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Abstract. We consider equations (E) −∆u + g(u) = µ in smooth bounded
domains Ω ⊂ RN , where g is a continuous nondecreasing function and µ is
a finite measure in Ω. Given a bounded sequence of measures (µk), assume
that for each k ≥ 1 there exists a solution uk of (E) with datum µk and zero
boundary data. We show that if uk → u# in L1(Ω), then u# is a solution
of (E) relative to some finite measure µ#. We call µ# the reduced limit of
(µk). This reduced limit has the remarkable property that it does not depend
on the boundary data, but only on (µk) and on g. For power nonlinearities
g(t) = |t|q−1t, ∀t ∈ R, we show that if (µk) is nonnegative and bounded
in W−2,q(Ω), then µ and µ# are absolutely continuous with respect to each
other; we then produce an example where µ# 6= µ.
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1. Introduction

In this paper we investigate the convergence of solutions of the equation

(1.1) −∆u+ g(u) = µ in Ω,

where Ω ⊂ RN , N ≥ 2, is a smooth bounded domain, g : R → R is a nondecreasing
continuous function with g(0) = 0, and µ is a finite measure in Ω. By a solution of
(1.1) we mean a function u ∈ L1

loc(Ω) such that g(u) ∈ L1
loc(Ω) and (1.1) holds in

the sense of distributions.
In general, equation (1.1) is not solvable for every finite measure µ. We shall

denote by G(g) the set of finite measures for which a solution exists. When there is
no risk of confusion we shall simply write G, even though this set depends on the
nonlinearity g.

Questions related to the convergence and stability of solutions of

(1.2)

{
−∆u+ g(u) = µ in Ω,

u = 0 on ∂Ω,

have been addressed in various contexts. We recall that a function u is a solution
of (1.2) if u ∈ L1(Ω), g(u) ∈ L1(Ω) and

−
∫

Ω

u∆ζ +
∫

Ω

g(u)ζ =
∫

Ω

ζ dµ

for every ζ ∈ C2
0 (Ω) (= space of functions in C2(Ω) vanishing on ∂Ω).

Let us denote by G0(g) the set of finite measures for which (1.2) has a solution.
Clearly, G0(g) ⊂ G(g). We prove in the Appendix below that G0(g) = G(g).

The space of finite measures in Ω is denoted by M(Ω). If (µk) is a sequence in
this space, the notation

(1.3) µk
∗
⇀ µ

means that (µk) converges weakly∗ in
[
C0(Ω)

]∗, where C0(Ω) denotes the space of
continuous functions in Ω vanishing on the boundary. For brevity, we shall refer to
this convergence as weak∗ convergence in Ω.

It is known that if (µk) is a bounded sequence of measures in Ω converging
strongly to µ, then the solutions uk of (1.2) with data µk always converge strongly
in L1(Ω) to the solution of (1.2) (see [6, Appendix 4B]). Similarly, if g(t) = |t|q−1t
where 1 < q < N

N−2 , then (1.2) has a solution for every finite measure and if (µk)
is a sequence converging weakly∗ to µ, then the solutions uk also converge strongly
in L1(Ω) to the solution u associated to µ. However, for q ≥ N

N−2 , this conclusion
fails; see [6, Example 1]. In fact, it may even happen that µk

∗
⇀ 1 weakly∗ but

uk → 0 in L1(Ω), even though the function identically equal to 0 is not the solution
of (1.2) with datum µ = 1!

A natural question that comes up in this connection is the following: assuming
that q ≥ N

N−2 and µk
∗
⇀ µ, what additional ‘minimal’ assumptions would guarantee

that solutions of (1.2) with data µk converge to the solution of (1.2) with datum
µ? When this is not the case, what can we still say about the limit of the solutions?
These are the types of problems that we address in this paper.
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Our first result shows that if the sequence of solutions converges strongly in L1

then the limit is a solution of (1.2) with some measure µ#, in general different from
the weak∗ limit µ.

Theorem 1.1. Let (µk) ⊂ G be a bounded sequence such that µk
∗
⇀ µ. For each

k ≥ 1, denote by uk the unique solution of (1.2) with datum µk. If

(1.4) uk → u# in L1(Ω),

then g(u#) ∈ L1(Ω) and there exists a finite measure µ# in Ω such that

(1.5)

{
−∆u# + g(u#) = µ# in Ω,

u# = 0 on ∂Ω.

Surprisingly, the measure µ# does not depend on the Dirichlet boundary con-
dition. In fact, the sequence (uk) may be replaced by any sequence of solutions of
equation (1.1) with µ = µk, which may not even possess a boundary trace. This is
the content of our next result:

Theorem 1.2. Let (µk) ⊂ G be a bounded sequence such that µk
∗
⇀ µ. For every

k ≥ 1, assume that vk ∈ L1(Ω) satisfies

(1.6) −∆vk + g(vk) = µk in Ω.

If

(1.7) vk → v# in L1(Ω),

then

(1.8) −∆v# + g(v#) = µ# in Ω,

where µ# is the measure given by Theorem 1.1.

We say that a sequence (µk) in G(g) has a reduced limit if it converges weakly∗

in M(Ω) and if there exists a sequence (vk) ⊂ L1(Ω) satisfying (1.6)–(1.7); the
reduced limit µ# is defined by (1.8).

We use this notation because of its simplicity, but we emphasize that the reduced
limit µ# depends on (µk) and not just on its weak∗ limit. Indeed it is possible that
different sequences converging weakly∗ to the same measure µ lead to different
limits with respect to the same nonlinearity g. However, µ# does not depend on
the domain: for any domain ω b Ω, the reduced limit of (µk) in ω is simply the
restriction of µ# to ω.

Further we note that every bounded sequence (µk) in G possesses a subsequence
which satisfies the conditions of Theorem 1.2 and consequently has a reduced limit
(see Section 6).

Following these results, we investigate some properties of µ#; in particular, to
what extent µ# inherits properties of the sequence (µk). Our next result illustrates
the kind of properties that we are interested in.

Theorem 1.3. Assume that (µk) ⊂ G has reduced limit µ#. If

(1.9) µk ≥ 0 ∀k ≥ 1,

then

(1.10) µ# ≥ 0.
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Observe that (1.10) does not follow from Fatou’s lemma, which only implies in
this case that µ# ≤ µ, where µ is the weak∗ limit of the sequence (µk).

Remark 1.1. The notion of reduced limit is reminiscent of the notion of reduced
measure introduced by Brezis-Marcus-Ponce [6]. We recall that if g(t) = 0, ∀t ≤ 0,
the reduced measure µ∗ is the largest measure less than or equal to µ for which
problem (1.2) has a solution. Our main concern in [6] was to study the approxima-
tion mechanism behind (1.2), for example via truncation of the nonlinearity g for a
fixed measure µ, or via some special approximations of the datum µ for a fixed g.
For instance, given a sequence of mollifiers (ρk) we have shown that, if g is convex,
then solutions uk of (1.2) with data µk = ρk ∗µ converge to the largest subsolution
u∗ associated to µ. Since this function satisfies (1.2) with measure µ∗, one deduces
in this case that µ# = µ∗.

We now focus on the case of equations with power nonlinearities, namely

(1.11) −∆u+ |u|q−1u = µ in Ω

in the supercritical range q ≥ N
N−2 . We recall that for a finite measure µ, equation

(1.11) has a solution if and only if

µ ∈ L1(Ω) +W−2,q(Ω).

In [6], we have showed that if (µk) is a bounded sequence of measures converging
strongly to µ in W−2,q(Ω), then µ# = µ. One might ask what happens if (µk) is
just bounded in W−2,q(Ω). In Theorem 1.3 the reduced limit µ# can be identically
zero even if the sequence (µk) has a nonzero weak∗ limit. However, if g(t) = |t|q−1t
then, boundedness in W−2,q guarantees that this cannot happen:

Theorem 1.4. Assume that (µk) ⊂ G is a nonnegative sequence with weak∗ limit
µ and reduced limit µ#. If (µk) is bounded in W−2,q(Ω), then

(1.12) µ# = 0 if and only if µ = 0.

For the proof see Section 8 below. Under the assumptions of this theorem,
equation (1.11) has a solution with datum µ. Therefore, in view of (1.12) one may
expect that the reduced limit µ# coincides with µ. Surprisingly, this conclusion
does not hold in general; a counterexample is provided by Theorem 9.2 below.

Following is a description of some basic concepts and tools employed in this
paper.

(i) The notion of equidiffuse sequence of measures (µk) relative to an outer
measure T . This means that (µk) is uniformly absolutely continuous with
respect to T ; more precisely, for every ε > 0 there exists δ > 0 such that

E ⊂ Ω Borel and T (E) < δ =⇒ |µk|(E) < ε ∀k ≥ 1.

(ii) The notion of concentrating sequence of measures (µk) relative to an outer
measure T . This means that there exists a sequence of Borel sets (Ek) of
Ω such that

T (Ek) → 0 and |µk|(Ω \ Ek) → 0.

Let us consider for example the special case where T is a measure and µ1 =
µ2 = . . . = µ for some fixed measure µ. Then the sequence (µk) is equidiffuse if
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and only if µ is absolutely continuous with respect to T (denoted µ� T ) and (µk)
is concentrating if and only if µ is singular with respect to T (denoted µ⊥T ).

Two important ingredients, related to the above concepts, are:
(iii) The Biting lemma of R. Chacon and H. Rosenthal according to which every

bounded sequence of measures (µk) can be decomposed as a sum of an
equidiffuse and a concentrating sequences; see Theorem 2.1 below.

