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“Tu se’ lo mio maestro e ’l mio autore”

(Dante, Inferno, I, 85)

Abstract. We study the equation −∆u + g(x, u) = µ, where g(·, s) is finite

outside sets of zero H1-capacity, ∀s ∈ R, and µ is a diffuse measure. As an

application, we provide a positive answer to a question of Lucio Boccardo
concerning existence of solutions of an elliptic system with absorption.
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1. Introduction and main results

Let Ω ⊂ RN , N ≥ 2, be a smooth bounded domain. The original motivation
of this work was a question of L. Boccardo concerning the existence of solutions of
the system

(1.1)


−∆u+ up1vq1 = f1 in Ω,

−∆v + up2vq2 = f2 in Ω,
u = v = 0 on ∂Ω,

where f1, f2 are given nonnegative functions in L1(Ω) and pi, qi > 0 for i = 1, 2.
We prove in this paper that (1.1) always has a solution; see Theorem 1.1 below.
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More generally, we show that (1.1) still has a solution if f1, f2 are not necessarily
L1-functions, but diffuse measures.

We recall that a finite measure µ in Ω is diffuse if for every Borel set E ⊂ Ω

cap (E) = 0 =⇒ |µ|(E) = 0,

where “cap” denotes the NewtonianH1-capacity. According to a result of Boccardo-
Gallouët-Orsina [2], µ is diffuse if, and only if, µ ∈ L1(Ω) +H−1(Ω), i.e.

(1.2) µ = f −∆u in D′(Ω),

for some f ∈ L1(Ω) and u ∈ H1
0 (Ω).

One of our main results is the

Theorem 1.1. Assume that µ1, µ2 are diffuse measures in Ω and g1, g2 ∈ C(R×R)
satisfy

(a1) for every t ∈ R, g1(·, t) is nondecreasing and g1(0, t) = 0;
(a2) for every s ∈ R, g2(s, ·) is nondecreasing and g2(s, 0) = 0.

Then, the system

(1.3)


−∆u+ g1(u, v) = µ1 in Ω,

−∆v + g2(u, v) = µ2 in Ω,
u = v = 0 on ∂Ω,

has a solution (u, v) ∈ L1(Ω)× L1(Ω).

Our proof of Theorem 1.1 is based on Schauder’s fixed point theorem. Some
important tools are the notions of “quasi-L1 functions” and “equidiffuse sequences”
(see Sections 2 and 3 below) as well as the following result concerning the existence
of solutions of the scalar equation

(1.4)

{
−∆u+ g(x, u) = µ in Ω,

u = 0 on ∂Ω.

Theorem 1.2. Let g : Ω× R→ R be a Carathéodory function such that

(1.5) g(x, s)s ≥ 0 for a.e. x ∈ Ω, ∀s ∈ R

and

(1.6) sup
|s|≤t
|g(x, s)| ≤ Gt(x) +Ht(x) for a.e. x ∈ Ω, ∀t > 0,

where Gt : Ω → R is quasifinite and Ht ∈ L1(Ω). If µ is a diffuse measure in Ω,
then there exist a smallest and a largest solution of (1.4).

We recall that a measurable function G : Ω→ R is quasifinite if for every ε > 0
and every K ⊂ Ω compact there exist M > 0 and an open set ω ⊂ Ω such that
cap (ω) < ε and |G| ≤M a.e. on K \ ω (see [13]).

The study of the equation (1.4) with datum µ in L1(Ω) was initiated by Brezis-
Strauss [7]. Later, Gallouët-Morel [11] studied the existence of solutions of (1.4)
when µ ∈ L1(Ω) and

sup
|s|≤t
|g(·, s)| ∈ L1(Ω) ∀t > 0;

in other words, when (1.6) holds with Gt ≡ 0.
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Remark 1.1. Quasifinite functions need not belong to L1(Ω); for example, 1/‖x‖N
is quasifinite in B1 but 1/‖x‖N 6∈ L1(B1). Conversely, L1-functions need not be
quasifinite; for instance, 1/|x1|α ∈ L1(B1) for any 0 < α < 1 but this function is
not quasifinite since the set [x1 = 0] ∩ B1 has positive H1-capacity. This explains
the presence of both Gt and Ht in (1.6). The possibility of allowing the term Gt is
needed in the proof of Theorem 1.1.

It follows from Theorem 1.2 that (1.4) always has a solution with

g(x, s) =
a(s)
‖x‖α

∀(x, s) ∈ RN × R,

for every α > 0 and a ∈ C(R), where a(s)s ≥ 0, ∀s ∈ R. On the other hand, the
function g given by

g(x, s) =
s

|x1|α
∀(x, s) ∈ RN × R

does not satisfy condition (1.6) if α ≥ 1. Actually, for such g we prove the following

Theorem 1.3. Let 1 ≤ α < 2. If u ∈ L1(B1) is such that u/|x1|α ∈ L1(B1) and

(1.7) −
∫
B1

u∆ζ +
∫
B1

u

|x1|α
ζ ≥ 0 ∀ζ ∈ C2

0 (B1), ζ ≥ 0 in B1,

then

(1.8) u = 0 a.e. in B1.

Hence, according to Theorem 1.3 the equation

(1.9)

−∆u+
u

|x1|α
= µ in B1,

u = 0 on ∂B1,

has no solution if 1 ≤ α < 2 and µ is a nonnegative measure, unless µ = 0. If
α ≥ 2, then we show in Section 9 below that there do exist functions u ∈ L1(Ω)
satisfying (1.9) for every µ ∈ L1(B1), in the sense that u/|x1|α ∈ L1(B1) and

(1.10) −
∫
B1

u∆ζ +
∫
B1

u

|x1|α
ζ =

∫
B1

ζ dµ ∀ζ ∈ C2
0 (B1).

In [8], Dal Maso-Mosco studied the question of existence and uniqueness of so-
lutions for problems of the form

(1.11)
{−∆u+ νu = f in Ω,

u = 0 on ∂Ω,

where ν is a nonnegative diffuse Borel measure (possibly with infinite mass) and
f ∈ L2(Ω). Given α ≥ 1 and Ω = B1, take

(1.12) να =
1
|x1|α

dx and Xα = H1
0 (B1) ∩ L2(B1; να).

It follows from [8] that for every f ∈ L2(B1) there exists a unique u ∈ Xα such
that

(1.13)
∫
B1

∇u · ∇v +
∫
B1

u

|x1|α
v =

∫
B1

fv ∀v ∈ Xα.
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We point out that their result does not contradict Theorem 1.3 above. In fact, it
follows from Proposition 9.1 below that (1.13) holds for some u ∈ Xα if, and only
if,

(1.14)
∫
B1

∇u · ∇ϕ+
∫
B1

u

|x1|α
ϕ =

∫
B1

fϕ ∀ϕ ∈ C∞0
(
B+

1 ∪B
−
1

)
,

where
B+

1 =
{
x ∈ B1; x1 > 0

}
and B−1 =

{
x ∈ B1; x1 < 0

}
.

Moreover, for every function u ∈ Xα,

(1.15) u ∈ H1
0

(
B+

1 ) ∪H1
0 (B−1

)
;

see Lemma 9.1 below. Hence, for every α ≥ 1, to find a solution of (1.11) in
B1 in the sense of [8] amounts to solve two independent Dirichlet problems on
B+

1 and B−1 , for which we know there is a solution. Indeed, it suffices to apply
Theorem 1.2 in B+

1 and B−1 with Gt(x) = t/|x1|α and Ft(x) = 0. Note that in
this case the parameter α plays no role whatsoever. The fact that the solution u
obtained this way satisfies (1.15) when f ∈ L2(B1) follows from standard elliptic
estimates (see [8, 14]).

