Ω) and (Sδ(un))n≥1 is bounded in H1(Ω); thus,

III = −
∫

Ω

∇u · ∇
[
Sδ(un) ζnϕ

]
→ 0. (15)
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By (10), we have Sδ(un) (1− ζn)ϕ ∈ C∞
0 (Ω \ Σ). Using (11),

IV ≥
∫

Ω

Sδ(un) (1− ζn)ϕ dνd.

Since Sδ(un) (1− ζn)ϕ → Sδ(u)ϕ in H1(Ω) and νd is a diffuse measure, we then get

IV ≥
∫

Ω

Sδ(u)ϕ dνd + o(1). (16)

Combining (12)–(16), we conclude that∫
Ω

u∆ϕ ≥ −
∫

Ω

∇u · ∇ϕ (1− Sδ(u)) +
∫

Ω

Sδ(u)ϕ dνd + o(1) as n →∞.

Therefore, ∫
Ω

u∆ϕ ≥ −
∫

Ω

∇u · ∇ϕ (1− Sδ(u)) +
∫

Ω

Sδ(u)ϕ dνd ∀δ > 0. (17)

Note that 0 ≤ Sδ(u) ≤ 1 in Ω and Sδ(u) → χ[u>0] q.e.; moreover, ∇u = 0 a.e. on the set [u = 0]. As we
let δ → 0 in (17), it follows from dominated convergence that∫

Ω

u∆ϕ ≥ −
∫

[u=0]

∇u · ∇ϕ +
∫

[u>0]

ϕ dνd =
∫

[u>0]

ϕ dνd.

This inequality holds for every ϕ ∈ C∞
0 (D), ϕ ≥ 0 in Ω, and every open set D ⊂⊂ Ω. Hence, ∆u ∈

Mloc(Ω) and ∆u ≥ χ[u>0]νd in Ω. In particular, since u = 0 q.e. on Σ and νd is a diffuse measure,

(∆u)bΣ≥ (χ[u>0]νd)bΣ = 0. (18)

On the other hand, by (7) we also have

(∆u)bΩ\Σ≥ νbΩ\Σ. (19)

Combining (18)–(19), we deduce that

∆u = (∆u)bΣ +(∆u)bΩ\Σ≥ νbΩ\Σ in Ω.

The proof of Theorem 1.3 is complete. 2

Proof of Theorem 1.2. Let Σ = [u = 0]. Since u−α ≥ 0 a.e. in Ω and u satisfies (5), we have ∆u ≥ −f in
D′(Ω \ Σ). By Theorem 1.3, we conclude that ∆u ∈Mloc(Ω) and

∆u ≥ 0 in Σ. (20)

Let us denote by (∆u)a and (∆u)s the absolutely continuous and the singular parts of ∆u with respect
to the Lebesgue measure, respectively. Since Σ has zero Lebesgue measure, by (5)

1
uα

= (∆u)a + f a.e. in Ω. (21)

On the other hand, by (20) we also have

(∆u)s ≥ 0 in Ω. (22)

Since (∆u)a ∈ L1
loc(Ω) and f ∈ L1(Ω), we deduce from (21) that u−α ∈ L1

loc(Ω). Combining (21)–(22),
we then get

∆u = (∆u)a + (∆u)s ≥
1
uα

− f in Ω,

from which (6) follows. It remains to show that (4) holds. For every open set D ⊂⊂ Ω, we have ∆u ∈
M(D) and u−α ∈ L1(D). Thus, by Theorem 2.1, HN−2+ 2

α+1
(
[u = 0] ∩D

)
= 0. Since D is arbitrary, (4)

follows. 2
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Remark 2 Without the assumption “[u = 0] has zero Lebesgue measure”, the conclusion of Theorem 1.2
becomes u−αχ[u>0] ∈ L1

loc(Ω) and

−∆u +
1
uα

χ[u>0] ≤ f in D′(Ω). (23)

One may wonder whether (4) still holds for any α > 0. The answer is no if 0 < α < 1. In fact, there
are examples of functions u ∈ H1(Ω) ∩ C0 satisfying (5) for which [u = 0] has positive measure; see
Dávila-Montenegro [3]. However, in the case α ≥ 1 we do not know if (23) implies that [u = 0] has zero
Lebesgue measure, in which case (4) would be true by Theorem 1.2.

In order to establish Theorem 1.4, we need the following version of the Intermediate Value Theorem
recently established by Van Schaftingen-Willem [10, Proposition 2.11]:

Theorem 2.2 Let u ∈ W 1,1(Ω). If HN−1([u = 0]) = 0, then either u ≥ 0 a.e. or u ≤ 0 a.e.

Proof of Theorem 1.4. Let u ∈ L1(Ω) be such that ∆u ∈M(Ω). By [2], we have ∆|u| ∈ Mloc(Ω). On the
other hand, note that if |u|−α ∈ L1(Ω) for some α ≥ 1, then |u|−1 ∈ L1(Ω). Thus, by Theorem 2.1,

HN−1([u = 0]) = HN−1([|u| = 0]) = 0.

Moreover, by standard elliptic regularity theory, u ∈ W 1,1
loc (Ω). Applying Theorem 2.2, we conclude that

u ≥ 0 a.e. or u ≤ 0 a.e. 2
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