(iv) The Inverse Maximum Principle for sequences, extending a previous result
of Dupaigne-Ponce [14].

Using the Biting lemma we introduce the notions of diffuse limit and concen-
trated limit of a bounded sequence of measures (see Definition 2.1 below) and study
some of the properties of these limits. In particular we identify the diffuse limit
of a sequence (g(uk)) where (uk) converges in L1(Ω) and (g(uk)) is bounded in
this space. These results, together with the counterpart of the Inverse Maximum
Principle for sequences, play a crucial role in the proofs of Theorems 1.2 and 1.3.

2. Diffuse and concentrated limits

We denote by T a nonnegative outer measure defined on the class of Borel subsets
of Ω. The space of finite Borel measures in Ω is denoted by M(Ω) and is equipped
with the norm

‖µ‖M =
∫

Ω

|µ|;

by the Riesz representation theorem, M(Ω) =
[
C0(Ω)

]∗.
The following result, independently proved by R. Chacon and H. Rosenthal (see

Brooks-Chacon [11]), plays a central role in this section.

Theorem 2.1 (Biting lemma). For every bounded sequence (µk) ⊂ M(Ω), there
exist bounded sequences (αk), (σk) ⊂M(Ω) such that

(B1) µk = αk + σk, ∀k ≥ 1;
(B2) (αk) is equidiffuse and (σk) is concentrating with respect to T .

It is not difficult to see that the sequences (αk) and (σk) can be chosen so that
(B3) αk⊥σk, ∀k ≥ 1.

Lemma 2.1. Using the notation of the Biting lemma, assume that µk
∗
⇀ µ, αk

∗
⇀ α

and σk
∗
⇀ σ. If (α′k) and (σ′k) is another pair of sequences satisfying (B1)–(B2),

then α′k
∗
⇀ α and σ′k

∗
⇀ σ.

Proof. From the definition of equidiffuse sequences, one shows that α� T . There-
fore, if µ = 0 then α = σ = 0.
Let (α′kj

) and (σ′kj
) be subsequences converging weakly∗ to α′ and σ′ respectively.

The previous statement implies that α = α′ and σ = σ′. This further implies that
α′k

∗
⇀ α and σ′k

∗
⇀ σ. �

In order to analyze in more detail the weak∗ limit of (µk) we shall study the
weak∗ limits of the sequences (αk) and (σk).

Definition 2.1. Let (µk) be a bounded sequence in M(Ω) and let (αk) and (σk) be
sequences satisfying conditions (B1)–(B2) of the Biting lemma. Assume that (µk)
converges weakly∗.
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(a) If αk
∗
⇀ α, we call α the diffuse limit of (µk).

(b) If σk
∗
⇀ σ, we call σ the concentrated limit of (µk).

If a sequence of measures (µk) is bounded (but not necessarily weakly∗ conver-
gent) and if every weak∗ convergent subsequence of (µk) possesses a diffuse limit α
independent of the subsequence, we shall still say that this common limit α is the
diffuse limit of (µk). Note that if (µk) is merely bounded, then it may possess a
diffuse limit in this sense, but not a concentrated limit.

In view of Lemma 2.1, if (µk) possesses a diffuse limit and a concentrated limit
then these limits are independent of the decomposition given by (B1)–(B2).

The diffuse and concentrated limits of (µk) depend on T . For instance, if (ρk) ⊂
C∞0 (−1, 1) is a sequence of mollifiers,

ρk
∗
⇀ δ0 weakly∗ in M(−1, 1)

and one verifies that
(a) if T is the Lebesgue measure in R, then (ρk) has diffuse limit 0 and concentrated

limit δ0;
(b) if T is the Newtonian capacity capH1 , then (ρk) has diffuse limit δ0 and con-

centrated limit 0, since every nonnempty set in R has positive capacity.

We recall that if µk
∗
⇀ µ weakly∗ in M(Ω), then

‖µ‖M ≤ lim inf
k→∞

‖µk‖M.

It is worth noting the following improved version of this estimate.

Corollary 2.1. Let (µk) ⊂ M(Ω) be a bounded sequence possessing diffuse and
concentrated limits α and σ, respectively. Then,

(2.1) ‖α‖M + ‖σ‖M ≤ lim inf
k→∞

‖µk‖M.

Proof. Take sequences (αk), (σk) ⊂M(Ω) satisfying (B1)–(B3). Then,

αk
∗
⇀ α and σk

∗
⇀ σ weakly∗ in M(Ω).

Hence,

(2.2) ‖α‖M ≤ lim inf
k→∞

‖αk‖M and ‖σ‖M ≤ lim inf
k→∞

‖σk‖M.

On the other hand, since µk = αk + σk and αk⊥σk, we have

(2.3) ‖µk‖M = ‖αk‖M + ‖σk‖M ∀k ≥ 1.

Combining (2.2)–(2.3) we obtain (2.1). �

Corollary 2.2. Let (µk) ⊂M(Ω) be a bounded sequence of nonnegative measures
with weak∗ limit µ. If (µk) has diffuse and concentrated limits α and σ, respectively,
then

(2.4) 0 ≤ α ≤ µ and 0 ≤ σ ≤ µ.

Proof. Take sequences (αk), (σk) ⊂ M(Ω) satisfying (B1)–(B2) and such that
αk⊥σk, ∀k ≥ 1. Since

αk + σk = µk ≥ 0 and αk⊥σk,

we must have αk, σk ≥ 0, ∀k ≥ 1; hence, α, σ ≥ 0. The corollary now follows from
the equality µ = α+ σ. �



REDUCED LIMITS FOR NONLINEAR EQUATIONS WITH MEASURES 7

As a final remark, we point out that if (µk) ⊂M(Ω) has diffuse and concentrated
limits equal to α and σ, respectively, then α � T , but σ need not be a measure
concentrated with respect to T or with respect to α. For instance, if T is the
Lebesgue measure in RN , f ∈ L1(Ω) and (λk) is a convex combination of Dirac
masses such that

λk
∗
⇀ 1 weakly∗ in M(Ω),

then the sequence (µk) given by

µk = f + λk ∀k ≥ 1

has f as diffuse limit and 1 as concentrated limit.

3. The diffuse limit of (g(uk))

In this section we study the diffuse limit of the nonlinear term in the equation
(1.2) with data µk. We start with a basic result which is independent of the pde.

Proposition 3.1. Let (uk) ⊂ L1(Ω) be a sequence such that
(
g(uk)

)
is bounded in

L1(Ω). If

(3.1) uk → u# in L1(Ω),

then g(u#) is the diffuse limit of
(
g(uk)

)
with respect to Lebesgue measure in RN .

Given a > 0, we denote by Ta : R → R the truncation at ±a, defined as

(3.2) Ta(t) =


t if |t| ≤ a,

a if t > a,

−a if t < −a.

We first prove the following

Lemma 3.1. Assume that (uk) ⊂ L1(Ω) satisfies the assumptions of Proposi-
tion 3.1. Then, there exists a subsequence (ukj ) such that

(3.3) g(ukj )χ[|ukj
|≤j] → g(u#) in L1(Ω).

Proof. For every j ∈ N, we have by dominated convergence,

g
(
Tj(uk)

)
→ g

(
Tj(u#)

)
in L1(Ω).

On the other hand, if follows from Fatou’s lemma that g(u#) ∈ L1(Ω). Thus, by
monotone convergence,

g
(
Tj(u#)

)
→ g(u#) in L1(Ω).

Using a diagonalization argument, one then finds an increasing sequence of integers
(kj) such that

g
(
Tj(ukj )

)
→ g(u#) in L1(Ω).

Since for every j ≥ 1,

0 ≤
∣∣g(ukj )

∣∣χ[|ukj
|≤j] ≤

∣∣g(Tj(ukj )
)∣∣ a.e.,

the conclusion follows by dominated convergence. �
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Proof of Proposition 3.1. Passing to a subsequence if necessary, we may assume
that

(
g(uk)

)
has diffuse and concentrated limits α and σ, respectively. Let (ukj )

be the subsequence given by Lemma 3.1. Set

(3.4) αj = g(ukj
)χ[|ukj

|≤j] and σj = g(ukj )χ[|ukj
|>j].

We claim that (αj) and (σj) satisfy conditions (B1)–(B2). Indeed, since (αj)
strongly converges in L1(Ω), the sequence (αj) is equidiffuse (or, equivalently in
this case, equi-integrable). On the other hand, by the Chebyshev inequality,∣∣[|ukj | > j

]∣∣ ≤ 1
j
‖ukj

‖L1 ≤ C

j
∀j ≥ 1.

Thus, the sequence (σj) is concentrating.
Therefore, α = g(u#). Since α is independent of the subsequence, we conclude that
g(u#) is the diffuse limit of

(
g(uk)

)
. �

We now examine the weak∗ limit of the sequence
(
g(uk)

)
when uk is a solution

of (1.1) with datum µk. In this case, the conclusion can be improved by replacing
the Lebesgue measure with the Newtonian capacity capH1 as the outer measure T .

Proposition 3.2. Let (µk) ⊂M(Ω) be a bounded sequence. Assume that, for each
k ≥ 1, there exists uk ∈ L1(Ω) such that

(3.5) −∆uk + g(uk) = µk in Ω.

If
(
g(uk)

)
is bounded in L1(Ω) and

(3.6) uk → u# in L1(Ω),

then g(u#) is the diffuse limit of
(
g(uk)

)
with respect to capH1 .

For the proof of the proposition we need the following lemma.

