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Abstract. We show that if ∆u is a finite measure in Ω then, under suitable

assumptions on u near ∂Ω, ∆u+ is also a finite measure in Ω. We also study

properties of the normal derivatives ∂u
∂n

and ∂u+

∂n
on ∂Ω.
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1. Introduction

Let Ω ⊂ RN be a smooth bounded domain. Given u ∈ L1(Ω) with ∆u ∈ L1(Ω),
Kato’s inequality (see [9]; see also [4]) asserts that

(1.1) ∆u+ ≥ χ[u≥0]∆u in D′(Ω).

In particular, (1.1) implies that ∆u+ is a locally finite measure in Ω. Our goal in
this paper is to address the question whether ∆u+ is a finite measure up to the
boundary of Ω, i.e., whether ∫

Ω

|∆u+| <∞.

In general, the answer is negative: one can even construct harmonic functions
u ∈ C(Ω)∩H1(Ω) such that ∆u+ is not a finite measure in Ω; see Proposition A.1
below. With further assumptions on u (for instance if u ∈W 2,1(Ω) or if u vanishes
on the boundary) we will see that the answer is positive.
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The following class of functions will play a central role. We say that u ∈ X if
u ∈W 1,1(Ω) and if there exists a constant C > 0 such that

(1.2)
∣∣∣∣∫

Ω

∇u · ∇ψ
∣∣∣∣ ≤ C‖ψ‖L∞ ∀ψ ∈ C1(Ω),

in which case we set

[u]X = sup
ψ∈C1(Ω)
‖ψ‖L∞≤1

∫
Ω

∇u · ∇ψ.

Note that if u ∈ X, then there exists a unique T ∈
[
C(Ω)

]∗ = M(Ω) such that

〈T, ψ〉 =
∫

Ω

∇u · ∇ψ ∀ψ ∈ C1(Ω).

On the other hand, by the Riesz Representation Theorem any T ∈M(Ω) admits a
unique decomposition

〈T, ψ〉 =
∫
∂Ω

ψ dν +
∫

Ω

ψ dµ ∀ψ ∈ C(Ω),

where µ ∈ M(Ω) and ν ∈ M(∂Ω). As usual, M(Ω) and M(∂Ω) denote the
spaces of finite measures in Ω and ∂Ω, respectively, equipped with the norm ‖ · ‖M;
measures inM(Ω) are identified with measures in Ω which do not charge ∂Ω. When
u ∈ X, we will denote

µ = −∆u and ν =
∂u

∂n
.

Throughout the paper, whenever u ∈ X we use the notation ∆u and ∂u
∂n in the

above sense. If u ∈ X, then∫
Ω

∇u · ∇ψ =
∫
∂Ω

ψ
∂u

∂n
−

∫
Ω

ψ∆u ∀ψ ∈ C1(Ω),

and consequently,∫
∂Ω

u
∂ψ

∂n
−

∫
Ω

u∆ψ =
∫
∂Ω

ψ
∂u

∂n
−

∫
Ω

ψ∆u ∀ψ ∈ C2(Ω).

Also, note that if u ∈ X, then

[u]X =
∫

Ω

|∆u|+
∫
∂Ω

∣∣∣∣∂u∂n
∣∣∣∣ .

In particular, [ · ]X defines a seminorm in X and [u]X = 0 if, and only if, u is
constant in Ω. In order to verify this last assertion, one may use the fact that for
every h ∈ C∞(Ω) with

∫
Ω
h = 0, there exists ψ ∈ C∞(Ω) such that −∆ψ = h in Ω

with ∂ψ
∂n = 0 on ∂Ω.

Clearly, any function u ∈W 2,1(Ω) belongs to X and our notation is consistent
with the usual meaning of ∆u and ∂u

∂n . Recall that, for any function u ∈ L1(Ω),
∆u is well-defined as a distribution. When u ∈ X, the distribution ∆u belongs to
M(Ω), but the converse is not true; see, e.g., Proposition A.1 below.

We now present our main results.
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Theorem 1.1. If u ∈ X, then u+ ∈ X and

(1.3) [u+]X ≤ [u]X.

In other words,

(1.4)
∫

Ω

|∆u+|+
∫
∂Ω

∣∣∣∣∂u+

∂n

∣∣∣∣ ≤ ∫
Ω

|∆u|+
∫
∂Ω

∣∣∣∣∂u∂n
∣∣∣∣ .

Our next result gives additional properties when u vanishes on the boundary:

Theorem 1.2. If u ∈ W 1,1
0 (Ω) and ∆u ∈ M(Ω) (in the sense of distributions),

then u ∈ X (hence u+ ∈ X). Moreover,

(1.5)
∫

Ω

|∆u+| ≤
∫

Ω

|∆u|.

In addition, ∂u
∂n ∈ L

1(∂Ω) with

(1.6)
∫
∂Ω

∣∣∣∣∂u∂n
∣∣∣∣ ≤ ∫

Ω

|∆u|.

Note that assertions (1.5)–(1.6) fail if u does not vanish on ∂Ω; simply take
Ω = B1, the unit ball in RN , and u(x) = x1.

We now state our extension of Kato’s inequality up to the boundary:

Theorem 1.3. Let u ∈ X be such that ∆u ∈ L1(Ω) and ∂u
∂n ∈ L

1(∂Ω). Then,

(1.7)
∫
∂Ω

∇u+ · ∇ψ ≤
∫
∂Ω

Hψ −
∫

Ω

Gψ ∀ψ ∈ C1(Ω), ψ ≥ 0 in Ω,

where G ∈ L1(Ω) and H ∈ L1(∂Ω) are given by

(1.8) G =

{
∆u on [u > 0],
0 on [u ≤ 0],

and H =


∂u
∂n on [u > 0],
0 on [u < 0],
min

{
∂u
∂n , 0

}
on [u = 0].

Thus,

(1.9)


∆u+ ≥ G in Ω,

∂u+

∂n
≤ H on ∂Ω.

We conclude this introduction with the following problems:

Open Problem 1. Let u ∈ X. Is it true that

(1.10)
∣∣∣∣∂u+

∂n

∣∣∣∣ ≤ ∣∣∣∣∂u∂n
∣∣∣∣ on ∂Ω ?

This problem is open even under the additional assumption that u ∈W 1,1
0 (Ω).

Open Problem 2. Assume that u ∈ X and ∂u
∂n ∈ L1(∂Ω). Is it true that ∂u+

∂n ∈
L1(∂Ω)? More precisely, does one have

(1.11)
∂u+

∂n
= H,

where H is the function given by (1.8)?



4 HAÏM BREZIS(1),(2) AND AUGUSTO C. PONCE(3)

The answer to both Open Problems 1 and 2 is positive if u ∈ W 2,1(Ω); see
Theorem 7.1 below.

Addendum. Recently, A. Ancona informed us that he gave a positive answer to
Open Problems 1 and 2 in full generality. His argument strongly relies on tools
from Potential Theory; see [2].