2. Characterization of quasi-L1 functions

In this section we discuss the concept of “quasi-L1 functions” presented below:

Definition 2.1. A measurable function F : Ω → R is quasi-L1 if for every ε > 0
and every K ⊂ Ω compact there exists an open set ω ⊂ Ω such that cap (ω) < ε
and F ∈ L1(K \ ω).

The motivation of Definition 2.1 comes from the well-known notion of quasicon-
tinuity, which we recall below:

Definition 2.2. A measurable function G : Ω→ R is quasicontinuous if for every
ε > 0 there exists an open set ω ⊂ Ω such that cap (ω) < ε and G is continuous on
Ω \ ω.

For example, if u ∈ L1(Ω) is such that∣∣∣∣∫
Ω

u∆ϕ
∣∣∣∣ ≤ C‖ϕ‖L∞ ∀ϕ ∈ C∞0 (Ω),

then by the Riesz Representation Theorem ∆u is a finite measure in Ω; hence,
there exists a quasicontinuous function G : Ω → R such that G = u a.e. (see
e.g. [4, Lemma 1]). In particular, u is quasi-L1.

Clearly,

(2.1) F quasicontinuous =⇒ F quasifinite =⇒ F quasi-L1.

Simple examples show that the reverse implications are not true. Note in addition
that

(A1) If F1, F2 : Ω → R are measurable functions such that F1 = F2 a.e. and if
F1 is quasi-L1, then F2 is also quasi-L1;

(A2) If F is quasi-L1 in Ω and u : Ω → R is a measurable function such that
|u| ≤ F a.e., then u is also quasi-L1.
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Similar properties also hold for quasifinite functions, but their counterparts for
quasicontinuous functions are false.

We prove the following characterization of quasi-L1 functions:

Proposition 2.1. A measurable function F is quasi-L1 in Ω if, and only if, there
exist G quasifinite in Ω and H ∈ L1(Ω) such that

(2.2) |F | ≤ G+H a.e.

Proof. The implication “⇐” is clear since G+H is quasi-L1 by (2.1), and so F is
quasi-L1 by (A2). Conversely, assume that F : Ω → R is a quasi-L1 function. We
split the proof in two steps:
Step 1. Assume in addition that F has compact support in Ω. Then, given ε > 0,
(2.2) holds for some G quasifinite and H ∈ L1(Ω) such that ‖H‖L1 < ε.

Since F has compact support, for each k ≥ 1 one can find an open set ωk ⊂⊂ Ω
with

(2.3) cap (ωk) <
1
2k

and F ∈ L1(Ω \ ωk).

We can assume that the sequence (ωk) is non-increasing. For otherwise, we could
take ω̃k =

⋃+∞
j=k+1 ωj , ∀j ≥ 1; then, (ω̃k) is non-increasing and still satisfies (2.3).

For every k ≥ 1, choose Mk > 0 sufficiently large so that∫
Ω\ωk

[|F |>Mk]

|F | < ε

2k+1
.

For every x ∈ Ω, let

G(x) =
∑
k≥1

Mk χωk−1\ωk(x),

H(x) =
∑
k≥1

(|F (x)| −Mk)+χωk−1\ωk(x),

where ω0 := Ω. Then,

|F | ≤ G+H a.e., H ∈ L1(Ω) and ‖H‖L1 ≤ ε.
Since G is uniformly bounded on Ω \ ωj for every j ≥ 1, it follows that G is
quasifinite. This concludes the proof of Step 1.

Step 2. Proof of Theorem 2.1 completed.
Write Ω =

⋃
n≥1 Ωn as an increasing union of open sets Ωn ⊂⊂ Ω, and define

Ω0 = ∅. Applying the previous step to FχΩn , one finds a quasifinite function
Gn : Ω→ R and Hn ∈ L1(Ω) supported in Ωn such that

|F | ≤ Gn +Hn a.e. in Ωn and ‖Hn‖L1 ≤ 1
2n
.

The functions

G(x) =
∑
n≥1

Gn(x)χΩn−1\Ωn(x) and H(x) =
∑
n≥1

Hn(x) ∀x ∈ Ω

satisfy all the required properties. The proof is complete. �

We warn the reader of the following facts:
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(A3) If G is quasifinite, then G need not belong to L1(Ω). Indeed, G(x) = 1
‖x‖α

is quasifinite in the ball B1 ⊂ RN for every α > 0, but G ∈ L1(B1) if, and
only if, α < N .

(A4) If G1 and G2 are quasifinite functions in Ω such that G1 = G2 a.e., then
it need not be true that

∫
Ω
G1 dµ and

∫
Ω
G2 dµ coincide for a given diffuse

measure µ, even if G1, G2 are bounded functions; indeed, let S be a segment
in R2, G1 = 0, G2 = χS , and µ be the restriction of the 1-dimensional
Hausdorff measure to S.

3. Properties of equidiffuse sequences

We denote byM(Ω) the space of finite measures µ in Ω equipped with the norm

(3.1) ‖µ‖M := |µ|(Ω) =
∫

Ω

|µ|.

We recall the (see [6])

Definition 3.1. Given a sequence of finite measures (µn) in Ω, we say that (µn)
is equidiffuse if

(i) (µn) is bounded in M(Ω);
(ii) Given ε > 0, there exists δ > 0 such that for every Borel set E ⊂ Ω

(3.2) cap (E) < δ =⇒ |µn|(E) < ε ∀n ≥ 1.

If a sequence (µn) is equidiffuse, then each measure µn is diffuse in view of the
following

Lemma 3.1. Let µ be a finite measure in Ω. Then, µ is diffuse if, and only if,

lim
cap (E)→0

µ(E) = 0.

Proof. (⇐) Given ε > 0, let δ > 0 be such that

cap (E) < δ =⇒ |µ|(E) < ε.

If E0 ⊂ Ω is a Borel set such that cap (E0) = 0, then |µ|(E0) < ε, ∀ε > 0. Thus,
|µ|(E0) = 0 and µ is diffuse.
(⇒) We may assume that µ ≥ 0; the case of signed measures then follows by
applying the conclusion to |µ|. Reasoning by contradiction, suppose that there
exist ε0 > 0 and a sequence (En) of Borel subsets of Ω such that cap (En) tends to
zero but µ(En) > ε0 for every n ≥ 1. If the sequence (En) is decreasing, then the set
E =

⋂+∞
n=1En has zero capacity and is such that µ(E) ≥ ε0, a contradiction. If the

sequence (En) is not decreasing, consider a subsequence (Enj ) such that cap (Enj ) <
2−j for every j ≥ 1. Then, the sequence (Fk) given by Fk =

⋃+∞
j=k+1Enj is

decreasing, with capacity smaller than 2−k, and is such that µ(Fk) > ε0. The
conclusion then follows as before. �

A first example of an equidiffuse sequence (µn) is the
(B1) µn = µ, where µ is a given diffuse measure.

