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Abstract

Given two compact Riemannian manifolds Mm, Nn without boundary and m− 1 < 2p < m, we show that maps
which are smooth except on finitely many points are dense in W 2,p(M ; N). If in addition πm−1(N) is trivial, then
C∞(M ; N) is dense in W 2,p(M ; N). To cite this article: P. Bousquet, A.C. Ponce, J. Van Schaftingen, C. R.
Acad. Sci. Paris, Ser. I ??? (200?).

Résumé

Un cas de densité dans W 2,p(M ; N) On considère deux variétés riemaniennes compactes sans bord Mm et
Nn. Quand m− 1 < 2p < m, on montre que les fonctions lisses sauf en un nombre fini de points sont denses dans
W 2,p(M ; N). Si la variété N vérifie πm−1(N) = {0}, alors C∞(M ; N) est dense dans W 2,p(M ; N). Pour citer cet
article : P. Bousquet, A.C. Ponce, J. Van Schaftingen, C. R. Acad. Sci. Paris, Ser. I ? ? ? (200 ?).

Version française abrégée

Soient M,N ⊂ Rl deux variétés riemanniennes compactes sans bord de dimension m et n respective-
ment. Étant donné 1 ≤ p < ∞, on définit l’ensemble W 2,p(M,N) par

W 2,p(M ;N) =
{

u ∈ W 2,p(M ; Rl); u(x) ∈ N p.p.
}

, (1)

qui est un espace métrique complet pour la distance induite par la norme (3).
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Par convolution avec un noyau régularisant, on peut voir facilement que tout élément de W 2,p(M,N)
peut être approché par des applications de C∞(M, Rl). La densité de C∞(M,N) dans W 2,p(M,N) est
une question plus délicate. Néanmoins, la réponse est aisée lorsque 2p > m en utilisant l’injection de
Morrey W 2,p ↪→ C0, ou si p = m/2, auquel cas c’est une conséquence de la théorie des fonctions VMO.
Quand 2p < m, C∞(M,N) n’est pas dense dans W 2,p(M,N) en général (voir le Théorème 0.1 ci-dessous).

Le problème de densité des fonctions lisses dans W 1,p(M,N) a été résolu par Bethuel [2] (voir aussi
Hang–Lin [8]). La preuve pour W 1,p nécessite des arguments de recollement qui ne se généralisent pas
aisément au cas W 2,p. Dans un article en préparation (voir [5]), on s’intéresse au problème de densité de
C∞(M ;N) dans W 2,p(M ;N) par rapport à la distance W 2,p pour tout p ≥ 1. Le but de cette Note est
de présenter l’idée de notre preuve dans un cas particulier, à savoir lorsque m− 1 < 2p < m :

Théorème 0.1 Soit m− 1 < 2p < m. Alors, C∞(M,N) est dense dans W 2,p(M,N) si et seulement si
le groupe d’homotopie πm−1(N) est trivial.

Si πm−1(N) 6= {0}, alors C∞(M,N) n’est pas dense dans W 2,p(M,N). On démontre par contre le

Théorème 0.2 Si m− 1 < 2p < m, alors les fonctions lisses en dehors d’un nombre fini de points sont
denses dans W 2,p(M,N).

Prenons par exemple n = m − 1, M = Sm et N = Sm−1. Comme πm−1(Sm−1) = Z, on déduit du
Théorème 0.1 que C∞(Sm;Sm−1) n’est pas dense dans W 2,p(Sm, Sm−1) si m− 1 < 2p < m. On peut se
demander quels sont les éléments de cet espace qui peuvent être approchés par des applications lisses. La
réponse est donnée en fonction du jacobien distributionnel “Jac” introduit par Brezis-Coron-Lieb [6] :

Théorème 0.3 Soit u ∈ W 2,p(Sm, Sm−1) avec m − 1 < 2p < m. Alors il existe une suite dans
C∞(Sm, Sm−1) convergeant fortement vers u dans W 2,p si et seulement si Jac (u) = 0 dans D′(Sm).

Les preuves détaillées des Théorèmes 0.1–0.3 seront présentées dans [5].