2. Properties of functions in X

In this section, we investigate properties satisfied by elements in X. We first
show that condition (1.2) required for a function to belong to X can be replaced by

(2.1)
∣∣∣∣∫

Ω

u∆ζ
∣∣∣∣ ≤ C‖ζ‖L∞ ∀ζ ∈ C2

N(Ω),

where

(2.2) C2
N(Ω) =

{
ζ ∈ C2(Ω);

∂ζ

∂n
= 0 on ∂Ω

}
.

Proposition 2.1. Let u ∈ L1(Ω). Then, u ∈ X if, and only if,

(2.3) sup
ζ∈C2

N(Ω)
‖ζ‖L∞≤1

∣∣∣∣ ∫
Ω

u∆ζ
∣∣∣∣ <∞.

Moreover,
(i) the quantity in (2.3) equals [u]X;

(ii) u ∈W 1,p(Ω) for every 1 ≤ p < N
N−1 ; moreover, ‖∇u‖Lp(Ω) ≤ C[u]X.

In the proof of Proposition 2.1, we need the following variant of the classical
De Giorgi-Stampacchia estimate (see [7, 8]) for the Neumann problem:

Lemma 2.1. Given F ∈ C∞0 (Ω; RN ), let w be the unique solution of

(2.4)


−∆w = divF in Ω,
∂w

∂n
= 0 on ∂Ω,

such that
∫
Ω
w = 0. Then, for every q > N we have

(2.5) ‖w‖L∞ ≤ C‖F‖Lq .

We present a sketch of the proof of Lemma 2.1 in Appendix C.

Proof of Proposition 2.1. Note that if u ∈ X, then

(2.6)
∣∣∣∣∫

Ω

u∆ζ
∣∣∣∣ =

∣∣∣∣∫
Ω

∇u · ∇ζ
∣∣∣∣ ≤ [u]X ‖ζ‖L∞ ∀ζ ∈ C2

N(Ω).

This gives the implication “⇒”. We now assume that (2.3) holds. We split the
proof of the converse into two steps:
Step 1. u ∈W 1,p(Ω) for every 1 ≤ p < N

N−1 and

‖∇u‖Lp(Ω) ≤ CK,

where K denotes the quantity in (2.3).
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Clearly, we may assume that 1 < p < N
N−1 . Given F ∈ C∞0 (Ω; RN ), let w be the

unique solution of (2.4) such that
∫
Ω
w = 0. By (2.3) and (2.5), we have∣∣∣∣∫

Ω

udivF
∣∣∣∣ =

∣∣∣∣∫
Ω

u∆w
∣∣∣∣ ≤ K‖w‖L∞ ≤ KC‖F‖Lp′ ∀F ∈ C∞0 (Ω; RN ).

The conclusion follows by duality.

Step 2. u ∈ X and [u]X = K.
It suffices to show that

(2.7)
∣∣∣∣∫

Ω

∇u · ∇ψ
∣∣∣∣ ≤ K‖ψ‖L∞ ∀ψ ∈ C1(Ω).

Indeed, this implies u ∈ X and [u]X ≤ K. Since by (2.6), K ≤ [u]X, equality must
hold. We now turn ourselves to the proof of (2.7). Given ψ ∈ C2(Ω), we first show
that there exists a sequence (ζk) such that

(2.8) ζk ∈ C2
N(Ω), ‖∇ζk‖L∞ ≤ C, ζk → ψ uniformly in Ω

and

(2.9) ∇ζk → ∇ψ a.e. in Ω.

Indeed, let Φ ∈ C∞0 (R) and η ∈ C2(Ω) with η = 0 on ∂Ω be such that

Φ(t) = t ∀t ∈ [−1, 1] and
∂η

∂n
=
∂ψ

∂n
on ∂Ω.

Take
ζk = ψ − 1

k
Φ(kη) in Ω.

Clearly, (2.8) holds. On the other hand,

∇
[

1
k

Φ(kη)
]

= Φ′(kη)∇η → χ[η=0]∇η in Ω.

Since ∇η = 0 a.e. on the set [η = 0], (2.9) follows. For every k ≥ 1, we thus have∣∣∣∣∫
Ω

∇u · ∇ζk
∣∣∣∣ =

∣∣∣∣∫
Ω

u∆ζk

∣∣∣∣ ≤ K‖ζk‖L∞ .

As k → ∞, we obtain (2.7) with test functions ψ ∈ C2(Ω). Using a density
argument, one then gets (2.7). The proof is complete. ¤

Remark 2.1. Using Proposition 2.1, one deduces that given measures µ ∈ M(Ω)
and ν ∈M(∂Ω), the Neumann problem

(2.10)


−∆u = µ in Ω,
∂u

∂n
= ν on ∂Ω,

has a solution u ∈ X if, and only if,

(2.11) µ(Ω) + ν(∂Ω) = 0.

The solution is unique up to an additive constant and belongs to u ∈ W 1,p(Ω) for
every 1 ≤ p < N

N−1 . In particular, if
∫
Ω
u = 0, then

‖u‖W 1,p(Ω) ≤ C[u]X.

The following result complements Proposition 2.1:
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Proposition 2.2. Let u ∈ L1(Ω) be such that

(2.12) −
∫

Ω

u∆ζ ≤
∫
∂Ω

ζ dν +
∫

Ω

ζ dµ ∀ζ ∈ C2
N(Ω), ζ ≥ 0 in Ω

for some µ ∈M(Ω) and ν ∈M(∂Ω). Then, u ∈ X,

(2.13) [u]X ≤ 2
(
‖µ+‖M(Ω) + ‖ν+‖M(∂Ω)

)
and

(2.14)


−∆u ≤ µ in Ω,
∂u

∂n
≤ ν on ∂Ω.

Proof. By (2.12), we have

(2.15) −
∫

Ω

u∆ζ ≤
∫
∂Ω

ζ dν+ +
∫

Ω

ζ dµ+ ∀ζ ∈ C2
N(Ω), ζ ≥ 0 in Ω.

For every ζ ∈ C2
N(Ω), we apply (2.15) with test functions ‖ζ‖L∞ ± ζ to get

(2.16)
∣∣∣∣∫

Ω

u∆ζ
∣∣∣∣ ≤ 2

(
‖µ+‖M(Ω) + ‖ν+‖M(∂Ω)

)
‖ζ‖L∞ .

By Proposition 2.1, it follows that u ∈ X and (2.13) holds. Proceeding as in Step 2
of the proof of Proposition 2.1 (more precisely, using (2.8)–(2.9)), one deduces from
(2.12) that∫

Ω

∇u · ∇ψ ≤
∫
∂Ω

ψ dν +
∫

Ω

ψ dµ ∀ψ ∈ C2(Ω), ψ ≥ 0 in Ω.

Therefore,∫
∂Ω

ψ
∂u

∂n
−

∫
Ω

ψ∆u ≤
∫
∂Ω

ψ dν +
∫

Ω

ψ dµ ∀ψ ∈ C2(Ω), ψ ≥ 0 in Ω.