This follows from Lemma 3.1 above. Other examples are
(B2) µn = ρn ∗ µ, where µ is diffuse and (ρn) is a sequence of mollifiers;
(B3) µn = fn, where (fn) is an equi-integrable sequence in L1(Ω);
(B4) µn = ∆un, where (un) is a bounded sequence in H1

0 (Ω).
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Clearly, sums of equidiffuse sequences are still equidiffuse. In view of (B3)–(B4),
one deduces that if (µn) is a bounded sequence of measures such that

(3.3) µn = fn −∆un in D′(Ω),

where fn and un are as above, then (µn) is equidiffuse. It would be interesting
to have a characterization of equidiffuse sequences in the spirit of the Boccardo-
Gallouët-Orsina decomposition (1.2):

Open Problem 1. Let (µn) be an equidiffuse sequence converging weakly∗ in Ω.
Can one find (fn) ⊂ L1(Ω) and (un) ⊂ H1

0 (Ω) such that
(b1) µn = fn −∆un in D′(Ω);
(b2) (fn) converges strongly in L1(Ω);
(b3) (un) is bounded in H1

0 (Ω)?

A connection between Definitions 2.1 and 3.1 is provided by the following

Lemma 3.2. Let (fn) be a sequence in L1(Ω) such that
(c1) fn → f a.e.;
(c2) |fn| ≤ F a.e., ∀n ≥ 1, for some quasi-L1 function F in Ω;
(c3) (fn) is equidiffuse.

Then,

(3.4) fn → f in L1(Ω; ρ0 dx),

where ρ0(x) = dist (x, ∂Ω), ∀x ∈ Ω.

A variant of this result was established by Lin-Ponce-Yang [13]. If F is a (gen-
uine) L1-function in Ω, then Lemma 3.2 just follows from Lebesgue’s dominated
convergence theorem (in which case (c3) is not needed). For general quasi-L1 func-
tions F , the conclusion (3.4) need not be true if (c3) fails.

Proof. Replacing fn by fn − f if necessary, we may assume that

(3.5) fn → 0 a.e.

For every open set A ⊂⊂ Ω, we show that

(3.6) fn → 0 in L1(A).

By (c3), for every ε > 0 there exists δ > 0 such that

(3.7) cap (E) < δ =⇒
∫
E

|fn| < ε ∀n ≥ 1.

Since F is quasi-L1, one finds an open set ω ⊂ Ω such that cap (ω) < δ and
F ∈ L1(A \ ω). Thus, by (c1), (c2), and dominated convergence,

fn χA\ω → 0 in L1(A).

Moreover, since we have cap (ω) < δ, it follows from (3.7) that∫
ω

|fn| < ε ∀n ≥ 1.

Thus,

lim sup
n→∞

∫
A

|fn| ≤ ε.
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Since ε > 0 is arbitrary, we deduce that

lim
n→∞

∫
A

|fn| = 0.

This establishes (3.6) for every A ⊂⊂ Ω. Since (fn) is bounded in L1(Ω), (3.4)
follows. �

4. Stability of solutions of (1.4)

We recall that a function u ∈ L1(Ω) is a solution of

(4.1)
{−∆u = µ in Ω,

u = 0 on ∂Ω,

for a given finite measure µ in Ω if

−
∫

Ω

u∆ζ =
∫

Ω

ζ dµ ∀ζ ∈ C2
0 (Ω),

where
C2

0 (Ω) =
{
ζ ∈ C2(Ω); ζ = 0 on ∂Ω

}
.

We say that u ∈ L1(Ω) satisfies

(4.2)

{
−∆u+ g(x, u) = µ in Ω,

u = 0 on ∂Ω,

where g : Ω× R→ R is a Carathéodory function, if g(·, u) ∈ L1(Ω) and

−
∫

Ω

u∆ζ +
∫

Ω

g(x, u)ζ =
∫

Ω

ζ dµ ∀ζ ∈ C2
0 (Ω).

The main result of this section is the

Proposition 4.1. Let gn : Ω × R → R be a sequence of Carathéodory functions
such that

(i) gn(x, s)s ≥ 0 for a.e. x ∈ Ω, ∀s ∈ R;
(ii) gn(·, sn)→ g(·, s) a.e. whenever sn → s in R;
(iii) for every t ∈ R, there exists a quasi-L1 function Ft in Ω such that

sup
|s|≤t
|gn(x, s)| ≤ Ft(x) for a.e. x ∈ Ω, ∀n ≥ 1.

Given a diffuse measure µ in Ω, assume that

(4.3)

{
−∆un + gn(x, un) = µ in Ω,

un = 0 on ∂Ω.

has a solution un, ∀n ≥ 1. Then, up to subsequences, un converges strongly in
L1(Ω) to a solution u of (4.2).

In order to prove Proposition 4.1, we first recall some known results. We start
with the uniform estimates for (4.1) (see [17]):

Lemma 4.1. Every solution u of (4.1) belongs to W 1,q
0 (Ω), for 1 ≤ q < N

N−1 , and

(4.4) ‖u‖W 1,q
0
≤ Cq‖µ‖M.

The analog of Lemma 4.1 for the semilinear problem (4.2) is the following (see [3,
Proposition B.3])
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Lemma 4.2. Let g : Ω× R→ R be a Carathéodory function such that

(4.5) g(x, s)s ≥ 0 for a.e. x ∈ Ω, ∀s ∈ R.

Then, every solution u of (4.2) satisfies

(4.6) ‖g(·, u)‖L1 ≤ ‖µ‖M.
In particular, (4.4) holds.

The notion of (weak) sub and supersolutions of (4.2) we consider in this paper
is given below:

Definition 4.1. A subsolution of (4.2) is a function u ∈ L1(Ω) such that g(·, u) ∈
L1(Ω) and

(4.7) −
∫

Ω

u∆ζ +
∫

Ω

g(x, u) ζ ≤
∫

Ω

ζ dµ ∀ζ ∈ C2
0 (Ω), ζ ≥ 0 in Ω.

Analogously, a supersolution of (4.2) is a function u ∈ L1(Ω) such that g(·, u) ∈
L1(Ω) and

(4.8) −
∫

Ω

u∆ζ +
∫

Ω

g(x, u) ζ ≥
∫

Ω

ζ dµ ∀ζ ∈ C2
0 (Ω), ζ ≥ 0 in Ω.

We show that if g satisfies (4.5), then sub and supersolutions of (4.2) have
“bounds” from above and from below:

Proposition 4.2. Let µ be a finite measure in Ω, and let U and U be the (unique)
solutions of {

−∆U = −µ− in Ω,
U = 0 on ∂Ω,

{
−∆U = µ+ in Ω,
U = 0 on ∂Ω.

If (4.5) holds, then any subsolution w of (4.2) satisfies w ≤ U and any supersolu-
tion w of (4.2) satisfies U ≤ w.

We present a proof of Proposition 4.2 based on the following version of Kato’s
inequality (see [3, Proposition B.5]):

Lemma 4.3. Let w ∈ L1(Ω) and f ∈ L1(Ω; ρ0 dx) be such that

−
∫

Ω

w∆ζ ≤
∫

Ω

fζ ∀ζ ∈ C2
0 (Ω), ζ ≥ 0 in Ω.

Then,

−
∫

Ω

w+ ∆ζ ≤
∫

[w≥0]

fζ ∀ζ ∈ C2
0 (Ω), ζ ≥ 0 in Ω.

Proof of Proposition 4.2. If w is a subsolution of (4.2), then for every ζ ∈ C2
0 (Ω)

with ζ ≥ 0 in Ω we have

−
∫

Ω

(w − U) ∆ζ ≤ −
∫

Ω

g(x,w) ζ +
∫

Ω

ζ dµ−
∫

Ω

ζ dµ+

= −
∫

Ω

g(x,w) ζ −
∫

Ω

ζ dµ−

≤ −
∫

Ω

g(x,w) ζ.
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Therefore, by Lemma 4.3,

(4.9) −
∫

Ω

(w − U)+ ∆ζ ≤ −
∫

[w≥U ]

g(x,w) ζ ∀ζ ∈ C2
0 (Ω), ζ ≥ 0 in Ω.