1. Introduction

Let M,N ⊂ Rl be two compact Riemannian manifolds without boundary, respectively m and n-
dimensional. Given 1 ≤ p < ∞, consider

W 2,p(M ;N) =
{

u ∈ W 2,p(M ; Rl); u(x) ∈ N a.e.
}

. (2)

Although W 2,p(M ;N) is not a vector space, it inherits a metric from the usual norm in W 2,p(M ; Rl):

‖u‖W 2,p = ‖u‖Lp + ‖Du‖Lp + ‖D2u‖Lp ∀u ∈ W 2,p(M ; Rl); (3)

W 2,p(M ;N) is a complete metric space with respect to this distance.
By standard convolution arguments, each u ∈ W 2,p(M ;N) can be approximated by maps in C∞(M ; Rl).

A deeper question concerns whether C∞(M ;N) is dense in W 2,p(M ;N). When 2p > m, this can be easily
seen to be true by using Morrey’s embedding W 2,p ↪→ C0. If p = m/2, then functions in W 2,p need not
be continuous but smooth maps are still dense in W 2,p(M,N). The argument in this case relies on tools
from the theory of vanishing mean oscillation (VMO) functions; see [7,10]. However, density of smooth
maps is no longer true in general if 2p < m. Take for instance M = Sm, N = Sm−1 and

u = U |Sm , where U(x) =
(x1, . . . , xm)

(x2
1 + · · ·+ x2

m)1/2
∀x = (x1, . . . , xm+1) ∈ Rm+1. (4)
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Then, u ∈ W 2,p(Sm;Sm−1) for 2p < m, but u cannot be approximated by smooth maps ϕ : Sm → Sm−1

for instance if m− 1 < 2p < m (see Theorem 2.1 below).
The problem of density of smooth maps in W 1,p(M ;N) has been solved by Bethuel [2] and later

completed by Hang-Lin [8]. The strategy for W 1,p in [2,8] relies on some gluing arguments which cannot
be directly applied in the W 2,p-setting. In a work in preparation (see [5]) we address the question whether
C∞(M,N) is strongly dense in W 2,p(M,N) for every p ≥ 1. Our goal in this Note is to present some of
our ideas in a simpler case, namely m− 1 < 2p < m. In Section 3 below we prove the following

Theorem 1.1 Let m − 1 < 2p < m. Then, C∞(M ;N) is dense in W 2,p(M ;N) if, and only if, the
homotopy group πm−1(N) is trivial.

When πm−1(N) 6= {0}, C∞(M ;N) is not dense in W 2,p(M ;N). However,

Theorem 1.2 Let m − 1 < 2p < m. Then, every element in W 2,p(M ;N) can be strongly approximated
by maps in W 2,p(M ;N) which are smooth except on finitely many points.

In the special case when n = m− 1 and N = Sm−1, this result can be obtained using some tools in [4].

2. Closure of smooth maps in W 2,p(Sm; Sm−1)

We now assume that n = m − 1, M = Sm and N = Sm−1. Since πm−1(Sm−1) = Z, it follows from
Theorem 1.1 that C∞(Sm;Sm−1) is not dense in W 2,p(Sm, Sm−1) if m−1 < 2p < m. The reason for this
lack of density is the existence of “topological (point) singularities”. The location and strength of such
singularities can be detected using a simple tool introduced by Brezis-Coron-Lieb [6]: the distributional
Jacobian “Jac”. Indeed, for every u ∈ W 2,p(Sm, Sm−1), let

Jac (u) =
1
m

div D(u) in D′(Sm), (5)

where

D(u) = (D1, . . . , Dm) and Dj = det
[
∂1u, . . . , ∂j−1u, u, ∂j+1u, . . . , ∂mu

]
. (6)

Here, the derivatives are computed in an orthogonal positively oriented frame. Note that D(u) does
not depend on the local system of coordinates, hence it is globally defined on Sm. Moreover, D(u) ∈
L1(Sm, Rm) if 2p ≥ m− 1. Thus, Jac (u) is a well-defined distribution on Sm.

If u is smooth, then a straightforward computation gives Jac (u) = 0 on Sm. On the other hand, the
map given by (4) satisfies

Jac (u) = ωm(δP − δN ) in D′(Sm), (7)

where P,N ∈ Sm are the North and South poles of Sm and ωm is the volume of the m-dimensional unit
ball. This map u cannot be approximated by smooth ones in W 2,p(Sm;Sm−1) if m−1 < 2p < m. Indeed,

Theorem 2.1 Let u ∈ W 2,p(Sm;Sm−1), where m − 1 < 2p < m. Then, there exists a sequence (uk) ⊂
C∞(Sm, Sm−1) such that uk → u strongly in W 2,p if, and only if, Jac (u) = 0 in D′(Sm).