This gives (2.14). ¤

3. Proof of Theorem 1.1

We begin by establishing the following lemma:

Lemma 3.1. If u ∈ C2(Ω), then

(3.1)
∫

Ω

∇u+ · ∇ψ ≤
∫
∂Ω

[u≥0]

ψ
∂u

∂n
−

∫
Ω

[u≥0]

ψ∆u ∀ψ ∈ C1(Ω), ψ ≥ 0 in Ω.

Proof. We first prove the
Claim. If u ∈ C2(Ω) and Φ ∈ C2(R) is convex, then

(3.2)
∫

Ω

∇Φ(u) · ∇ψ ≤
∫
∂Ω

ψΦ′(u)
∂u

∂n
−

∫
Ω

ψΦ′(u)∆u ∀ψ ∈ C1(Ω), ψ ≥ 0 in Ω.

Note that
∂Φ(u)
∂n

= Φ′(u)
∂u

∂n
on ∂Ω

and, by the convexity of Φ,

∆Φ(u) ≥ Φ′(u)∆u in Ω.
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Thus, for every ψ ∈ C1(Ω), ψ ≥ 0 in Ω,∫
Ω

∇Φ(u) · ∇ψ =
∫
∂Ω

ψ
∂Φ(u)
∂n

−
∫

Ω

ψ∆Φ(u) ≤
∫
∂Ω

ψΦ′(u)
∂u

∂n
−

∫
Ω

ψΦ′(u)∆u.

This establishes the claim.

We now apply (3.2) with Φ = Φk, where (Φk) is a sequence of smooth convex
functions such that Φk(0) = 0, ‖Φ′k‖L∞ ≤ 1 and satisfying

Φ′k(t) →

{
1 if t ≥ 0,
0 if t < 0.

As k →∞, we obtain (3.1). ¤

We now prove a special case of Theorem 1.1 for functions in C2(Ω):

Lemma 3.2. Let u ∈ C2(Ω). Then, u+ ∈ X and

(3.3) [u+]X ≤ [u]X.

Proof. Note that u+ ∈ W 1,1(Ω). In order to establish the lemma, it thus suffices
to show that

(3.4)
∣∣∣∣∫

Ω

∇u+ · ∇ψ
∣∣∣∣ ≤ [u]X ‖ψ‖L∞ ∀ψ ∈ C1(Ω).

For this purpose, given ψ̃ ∈ C1(Ω) we apply (3.1) with ψ = ‖ψ̃‖L∞ + ψ̃. We then
get

(3.5)
∫

Ω

∇u+ · ∇ψ̃ ≤
( ∫

∂Ω
[u≥0]

∂u

∂n
−

∫
Ω

[u≥0]

∆u
)
‖ψ̃‖L∞ +

∫
∂Ω

[u≥0]

ψ̃
∂u

∂n
−

∫
Ω

[u≥0]

ψ̃∆u.

Since ∫
∂Ω

[u≥0]

∂u

∂n
−

∫
Ω

[u≥0]

∆u = −
∫
∂Ω

[u<0]

∂u

∂n
+

∫
Ω

[u<0]

∆u,

estimate (3.5) becomes∫
Ω

∇u+ · ∇ψ̃ ≤ −
( ∫

∂Ω
[u<0]

∂u

∂n
−

∫
Ω

[u<0]

∆u
)
‖ψ̃‖L∞ +

∫
∂Ω

[u≥0]

ψ̃
∂u

∂n
−

∫
Ω

[u≥0]

ψ̃∆u

≤
(∫

∂Ω

∣∣∣∣∂u∂n
∣∣∣∣ +

∫
Ω

|∆u|
)
‖ψ̃‖L∞ = [u]X ‖ψ̃‖L∞ .

This relation holds for every ψ̃ ∈ C1(Ω). Replacing ψ̃ by −ψ̃, we obtain (3.4). This
establishes the lemma. ¤

Proof of Theorem 1.1. Since u ∈ X,∫
Ω

∇u · ∇ψ =
∫
∂Ω

ψ
∂u

∂n
−

∫
Ω

ψ∆u ∀ψ ∈ C1(Ω).

Taking ψ = 1 as a test function, we get

(3.6)
∫
∂Ω

∂u

∂n
=

∫
Ω

∆u.
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Let (µk) ⊂ C∞(Ω) and (νk) ⊂ C∞(∂Ω) be two sequences such that

µk
∗
⇀ −∆u weak∗ in M(Ω) and ‖µk‖L1(Ω) → ‖∆u‖M(Ω),

νk
∗
⇀

∂u

∂n
weak∗ in M(∂Ω) and ‖νk‖L1(∂Ω) →

∥∥∥∥∂u∂n
∥∥∥∥
M(∂Ω)

.

In view of (3.6) we may also assume that∫
∂Ω

νk = −
∫

Ω

µk ∀k ≥ 1.

For each k ≥ 1, let uk ∈ C2(Ω) be the unique function such that
−∆uk = µk in Ω,
∂uk
∂n

= νk on ∂Ω,

and ∫
Ω

uk =
∫

Ω

u.

Then, by Remark 2.1 applied to uk−
∫
Ω
u, the sequence (uk) is bounded in W 1,p(Ω)

for every 1 ≤ p < N
N−1 . Since uk → u a.e., one deduces that

∇u+
k ⇀ ∇u+ weakly in L1(Ω).

On the other hand, applying Lemma 3.2 to uk, we get∣∣∣∣∫
Ω

∇u+
k · ∇ψ

∣∣∣∣ ≤ [u+
k ]X ‖ψ‖L∞ ≤ [uk]X ‖ψ‖L∞ ∀ψ ∈ C1(Ω).

As k →∞, we obtain∣∣∣∣∫
Ω

∇u+ · ∇ψ
∣∣∣∣ ≤ [u]X ‖ψ‖L∞ ∀ψ ∈ C1(Ω),

from which the conclusion follows. ¤

4. Properties of ∂u
∂n

We start with a result which seems intuitively true, but still requires a proof:

Proposition 4.1. Let u ∈W 1,∞(Ω). Then, u ∈ X if, and only if, ∆u ∈M(Ω) (in
the sense of distributions). In this case, ∂u

∂n ∈ L
∞(∂Ω) and

(4.1)
∥∥∥∥∂u∂n

∥∥∥∥
L∞(∂Ω)

≤ ‖∇u‖L∞(Ω) .

If u ∈ C1(Ω) ∩ X , then ∂u
∂n coincides with the standard normal derivative on ∂Ω.

Proof. We first assume that u ∈ W 1,∞(Ω) and ∆u ∈ M(Ω). Given a sequence of
mollifiers (ρk) such that supp ρk ⊂ B1/k, let

uk(x) =
∫

Ω

ρk(x− y)u(y) dy ∀x ∈ Ω.

Note that if d(x, ∂Ω) > 1/k, then

∇uk(x) =
∫

Ω

ρk(x− y)∇u(y) dy and ∆uk(x) =
∫

Ω

ρk(x− y)∆u(y) dy.
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Denote

(4.2) Ωδ =
{
x ∈ Ω; d(x, ∂Ω) > δ

}
;

for δ0 > 0 small enough, Ωδ is smooth for every δ ∈ (0, δ0).
For every k ≥ 1 and δ ∈ (0, δ0) such that 1/k < δ we then have

(4.3)
∥∥∥∥∂uk∂n

∥∥∥∥
L∞(∂Ωδ)

≤ ‖∇uk‖L∞(Ωδ) ≤ ‖∇u‖L∞(Ω) .