Being U ≥ 0, we have w ≥ 0 on the set [w ≥ U ]; hence, by (4.5),

(4.10) g(x,w) ≥ 0 a.e. on [w ≥ U ].

Combining (4.9)–(4.10), we deduce that

−
∫

Ω

(w − U)+ ∆ζ ≤ 0 ∀ζ ∈ C2
0 (Ω), ζ ≥ 0 in Ω.

Therefore, (w − U)+ = 0 a.e. in Ω; equivalently, w ≤ U a.e. The inequality w ≥ U
is proved in the same way. �

The following result will be useful in the sequel

Lemma 4.4. Let (µn) be a sequence of measures in Ω such that

(4.11) µn = fn −∆un in D′(Ω)

for some fn ∈ L1(Ω) and un ∈ W 1,1
0 (Ω) such that fnun ≥ 0 a.e., ∀n ≥ 1. If (µn)

is equidiffuse, then (fn) is also equidiffuse.

We refer the reader to [6] for a proof of Lemma 4.4; see also [15].

We now present the

Proof of Proposition 4.1. Using (i) and Lemma 4.2, we deduce that (un) is bounded
in W 1,q

0 (Ω) for every 1 ≤ q < N
N−1 . Therefore, by the Rellich-Kondrachov theorem,

there exists a subsequence of (un) (still denoted by (un)) which converges strongly
in L1(Ω), and almost everywhere, to a function u. In particular, by (ii)

(4.12) gn(·, un)→ g(·, u) a.e.

We claim that
(
gn(·, un)

)
also satisfies assumptions (c2)–(c3) of Lemma 3.2. In

fact, by Lemma 4.4, this sequence is equidiffuse. By Proposition 4.2, we know that

U ≤ un ≤ U a.e., ∀n ≥ 1.

Let V = max
{
− U,U

}
; V is quasicontinuous since U and U are quasicontinuous.

In particular, V is quasifinite and |un| ≤ V a.e. Let

W (x) = sup
n∈N

sup
|s|≤V (x)

|gn(x, s)| for a.e. x ∈ Ω.

Claim 1. W is measurable.
Indeed, note that for each n ≥ 1

Gn(x, t) = sup
|s|≤t
|gn(x, s)| ∀(x, t) ∈ Ω× R

is a Carathéodory function (see e.g. [10]). Since V is measurable, it follows that
Gn(·, V ) is measurable as well. Hence, W is also measurable being the supremum
of countably many measurable functions.

Claim 2. W is quasi-L1.
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Given K ⊂ Ω and ε > 0, let M > 0 and ω1 ⊂ Ω be an open set such that
cap (ω1) < ε/2 and

|V (x)| ≤M a.e. on K \ ω1.

Let ω2 ⊂ Ω be such that cap (ω2) < ε/2 and

FM ∈ L1(K \ ω2).

Take ω0 = ω1 ∪ ω2. Then, cap (ω0) < ε and

0 ≤W (x) ≤ sup
n∈N

sup
|s|≤M

|gn(x, s)| ≤ FM (x) a.e. on K \ ω0.

Thus, the function W belongs to L1(K \ ω0), and is therefore quasi-L1. This
establishes Claim 2.

Since W is quasi-L1,

|gn(·, un)| ≤W a.e., ∀n ≥ 1,

and
(
gn(·, un)

)
is equidiffuse, by Lemma 3.2 we have

gn(·, un)→ g(·, u) in L1(Ω; ρ0 dx).

Note that for every function ζ in C2
0 (Ω) there exists a constant C > 0 such that

|ζ| ≤ C ρ0. Hence, the convergence of
(
gn(·, un)

)
in L1(Ω; ρ0 dx) is enough in order

to pass to the limit in the weak formulation of (4.3) and we get

−
∫

Ω

u∆ζ +
∫

Ω

g(x, u)ζ =
∫

Ω

ζ dµ ∀ζ ∈ C2
0 (Ω).

In view of the pointwise convergence (4.12), by Lemma 4.2 and Fatou’s lemma we
have g(·, u) ∈ L1(Ω). Thus, u is a solution of (4.2). �

5. A variant of the method of sub and supersolutions

Thanks to the stability result in the previous section, we can now establish the
following version of the method of sub and supersolutions for problem (1.4):

Proposition 5.1. Let g : Ω×R→ R be a Carathéodory function satisfying (1.5)–
(1.6). Given a diffuse measure µ in Ω, assume that (1.4) has sub and supersolutions
w ≤ w a.e. Then, there exists a solution u of (1.4) with w ≤ u ≤ w a.e.

In Appendix B below, we show that the conclusion need not hold if the measure
µ is not diffuse. The main difference between Proposition 5.1 and [16, Corollary 5.4]
(whose conclusion is true for every finite measure µ) is that in the statement above
it need not be true that

w ≤ v ≤ w =⇒ g(·, v) ∈ L1(Ω).

Proof. Let
h(x) = |g(x,w(x))|+ |g(x,w(x))|+ 1;

then h belongs to L1(Ω). Let

gn(x, s) =


−nh(x) if g(x, s) ≤ −nh(x),
g(x, s) if −nh(x) < g(x, s) < nh(x),
nh(x) if g(x, s) ≥ nh(x).

In particular,

(5.1) |gn(·, s)| ≤ nh ∀s ∈ R, ∀n ≥ 1,
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where nh ∈ L1(Ω). Since

gn(x,w) = g(x,w) and gn(x,w) = g(x,w),

it follows that w and w still are sub and supersolutions of

(5.2)

{
−∆u+ gn(x, u) = µ in Ω,

u = 0 on ∂Ω.

Since, by (5.1),
w ≤ v ≤ w =⇒ gn(·, v) ∈ L1(Ω) ,

applying [16, Corollary 5.4] we deduce that equation (5.2) has a solution un such
that

w ≤ un ≤ w a.e.
Clearly, the sequence (gn) satisfies assumptions (i)–(ii) of Proposition 4.1. Observe
now that, by construction, |gn| ≤ |g| in Ω× R; thus, by (1.6),

sup
|s|≤t
|gn(x, s)| ≤ Gt(x) +Ht(x) a.e. ∀t > 0.

By Proposition 2.1, Gt +Ht is quasi-L1. It thus follows from Proposition 4.1 that
(up to a subsequence) (un) strongly converges in L1(Ω) to a solution u of{

−∆u+ g(x, u) = µ in Ω,
u = 0 on ∂Ω.

Furthermore, w ≤ u ≤ w a.e. as desired. �

6. Proof of Theorem 1.2

In order to apply the results of the previous section, we first need to show that
for any given diffuse measure µ equation (1.4) does have sub and supersolutions
associated to µ in the sense of Definition 4.1. This is established in our next

Lemma 6.1. Let g : Ω× R→ R be a Carathéodory function satisfying (1.5)–(1.6).
Given a diffuse measure µ on Ω, then equation (1.4) has sub and supersolutions
w ≤ w a.e. such that any solution u of (1.4) satisfies

w ≤ u ≤ w a.e.

Proof. We first show the existence of w. For this purpose, let

gn(x, s) =

{
g(x, s) if g(x, s) ≤ n,
n if g(x, s) > n.