The counterpart of this result for W 1,p(Sm;Sm−1) was established by Bethuel [1] for p = m − 1 and
by Bethuel-Coron-Demengel-Hélein [3] for m− 1 < p < m.

Detailed proofs will be presented in [5].
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3. Sketch of the proofs

We assume throughout that m − 1 < 2p < m and λ > 0 is a small positive parameter, subject to an
upper bound which depends only on M and N . In the proofs of Theorems 1.1, 1.2 and 2.1 we cover M
with balls

(
Br(ai)

)
i∈I

with finitely many overlappings. Inspired by [2], we say that Br(ai) is a bad ball
or a good ball for a map u ∈ W 2,p(M ;N) according to whether

1
rm−2p

∫
B3r(ai)

|Du|2p ≥ λ or
1

rm−2p

∫
B3r(ai)

|Du|2p < λ, (8)

respectively. Roughly speaking, the strategy of our proofs is the following:
– on a bad ball, we replace u by a map which is continuous in Br(ai) \ {ai} but possibly singular at ai;
– on a good ball, we replace u by a map which is continuous in Br(ai).

We now present our two main tools. In what follows, we use the notation

〈u〉W 2,p(Ω) =
∫
Ω

|Du|2p +
∫
Ω

|D2u|p (9)

for every u ∈ W 2,p(M ; Rl) ∩L∞ and every open set Ω ⊂ M . By the Gagliardo-Nirenberg inequality, this
quantity is always finite.

On a bad ball, we apply the

B Lemma If Br(a) is a bad ball for v ∈ W 2,p(M ;N), then one can find w ∈ W 2,p(M ;N) such that
(B1) w is continuous in B2r(a) \ {a};
(B2) w = v in M \B3r(a);
(B3) ‖w − v‖Lp(M) ≤ Cr‖Dv‖L2p(B3r(a));
(B4) 〈w − v〉W 2,p(M) ≤ C〈v〉W 2,p(B3r(a)).

The proof of the B Lemma is based on a smooth version of the standard extension method via zero-
degree homogeneous maps (see e.g. [2, Lemma 3]).

Remark 1 By a Fubini-type argument we have v|∂Bt(a) ∈ W 2,p
(
∂Bt(a);N

)
for a.e. t ∈ (0, 3r). Since

2p > m − 1, it then follows from Morrey’s inequality that v|∂Bt(a) : ∂Bt(a) → N is continuous. If we
happen to know that this map is homotopic to a constant in C0

(
∂Bt(a), N

)
, then using an idea of

Bethuel-Zheng [4, proof of Theorem 5] we can obtain a map w satisfying (B1)–(B4) which is continuous
even at the center a of the ball. This fact is important in the proofs of Theorems 1.1 and 2.1.

For good balls, there exists λ = λ(M,N) > 0 such that the following lemma holds true (recall that
being a bad or a good ball depends on the choice of λ):

G Lemma If Br(a) is a good ball for v ∈ W 2,p(M ;N), then one can find w ∈ W 2,p(M ;N) such that
(G1) w is continuous in B2r(a);
(G2) w = v in M \B3r(a);
(G3) ‖w − v‖Lp(M) ≤ Cr‖Dv‖L2p(B3r(a));
(G4) 〈w−v〉W 2,p(M) ≤ C〈v〉W 2,p(A), for some open set A ⊂ B3r(a) such that |A|1/2p ≤ Cr‖Du‖L2p(B3r(a)).

The proof of the G Lemma is based on the local projection of u into a small geodesic ball in N and
resembles the proof of a similar result in the W 1,p-setting (see [2]).
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Remark 2 In the B and G Lemmas, we can further require that for any (small) η > 0 we get a map w
such that
– whenever v is continuous in some ball Bt(b) ⊂ M , then w is continuous in Bt̃(b) with t̃ = t− ηr;
– whenever v is continuous in Bt(b) \ {b} ⊂ M , then w is continuous in Bt̃(b) \ {b}.
This observation is needed in order to prevent the loss of points of continuity when applying the B and
G Lemmas to balls which may overlap.

Remark 3 In the counterparts of both lemmas for W 1,p-maps (in this case m−1 < p < m), one can take
w such that w = v in M \Bαr for some α ∈ (2, 3); in addition,
– v is continuous in Bαr(a) \ {a} if Br(a) is a bad ball;
– v is continuous in Bαr(a) if Br(a) is a good ball.
This underlines one of the main differences between the W 1,p- and the W 2,p-cases, namely the difficulty
of gluing w and v in a neighborhood of ∂B3r(a).