Thus, for every ψ ∈ C1(Ω),

(4.4)
∣∣∣∣ ∫

Ωδ

ψ∆uk +
∫

Ωδ

∇ψ · ∇uk
∣∣∣∣ ≤ ‖∇u‖L∞(Ω)‖ψ‖L1(∂Ωδ).

Note that for a.e. δ ∈ (0, δ0)

(4.5)
∫
∂Ωδ

|∆u| = 0;

hence, for any such δ > 0,∫
Ωδ

ψ∆uk →
∫

Ωδ

ψ∆u as k →∞.

Indeed, this is a general fact (see, e.g., [5, Theorem 1, p.54]): if µ ∈ M(Ω) and
|µ|(∂Ωδ) = 0, then ∫

Ωδ

ψ (ρk ∗ µ) →
∫

Ωδ

ψ dµ ∀ψ ∈ C0(Ωδ).

For any δ ∈ (0, δ0) verifying (4.5), as k →∞ in (4.4) we get

(4.6)
∣∣∣∣ ∫

Ωδ

ψ∆u+
∫

Ωδ

∇ψ · ∇u
∣∣∣∣ ≤ ‖∇u‖L∞(Ω)‖ψ‖L1(∂Ωδ) ∀ψ ∈ C1(Ω).

From this estimate, one deduces that for every ψ ∈ C1(Ω),∣∣∣∣ ∫
Ωδ

∇ψ · ∇u
∣∣∣∣ ≤ ‖∆u‖M(Ω)‖ψ‖L∞(Ωδ) + ‖∇u‖L∞(Ω)‖ψ‖L1(∂Ωδ)

≤
(
‖∆u‖M(Ω) + ‖∇u‖L∞(Ω)|∂Ωδ|

)
‖ψ‖L∞(Ω).

As δ → 0, we conclude that u ∈ X.

In order to prove that ∂u
∂n ∈ L∞(∂Ω), we return to estimate (4.6). Given φ ∈

C1(∂Ω), we fix an extension ψ ∈ C1(Ω) of φ; note that

‖ψ‖L1(∂Ωδ) ≤ ‖φ‖L1(∂Ω) + Cδ ∀δ ∈ (0, δ0),

for some constant C > 0. Insert this test function ψ in (4.6). As δ → 0 we obtain,
by dominated convergence,∣∣∣∣ ∫

Ω

ψ∆u+
∫

Ω

∇ψ · ∇u
∣∣∣∣ ≤ ‖∇u‖L∞(Ω)‖φ‖L1(∂Ω).

Hence, ∣∣∣∣ ∫
∂Ω

φ
∂u

∂n

∣∣∣∣ ≤ ‖∇u‖L∞(Ω)‖φ‖L1(∂Ω) ∀φ ∈ C1(∂Ω).

Therefore, by duality ∂u
∂n ∈ L

∞(∂Ω) and (4.1) holds.
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We now assume that u ∈ C1(Ω)∩X and we denote by h the normal derivative of
u in the standard sense. By Lemma B.1 and Remark B.1, there exists a sequence
(uk) ⊂ C∞(Ω) satisfying (B.2)–(B.3) and such that

uk → u in C1(Ω).

In particular,
∂uk
∂n

→ h uniformly on ∂Ω.

Thus,

(4.7)
∫

Ω

∇u · ∇ψ +
∫

Ω

ψ∆u =
∫
∂Ω

hψ ∀ψ ∈ C1(Ω).

Hence, the normal derivative ∂u
∂n in the sense of the space X coincides with h. ¤

When u ∈ X the measure ∂u
∂n need not be an L1-function. Surprisingly, this is

always true if u vanishes on ∂Ω:

Proposition 4.2. Let u ∈ W 1,1
0 (Ω). Then, u ∈ X if, and only if, ∆u ∈ M(Ω) in

the sense of distributions. Moreover, ∂u
∂n ∈ L

1(∂Ω) and

(4.8)
∥∥∥∥∂u∂n

∥∥∥∥
L1(∂Ω)

≤ ‖∆u‖M(Ω).

Proof. We split the proof into two steps:
Step 1. Proof of (4.8) if u is smooth in a neighborhood of ∂Ω.

Under this assumption, ∂u
∂n is a smooth function on ∂Ω. Denote by v1 and v2

the solutions of{
−∆v1 = µ+ in Ω,

v1 = 0 on ∂Ω,

{
−∆v2 = µ− in Ω,

v2 = 0 on ∂Ω,

where µ = −∆u. In particular,

u = v1 − v2 in Ω.

Since µ is smooth in a neighborhood of ∂Ω, µ+ and µ− are Lipschitz continuous
near ∂Ω. Hence, v1 and v2 are of class C2 near ∂Ω. Moreover, v1 ≥ 0 in Ω and
v1 = 0 on ∂Ω; thus,

∂v1
∂n

≤ 0 on ∂Ω.

It follows that ∫
∂Ω

∣∣∣∣∂v1∂n

∣∣∣∣ = −
∫
∂Ω

∂v1
∂n

=
∫

Ω

µ+.

Similarly, ∫
∂Ω

∣∣∣∣∂v2∂n

∣∣∣∣ =
∫

Ω

µ−.

Therefore,∫
∂Ω

∣∣∣∣∂u∂n
∣∣∣∣ ≤ ∫

∂Ω

∣∣∣∣∂v1∂n

∣∣∣∣ +
∫
∂Ω

∣∣∣∣∂v2∂n

∣∣∣∣ =
∫

Ω

(µ+ + µ−) =
∫

Ω

|∆u|.

Step 2. Proof of the proposition completed.
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Let (ϕk) ⊂ C∞0 (Ω) be a sequence of test functions such that

0 ≤ ϕk ≤ 1 in Ω and ϕk(x) = 1 if d(x, ∂Ω) ≥ 1
k

.

Take µk = −ϕk ∆u, ∀k ≥ 1. Then, (µk) ⊂ M(Ω) is a sequence of measures such
that suppµk ⊂ Ω and, by dominated convergence,

(4.9) µk → −∆u strongly in M(Ω).

For each k ≥ 1, let uk be the unique solution of{−∆uk = µk in Ω,
uk = 0 on ∂Ω.

Note that uk is harmonic in a neighborhood of ∂Ω. We claim that

(4.10)
∫
∂Ω

φ
∂uk
∂n

→
∫
∂Ω

φ
∂u

∂n
∀φ ∈ C1(∂Ω).

Indeed, since uk → u in L1(Ω) and (∇uk) is bounded in W 1,p
0 (Ω) for every 1 ≤ p <

N
N−1 , (see [10]) we have

(4.11)
∫

Ω

∇ψ · ∇uk →
∫

Ω

∇ψ · ∇u ∀ψ ∈ C1(Ω).