Since gn is bounded from above, by [16, Corollary 5.4] applied with sub and super-
solutions 0 ≤ U , the equation

(6.1)

{
−∆u+ gn(x, u) = µ+ in Ω,

u = 0 on ∂Ω,

has a largest solution un in [0, U ]. Since

gn−1(x, un) ≤ gn(x, un) a.e.,

un is a subsolution for the problem solved by un−1. By Proposition 4.2 and the
maximality of un−1, this implies that un−1 ≥ un a.e. In other words, the sequence
(un) is non-increasing and bounded from below by 0. Let w be the limit of (un).



SEMILINEAR ELLIPTIC EQUATIONS AND SYSTEMS WITH DIFFUSE MEASURES 13

By Proposition 4.1, w is a solution of (1.4) with datum µ+.
We claim that any solution u of (1.4) satisfies

(6.2) u ≤ w a.e.

Indeed, u is a subsolution of (6.1). By maximality of un, we have

u ≤ un a.e., ∀n ≥ 1.

As n → ∞, we deduce (6.2). The existence of a subsolution w is established in a
similar way using −µ− as datum. �

Remark that in the proof w has been chosen as the largest solution of (1.4) with
datum µ+ and w as the smallest solution of (1.4) with datum −µ−.

Proof of Theorem 1.2. Applying Lemma 6.1 and Proposition 5.1, we deduce that
(1.4) has a solution. We now show that (1.4) has a largest solution. Before pro-
ceeding, we first establish the following

Claim. Given two solutions u1 and u2 of (1.4), there exists a solution u such that
u ≥ max {u1, u2}.

By [16, Corollary 3.1], for any two solutions u1 and u2 of (1.4) the function
max {u1, u2} is a subsolution of the same problem. Applying Proposition 5.1 with
sub and supersolutions max {u1, u2} ≤ w, one finds a solution u such that

max {u1, u2} ≤ u ≤ w a.e.

This establishes the claim.

In order to prove the existence of the largest solution of (1.4), we follow the lines
of [16]. Let

A = sup
{∫

Ω

u; u is a solution of (1.4)
}
.

By Proposition 4.2, U ≤ u ≤ U a.e. for every solution of (1.4); thus, since U and U
are in L1(Ω), A is finite. By the claim above, we can find a nondecreasing sequence
(un) of solutions of (1.4) such that ∫

Ω

un → A.

By monotone convergence, there exists u0 in L1(Ω), limit of un, such that

(6.3)
∫

Ω

u0 = A.

Applying Proposition 4.1, we deduce that u0 is a solution of (1.4). Hence, by the
claim u0 must be the largest solution of (1.4). The existence of the smallest solution
is achieved in the same way. �

7. Proof of Theorem 1.1

Let U and U be the solutions of{
−∆U = µ+ in Ω,

U = 0 on ∂Ω,

{
−∆U = −µ− in Ω,

U = 0 on ∂Ω.
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Similarly, let V and V be the solutions of the same problems with data ν+ and
−ν−. Define

Kµ =
{
w ∈ L1(Ω); U ≤ w ≤ U

}
and Kν =

{
z ∈ L1(Ω); V ≤ z ≤ V

}
,

so that both Kµ and Kν are closed convex subsets of L1(Ω). Since U , U , V and
V are quasifinite, then any function in Kµ and Kν is quasifinite. Given z ∈ Kν ,
consider

h1(x, s) = g1(s, z(x)) ∀(x, s) ∈ Ω× R.
Then, h1 is a Carathéodory function which satisfies (1.5)–(1.6) (the latter holds
since g1 is continuous and z is quasifinite). Therefore, by Theorem 1.2 there exists
a solution u of

(7.1)

{
−∆u+ g1(u, z(x)) = µ in Ω,

u = 0 on ∂Ω.

Since h1(x, ·) is nondecreasing, the solution of (7.1) is unique (see [3, Corollary B.1]).
Given w in Kµ define

h2(x, t) = g2(w(x), t) ∀(x, t) ∈ Ω× R.

In the same way as before, there exists a unique solution v of

(7.2)

{
−∆v + g2(w(x), v) = ν in Ω,

v = 0 on ∂Ω.

By Proposition 4.2, u belongs to Kµ and v belongs to Kν . Thus, the map

T : Kµ ×Kν −→ Kµ ×Kν

(w, z) 7−→ (u, v)

is well-defined. By Lemma 4.2, we have

‖u‖
W 1,q

0

≤ C‖µ‖
M

and ‖v‖
W 1,q

0

≤ C‖ν‖
M

for every 1 ≤ q < N
N−1 . Hence, by the Rellich-Kondrachov theorem, T (Kµ ×Kν)

is bounded and relatively compact in L1(Ω)× L1(Ω).
We now show that T is continuous. For this purpose, let (zn) be a sequence of
functions in Kν such that zn → z in L1(Ω). Let un be the corresponding solutions
of {

−∆un + g1(un, zn(x)) = µ in Ω,
un = 0 on ∂Ω.

By Proposition 4.1, there exists a subsequence (unk) such that unk → u in L1(Ω),
where u is the solution of{

−∆u+ g1(u, z(x)) = µ in Ω,
u = 0 on ∂Ω.

By uniqueness of u, the whole sequence (un) converges to u. Analogously, if the
sequence (wn) in Kµ strongly converges in L1(Ω) to w, then the sequence (vn) of
solutions of {

−∆vn + g1(wn(x), vn) = ν in Ω,
vn = 0 on ∂Ω,
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strongly converges in L1(Ω) to the solution of{
−∆v + g2(w(x), v) = ν in Ω,

v = 0 on ∂Ω.

Hence, T is continuous. Therefore, by Schauder’s theorem, there exists a fixed
point (u, v) of T , that is, a solution of (1.3). �

Remark 7.1. We do not know whether Theorem 1.1 still holds if (a1)–(a2) are
replaced by the weaker assumptions:

(ã1) g1(·, t)t ≥ 0 for every t ∈ R;
(ã2) g2(s, ·)s ≥ 0 for every s ∈ R.

Note that (ã1)–(ã2) guarantee the existence of solutions of (7.1)–(7.2) (via Theo-
rem 1.2), but in this case u and v need not be unique. One could define for example
T : Kµ ×Kν → Kµ ×Kν as T (w, z) = (u, v), where u and v are the maximal so-
lutions of (7.1) and (7.2), respectively. However, we do not know whether this
compact operator T is continuous.

8. Proof of Theorem 1.3

We first prove the following

Lemma 8.1. Let u ∈ L1(Ω). Assume that u/ρK ∈ L1(Ω) for some compact set
K ⊂ Ω, where ρK(x) = d(x,K), ∀x ∈ Ω. Then,

(8.1) lim
r→0

1
|Br|

∫
Br(x)

|u| = 0 HN−1-a.e. on K.

Proof. Let x ∈ K. For every y ∈ Br(x) we have ρK(y) ≤ r. Thus,

1
rN

∫
Br(x)

|u| ≤ 1
rN−1

∫
Br(x)

|u|
ρK

.

By [9, Theorem 3, p.77], we have HN−1(Σ) = 0, where

Σ =
{
x ∈ K; lim sup

r→0

1
rN−1

∫
Br(x)

|u|
ρK

> 0
}
.