Lemma 3.2. Let u ∈ L1(Ω) be such that ∆u ∈M(Ω). Then,

(3.7) Ta(u) ∈ H1
loc(Ω) ∀a > 0.

Moreover, for every ω b Ω there exists Cω > 0 such that for every a > 0,

(3.8)
∫

ω

|∇Ta(u)|2 ≤ Cωa
(
‖u‖L1(Ω) + ‖∆u‖M(Ω)

)
and

(3.9) capH1

(
[|u| > a] ∩ ω

)
≤ Cω

a

(
‖u‖L1(Ω) + ‖∆u‖M(Ω)

)
.

Proof. Let ϕ ∈ C∞0 (Ω) be such that 0 ≤ ϕ ≤ 1 in Ω and ϕ = 1 on ω. Set v = uϕ.
For every a > 0, we have

(3.10)
∫

Ω

|∇Ta(v)|2 =
∫

Ω

∇Ta(v) · ∇v = −
∫

Ω

Ta(v)∆v ≤ a

∫
Ω

|∆v|.

Since
∆v = ϕ∆u+ 2∇ϕ · ∇u+ u∆ϕ in Ω,

we have

(3.11)
∫

Ω

|∆v| ≤ ‖∆u‖M(Ω) + 2Cϕ

∫
supp ϕ

|∇u|+ Cϕ‖u‖L1(Ω).
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We recall that

(3.12)
∫

supp ϕ

|∇u| ≤ Cϕ

(
‖u‖L1(Ω) + ‖∆u‖M(Ω)

)
.

Combining (3.10)–(3.12), we get∫
Ω

|∇Ta(v)|2 ≤ Cϕa
(
‖u‖L1(Ω) + ‖∆u‖M(Ω)

)
.

This implies (3.8). Since

capH1

(
[|u| > a] ∩ ω

)
≤ capH1

(
[|v| > a]

)
≤ 1
a2

∫
Ω

|∇Ta(v)|2,

the conclusion follows. �

Proof of Proposition 3.2. Passing to a subsequence if necessary, we may assume
that

(
g(uk)

)
has diffuse and concentrated limits α and σ, respectively. Take (αj)

and (σj) as in (3.4). Since (αj) converges strongly in L1(Ω), it is in particular
equidiffuse with respect to capH1 .
We show that the sequence (σk) is concentrating with respect to capH1 in every
subdomain ω b Ω. For this purpose, let

Ej =
[
|ukj | > j

]
∩ ω.

By Lemma 3.2, given ω b Ω we have

capH1(Ej) ≤
C

j

(
‖ukj

‖L1(Ω) + ‖µkj‖M(Ω) + ‖g(ukj )‖L1(Ω)

)
.

Thus, capH1(Ej) ≤ C
j and so (σj) is concentrating in ω with respect to capH1 .

Therefore, α = g(u#) in ω for every ω b Ω, whence g(u#) is the diffuse limit of(
g(uk)

)
relative to capH1 . �

4. The Inverse Maximum Principle for sequences

An important tool in the present work is an extension to sequences of the Inverse
Maximum Principle of Dupaigne-Ponce [14]. We first recall their result.

Theorem 4.1 (Inverse Maximum Principle). Let u ∈ L1(Ω) be such that ∆u ∈
M(Ω). If u ≥ 0 a.e., then

(4.1) (∆u)c ≤ 0.

Here, “c” denotes the concentrated part of the measure with respect to capH1 .
In fact, every finite measure µ can be uniquely decomposed in terms of a diffuse
part µd and a concentrated part µc with respect to an outer measure T , so that
µ = µd + µc, µd � T and µc⊥T ; see e.g. [6, Lemma 4.A.1].

We prove the following extension of this result.

Theorem 4.2. Let (uk) ⊂ L1(Ω) be a bounded sequence such that ∆uk ∈ M(Ω),
∀k ≥ 1. Assume that (∆uk) is bounded in M(Ω) and has concentrated limit σ ∈
M(Ω) with respect to capH1 . If uk ≥ 0 a.e., ∀k ≥ 1, then

(4.2) σ ≤ 0.

For the proof we use an extension of Kato’s inequality (see [8]).
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Lemma 4.1. Let u ∈ L1(Ω) be such that ∆u ∈M(Ω). Then,

(4.3) ∆u+ ≥ χ[u≥0](∆u)d − |∆u|c in Ω.

We recall that if u ∈ L1(Ω) and ∆u ∈ M(Ω), then u is quasicontinuous with
respect to capH1 ; see e.g. [1, 7]. More precisely, there exists a quasicontinuous
function ũ : Ω → R, unique up to sets of zero H1-capacity, such that u = ũ
a.e. We shall henceforth identify u with ũ pointwise in Ω. In particular, the term
χ[u≥0](∆u)d is well-defined, meaning χ[ũ≥0](∆u)d.

Proof of Theorem 4.2. For every k ≥ 1, let

µk := ∆uk.

We denote by (αk), (σk) ⊂ M(Ω) two sequences satisfying (B1)–(B2). Passing to
a subsequence if necessary, we may assume that uk → u a.e. for some function
u ∈ L1(Ω) and also

αk
∗
⇀ α and σk

∗
⇀ σ weakly∗ in M(Ω).

In particular, σ is the concentrated limit of the original sequence (µk).
Given a > 0, let Ta be as in (3.2). Since uk ≥ 0 a.e., Ta(uk) = a − (a − u)+.

Thus, by Lemma 4.1,

(4.4) ∆Ta(uk) ≤ χ[uk≤a](∆uk)d + |∆uk|c,

On the other hand, since each measure αk is diffuse, one verifies that

(∆uk)d = (αk)d + (σk)d = αk + (σk)d,

|∆uk|c = |σk|c.

Thus,

(4.5) ∆Ta(uk) ≤ αkχ[uk≤a] + |σk| = αk − αkχ[uk>a] + |σk|.

Let ε > 0. Since (αk) is equidiffuse with respect to capH1 , there exists δ > 0 such
that

(4.6) E ⊂ Ω Borel and capH1(E) < δ =⇒ |αk|(E) < ε ∀k ≥ 1.

On the other hand, given a subdomain ω b Ω, by Lemma 3.2 we have

(4.7) capH1

(
[uk > a] ∩ ω

)
≤ Cω

a
∀a > 0.

Keeping ω fixed, by (4.6)–(4.7) there exists a0 > 0 such that if a ≥ a0, then

(4.8) |αk|
(
[uk > a] ∩ ω

)
≤ ε ∀k ≥ 1.

Since (σk) is concentrating, there exists a sequence of Borel sets Ek ⊂ Ω such that

capH1(Ek) → 0 and |σk|(Ω \ Ek) → 0.

By inner regularity of σk, one can then find compact subsets Kk ⊂ Ek such that

(4.9) capH1(Kk) → 0 and |σk|(Ω \Kk) → 0.

For each k ≥ 1, let ζk ∈ C∞0 (Ω) be such that 0 ≤ ζk ≤ 1 in Ω, ζk = 1 on Kk, and∫
Ω

|∇ζk|2 ≤ capH1(Kk) +
1
k
.
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Given ψ ∈ C∞0 (Ω) with ψ ≥ 0 in Ω and suppψ ⊂ ω, set ϕk = ψ(1−ζk) in Ω. Then,
the sequence (ϕk) satisfies

0 ≤ ϕk ≤ ψ in Ω,
ϕk = 0 on Kk,

ϕk → ψ in H1
0 (Ω).

Passing to a subsequence if necessary, we may also assume that

(4.10) ϕk → ψ q.e.,

where q.e. (= quasi-everywhere) means: outside some set of zero H1-capacity.
By (4.5), for every k ≥ 1 and a > 0, we have

(4.11) −
∫

Ω

∇Ta(uk) · ∇ϕk ≤
∫

Ω

ϕk dαk −
∫

[uk>a]

ϕk dαk +
∫

Ω

ϕk d|σk|.

It follows from Lemma 3.2 that the sequence
(
Ta(uk)

)
is bounded in H1(ω). Since

suppϕk ⊂ ω and ϕk → ψ in H1
0 (Ω), we then have

(4.12)
∫

Ω

∇Ta(uk) · ∇ϕk →
∫

Ω

∇Ta(u) · ∇ψ as k →∞.

Since ϕk → ψ q.e. and (αk) is equidiffuse, (see e.g. [9, Lemma 1])

(4.13)
∫

Ω

ϕk dαk →
∫

Ω

ψ dα as k →∞.

By (4.8),

(4.14)

∣∣∣∣∣
∫

[uk>a]

ϕk dαk

∣∣∣∣∣ ≤ ε‖ϕk‖L∞ ≤ ε‖ψ‖L∞ ∀a ≥ a0.

Using (4.9), we also get

(4.15)
∫

Ω

ϕk d|σk| =
∫

Ω\Kk

ϕk d|σk| ≤ ‖ψ‖L∞ |σk|(Ω \Kk) → 0 as k →∞.

As k →∞ in (4.11), we then obtain

−
∫

Ω

∇Ta(u) · ∇ψ ≤
∫

Ω

ψ dα+ ε‖ψ‖L∞ ∀a ≥ a0.

Thus, ∫
Ω

Ta(u)∆ψ ≤
∫

Ω

ψ dα+ ε‖ψ‖L∞ ∀a ≥ a0.

Letting a→∞ and ε→ 0, we get∫
Ω

u∆ψ ≤
∫

Ω

ψ dα.