Assertion (4.10) then follows from (4.9) and (4.11).
Applying Step 1 to the function ui − uj , we have∥∥∥∥∂ui∂n

− ∂uj
∂n

∥∥∥∥
L1(∂Ω)

≤ ‖µi − µj‖M(Ω) ∀i, j ≥ 1.

In view of the strong convergence of (µk) in M(Ω),
(
∂uk

∂n

)
is a Cauchy sequence in

L1(∂Ω). Hence, this sequence converges in L1(∂Ω) to some function h. By (4.10),
h = ∂u

∂n ; hence,
∂uk
∂n

→ ∂u

∂n
in L1(∂Ω).

Moreover, since (4.8) holds for every uk, it also holds for u. The proof is complete.
¤

We now show that if u ∈W 1,1(Ω) and ∇u ∈ BV (Ω) then the normal derivative
∂u
∂n in the sense of the space X coincides with the function n · ∇u on ∂Ω defined in
the sense of traces:

Proposition 4.3. Assume that u ∈W 1,1(Ω) and ∇u ∈ BV (Ω); hence,

∆u = div (∇u) ∈M(Ω).

Then, u ∈ X and ∂u
∂n coincides with n · ∇u|∂Ω on ∂Ω, where ∇u|∂Ω is understood

in the sense of traces. In particular, ∂u
∂n ∈ L

1(∂Ω) and

(4.12)
∥∥∥∥∂u∂n

∥∥∥∥
L1(∂Ω)

≤ C‖∇u‖BV (Ω).

In the proof of Proposition 4.3 we use the notion of strict convergence in BV (A),
where A ⊂ RN is a Lipschitz domain. We recall that a sequence (fn) ⊂ BV (A)
converges strictly to f ∈ BV (A) if

fn → f strongly in L1(A) and
∫
A

|Dfn| →
∫
A

|Df |.
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By [1, Theorem 3.88], the trace operator

f ∈ BV (A) 7−→ f |∂A ∈ L1(∂A)

is continuous from BV (A) (under strict convergence) into L1(∂A) (under strong
convergence).

Proof of Proposition 4.3. By Lemma B.1 and Remark B.1, there exists a sequence
(uk) ⊂ C∞(Ω) satisfying (B.1)–(B.3) and (B.12). Since (∇uk) converges strictly to
∇u in BV (Ω

)
, we have

(4.13) ∇uk|∂Ω → ∇u|∂Ω in L1(∂Ω).

Hence, ∫
Ω

∇u · ∇ψ +
∫

Ω

ψ∆u =
∫
∂Ω

(
n · ∇u|∂Ω

)
ψ ∀ψ ∈ C1(∂Ω).

This implies that ∂u
∂n ∈ L1(∂Ω) and equals n · ∇u|∂Ω. By the BV -trace theory,

(4.12) holds. ¤

5. Proof of Theorem 1.2

We first establish Theorem 1.2 for functions in C2
D(Ω), where

(5.1) C2
D(Ω) =

{
ζ ∈ C2(Ω); ζ = 0 on ∂Ω

}
.

Lemma 5.1. Let u ∈ C2
D(Ω). Then, ∆u+ ∈M(Ω) and

(5.2) ‖∆u+‖M ≤ ‖∆u‖L1 .

Proof. Apply (3.3) with u+ a, where a > 0. We deduce that

(5.3)
[
(u+ a)+

]
X ≤ [u+ a]X = [u]X.

Since (u+ a)+ = u+ a in a neighborhood of ∂Ω,

(5.4)
∂

∂n
(u+ a)+ =

∂u

∂n
on ∂Ω.

Note that [
(u+ a)+

]
X =

∥∥∆(u+ a)+
∥∥
M(Ω)

+
∥∥∥∥ ∂

∂n
(u+ a)+

∥∥∥∥
L1(∂Ω)

,

[u]X = ‖∆u‖L1(Ω) +
∥∥∥∥∂u∂n

∥∥∥∥
L1(∂Ω)

.

By (5.3)–(5.4) we then have∥∥∆(u+ a)+
∥∥
M ≤ ‖∆u‖L1 ∀a > 0.

The result follows from the lower semicontinuity of the norm ‖ · ‖M with respect
to the weak∗ convergence as a→ 0. ¤

Proof of Theorem 1.2. Since u ∈ X, ∆u ∈ M(Ω). Take a sequence (µk) ⊂ C∞(Ω)
such that

µk
∗
⇀ −∆u weak∗ in M(Ω) and ‖µk‖L1 → ‖µ‖M.

For each k ≥ 1, let uk ∈ C2
D(Ω) be the solution of

−∆uk = µk in Ω.
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Then, by standard elliptic estimates,

uk → u in L1(Ω).

On the other hand, it follows from Lemma 5.1 that ∆u+
k ∈M(Ω) and

‖∆u+
k ‖M ≤ ‖∆uk‖L1 .

Thus, ∣∣∣∣∫
Ω

u+
k ∆ζ

∣∣∣∣ ≤ ‖∆uk‖L1‖ζ‖L∞ = ‖µk‖L1‖ζ‖L∞ ∀ζ ∈ C2
D(Ω).

As k →∞ we obtain∣∣∣∣∫
Ω

u+∆ζ
∣∣∣∣ ≤ ‖∆u‖M‖ζ‖L∞ ∀ζ ∈ C2

D(Ω).

This gives (1.5). From Proposition 4.2, we know that ∂u
∂n ,

∂u+

∂n ∈ L1(∂Ω) and (1.6)
holds. ¤

6. Kato’s inequality up to the boundary

Before proving Theorem 1.3, we first present some variants of Kato’s inequality
when ∆u and ∂u

∂n are not necessarily L1-functions but only finite measures. We
prove for instance the following companion to [3, Proposition 4.B.5]:

Proposition 6.1. Let u ∈ L1(Ω) be such that

(6.1) −
∫

Ω

u∆ζ ≤
∫
∂Ω

hζ +
∫

Ω

gζ ∀ζ ∈ C2
N(Ω), ζ ≥ 0 in Ω

for some g ∈ L1(Ω) and h ∈ L1(∂Ω). Then, u ∈W 1,1(Ω) and

(6.2)
∫

Ω

∇u+ · ∇ψ ≤
∫
∂Ω

[u≥0]

hψ +
∫

Ω
[u≥0]

gψ ∀ψ ∈ C1(Ω), ψ ≥ 0 in Ω.

Proof. By Proposition 2.2, u ∈ X. Moreover,

(6.3)


−∆u ≤ g in Ω,
∂u

∂n
≤ h on ∂Ω.

We now split the proof into two steps:

Step 1. Let Φ ∈ C2(R) be a nondecreasing convex function such that Φ′ ∈ L∞(R).
Then,

(6.4)
∫

Ω

∇Φ(u) · ∇ψ ≤
∫
∂Ω

ψΦ′(u)h+
∫

Ω

ψΦ′(u)g

for every ψ ∈ C1(Ω) such that ψ ≥ 0 in Ω.