The proofs of the B and G Lemmas will appear in [5]. We now show how to deduce Theorems 1.1, 1.2
and 2.1.

Proof of Theorem 1.2 Taking r > 0 sufficiently small, we can cover M with balls (Br(ai))i∈I in such
a way that, for every i ∈ I, B3r(ai) intersects at most θ balls B3r(aj), where θ depends only on the
dimension of M . We can thus split the set of indices I as I = I1 ∪ · · · ∪ Iθ+1 so that for any i = 1, . . . , k
and any distinct indices j1, j2 ∈ Ii we have B3r(aj1) ∩B3r(aj2) = ∅.

Starting from u0 = u, we construct maps u1, . . . , uθ+1 ∈ W 2,p(M ;N) inductively as follows. Given
k ≥ 0 and uk we apply the B Lemma or the G Lemma to the map uk and to each ball Br(ai) with
i ∈ Ik+1 until we exhaust Ik+1; denote by uk+1 the map obtained by this procedure. We emphasize that
Br(ai) is considered to be bad or good with respect to uk and not with respect to the original map u.
Since the balls

(
B3r(ai)

)
i∈Ik+1

are disjoint, we have

‖uk+1 − uk‖Lp(M) ≤ Cr‖Duk‖L2p(M) and 〈uk+1 − uk〉W 2,p(M) ≤ C〈uk〉W 2,p(Ek) (10)

for some open set Ek ⊂ M such that |Ek|1/2p ≤ Cr‖Duk‖L2p(M); Ek is the union of B3r(ai) among the
bad balls with the sets A arising from the good balls.
By induction, it follows from (10) that for every k = 1, . . . , θ + 1 we have

‖uk − u‖Lp(M) ≤ Ck r 〈u〉1/2p
W 2,p(M) and 〈uk − u〉W 2,p(M) ≤ Ck〈u〉W 2,p(Ẽk), (11)

where Ẽk =
⋃k

j=1 Ej is an open set with |Ẽk| ≤ Ck r2p 〈u〉W 2,p(M). Let wr = uθ+1.
By (11), wr → u strongly in W 2,p as r → 0. Moreover, applying Remark 2 with η = 1/θ it follows

that wr is continuous on the set Br(ai) \ {ai} for every i ∈ I. Indeed, taking k such that i ∈ Ik, then
uk is continuous in B2r(ai) \ {ai}. Using Remark 2 inductively to uk+1, . . . , uθ+1, we deduce that uθ+1 is
continuous in Btk

(ai) \ {ai} with tk = 2r − θ+1−k
θ r. Since tk ≥ r, the conclusion follows.

Thus, wr is continuous on M \
⋃

i∈I {ai}. We can now strongly approximate wr in W 2,p(M ;N) by
maps which are smooth on M \

⋃
i∈I {ai}. The proof of Theorem 1.2 is complete. 2

Remark 4 Since in the proof of Theorem 1.2 we have produced at most one singularity for each bad ball
used, an inspection of the proof actually shows that the number of points of discontinuity of the map wr

grows at most like o(r2p−m) as r → 0.

Proof of Theorem 1.1 (⇒) This implication can be established as in the W 1,p-case (see e.g. [9, Theo-
rem 4.4]).
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(⇐) We proceed as in the proof of Theorem 1.2. Since πm−1(N) = {0}, every continuous map h ∈
C0

(
∂Bt(a);N

)
is homotopic to some constant for every t > 0 small. By Remark 1, we can apply the

B Lemma to get a continuous map even on bad balls. Thus, the map wr is continuous everywhere on M .
Approximating wr by smooth maps in W 2,p(M ;N) we get the result. 2

Proof of Theorem 2.1 (⇒) Assume that there exists a sequence (uk) ⊂ C∞(M ;N) such that uk → u
strongly in W 2,p. For every k ≥ 1, Jac (uk) = 0 on Sm. Hence, by continuity of the distributional Jacobian
we have Jac (u) = 0 in D′(Sm).

(⇐) If Jac (u) = 0, then it follows from the main result in [1] that for every a ∈ M and for a.e.
t > 0 small u|∂Bt(a) is continuous and its degree deg (u|∂Bt(a)) vanishes; thus u|∂Bt(a) is contractible in
C0

(
∂Bt(a);Sm−1

)
. The conclusion then follows as in the proof of Theorem 1.1. 2
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