Since ∫
Ω

u∆ψ =
∫

Ω

ψ∆u =
∫

Ω

ψ dα+
∫

Ω

ψ dσ,

we conclude that ∫
Ω

ψ dσ ≤ 0 ∀ψ ∈ C∞0 (Ω), ψ ≥ 0 in Ω.

Therefore, σ ≤ 0. The proof of Theorem 4.2 is complete. �
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5. Supersolutions always converge to supersolutions

In this section we prove a result about convergence of supersolutions of equation
(1.1) which appears to be stronger than Theorem 1.3 but is, in fact, equivalent to
it.

Theorem 5.1. Let (uk) ⊂ L1(Ω) be a sequence such that

(5.1) −∆uk + g(uk) ≥ 0 in Ω.

If
(
g(uk)

)
is bounded in L1(Ω) and uk → u in L1(Ω), then

(5.2) −∆u+ g(u) ≥ 0 in Ω.

In the proof we need a variant of Kato’s inequality up to the boundary (see [6,
Proposition 4.B.5]).

Lemma 5.1. Let u ∈ L1(Ω) be such that

(5.3)
∫

Ω

u∆ζ ≥
∫

Ω

fζ ∀ζ ∈ C2
0 (Ω), ζ ≥ 0 in Ω,

where f ∈ L1(Ω). Then,

(5.4)
∫

Ω

u+∆ζ ≥
∫

Ω
[u≥0]

fζ ∀ζ ∈ C2
0 (Ω), ζ ≥ 0 in Ω.

Here, we use the notation

C2
0 (Ω) =

{
ζ ∈ C2(Ω) ; ζ = 0 on ∂Ω

}
.

Proof of Theorem 5.1. Let

µk = −∆uk + g(uk) in Ω.

Since the right-hand side is a nonnegative distribution in Ω, µk is a locally finite
(nonnegative) measure. We first show that for every ω b Ω the sequence (µk) is
bounded in M(ω). In fact, take ϕω ∈ C∞0 (Ω) such that 0 ≤ ϕω ≤ 1 in Ω and
ϕω = 1 on ω. Then,∫

Ω

ϕω dµk = −
∫

Ω

uk∆ϕω +
∫

Ω

g(uk)ϕω ≤ Cω‖uk‖L1(Ω) + ‖g(uk)‖L1(Ω).

Since µk ≥ 0 and the sequences (uk) and
(
g(uk)

)
are bounded in L1(Ω), we then

have
‖µk‖M(ω) ≤ Cω‖uk‖L1(Ω) + ‖g(uk)‖L1(Ω) ≤ C̃ω ∀k ≥ 1.

Thus, (µk) is bounded in M(ω).
By Fatou’s lemma, g(u) ∈ L1(Ω). Passing to a subsequence if necessary, we may
assume that

µk
∗
⇀ µ and g(uk) ∗

⇀ g(u) + τ weakly∗ in M(ω)

for some µ, τ ∈M(ω). Thus, u satisfies

(5.5) −∆u+ g(u) = µ− τ in ω.

From Proposition 3.2 we know that g(u) is the diffuse limit of
(
g(uk)

)
with respect

to capH1 and, consequently, τ must be its concentrated limit. In view of (5.5), our
goal is to show that

(5.6) µ− τ ≥ 0 in ω.
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We may assume that (µk) has a concentrated limit in M(ω), which we denote by
λ. By Corollary 2.2, µk ≥ 0, ∀k ≥ 1, implies that λ ≤ µ. Since

∆uk = g(uk)− µk ∀k ≥ 1,

the concentrated limit of (∆uk) in ω is then given by τ − λ. Note that

(5.7) τ − µ ≤ τ − λ in ω.

Let us assume temporarily that

(5.8) uk ≥ 0 a.e. ∀k ≥ 1.

In this case, it follows from Theorem 4.2 that the concentrated limit of (∆uk) is
nonpositive. In other words,

(5.9) τ − λ ≤ 0 in ω.

Combining (5.7) and (5.9), we obtain (5.6) under the additional assumption (5.8).
In the general case where the functions uk need not be nonnegative we proceed

as follows. Since uk ∈ W 1,1
loc (Ω), we have uk ∈ L1(∂ω). Let vk be the harmonic

function in ω with boundary value −|uk| on ∂ω. We claim that

(5.10) uk ≥ vk a.e.

Indeed, for every ζ ∈ C2
0 (ω), ζ ≥ 0 in ω, we have

∂ζ

∂n
≤ 0 on ∂ω; thus,∫

ω

(vk − uk)∆ζ =
∫

∂ω

(vk − uk)
∂ζ

∂n
+

∫
ω

[
µk − g(uk)

]
ζ ≥ −

∫
ω

g(uk)ζ.

Applying Lemma 5.1 we get

(5.11)
∫

ω

(vk − uk)+∆ζ ≥ −
∫

ω
[vk≥uk]

g(uk)ζ ≥ 0 ∀ζ ∈ C2
0 (ω), ζ ≥ 0 in ω,

since vk ≤ 0 in ω and g(t) ≤ 0, ∀t ≤ 0. This gives (5.10). Because

∆(uk − vk) = ∆uk = g(uk)− µk ∀k ≥ 1,

we can apply Theorem 4.2 to the sequence (uk − vk) and deduce (5.9). Hence, u
satisfies

−∆u+ g(u) ≥ 0 in ω.

Since ω b Ω is arbitrary, (5.2) holds. �

6. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. By standard estimates (see [6, Appendix 4B]),

‖g(uk)‖L1 ≤ ‖µk‖M ∀k ≥ 1.

In particular, the sequence
(
g(uk)

)
is bounded in L1(Ω) and, by Fatou’s lemma,

g(u#) ∈ L1(Ω), with
‖g(u#)‖L1 ≤ lim inf

k→∞
‖µk‖M.

Moreover, passing to a subsequence if necessary, there exists λ ∈M(Ω) such that

g(uk) ∗
⇀ λ weakly∗ in M(Ω).
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Hence, the function u# satisfies{
−∆u# + g(u#) = µ# in Ω,

u# = 0 on ∂Ω,

where µ# = µ+ g(u#)− λ. Since µ, λ ∈M(Ω) and g(u#) ∈ L1(Ω), the conclusion
follows. �

In order to prove Theorem 1.2 we need a few lemmas. We first prove a local
estimate for solutions of (1.1).

Lemma 6.1. Let u ∈ L1(Ω) and µ ∈M(Ω) be such that

(6.1) −∆u+ g(u) = µ in Ω.

Then, u ∈W 1,1
loc (Ω) and for every ω b Ω,

(6.2) ‖∇u‖L1(ω) + ‖g(u)‖L1(ω) ≤ Cω

(
‖u‖L1(Ω) + ‖µ‖M(Ω)

)
.

Proof. Given δ > 0, let

(6.3) Ωδ =
{
x ∈ Ω; d(x, ∂Ω) > δ

}
.

Let δ0 > 0 be such that ω b Ω2δ0 . By standard elliptic linear estimates (see [17]),
u ∈W 1,1

loc (Ω) and

‖∇u‖L1(ω) ≤ Cδ0

(
‖u‖L1(Ωδ0 ) + ‖µ‖M(Ωδ0 ) + ‖g(u)‖L1(Ωδ0 )

)
≤ Cδ0

(
‖u‖L1(Ω) + ‖µ‖M(Ω) + ‖g(u)‖L1(Ωδ0 )

)
.

(6.4)

Therefore, for every smooth subdomain ω b Ω, u possesses a boundary trace in
L1(∂ω). Consequently, using a Fubini-type argument, one can find δ1 ∈ (0, δ0/2)
such that

‖u‖L1(∂Ωδ1 ) ≤
C

δ0
‖u‖L1(Ω).

On the other hand, (see [15])∫
Ωδ1

|g(u(x))|ρδ1(x) dx ≤ C
(
‖u‖L1(∂Ωδ1 ) + ‖µ‖M(Ωδ1 )

)
,

where
ρδ(x) = d(x, ∂Ωδ) ∀x ∈ Ωδ.

Therefore,

‖g(u)‖L1(Ωδ0 ) ≤
2
δ0

∫
Ωδ1

∣∣g(u(x))∣∣ρδ1(x) dx

≤ Cδ0

(
‖u‖L1(∂Ωδ1 ) + ‖µ‖M(Ωδ1 )

)
≤ Cδ0

(
‖u‖L1(Ω) + ‖µ‖M(Ω)

)
.

(6.5)

Combining (6.4)–(6.5), the conclusion follows. �

We recall a result concerning the existence of solutions of (1.2) with L1-boundary
data (see [10]).
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Lemma 6.2. Let µ ∈M(Ω). If the problem

(6.6)

{
−∆u+ g(u) = µ in Ω,

u = f on ∂Ω,

has a solution for some f ∈ L1(∂Ω), in the sense that for every ζ ∈ C2
0 (Ω), g(u)ζ ∈

L1(Ω) and

(6.7) −
∫

Ω

u∆ζ +
∫

Ω

g(u)ζ = −
∫

∂Ω

∂ζ

∂n
f +

∫
Ω

ζ dµ,

then it has a solution for every f ∈ L1(∂Ω).

In the next lemma, given two solutions u and v of (1.1), we show the existence
of a solution above the subsolution max {u, v}.

Lemma 6.3. Let µ ∈M(Ω). Assume that u, v ∈ L1(Ω) satisfy

(6.8) −∆z + g(z) = µ in Ω.

Then, for every ω b Ω there exists w ∈ L1(ω) such that

−∆w + g(w) = µ in ω,

w ≥ max {u, v} a.e.,

‖w‖L1(ω) ≤ Cω

(
‖u‖L1(Ω) + ‖v‖L1(Ω) + ‖µ‖M(Ω)

)
.