Let (gk) ⊂ C∞(Ω) and (hk) ⊂ C∞(∂Ω) be such that

gk → g in L1(Ω) and a.e. and hk → h in L1(∂Ω) and a.e.

Next, take (µk) ⊂ C∞(Ω) and (νk) ⊂ C∞(∂Ω) such that

µk
∗
⇀ −∆u weak∗ in M(Ω) and νk

∗
⇀

∂u

∂n
weak∗ in M(∂Ω).
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In view of (6.3) and ∫
∂Ω

∂u

∂n
=

∫
Ω

∆u,

we may assume that

µk ≤ gk in Ω, νk ≤ hk on ∂Ω and
∫
∂Ω

νk = −
∫

Ω

µk ∀k ≥ 1.

Let uk ∈ C∞(Ω) be the unique solution of
−∆uk = µk in Ω,
∂uk
∂n

= νk on ∂Ω,

such that
∫
Ω
uk =

∫
Ω
u. By Remark 2.1, the sequence (uk) is bounded in W 1,p(Ω)

for every 1 ≤ p < N
N−1 . Passing to a subsequence if necessary, we have

∇Φ(uk) ⇀ ∇Φ(u) weakly in L1(Ω).

Let ψ ∈ C1(Ω), ψ ≥ 0 in Ω. As in Lemma 3.1, for every k ≥ 1 we have∫
Ω

∇Φ(uk) · ∇ψ ≤
∫
∂Ω

ψΦ′(uk)
∂uk
∂n

−
∫

Ω

ψΦ′(uk)∆uk

≤
∫
∂Ω

ψΦ′(uk)hk +
∫

Ω

ψΦ′(uk)gk.

By dominated convergence we obtain (6.4) as k →∞.

Step 2. Proof of the proposition completed.
Apply (6.4) with Φ = Φk, where (Φk) is a sequence of smooth convex functions

such that Φk(0) = 0, 0 ≤ Φ′k ≤ 1 and

Φ′k(t) →

{
1 if t ≥ 0,
0 if t < 0.

The result follows as we let k →∞. ¤

The following variant of Proposition 6.1 will be needed below:

Proposition 6.2. Let u ∈ L1(Ω) be such that

(6.5) −
∫

Ω

u∆ζ ≤
∫
∂Ω

hζ +
∫

Ω

ζ dµ ∀ζ ∈ C2
N(Ω), ζ ≥ 0 in Ω

for some µ ∈M(Ω), µ ≥ 0, and h ∈ L1(∂Ω). Then, u ∈W 1,1(Ω) and

(6.6)
∫

Ω

∇u+ · ∇ψ ≤
∫
∂Ω

[u≥0]

hψ +
∫

Ω

ψ dµ ∀ψ ∈ C1(Ω), ψ ≥ 0 in Ω.

Proof. One can proceed as in the proof of Proposition 6.1. In Step 1, one should
replace (6.4) by

(6.4’)
∫

Ω

∇Φ(u) · ∇ψ ≤
∫
∂Ω

ψΦ′(u)h+ ‖Φ′‖L∞
∫

Ω

ψ dµ.

Inequality (6.4’) is easily obtained by approximation, where the sequence (gk) ⊂
C∞(Ω) is chosen so that

gk
∗
⇀ µ weak∗ in M(Ω).
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The rest of the argument remains unchanged. ¤

We now prove the

Proposition 6.3. Let u ∈ X. If ∂u
∂n ∈ L

1(∂Ω), then

(6.7)
∂u+

∂n
≤


∂u
∂n on [u > 0],
0 on [u < 0],
min

{
∂u
∂n , 0

}
on [u = 0].

Proof. Denoting by µ = (−∆u)+ and h = ∂u
∂n , we have

−
∫

Ω

u∆ζ ≤
∫
∂Ω

hζ +
∫

Ω

ζ dµ ∀ζ ∈ C2
N(Ω), ζ ≥ 0 in Ω.

Therefore, by Proposition 6.2, u+ satisfies

(6.8)
∫

Ω

∇u+ · ∇ψ ≤
∫
∂Ω

[u≥0]

hψ +
∫

Ω

ψ dµ ∀ψ ∈ C1(Ω), ψ ≥ 0 in Ω.

By Theorem 1.1, we know that u+ ∈ X. It thus follows that

(6.9)
∂u+

∂n
≤ χ[u≥0]h = χ[u≥0]

∂u

∂n
on ∂Ω.

Given a > 0, we now apply (6.8) with u replaced by u− a. As a→ 0, we obtain

(6.10)
∫
∂Ω

u+ ∂ψ

∂n
−

∫
Ω

u+ ∆ψ ≤
∫
∂Ω

[u>0]

hψ +
∫

Ω

ψ dµ ∀ψ ∈ C1(Ω), ψ ≥ 0 in Ω.

Hence,
∂u+

∂n
≤ χ[u>0]h = χ[u>0]

∂u

∂n
on ∂Ω.

In particular,

(6.11)
∂u+

∂n
≤ 0 on [u = 0].

Assertion (6.7) follows by combining (6.9) and (6.11). ¤

We state the following consequence of Proposition 6.3:

Corollary 6.1. Let u ∈ X ∩W 1,1
0 (Ω). If u ≥ 0 in Ω, then
∂u

∂n
≤ 0 on ∂Ω.

Proof. Since u = u+ in Ω and u = 0 on ∂Ω, applying Proposition 6.3 above we get
∂u

∂n
=
∂u+

∂n
≤ min

{
∂u

∂n
, 0

}
≤ 0 on ∂Ω. ¤

We now present the

Proof of Theorem 1.3. By Theorem 1.1, u+ ∈ X. Applying Kato’s inequality to
u− a, we have

(6.12) ∆(u− a)+ ≥ χ[u≥a]∆u in Ω

for every a ∈ R. As a ↓ 0 in (6.12) we get

∆u+ ≥ χ[u>0]∆u = G in Ω.
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By this estimate and (6.7), for every ψ ∈ C1(Ω) with ψ ≥ 0 in Ω,∫
Ω

∇u+ · ∇ψ =
∫
∂Ω

ψ
∂u+

∂n
−

∫
Ω

ψ∆u+ ≤
∫
∂Ω

Hψ −
∫

Ω

Gψ.

The proof is complete. ¤

7. Computing ∂u+

∂n for W 2,1-functions

Our goal in this section is to give a positive answer to Open Problems 1 and 2
under the additional assumption that u ∈W 2,1(Ω):

Theorem 7.1. If u ∈ W 2,1(Ω), then ∇u+ ∈ BV (Ω) (so that, u+ ∈ X by Proposi-
tion 4.3) and

(7.1)
∂u+

∂n
=


∂u
∂n on [u > 0],
0 on [u < 0],
min

{
∂u
∂n , 0

}
on [u = 0].

We first prove the

Lemma 7.1. If v ∈W 1,1(Ω) and ∇v ∈ BV (Ω), then

(7.2)
∂v

∂n
(x) = lim

t↓0

v(x)− v
(
x− tn(x)

)
t

HN−1-a.e. on ∂Ω.