Therefore

lim
r→0

1
rN

∫
Br(x)

|u| = 0 ∀x ∈ K \ Σ,

and the result follows. �

We now present the

Proof of Theorem 1.3. Assume by contradiction that there exists some function
u 6≡ 0 satisfying (1.7). Applying Lemma 4.3 with w = −u, one deduces that u ≥ 0
a.e. in Ω. Since α < 2, by the strong maximum principle (see Lemma A.2 below), we
must have

∫
B1/2

u > 0. Applying Proposition A.1 to suitable smooth subdomains
ω ⊂ [x1 > 0]∩B1 and ω ⊂ [x1 < 0]∩B1 such that [x1 = 0]∩B1/2 ⊂ ∂ω, we deduce
that there exists ε > 0 such that

(8.2) u(x) ≥ ε|x1| ∀x ∈ B1/2.
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By Lemma 8.1, we have u = 0 HN−1-a.e. on [x1 = 0] ∩B1. Since u is quasicontin-
uous, this implies that u = 0 q.e. on [x1 = 0] ∩ B1. Applying [5, Corollary 1.3], it
follows from (8.2) that

(∆u)d ≥ ε∆|x1| = 2εHN−1 on [x1 = 0] ∩B1/2,

where the subscript “d” denotes the diffuse part of the measure ∆u. On the other
hand, by (1.7),

∆u ≤ 0 on [x1 = 0] ∩B1/2.

In particular,
(∆u)d ≤ 0 on [x1 = 0] ∩B1/2.

This gives a contradiction. �

9. Study of a linear problem

In this section, we study the following problem

(9.1)

−∆u+
u

|x1|α
= µ in B1,

u = 0 on ∂B1,

where α > 0 and µ is a diffuse measure in B1. The existence (and nonexistence) of
solutions of (9.1) is provided by the following

Theorem 9.1. Let α > 0 and µ be a diffuse measure in Ω. We have
(i) if α < 1, then (9.1) has a solution;

(ii) if 1 ≤ α < 2, then (9.1) has no solution if µ ≥ 0 and µ 6= 0;
(iii) if α ≥ 2, then (9.1) has a solution if, and only if, µ does not charge the set

[x1 = 0] ∩B1.

Proof of (i). This case is already covered by Theorem 1.2 since 1/|x1|α ∈ L1(B1) if
0 < α < 1.

Proof of (ii). Let µ ≥ 0 be a diffuse measure such that (9.1) has a solution. In
particular,

−
∫
B1

u∆ζ +
∫
B1

u

|x1|α
ζ =

∫
B1

ζ dµ ≥ 0 ∀ζ ∈ C2
0 (Ω), ζ ≥ 0 in B1.

Thus, by Theorem 1.3, u = 0 a.e. We conclude that µ = 0.

Proof of (iii). (⇒) Assume that (9.1) has a solution u. In particular, we have

(9.2) −
∫
B1

u∆ϕ+
∫
B1

u

|x1|α
ϕ =

∫
B1\[x1=0]

ϕdµ,

for every ϕ ∈ C2
0 (Ω) such that suppϕ ∩ [x1 = 0] = ∅. Given ψ ∈ C∞0 (R) such that

ψ(t) = 1 if |t| ≤ 1/2 and suppψ ⊂ [−1, 1], let

ψn(x) = ψ(nx1) ∀x ∈ B1, ∀n ≥ 1.

Since u/x2
1 ∈ L1(B1), we have

n2

∫
B1

[|x1|≤ 1
n ]

|u| ≤
∫
B1

[|x1|≤ 1
n ]

|u|
x2

1

→ 0 as n→∞.
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Thus, ∫
B1

|u||∇ψn| ≤ Cn
∫
B1

[|x1|≤ 1
n ]

|u| → 0,(9.3)

and ∫
B1

|u||∆ψn| ≤ Cn2

∫
B1

[|x1|≤ 1
n ]

|u| → 0.(9.4)

Apply (9.2) with test function ϕ = ζ(1 − ψn), where ζ ∈ C2
0 (Ω). As n → ∞, it

follows from (9.3)–(9.4) and dominated convergence that

−
∫
B1

u∆ζ +
∫
B1

u

|x1|α
ζ =

∫
B1\[x1=0]

ζ dµ ∀ζ ∈ C2
0 (Ω).

In other words, u also satisfies (9.1) with datum µbB1\[x1=0]. Therefore,

µb[x1=0]= 0

and the result follows.

(⇐) Let µ be a measure in B1 which does not charge the set [x1 = 0] ∩ B1. For
every n ≥ 1, let un be the solution of

(9.5)

−∆un +
un

|x1|α + 1/n
= µ in B1,

u = 0 on ∂B1.

Passing to a subsequence if necessary, we have un → u in L1(B1). Moreover, by
Lemmas 3.2 and 4.4,

un
|x1|α + 1/n

∗
⇀

u

|x1|α
+ σ weak∗ in M(Ω)

for some diffuse measure σ concentrated on the set [x1 = 0] ∩ B1. Thus, u is a
solution of (9.1) with datum µ− σ. By the implication “⇒”, µ− σ cannot charge
the set [x1 = 0] ∩ B1. Therefore, σ = 0 and u is the unique solution of (9.1)
associated to µ. The proof of Theorem 9.1 is complete. �

We conclude this section by showing the equivalence between (1.13) and (1.14):

Proposition 9.1. Let α ≥ 1 and f ∈ L2(Ω). Then, u ∈ Xα satisfies

(9.6)
∫
B1

∇u · ∇v +
∫
B1

u

|x1|α
v =

∫
B1

fv ∀v ∈ Xα

if, and only if,

(9.7)
∫
B1

∇u · ∇ϕ+
∫
B1

u

|x1|α
ϕ =

∫
B1

fϕ ∀ϕ ∈ C∞0
(
B+

1 ∪B
−
1

)
.

We first show the following
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Lemma 9.1. For every v ∈ X1,

(9.8) v = 0 in [x1 = 0] ∩B1 in the sense of traces.

Hence,

(9.9) v ∈ H1
0 (B+

1 ) ∪H1
0 (B−1 ).

Proof. By Hölder’s inequality, for every x ∈ B1 and r > 0 such that Br(x) ⊂ B1,

0 ≤ 1
|Br|

∫
Br(x)

|v| ≤

(
1
|Br|

∫
Br(x)

v2

)1/2

.

Applying Lemma 8.1 with function v2 and K = [x1 = 0] ∩Ba, with any a ∈ (0, 1),
we deduce that

lim
r→0

1
|Br|

∫
Br(x)

|v| = 0 HN−1-a.e. on [x1 = 0] ∩B1.

Thus, (9.8) follows. Since v ∈ H1
0 (B1), then v belongs to H1

0 (B+
1 ) ∪H1

0 (B−1 ). �

The main ingredient in the proof of Proposition 9.1 is the following

Lemma 9.2. If α ≥ 1, then C∞0
(
B+

1 ∪B
−
1

)
is dense in Xα with respect to the norm

(9.10) ‖v‖α = ‖∇v‖L2 + ‖v‖L2(να).

Proof. Let v ∈ Xα. By the previous lemma, v = 0 on [x1 = 0] ∩B1 in the sense of
traces. Hence, for every ε ∈ (0, 1) we have

(9.11)
∫
B1

[|x1|<ε]

v2 ≤ ε2

∫
B1

[|x1|<ε]

|∇v|2.

Let (vk) ⊂ Xα be the sequence given by

vk(x) = v(x)S(kx1) ∀x ∈ B1,

where S ∈ C∞(R) is such that

S(t) = 0 if |t| ≤ 1 and S(t) = 1 if |t| ≥ 2.

Note that each vk vanishes in a neighborhood of the set [x1 = 0]. We now show
that

vk → v in Xα.

Indeed, by dominated convergence,

vk → v in L2(B1; να).

Also notice that∣∣∇vk −∇v∣∣ ≤ C|∇v|χ[|x1|< 2
k ] + Ck|v|χ[ 1

k<|x1|< 2
k ].