Proof. Using a Fubini-type argument, one can find δ > 0 such that ω b Ωδ and

‖z‖L1(∂Ωδ) ≤ Cδ‖z‖L1(Ω) for z = u, v.

Let
f = max {u, v} on ∂Ωδ.

By Lemma 6.2, there exists w ∈ L1(Ωδ) such that{
−∆w + g(w) = µ in Ωδ,

w = f on ∂Ωδ.

By elliptic estimates,

‖w‖L1(Ωδ) ≤ C
(
‖f‖L1(∂Ωδ) + ‖µ‖M(Ωδ)

)
.

Since

‖f‖L1(∂Ωδ) ≤ ‖u‖L1(∂Ωδ) + ‖v‖L1(∂Ωδ) ≤ Cδ

(
‖u‖L1(Ωδ) + ‖v‖L1(Ωδ)

)
,

we deduce that

‖w‖L1(ω) ≤ ‖w‖L1(Ωδ) ≤ C
(
‖u‖L1(Ωδ) + ‖v‖L1(Ωδ) + ‖µ‖M(Ωδ)

)
.

We now show for instance that

(6.9) w ≥ u a.e.

For every ζ ∈ C2
0 (Ω), ζ ≥ 0 in Ω, we have∫

Ω

(u− w)∆ζ =
∫

∂Ω

(u− w)
∂ζ

∂n
+

∫
Ω

[
g(u)− g(w)

]
ζ ≥

∫
Ω

[
g(u)− g(w)

]
ζ.
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Thus, by Lemma 5.1,∫
Ω

(u− w)+∆ζ ≥
∫

Ω
[u≥w]

[
g(u)− g(w)

]
ζ ≥ 0 ∀ζ ∈ C2

0 (Ω), ζ ≥ 0 in Ω.

Therefore, (u−w)+ = 0 a.e. In other words, (6.9) holds. A similar argument shows
that w ≥ v a.e. �

Proof of Theorem 1.2. For every k ≥ 1, we denote by uk the solution of (1.2) with
datum µk. We split the proof in two steps:
Step 1. Conclusion holds if uk ≤ vk a.e., ∀k ≥ 1.

Let ω b Ω. By Lemma 6.1, both sequences
(
g(uk)

)
and

(
g(vk)

)
are bounded in

L1(ω). Passing to a subsequence if necessary, one can find τ1, τ2 ∈M(ω) such that

g(uk) ∗
⇀ g(u#) + τ1 and g(vk) ∗

⇀ g(v#) + τ2 weakly∗ in M(ω).

Thus,
−∆u# + g(u#) = µ− τ1 and −∆v# + g(v#) = µ− τ2.

Our goal is to show that τ1 = τ2.

Since uk ≤ vk a.e. and g is nondecreasing,

g(vk)− g(uk) ≥ 0 a.e.

Moreover,

g(vk)− g(uk) ∗
⇀ g(v#)− g(u#) + (τ2 − τ1) weakly∗ in M(ω).

By Proposition 3.1, g(v#)−g(u#) is the diffuse limit of
(
g(vk)−g(uk)

)
with respect

to Lebesgue measure; hence, τ2−τ1 is its concentrated limit. Thus, by Corollary 2.2,

(6.10) τ2 − τ1 ≥ 0.

On the other hand,

∆(vk − uk) = g(vk)− g(uk) in ω.

Since τ2− τ1 is also the concentrated limit of
(
g(vk)− g(uk)

)
with respect to capH1

(see Proposition 3.2), it follows from Theorem 4.2 that

(6.11) τ2 − τ1 ≤ 0.

Combining (6.10)–(6.11), we deduce that τ1 = τ2. In other words,

−∆u# + g(u#) = −∆v# + g(v#) in ω.

Since ω b Ω is arbitrary, the conclusion follows.

Step 2. Proof of Theorem 1.2 completed.
Take ω b ω̃ b Ω. By Lemma 6.3, there exists a bounded sequence (wk) ⊂ L1(ω̃)

such that

−∆wk + g(wk) = µk in ω̃,

wk ≥ max {uk, vk} a.e.

By Lemma 6.1, (wk) is bounded in W 1,1
loc (ω̃). Passing to a subsequence if necessary,

we may assume that
wk → w# in L1(ω).
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By the previous step,

−∆u# + g(u#) = −∆w# + g(w#) in ω,

−∆v# + g(v#) = −∆w# + g(w#) in ω.

Hence,
−∆u# + g(u#) = −∆v# + g(v#) in ω.

This concludes the proof. �

7. Some properties of µ#

In this section we present comparison results for reduced limits in terms of the
sequences (µk) or in terms of the nonlinearities g with which they are associated.
We prove in particular a stronger version of Theorem 1.3.

Proposition 7.1. Let (µk), (νk) ⊂ G be two bounded sequences with weak∗ limits
µ, ν and reduced limits µ#, ν#, respectively. Then,

(7.1) ‖µ# − ν#‖M ≤ ‖µ− ν‖M + lim inf
k→∞

‖µk − νk‖M.

In particular, if µ = ν, then

(7.2) ‖µ# − ν#‖M ≤ lim inf
k→∞

‖µk − νk‖M.

Proof. Let uk and vk be the solutions of

(7.3)

{
−∆z + g(z) = γ in Ω,

z = 0 on ∂Ω,

associated to the measures µk and νk, respectively. By standard estimates (see [6,
Corollary 4.B.1]), we have∫

Ω

∣∣g(uk)− g(vk)
∣∣ ≤ ‖µk − νk‖M ∀k ≥ 1.

On the other hand, we know from Proposition 3.1 that (µ − µ#) − (ν − ν#) is
the concentrated limit of the sequence

(
g(uk) − g(vk)

)
with respect to Lebesgue

measure. Letting k →∞, we deduce from Corollary 2.1 that∥∥(µ− µ#)− (ν − ν#)
∥∥
M ≤ lim inf

k→∞

∫
Ω

∣∣g(uk)− g(vk)
∣∣ ≤ lim inf

k→∞
‖µk − νk‖M.

The conclusion follows using the triangle inequality. �

If we know in addition that νk ≤ µk, ∀k ≥ 1, then one can deduce a stronger
statement which implies Theorem 1.3 by taking νk = 0, ∀k ≥ 1.

Theorem 7.1. Let (µk), (νk) ⊂ G be two bounded sequences with weak∗ limits µ, ν
and reduced limits µ#, ν#, respectively. If

(7.4) νk ≤ µk ∀k ≥ 1,

then

(7.5) 0 ≤ µ# − ν# ≤ µ− ν.



18 MOSHE MARCUS AND AUGUSTO C. PONCE

Proof. Let uk, vk ∈ L1(Ω) be the solutions of (1.2) with data µk and νk, respectively.
Then, both sequences (uk), (vk) ⊂ L1(Ω) are bounded in L1(Ω) and uk ≥ vk a.e.
Thus,

g(uk)− g(vk) ≥ 0 a.e.
Since (µ− µ#)− (ν − ν#) is the concentrated limit of

(
g(uk)− g(vk)

)
, we deduce

from Corollary 2.2 that

(7.6) (µ− µ#)− (ν − ν#) ≥ 0.

It remains to show that µ# ≥ ν#. For this purpose, write

∆(uk − vk) = g(uk)− g(vk)− (µk − νk).

Passing to a subsequence, we may assume that (µk − νk) has a concentrated limit
with respect to capH1 , which we will denote by σ. By Corollary 2.2,

0 ≤ σ ≤ µ− ν.

On the other hand, it follows from Proposition 3.2 that (µ−µ#)−(ν−ν#)−σ is the
concentrated limit of

(
g(uk)− g(vk)− (µk− νk)

)
with respect to capH1 . Therefore,

since uk ≥ vk a.e., ∀k ≥ 1, we deduce from Theorem 4.2 that

(µ− µ#)− (ν − ν#)− σ ≤ 0.

Hence,

(7.7) µ# − ν# ≥ µ− ν − σ ≥ 0.

This establishes the proposition. �

We now compare reduced limits associated to different nonlinearities.

Proposition 7.2. Let (µk) ⊂ G(g1) ∩ G(g2) be a bounded sequence with reduced
limits µ#

1 and µ#
2 associated to g1 and g2, respectively. If g1 ≤ g2, then

(7.8) µ#
1 ≥ µ#

2 .

Proof. Let uk, vk ∈ L1(Ω) be the solutions associated to (1.2) with datum µk and
nonlinearities g1 and g2, respectively. Since g1 ≤ g2, by comparison we have

uk ≥ vk a.e. ∀k ≥ 1.

On the other hand,
∆(uk − vk) = g(uk)− g(vk).

Since the concentrated limit of
(
g(uk)− g(vk)

)
with respect to capH1 is

(µ− µ#
1 )− (µ− µ#

2 ) = µ#
2 − µ#

1 ,

it follows from Theorem 4.2 that µ#
2 − µ#

1 ≤ 0. �

The next result gives the main tool for studying reduced limits of sequences
signed measures.

Proposition 7.3. Let (µk) ⊂ G be a bounded sequence with weak∗ limit µ. Assume
that

(7.9) µ+
k

∗
⇀ µ+ and µ−k

∗
⇀ µ− weakly∗ in M(Ω).