In (7.2), we identify v with its precise representative, which is well-defined out-
side a set of zero HN−1-Hausdorff measure; see [5, Section 4.8, Theorem 1 and
Section 5.6, Theorem 3].

Proof. Since v ∈W 1,1(Ω), for HN−1-a.e. x ∈ ∂Ω the function

t ∈ (0, δ) 7−→ v
(
x− tn(x)

)
is well-defined for some δ > 0 and belongs to W 1,1(0, δ). Thus,

(7.3)
v
(
x− tn(x)

)
− v(x)

t
= −n(x) ·

∫ 1

0

∇v
(
x− stn(x)

)
ds.

Moreover, since ∇v ∈ BV (Ω), for HN−1-a.e. x ∈ ∂Ω the function

r ∈ (0, δ) 7−→ ∇v
(
x− rn(x)

)
belongs to BV (0, δ) ⊂ L∞(0, δ) and (see [1, Theorem 3.108])

(7.4) lim
r↓0

∇v
(
x− rn(x)

)
= ∇v|∂Ω(x).

We deduce from (7.3)–(7.4) that

lim
t↓0

v
(
x− tn(x)

)
− v(x)

t
= −n(x) · ∇v|∂Ω(x).

By Proposition 4.3 above, ∂v
∂n = n · ∇v|∂Ω and the conclusion follows. ¤

We also need the following elementary lemma whose proof is left to the reader:
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Lemma 7.2. Let v : [0, δ] → R be such that

(7.5) lim
t↓0

v(0)− v(t)
t

= α ∈ R.

Then,

(7.6) lim
t↓0

v+(0)− v+(t)
t

=


α if v(0) > 0,
0 if v(0) < 0,
min {α, 0} if v(0) = 0.

We now present the

Proof of Theorem 7.1. We split the proof into three steps:

Step 1. Proof of the assertion: ∇u+ ∈ BV (Ω).

Extending u to RN , we may assume that u ∈W 2,1(RN ). We claim that

(7.7)
∂2u+

∂e2
≥ χ[u≥0]

∂2u

∂e2
in D′(RN )

for every e ∈ RN \ {0}. Indeed, let (Φk) be a sequence of smooth convex functions
such that Φk(0) = 0, ‖Φ′k‖L∞ ≤ 1 and

(7.8) Φ′k(t) →

{
1 if t ≥ 0,
0 if t < 0.

Then,

∂2Φk(u)
∂e2

= Φ′k(u)
∂2u

∂e2
+ Φ′′k(u)

(
∂u

∂e

)2

≥ Φ′k(u)
∂2u

∂e2
in RN .

As k →∞, we obtain (7.7).

It follows from (7.7) that
∂2u+

∂e2
∈ M(Ω) for every e ∈ RN \ {0}. Applying the

conclusion with e = ei, ej , ei + ej for every i, j ∈ {1, . . . , N} we deduce that D2u+

is a finite measure in Ω. Thus, ∇u+ ∈ BV (Ω).

Step 2. Proof of (7.1).

By Lemma 7.1, for HN−1-a.e. x ∈ ∂Ω, u satisfies

(7.9) lim
t↓0

u(x)− u
(
x− tn(x)

)
t

=
∂u

∂n
(x).

Hence, by (7.2) applied to u+ and by (7.6) applied to v(t) = u(x− tn(x)),

∂u+

∂n
(x) = lim

t↓0

u+(x)− u+
(
x− tn(x)

)
t

=


∂u
∂n (x) if u(x) > 0,
0 if u(x) < 0,
min

{
∂u
∂n (x), 0

}
if u(x) = 0,

for every x ∈ ∂Ω for which (7.9) holds. Since this is true HN−1-a.e. on ∂Ω, (7.1)
follows. The proof of Theorem 7.1 is complete. ¤
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Appendix A. The measure ∆u+ need not be finite

In this appendix, we construct a harmonic function in dimension 2 such that∫
Ω
|∆u+| = ∞:

Proposition A.1. Let

Ω =
{
(x, y) ∈ R2; x2 + y2 < 1 and x > 0

}
.

There exists a harmonic function u ∈ C(Ω) ∩ H1(Ω) with u|∂Ω ∈ W 1,1(∂Ω) such
that

(i) u 6∈ X and u+ 6∈ X;
(ii) ∆u+ ≥ 0 in the sense of distributions;

(iii) ∆u+ is not a finite measure in Ω.

Proof. Let u be the function in Ω given in polar coordinates by

(A.1) u(r, θ) =
∞∑
k=1

rak sin (akθ)

where (ak) ⊂ (0, 1) is a sequence such that
∞∑
k=1

kak <∞.

Since

|u(r, θ)| ≤
∞∑
k=1

∣∣ sin (akθ)
∣∣ ≤ π

2

∞∑
k=1

ak,

it follows that u ∈ C(Ω) and u is harmonic in Ω (u is a series of harmonic functions).
Note that

|∇u|2 =
∞∑

j,k=1

ajakr
aj+ak−2 cos

(
(aj − ak)θ

)
.

Thus, ∫
Ω

|∇u|2 ≤ π

∞∑
j,k=1

ajak
aj + ak

≤ 2π
∞∑

j,k=1
j≤k

ajak
aj + ak

≤ 2π
∞∑
k=1

kak <∞;

in other words, u ∈ H1(Ω). Denoting by τ the tangential unit vector of u on ∂Ω,
we have ∫

∂Ω

∣∣∣∣∂u∂τ
∣∣∣∣ = 4

∞∑
k=1

sin
(
ak
π

2

)
≤ 2π

∞∑
k=1

ak <∞;

hence, u ∈W 1,1(∂Ω).
Since u is harmonic in Ω, u+ is subharmonic. Thus, ∆u+ ≥ 0 in Ω. We show that
∆u+ is not a finite measure in Ω. Note that u vanishes only on the x-axis. Denoting
by dx (= dr) the 1-dimensional Lebesgue measure on the segment (0, 1)× {0}, we
then have

∆u+ =
∂u

∂y
(x, 0) dx =

1
r

∂u

∂θ
(r, 0) dr =

∞∑
k=1

akr
ak−1 dr.

Therefore, ∫
Ω

|∆u+| =
∞∑
k=1

∫ 1

0

akr
ak−1 dr =

∞∑
k=1

1 = ∞.
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Hence, u+ 6∈ X and, by Theorem 1.1, this means that u 6∈ X. ¤

Remark A.1. This example also shows that given ϕ ∈ W 1,1(∂Ω), it is in general
not possible to construct a function v ∈ W 2,1(Ω) such that v|∂Ω = ϕ. This is in
contrast with the well-known result of Gagliardo [6] which asserts that the map

w ∈W 1,1(Ω) 7−→ w|∂Ω ∈ L1(∂Ω)

is surjective.
Indeed, take ϕ = u|∂Ω, where u is given by (A.1). Suppose by contradiction that
there exists some v ∈ W 2,1(Ω) such that v|∂Ω = ϕ. Applying Proposition 4.2 to
u − v ∈ W 1,1

0 (Ω), we would deduce that ∂
∂n (u − v) ∈ L1(∂Ω). But v ∈ W 2,1(Ω)

implies ∂v
∂n ∈ L

1(∂Ω) and therefore

∂u

∂n
=

∂

∂n
(u− v) +

∂v

∂n
∈ L1(∂Ω),

a contradiction.