Using (9.11), one deduces that∫
B1

∣∣∇vk −∇v∣∣2 ≤ C ∫
B1

[|x1|< 2
k ]

|∇v|2.

Hence,
∇vk → ∇v in L2(B1).
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Therefore, vk → v in Xα.
In order to conclude the proof, take (wn) ⊂ C∞0 (B1) to be a sequence such that

wn → v in H1
0 (B1).

In particular, for every k ≥ 1,

wn S(kx1)→ v S(kx1) in Xα as n→∞.

Thus, for each k ≥ 1, one can take nk ≥ 1 sufficiently large so that∥∥(wnk − v)S(kx1)]
∥∥
Xα
≤ 1
k
.

Let
uk = wnk S(kx1) in B1.

Then, (uk) is a sequence in C∞0
(
B+

1 ∪B
−
1

)
and, by the triangle inequality,

‖uk − v‖α ≤ ‖uk − vk‖α + ‖vk − v‖α ≤
1
k

+ ‖vk − v‖α → 0

as k →∞. �

We now present the

Proof of Proposition 9.1. The implication “⇒” is trivial, while the reverse implica-
tion “⇐” can be easily deduced from the density of C∞

(
B+

1 ∪B
−
1

)
in Xα. �

Appendix A. A counterpart of the Hopf lemma for weak
supersolutions

In this appendix we prove the following counterpart of the Hopf lemma for the
linear operator −∆ + b in the case of a (possibly) unbounded coefficient b near ∂Ω:

Proposition A.1. Let u ∈ L1(Ω), u ≥ 0 a.e., and b ∈ L∞loc(Ω) be such that
bu ∈ L1(Ω) and

(A.1) −
∫

Ω

u∆ϕ+
∫

Ω

buϕ ≥ 0 ∀ϕ ∈ C∞0 (Ω), ϕ ≥ 0 in Ω.

Assume that

(A.2) bρα0 ∈ L∞(Ω) for some α < 2.

Then, for every ω ⊂⊂ Ω there exists C > 0 such that

(A.3) ess inf
Ω

u

ρ0
≥ C

∫
ω

u.

We first prove the

Lemma A.1. Let u ∈ L1(Ω) and f ∈ L1(Ω; ρ0 dx) be such that

(A.4) −
∫

Ω

u∆ϕ ≥
∫

Ω

fϕ ∀ϕ ∈ C∞0 (Ω), ϕ ≥ 0 in Ω.

If u ≥ 0 a.e., then

(A.5) −
∫

Ω

u∆ζ ≥
∫

Ω

fζ ∀ζ ∈ C2
0 (Ω), ζ ≥ 0 in Ω.
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Proof. Clearly, (A.4) still holds if ϕ ∈ C2(Ω) and suppϕ ⊂ Ω. Let H : R → R be
a smooth convex function such that

H(t) = 0 ∀t ≤ 1 and H ′(t) = 1 ∀t ≥ 2.

Given ζ ∈ C2
0 (Ω), ζ ≥ 0 in Ω, then H(nζ) ∈ C2(Ω) and suppH(nζ) ⊂ Ω for every

n ≥ 1. Moreover,

∆H(nζ) = nH ′(nζ)∆ζ + n2H ′′(nζ)|∇ζ|2 ≥ nH ′(nζ)∆ζ.

Applying (A.4) with test function ϕ = H(nζ)/n, we then obtain

−
∫

Ω

uH ′(nζ)∆ζ ≥
∫

Ω

f
H(nζ)
n

.

As n→∞, (A.5) follows. �

We shall also need the following version of the weak Harnack inequality:

Lemma A.2. Let u ∈ L1(Ω), u ≥ 0 a.e., and b ∈ L∞loc(Ω) be such that

(A.6) −
∫

Ω

u∆ϕ+
∫

Ω

buϕ ≥ 0 ∀ϕ ∈ C∞0 (Ω), ϕ ≥ 0 in Ω.

Then, for every ω ⊂⊂ Ω there exists Cω > 0 such that

(A.7) ess inf
ω

u ≥ Cω
∫
ω

u.

In particular, if u = 0 a.e. on a set of positive measure, then u = 0 a.e. in Ω.

Proof. Taking Ω smaller if necessary, we may assume that b ∈ L∞(Ω). We can also
suppose that ω is path connected. We proceed in two steps:
Step 1. Proof of (A.7) when u is smooth.

By the weak Harnack inequality (see [12, Theorem 8.18]), we have

(A.8) inf
Br(x)

u ≥ C

rN

∫
B2r(x)

u

for every x ∈ Ω with B4r(x) ⊂ Ω; thus,

(A.9)
∫

Br(x)

u ≥ C
∫

B2r(x)

u.

Iterating (A.9) four times, one obtains

(A.10)
∫

Br
5
(x)

u ≥ C
∫

B16r
5

(x)

u

for every x ∈ Ω with B 32r
5

(x) ⊂ Ω.

Given x0 ∈ ω and j ≥ 1, let r = d(ω, ∂Ω)/7, and

(A.11) Aj =

{
x ∈ Ω

∣∣∣∣∣ there exists y ∈ ω such that

d(x, y) < r and dω(x0, y) < jr

}
,

where dω is the geodesic distance in ω. We shall establish the following
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Claim.

(A.12)
∫
Aj
u ≥ C

∫
Aj−1

u ∀j ≥ 1.

By the Vitali covering lemma, there exists a covering
(
Br(xi)

)
i∈I of the set

Ej =
{
x ∈ ω; dω(x, x0) < jr

}
such that xi ∈ Ej , ∀i ∈ I, and the balls (B r

5
(xi))i∈I are disjoint (all balls are defined

in terms of the standard Euclidean distance in RN ). Clearly,

(A.13) B r
5
(xi) ⊂ Aj ∀i ∈ I.

We now show that

(A.14)
(
B3r(xi)

)
i∈I is a covering of Aj+1.

Indeed, given z ∈ Aj+1 let y ∈ ω be such that

d(z, y) < r and dω(x0, y) < (j + 1)r.

Since ω is path connected, there exists x ∈ ω such that

dω(x, y) < r and dω(x, x0) < jr.

In particular, x ∈ Ej . Thus, there exists i ∈ I such that x ∈ Br(xi). We then have

d(z, xi) ≤ d(z, y) + d(y, x) + d(x, xi)

≤ d(z, y) + dω(y, x) + d(x, xi) < r + r + r = 3r.

Hence, z ∈ B3r(xi) and (A.14) follows.
Applying (A.10) and (A.13)–(A.14), we obtain∫
Aj
u ≥

∫
S
i∈I

Br
5
(xi)

u =
∑
i∈I

∫
Br

5
(xi)

u ≥ C
∑
i∈I

∫
B16r

5
(xi)

u ≥ C
∫

S
i∈I

B3r(xi)

u ≥ C
∫
Aj+1

u.

This proves (A.12).

Iterating (A.12), it follows that

(A.15)
∫
A1

u ≥ C
∫
Ak
u,

for some constant C independent of x0 ∈ ω, where k ≥ 1 is the smallest integer
such that

kr ≥ sup
{
dω(x, y); x, y ∈ ω

}
.

Since A1 ⊂ B2r(x0) and Ak ⊃ ω, we deduce from (A.8) and (A.15) that (recall
that r = r(ω) = d(ω, ∂Ω)/7 is fixed)

u(x0) ≥ Cω
∫
ω

u ∀x0 ∈ ω.

This implies (A.7) when u is smooth.