Then, (µk) has a reduced limit µ# if and only if (µ+
k ) and (−µ−k ) have reduced

limits µ#
1 and µ#

2 , respectively. In this case,

(7.10) µ#
1 = (µ#)+ and µ#

2 = −(µ#)−.
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In particular,

(7.11) µ# = µ#
1 + µ#

2

and

(7.12) µ# = µ if and only if µ#
1 = µ+ and µ#

2 = −µ−.

Proof. Passing to a subsequence if necessary, we may assume that µ#, µ#
1 and µ#

2

exist. From Theorem 7.1, we have

(7.13) 0 ≤ µ#
1 − µ# ≤ µ+ − µ = µ−.

Applying the Hahn decomposition with respect to µ, we can write Ω in terms of
two disjoint sets E1, E2 ⊂ Ω, Ω = E1 ∪ E2 such that

µ ≥ 0 in E1 and µ ≤ 0 in E2.

On the other hand, by Theorem 1.3,

(7.14) 0 ≤ µ#
1 ≤ µ+ and − µ− ≤ µ#

2 ≤ 0.

In particular, µ#
1 is concentrated on E1. It then follows from (7.13) that

(µ#)bE1= (µ#
1 )bE1= µ#

1 .

Similarly, µ#
2 is concentrated on E2 and

(µ#)bE2= µ#
2 .

In particular, µ#
1 and µ#

2 are singular with respect to each other. Moreover,

µ# = (µ#)bE1+(µ#)bE2= µ#
1 + µ#

2 .

Since, by (7.14), µ#
1 ≥ 0 and µ#

2 ≤ 0, (7.10) follows. �

8. Absolute continuity between µ and µ#

We showed in Theorem 7.1 that if (µk) ⊂ G is a bounded nonnegative sequence,
then

0 ≤ µ# ≤ µ,

and thus µ# � µ. Our next result provides a sufficient condition on the sequence
(µk) so that µ� µ#. This implies in particular that µ# = 0 if and only if µ = 0.

Theorem 8.1. Assume that g : R → R is a continuous nondecreasing function
such that g(0) = 0 and

(8.1) lim
a,t→+∞

g(at)
ag(t)

= +∞.

Let (µk) ⊂ G be a bounded nonnegative sequence with weak∗ limit µ and reduced
limit µ#. Suppose that there exists (Uk) ⊂ L1(Ω) such that for every k ≥ 1,

(8.2) −∆Uk = µk in Ω and g(Uk) ∈ L1(Ω).

If

(8.3)
(
g(Uk)

)
is bounded in L1(Ω),

then µ and µ# are absolutely continuous with respect to each other.
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Remark 8.1. If g is given by g(t) = |t|q−1t, ∀t ∈ R, where q > 1, then (8.1)
holds and assumption (8.2)–(8.3) on (µk) is satisfied whenever (µk) is bounded in
W−2,q(Ω). In the next section, we shall study this nonlinearity in more detail in
the supercritical case q ≥ N

N−2 .

Proof. Replacing Ω by a smaller domain if necessary, we may assume that (Uk|∂Ω)
is bounded in L1(∂Ω). Replacing g by g+ if necessary, we may assume that

g(t) = 0 ∀t ≤ 0.

Given α ∈ (0, 1), we then have

0 ≤ g(αUk) ≤ g(Uk) a.e.

Thus, there exists C0 > 0, independent of α, such that

‖g(αUk)‖L1 ≤ C0 ∀k ≥ 1.

Let
(
g(αUkj )

)
be a subsequence having diffuse and concentrated limits with respect

to Lebesgue measure; denote by σα its concentrated limit. The proof of the theorem
is based on the following assertions:

Claim 1. For every α ∈ (0, 1),

(8.4) αµ ≤ σα + µ#.

Indeed, let vj be such that

(8.5)

{
−∆vj + g(vj) = αµkj in Ω,

vj = αUkj on ∂Ω.

Then, (vj) is bounded in L1(Ω) and, by comparison, vj ≤ αUkj
a.e. Thus,

g(vj) ≤ g(αUkj ) a.e.

Passing to a further subsequence, we may assume that (αµkj ) has a reduced limit
µ#

α . It follows from Proposition 3.1 that the sequence
(
g(vj)

)
has concentrated

limit αµ− µ#
α . Thus,

g(vj)
∗
⇀ g(vα) + αµ− µ#

α weakly∗ in M(Ω),

where vα is the solution of (8.5) associated to µ#
α . Applying Corollary 2.2 to the

nonnegative sequence
(
g(αUkj ) − g(vj)

)
, we deduce that its concentrated limit is

nonnegative,

(8.6) σα − αµ+ µ#
α ≥ 0.

On the other hand, since αµ ≤ µ, it follows from Theorem 7.1 that

(8.7) µ#
α ≤ µ#.

Combining (8.6)–(8.7), we obtain (8.4).

Claim 2.

(8.8) lim
α→0

‖σα‖M
α

= 0.

Given ε > 0, take a0, t0 > 1 such that

(8.9)
g(at)
ag(t)

≥ 1
ε

∀a ≥ a0, ∀t ≥ t0.
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For every α ∈ (0, 1/a0), we write

g(αUkj
) = g(αUkj

)χ[αUkj
<t0] + g(αUkj )χ[αUkj

≥t0].

Since the first term in the right-hand side is uniformly bounded, σα must be the
concentrated limit of

(
g(αUkj )χ[αUkj

≥t0]

)
. Thus, by Corollary 2.1,

(8.10) ‖σα‖M ≤ lim inf
j→∞

∫
[αUkj

≥t0]

g(αUkj ).

On the other hand, applying (8.9) with a = 1/α and t = αUkj , we get

g(αUkj
)χ[αUkj

≥t0] ≤ εαg(Ukj ) ∀j ≥ 1.

Therefore,

‖σα‖M ≤ εα lim inf
j→∞

∫
Ω

g(Ukj ) ≤ εαC0.

In other words,
‖σα‖M
α

≤ εC0 ∀α ∈ (0, 1/a0).

Since ε > 0 is arbitrary, the claim follows.

We now complete the proof of Theorem 8.1. Since 0 ≤ µ# ≤ µ, we only need to
show that µ� µ#. For this purpose, take a Borel set E ⊂ Ω such that µ#(E) = 0.
By Claim 1,

αµ(E) ≤ σα(E) ∀α ∈ (0, 1).
Thus,

µ(E) ≤ σα(E)
α

≤ ‖σα‖M
α

∀α ∈ (0, 1).

Letting α→ 0, by Claim 2 we deduce that µ(E) = 0. The proof is complete. �

9. Reduced limits and W−2,q-weak convergence

In this section we assume that N ≥ 3 and we focus on the case of power nonlin-
earities

(9.1) g(t) = |t|q−1t ∀t ∈ R,

in the supercritical range q ≥ N
N−2 . Denote by Gq the set of finite measures in Ω

for which the equation

(9.2) −∆u+ |u|q−1u = µ in Ω

has a solution and we denote by Gq
0 the set of finite measures in Ω for which the

Dirichlet problem

(9.3)

{
−∆u+ |u|q−1u = µ in Ω,

u = 0 on ∂Ω,

has a solution. For every µ ∈M(Ω),

µ ∈ Gq
0 if and only if µ ∈ L1(Ω) +W−2,q(Ω)

and Baras-Pierre [2] proved that µ ∈ Gq
0 if and only if the measure µ is diffuse

relative to the capacity capW 2,q′ . Since, by Theorem A.1 in the Appendix, Gq = Gq
0 ,

we have in this way a complete characterization of measures in Gq.
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Concerning sequences, if (µk) ⊂ Gq is a bounded sequence strongly converging
in W−2,q(Ω), then its reduced limit and its weak∗ limit coincide; see [6, Theo-
rem 4.13]. The goal of this section is to investigate what happens if (µk) is bounded
in W−2,q(Ω) but does not necessarily converge strongly in this space. We start by
proving a more precise version of Theorem 1.4.

Theorem 9.1. Given q ≥ N
N−2 , let (µk) ⊂ Gq be a bounded sequence of nonnegative

measures with weak∗ limit µ and reduced limit µ#. If in addition (µk) is bounded
in W−2,q(Ω), then µ and µ# are absolutely continuous with respect to each other.
Moreover, there exists Cq > 0 such that for every Borel set E ⊂ Ω,

(9.4) Cq

Γ
1

q−1
0

[
µ(E)

] q
q−1 ≤ µ#(E) ≤ µ(E),

where Γ0 = sup
k≥1

{
‖µk‖M + ‖µk‖q

W−2,q

}
.

Proof. We use the same notation as in the proof of Theorem 8.1. This theorem
applies in the present case. In addition, by Theorem 7.1, µ# ≤ µ. Therefore we
only have to prove the first inequality in (9.4).
Recall that, by (8.4),

αµ− σα ≤ µ# ∀α ∈ (0, 1).

On the other hand, by (8.10),

‖σα‖M ≤ αqC0 ≤ αqΓ0.

Therefore, given a Borel set E ⊂ Ω,,

αµ(E)− αqΓ0 ≤ αµ(E)− σα(E) ≤ µ#(E) ∀α ∈ (0, 1).

Since µ(E) ≤ Γ0, the left-hand side achieves a positive maximum in the interval
(0, 1). Computing this maximum we obtain

(9.5)
(
q − 1
qq−1

) [
µ(E)

] q
q−1

Γ
1

q−1
0

≤ µ#(E).

This completes the proof. �

For every bounded sequence of nonnegative measures (µk) ⊂ Gq converging
weakly∗ to µ, 0 ≤ µ# ≤ µ. We have just showed that if in addition (µk) is bounded
in W−2,q(Ω), then µ� µ#. Since µ ∈W−2,q(Ω) and this space is contained in Gq,
one might expect that µ# = µ. We now present a striking example showing that
this need not be the case.