Appendix B. Approximation by smooth functions in Ω

In this appendix, we establish the following

Lemma B.1. Given u ∈ X, there exists a sequence (uk) ⊂ C∞(Ω) such that

uk → u in W 1,1
(
Ω

)
,(B.1) ∫

Ω

ψ∆uk →
∫

Ω

ψ∆u ∀ψ ∈ C1(Ω)(B.2)

and

(B.3)
∫
∂Ω

ψ
∂uk
∂n

→
∫
∂Ω

ψ
∂u

∂n
∀ψ ∈ C1(Ω).

Proof. We split the proof into two steps:
Step 1. Given x0 ∈ ∂Ω, there exist δ > 0 and a sequence (vk) ⊂ C∞(Ω) such that

vk → u in W 1,1
(
Bδ(x0) ∩ Ω

)
,(B.4) ∫

Ω

ψ∆vk →
∫

Ω

ψ∆u ∀ψ ∈ C1(Ω) with suppψ ⊂ Bδ(x0).(B.5)

Since ∂Ω is smooth, there exist δ1 > 0 and an open cone T ⊂ RN (with vertex
at 0 ∈ RN ) such that

(B.6) (x+ T ) ∩Bδ1(x) ⊂ Ω ∀x ∈ Bδ1(x0) ∩ Ω.

Let δ = δ1/2 and ρ ∈ C∞0 (Bδ), ρ ≥ 0, be such that
∫
Bδ
ρ = 1 and

(B.7) supp ρ ⊂ −T.
Set

ρk(x) = kNρ(kx) ∀x ∈ RN .
We show that the sequence (vk) ⊂ C∞(Ω) given by

(B.8) vk(x) =
∫

Ω

ρk(x− y)u(y) dy ∀x ∈ Ω

satisfies (B.4)–(B.5).
Note that given any x ∈ Bδ(x0) ∩ Ω, by (B.7) vk(x) depends only on the values of
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u on a compact subset of (x+ T )∩Bδ1(x). In fact, from (B.6)–(B.7) and a change
of variable, we can rewrite (B.8) as

(B.9) vk(x) =
∫

T∩Bδ1(0)

ρk(−z)u(x+ z) dz ∀x ∈ Bδ(x0) ∩ Ω.

Therefore,

(B.10) ∇vk = ρk ∗ (∇u) and ∆vk = ρk ∗ (∆u) in Bδ(x0) ∩ Ω.

In particular, (B.4)–(B.5) hold.

Step 2. Proof of the proposition completed.

By compactness of ∂Ω, we can cover this set with finitely many balls Bδ(x1), . . . ,
Bδ(xt) such that (B.4)–(B.5) hold on each ball Bδ(xi) for some sequence (vik) ⊂
C∞(Ω). We now take (v0

k) ⊂ C∞(Ω) and ω b Ω such that Ω \
⋃t
i=1Bδ(xi) ⊂ ω,

v0
k → u in W 1,1(ω) and ∆v0

k
∗
⇀ ∆u weak∗ in M(ω)

(such sequence can be obtained via convolution of u).
Let (ϕi) be a partition of unity subordinated to the covering ω,Bδ(x1), . . . , Bδ(xt)
of Ω. One verifies that (B.1)–(B.2) hold for the sequence (uk) given by

uk =
t∑
i=0

ϕiv
i
k.

Assertion (B.3) immediately follows from (B.1)–(B.2). ¤

Remark B.1. An inspection of the proof of Lemma B.1 shows that

(i) if u ∈ C1(Ω), then

(B.11) uk → u in C1(Ω);

(ii) if ∇u ∈ BV (Ω), then

(B.12) ‖D2uk‖L1(Ω) → ‖D2u‖M(Ω).

Appendix C. Proof of Lemma 2.1

The proof of Lemma 2.1 we present below follows the lines of [8, Lemma 7.3] (see
also [7, Theorem 8.15]) with some minor modifications. We first need the following
variant of the Gagliardo-Nirenberg inequality:

Proposition C.1. Let

(C.1) A =
{
v ∈W 1,1(Ω);

∣∣[v = 0]
∣∣ ≥ |Ω|

3

}
.

Then,

(C.2) ‖v‖
L

N
N−1

≤ C‖∇v‖L1 ∀v ∈ A.

We denote by |E| the Lebesgue measure of a set E ⊂ RN .
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Proof. By a variant of the Poincaré inequality (easily proved by contradiction), we
have

(C.3) ‖v‖L1 ≤ C‖∇v‖L1 ∀v ∈ A.

On the other hand, by the standard Gagliardo-Nirenberg inequality and an exten-
sion argument,

(C.4) ‖v‖
L

N
N−1

≤ C
(
‖∇v‖L1 + ‖v‖L1

)
∀v ∈W 1,1(Ω).

Combining (C.3)–(C.4), we obtain (C.2). ¤

Proof of Lemma 2.1. Replacing w by w − a for some suitable constant a ∈ R if
necessary, we may assume that

(C.5)
∣∣[w ≤ 0]

∣∣ ≥ |Ω|
3

and
∣∣[w ≥ 0]

∣∣ ≥ |Ω|
3
.

Given t > 0, let

(C.6) vt(x) =
[
w(x)− t

]+ ∀x ∈ Ω.

Using vt as a test function in (2.4), one shows that

‖∇vt‖L2 ≤ ‖F‖Lq

∣∣[w > t]
∣∣ 1
2−

1
q .

On the other hand, by Hölder’s inequality and Proposition C.1,

‖vt‖L1 ≤ C‖∇vt‖L2

∣∣[w > t]
∣∣ 1
2+ 1

N .

Thus,

(C.7) ‖vt‖L1 ≤ C‖F‖Lq

∣∣[w > t]
∣∣α ∀t > 0,

where α = 1 + 1
N − 1

q . Recall that

(C.8) ‖vt‖L1 =
∫ ∞

0

∣∣[vt > r]
∣∣ dr =

∫ M

t

∣∣[w > s]
∣∣ ds,

where M = ‖w+‖L∞ . Since α > 1, one deduces using (C.7)–(C.8) that

(C.9) ‖w+‖L∞ ≤ C‖F‖
1
α

Lq‖w+‖1−
1
α

L1 .

From (C.9) and ‖w+‖L1 ≤ |Ω|‖w+‖L∞ , we then have

‖w+‖L∞ ≤ C‖F‖Lq .

Replacing w by −w, one obtains a similar estimate for w−. Thus,

‖w‖L∞ ≤ ‖w+‖L∞ + ‖w−‖L∞ ≤ 2C‖F‖Lq . ¤

Acknowledgment. The work of the first author (H. B.) is partially supported by
NSF Grant DMS-0802958.
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