Step 2. Proof completed.
Replacing b by ‖b‖L∞ , we may assume that b is constant. Take any domain

Ω̃ ⊂⊂ Ω with ω ⊂⊂ Ω̃. Given ρ ∈ C∞0 (B1) such that ρ ≥ 0 in B1 and
∫
B1
ρ = 1, let
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ρε(x) = 1
εN
ρ(xε ), ∀x ∈ RN . Then, for ε > 0 small, uε = ρε ∗ u is a smooth function

satisfying
−∆uε + buε ≥ 0 in Ω̃.

By the previous step,

(A.16) inf
ω
uε ≥ C

∫
ω

uε.

Since
inf
ω
uε → ess inf

ω
u and

∫
ω

uε →
∫
ω

u,

the result follows as ε→ 0 in (A.16). �

We now establish Proposition A.1:

Proof of Proposition A.1. Replacing b by b+ if necessary, we may assume that b ≥
0. Take δ ∈ (0, 1/2) small such that ρ0 is smooth on Aδ and ω ⊂ Ωδ, where

Aδ =
{
x ∈ Ω; dist (x, ∂Ω) < δ

}
and Ωδ =

{
x ∈ Ω; dist (x, ∂Ω) > δ

}
.

By Lemma A.2,

(A.17) ess inf
Ωδ

u ≥ C
∫

Ωδ

u ≥ C
∫
ω

u.

Moreover, applying Lemma A.1 we have

(A.18) −
∫

Ω

u∆ζ +
∫

Ω

bu ζ ≥ 0 ∀ζ ∈ C2
0 (Ω), ζ ≥ 0 in Ω.

Given γ > 1, consider

v(x) = ρ0(x) +
[
ρ0(x)

]γ ∀x ∈ Aδ.
A simple computation shows that ∆v ∈ L1(Aδ) and

(A.19) ∆v = (1 + γργ−1
0 )∆ρ0 + γ(γ − 1)ργ−2

0 |∇ρ0|2 ≥
γ(γ − 1)
ρ2−γ

0

− C1,

since |∇ρ0| = 1 in Aδ and ∆ρ0 is bounded. Let M > 0 be such that

(A.20) bρα ≤M a.e. in Ω.

By (A.19), we have

−∆v +
M

ρα0
v ≤ −γ(γ − 1)

ρ2−γ
0

+
2M
ρα−1

0

+ C1,

where we used that v ≤ 2ρ0 since δ < 1. We now choose γ so that 1 < γ < 3− α;
this is possible because α < 2. Then, 2−γ > α−1 > 0. Hence, for δ > 0 sufficiently
small (possibly depending on α and M) we have

−∆v + bv ≤ −∆v +
M

ρα0
v ≤ 0 in Aδ.

Let
w = u− εv in Aδ,

where ε = C
∫
ω
u and C is the constant in the right-hand side of (A.17). Since

v = 0 on ∂Ω, by (A.18) we get

(A.21) −
∫
Aδ

w∆ψ +
∫
Aδ

bw ψ ≥ 0,
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for every ψ ∈ C2
0 (Aδ), ψ ≥ 0 in Aδ, such that

suppψ ⊂
{
x ∈ Ω; dist (x, ∂Ω) < δ

}
.

Since v < 1 in Aδ, it follows from (A.17) that w ≥ 0 a.e. in a neighborhood of
∂Aδ ∩ Ω. Thus, by Lemma A.1 and (A.21),

−
∫
Aδ

w∆ζ +
∫
Aδ

bw ζ ≥ 0 ∀ζ ∈ C2
0 (Aδ), ζ ≥ 0 in Aδ.

Therefore, by Lemma 4.3,
w ≥ 0 a.e. in Aδ.

In other words,
u ≥ εv ≥ ερ0 a.e. in Aδ

which combined with (A.17) gives (A.3). �

Appendix B. Failure of the method of sub and supersolutions

Throughout this appendix, we assume that N ≥ 3. It is well-known that problem
(1.4) need not have a solution if the measure µ is not diffuse. As an example, if

g(x, s) = (s+)
N
N−2 ∀(x, s) ∈ Ω× R,

and 0 ∈ Ω, then (1.4) has no solution with datum µ = δ0 (see [1]). In this case the
solution of the linear problem{−∆U = δ0 in Ω,

U = 0 on ∂Ω,

is not a supersolution of (1.4) since g(x, U) ∼ 1/‖x‖N is not integrable near the
origin.

One may then wonder whether (1.4) has a solution under assumptions (1.5)–(1.6)
if µ is not necessarily diffuse, but U and U are sub and supersolutions (i.e., if both
g(x, U) and g(x, U) belong to L1(Ω)). This would be an extension of Proposition 5.1
for general measures µ. It turns out that this is not true. In fact,

Proposition B.1. There exists a Carathéodory function g : B1×R→ R such that
(1.5)–(1.6) hold, 0 and k/‖x‖N−2 are sub and supersolutions of

(B.1)

{
−∆u+ g(x, u) = δ0 in B1,

u = 0 on ∂B1,

but (B.1) has no solution.

Proof. Given h ∈ C∞0 (R) such that h(t)t ≥ 0, ∀t ∈ R, and h(1) = 1, let

g(x, s) = h
(‖x‖N−2

cN
s
) 1
‖x‖N

∀(x, s) ∈ B1 × R,

where 1/cN = (N−2)|∂B1| and |∂B1| is the (N−1)-dimensional Hausdorff measure
of ∂B1; thus,

−∆
(

cN
‖x‖N−2

)
= δ0 in D′(RN ).

The function g thus defined satisfies (1.5)–(1.6). Let M ≥ 1 be such that supp g ⊂
[−M,M ]. Then, v(x) = cNM/‖x‖N−2 is a supersolution of (B.1) since g(·, v) = 0
and

−∆v = Mδ0 ≥ δ0 in D′(B1).



24 LUIGI ORSINA AND AUGUSTO C. PONCE

Clearly, 0 is a subsolution of (1.4).
We claim that (B.1) does not have a solution. Assume by contradiction that (B.1)
has a solution u. It is well-known that

(B.2) lim
r→0

1
r

∫
∂Br

u = (N − 2).

By Proposition 4.2,

(B.3) 0 ≤ u(x) ≤ cN
‖x‖N−2

a.e.

Let ε > 0 be such that h(t) ≥ 1
2 for |t− 1| < ε. Set

Er =
{
x ∈ ∂Br; u(x) ≥ (1− ε) cN

rN−2

}
.

Thus,

(B.4) g(x, u(x)) ≥ 1
2rN

∀x ∈ Er.

By (B.3), we have

1
r

∫
∂Br

u =
1
r

∫
Er

u+
1
r

∫
∂Br\Er

u

≤ cN
|Er|
rN−1

+ (1− ε)cN
|∂Br \ Er|
rN−1

= (N − 2)− εcN
|∂Br \ Er|
rN−1

.

(B.5)

In view of (B.2) and (B.5), we must have

lim
r→0

|∂Br \ Er|
|∂Br|

= 0.

Let r0 > 0 be such that

(B.6)
|Er|
|∂Br|

≥ 1
2

for every 0 < r < r0.

By (B.4) and (B.6), we then have∫
B1

g(x, u) dx ≥
∫
Br0

g(x, u) dx ≥
∫ r0

0

dr

∫
Er

g(rσ, u) dσ

≥
∫ r0

0

|∂Br|
4

dr

rN
=
|∂B1|

4

∫ r0

0

dr

r
= +∞.

This is a contradiction. �
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