Theorem 9.2. For every q ≥ N
N−2 there exists a sequence of nonnegative functions

(fk) ⊂ C∞(Ω), bounded in L1(Ω) and in W−2,q(Ω), such that its weak∗ limit f and
its reduced limit f# associated to the equation

(9.6) −∆u+ |u|q−1u = h in Ω

are different. In other words, if uk is a solution of (9.6) with datum fk and if
uk → u# in L1(Ω), then u# is not a solution of (9.6) with datum f .

We first recall some known estimates. In what follows, we say that A ∼ B if
there exist constants C1, C2 > 0 such that A ≤ C1B and B ≤ C2A.
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Lemma 9.1. Let a > 0. For every R > a we have

(9.7)
∫

BR

dx

(|x|+ a)p
∼

a
N−p if p > N,

1 + log
R

a
if p = N.

The proof is straightforward and will be omitted.

Given f ∈ L1(RN ), consider the Newtonian potential associated to f :

(9.8) Gf(x) =
∫

RN

f(y)
|x− y|N−2

dy ∀x ∈ RN .

It is well-known that
−∆(Gf) = γNf in RN ,

where γN = N(N − 2)|B1| and |B1| denotes the Lebesgue measure of the unit ball
in RN .

Lemma 9.2. Given p ≥ N and a > 0, let

(9.9) hp(x) =
1

(|x|+ a)p
∀x ∈ RN .

Then, for every R > a and every x ∈ BR,

(9.10) G[hpχBR
](x) ∼


aN−p

(|x|+ a)N−2
if p > N,

1 + log+(|x|/a)
(|x|+ a)N−2

if p = N.

Proof. Clearly, G[hpχBR
] is radial and

G[hpχBR
](x) → 0 as |x| → ∞.

Denote v(r) := G[hpχBR
](x), where r = |x|. We then have

v′(r) =
1

|∂Br|

∫
∂Br

∂

∂n
G[hpχBR

]

=
CN

rN−1

∫
Br

∆G[hpχBR
] = − C̃N

rN−1

∫
Br

hpχBR
.

Assume that p > N . In this case, a straightforward computation shows that

∫
Br

hpχBR
∼


rN

ap
if r ≤ a,

aN−p if r > a.

Thus,

v′(r) ∼


− r

ap
if r ≤ a,

−a
N−p

rN−1
if r > a.

Since

G[hpχBR
](x) = v(r) = −

∫ ∞

r

v′(t) dt,
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estimate (9.10) for p > N follows.
The case p = N can be deduced in a similar way using

∫
Br

hpχBR
∼



rN

aN
if r ≤ a,

1 + log
r

a
if a < r < R,

1 + log
R

a
if r ≥ R.

This establishes the lemma. �

Given k ≥ 1, we write the unit cube [0, 1]N as a union of kN cubes of sides 1
k

such that their interiors, Q1, . . . , QkN , are disjoint. If we denote by xi the center
of the open cube Qi, then Qi = Q0 + xi, where

Q0 =
(
− 1

2k ,
1
2k

)N
.

Lemma 9.3. Given a radially non-increasing function h ∈ C∞(RN ) with h ≥ 0,
let

(9.11) H(x) =
kN∑
i=1

h(x− xi)χQi(x) ∀x ∈ (0, 1)N .

Then, for every i ∈
{
1, . . . , kN

}
,

(9.12) GH(x) ∼ G[hχQ0 ](x− xi) + kN

∫
Q0

h on Qi.

Proof. Given i ∈ {1, . . . , kN}, let

J1 =
{
j ; Qj ∩Qi 6= ∅

}
and J2 =

{
j ; Qj ∩Qi = ∅

}
.

Denote hi(x) := h(x− xi)χQi
(x). Using this notation,

Ghi(x) = G[hχQ0 ](x− xi).

Since h is radially non-increasing, for every x ∈ Qi and j ∈ {1, . . . , kN} we have

Ghi(x) = G[hχQ0 ](x− xi) ≥ G[hχQ0 ](x− xj) = Ghj(x).

In particular,

(9.13)
∑
j∈J1

Ghj(x) ∼ Ghi(x) on Qi.

On the other hand, for every x ∈ Qi and j ∈ J2,

Ghj(x) ∼
1

[d(Qj , Qi)]N−2

∫
Q0

h.

Since the number of cubes Qt at distance ∼ `/k from Qi is of the order of `N−1,
then for every x ∈ Qi we have∑

j∈J2

Ghj(x) ∼
{ k∑

`=1

∑
t

d(Qt,Qi)∼ `
k

1[
d(Qt, Qi)

]N−2

} ∫
Q0

h

∼
{ k∑

`=1

`N−1

(`/k)N−2

} ∫
Q0

h ∼ kN

∫
Q0

h.

(9.14)
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Combining (9.13)–(9.14), we obtain (9.12). �

Proof of Theorem 9.2. Without loss of generality, we may assume that Ω = (0, 1)N .
We split the proof in two parts:
Case 1. q > N

N−2 .
Let ϕ ∈ C∞0 (B1) be a radially non-increasing function with ϕ ≥ 0 in Ω and∫

B1
ϕ = 1. Given α > 0, we take ak > 0 so that

(9.15)
a

N−(N−2)q
k

kN(q−1)
= α ∀k ≥ 1

and define

(9.16) Hk(x) =
1

kNaN
k

kN∑
i=1

ϕ
(x− xi

ak

)
∀x ∈ (0, 1)N ,

where (xi)kN

i=1 are the centers of the open cubes (Qi)kN

i=1. Let

(9.17) fk = γNHk + (GHk)q.

We show that for α > 0 sufficiently large the weak∗ limit and the reduced limit of
(fk) are different. For this end, let

ϕk(x) =
1
aN

k

ϕ
(x− xi

ak

)
∀x ∈ RN .

Since
Gϕ(x) ∼ 1

(|x|+ 1)N−2
∀x ∈ RN ,

one obtains, by scaling,

Gϕk(x) ∼ 1
(|x|+ ak)N−2

∀x ∈ RN .

It thus follows from Lemma 9.3 that for every x ∈ Qi, i = 1, . . . , kN ,

(9.18) GHk(x) ∼ 1
kN

Gϕk(x− xi) + 1 ∼ 1
kN

1
(|x− xi|+ ak)N−2

+ 1.

Thus, by Lemma 9.1,

(9.19)
∫

(0,1)N

(GHk)q ∼ kN

kNq

∫
Q0

dx

(|x|+ ak)(N−2)q
+ 1 ∼

a
N−(N−2)q
k

kN(q−1)
+ 1 = α+ 1.

In particular,

(9.20)
∫

(0,1)N

fk ∼ α+ 1 ∀k ≥ 1.

Let Aδ = (0, 1)N \ (δ, 1− δ)N . A similar computation shows that given ε > 0 there
exists δ > 0 such that

(9.21)
∫

Aδ

fk < ε ∀k ≥ 1.

By (9.18),

(GHk)q(x) ∼ 1
kNq

1
(|x− xi|+ ak)(N−2)q

+ 1 in Qi.
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Applying Lemmas 9.2–9.3, for every x ∈ Qi we have

G
[
(GHk)q

]
(x) ∼ 1

kNq

a
N−(N−2)q
k

(|x− xi|+ ak)N−2
+

1
(|x− xi|+ 1)N−2

+ α+ 1

∼ 1
kNq

a
N−(N−2)q
k

(|x− xi|+ ak)N−2
+ α+ 1.

(9.22)

Thus, by Lemma 9.1,∫
(0,1)N

{
G

[
(GHk)q

]}q

∼ kN

(
a

N−(N−2)q
k

kNq

)q

a
N−(N−2)q
k + αq + 1

=
(
a

N−(N−2)q
k

kN(q−1)

)q+1

+ αq + 1 = αq+1 + αq + 1 ∼ αq+1 + 1.

Let vk be such that {
−∆vk = fk in (0, 1)N ,

vk = 0 on ∂(0, 1)N .

Since 0 ≤ vk ≤ Gfk, we have∫
(0,1)N

vq
k ≤

∫
(0,1)N

(Gfk)q . αq+1 + 1 ∀k ≥ 1.

In particular, the sequence (fk) is bounded in W−2,q(Ω) and

‖fk‖W−2,q . α
q+1

q + 1 ∀k ≥ 1.

Let
uk = GHk in (0, 1)N .

Then, uk satisfies the equation

−∆uk + uq
k = fk in (0, 1)N

and
uk → u in L1

(
(0, 1)N

)
,

where u satisfies
−∆u = 1 in (0, 1)N .

In other words, f# = 1 + uq is the reduced limit of the sequence (fk); hence,∫
(0,1)N

f# ∼ 1,

independently of α. On the other hand, passing to a subsequence if necessary, we
have

fk
∗
⇀ f weakly∗ in M

(
(0, 1)N

)
.

In view of (9.20)–(9.21), ∫
(0,1)N

f ∼ α+ 1.

Thus, by taking α > 0 sufficiently large, we must have f# 6= f . This establishes
the result when q > N

N−2 .

Case 2. q = N
N−2 .
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Let Hk and fk be given by (9.16) and (9.17), respectively, where ak > 0 is now
given by

(9.15’)
1

k
2N

N−2
log

1
kak

= α ∀k ≥ 1.

Note that (9.18) still holds. Hence, by Lemma 9.1,

(9.19’)
∫

(0,1)N

(GHk)
N

N−2 ∼ 1

k
2N

N−2

(
1 + log

1
kak

)
+ 1 ∼ α+ 1,

from which (9.20) follows. By Lemmas 9.2–9.3, estimate (9.22) now becomes

(9.22’) G
[
(GHk)

N
N−2

]
(x) ∼ 1

k
N2

N−2

1 + log+
(
|x−xi|

ak

)
(
|x− xi|+ ak

)N−2
+ α+ 1 in Qi.

Therefore,∫
(0,1)N

{
G

[
(GHk)

N
N−2

]} N
N−2 ∼ kN

k
N3

(N−2)2

[
1 +

(
log

1
kak

) 2(N−1)
N−2

]
+ α

N
N−2 + 1

∼
[

1

k
2N

N−2
log

1
kak

] 2(N−1)
N−2

+ α
N

N−2 + 1 ∼ α
2(N−1)

N−2 + 1.

Proceeding as in the previous case, we deduce that the weak∗ limit and the reduced
limit of the sequence (fk) are different for α > 0 sufficiently large. The proof is
complete. �

10. Reduced limits for g(t) = |t|q−1t

Given a bounded sequence (µk) ⊂ Gq, consider a splitting (αk) and (σk) into an
equidiffuse and a concentrating parts relative to capW 2,q′ . In this section, we show
that the reduced limits of (µk) and (αk) associated to the nonlinearity g(t) = |t|q−1t
coincide.

We first study the case where the sequence (µk) is concentrating.

Proposition 10.1. Given q ≥ N
N−2 , let (µk) ⊂ Gq be a bounded sequence with

reduced limit µ#. If (µk) is concentrating with respect to capW 2,q′ , then

(10.1) µ# = 0.

Proof. In view of Proposition 7.3, it suffices to prove the result when the sequence
(µk) is nonnegative. For each k ≥ 1, assume that uk satisfies

(10.2)

{
−∆uk + |uk|q−1uk = µk in Ω,

uk = 0 on ∂Ω.

Passing to a subsequence if necessary, we may assume that uk → u# in L1(Ω) and
a.e. By a comparison principle, uk ≥ 0 a.e. Let (Ek) be a sequence of Borel subset
of Ω such that

(10.3) capW 2,q′ (Ek) → 0 and |µk|(Ω \ Ek) → 0.
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From the regularity of capW 2,q′ and µk, we may assume that each Ek is compact.
Moreover, there exists a sequence (ϕk) ⊂ C∞0 (Ω) such that

(10.4) 0 ≤ ϕk ≤ 1 in Ω, ϕk = 1 on Ek and
∫

Ω

|D2ϕk|p ≤ C capW 2,q′ (Ek).

Let
Fk =

{
x ∈ Ω ; ϕk(x) ≥ 1/2

}
.

Then,

capW 2,q′ (Fk) ≤ 2q′
∫

Ω

|D2ϕk|q
′
→ 0,

We claim that the sequence (uq
k) is concentrating with respect to capW 2,q′ . In order

to prove this, it suffices to show that

(10.5)
∫

Ω\Fk

uq
k → 0.

Using ϕk as a test function in (10.2), we get

(10.6)
∫

Ω

uq
kϕk =

∫
Ω

ϕk dµk +
∫

Ω

uk∆ϕk ∀k ≥ 1.

In view of (10.2), ‖uk‖Lq ≤ ‖µk‖M. Therefore, by (10.6),

(10.7)
1
2

∫
Ω\Fk

uq
k ≤

∫
Ω

uq
k(1− ϕk) ≤

∫
Ω

(1− ϕk) dµk −
∫

Ω

uk∆ϕk.

We show that both terms in the right-hand side of this estimate converge to 0 as
k →∞. By (10.3),

(10.8)
∫

Ω

(1− ϕk) d|µk| ≤ |µk|(Ω \ Ek) → 0,

Furthermore, by (10.4),

(10.9)
∣∣∣∣ ∫

Ω

uk∆ϕk

∣∣∣∣ ≤ ‖uk‖Lq‖∆ϕk‖Lq′ ≤ C‖D2ϕk‖Lq′ → 0.

Combining (10.7)–(10.9), we get ∫
Ω\Fk

uq
k → 0.

Thus, the sequence (uq
k) is concentrating. Since uk → u# a.e., this implies that

u# = 0 a.e. We deduce that uk → 0 in L1(Ω) and µ# = 0. �

Remark 10.1. Let q ≥ N
N−2 . Then, for every µ ∈ M(Ω) there exists a bounded

sequence (µk) ⊂ Gq converging weakly∗ to µ but having reduced limit zero with
respect to g(t) = |t|q−1t. In fact, let (τk) be a sequence consisting of linear combi-
nations of Dirac masses such that

τk
∗
⇀ µ weakly∗ in M(Ω),

and let (ρk) be a sequence of smooth mollifiers. For every j ≥ 1, the reduced limit
of the sequence (ρk ∗ τj)k≥1 equals the reduced measure τ∗j , which is zero. Hence,
there exists kj ≥ j such that the solution of{

−∆uj + |uj |q−1uj = ρkj ∗ τj in Ω,
uj = 0 on ∂Ω,
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satisfies ‖uj‖L1 ≤ 1
j . Therefore, the sequence (ρkj ∗ τj) has weak∗ limit µ but its

reduced limit is zero.

We now present the main result of this section.

Theorem 10.1. Given q ≥ N
N−2 , let (µk) ⊂ Gq be a bounded sequence, and let

(αk), (σk) ⊂M(Ω) be a decomposition of (µk) satisfying (B1)–(B2) with respect to
capW 2,q′ . If (µk) has a reduced limit µ#, then µ# is also the reduced limit of (αk).

By Theorem 9.2, µ# need not coincide with the diffuse limit of (µk) with respect
to capW 2,q′ , which is by definition the weak∗ limit of the sequence (αk). However,
we show that the reduced limits of the two sequences coincide.

For the proof of Theorem 10.1, we need two lemmas.

Lemma 10.1. Let (µk) ⊂ Gq be a bounded sequence. For each k ≥ 1, let uk be the
solution of

(10.10)

{
−∆uk + |uk|q−1uk = µk in Ω,

uk = 0 on ∂Ω.

If (µk) is equidiffuse with respect to capW 2,q′ , then so is the sequence
(
|uk|q

)
.

Proof. Assume by contradiction that
(
|uk|q

)
is not equidiffuse. Then, passing to a

subsequence if necessary, one can find ε > 0 and a sequence of Borel subsets (Ek)
of Ω such that

capW 2,q′ (Ek) → 0 and
∫

Ek

|uk|q ≥ ε ∀k ≥ 1.

By regularity of capW 2,q′ and of the Lebesgue measure, we may assume that each
set Ek is compact. Moreover, there exists a sequence (ϕk) ⊂ C∞0 (Ω) satisfying
(10.4). In particular, ϕk → 0 in W 2,q′(Ω). Passing to a subsequence if necessary,
we may assume that ϕk → 0 q.e. with respect to capW 2,q′ .
Let vk be the solution of

(10.11)

{
−∆vk + |vk|q−1vk = |µk| in Ω,

vk = 0 on ∂Ω.

Since |µk| ≥ 0, we have vk ≥ 0 a.e. Using ϕk as a test function, we get

(10.12)
∫

Ω

vq
kϕk =

∫
Ω

ϕk d|µk|+
∫

Ω

vk∆ϕk ∀k ≥ 1.

Since (ϕk) is uniformly bounded, ϕk → 0 q.e. with respect to capW 2,q′ , and (µk) is
equidiffuse,

(10.13)
∫

Ω

ϕk d|µk| → 0.

Moreover, as in the proof of Proposition 10.1,

(10.14)
∫

Ω

vk∆ϕk → 0.

Combining (10.12)–(10.14), we deduce that∫
Ω

vq
kϕk → 0.
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Since |uk| ≤ vk a.e., this contradicts the assumption∫
Ek

|uk|qϕk ≥ ε ∀k ≥ 1.

Therefore, the sequence
(
|uk|q

)
must be equidiffuse. �

The following estimate will be used in the proof of Theorem 10.1.

Lemma 10.2. Given v, w ∈ Lq(Ω), let

(10.15) h = |v + w|q−1(v + w)− |v|q−1v − |w|q−1w.

Then, there exists a constant C > 0 such that for every Borel set F ⊂ Ω,

(10.16) ‖h‖L1(Ω) ≤ C
(
‖v‖q−1

Lq(Ω) + ‖w‖q−1
Lq(Ω)

)(
‖v‖Lq(F ) + ‖w‖Lq(Ω\F )

)
.

Proof. We first write

(10.17) ‖h‖L1(Ω) =
∫

F

|h|+
∫

Ω\F
|h|.

We show that

(10.18)
∫

F

|h| ≤ C
(
‖v‖q−1

Lq(Ω) + ‖w‖q−1
Lq(Ω)

)
‖v‖Lq(F ).

By the triangle inequality,

(10.19)
∫

F

|h| ≤
∫

F

∣∣∣|v + w|q−1(v + w)− |w|q−1w
∣∣∣ +

∫
F

|v|q.

Denote by I the first integral in the right-hand side of this inequality. In order to
estimate I we use the following elementary estimate,∣∣∣|a+ b|q−1(a+ b)− |b|q−1b

∣∣∣ ≤ q
(
|a+ b|q−1 + |b|q−1

)
|a| ∀a, b ∈ R.

In fact, applying this estimate with a = v(x) and b = w(x), and integrating it over
F , one gets

I ≤ q

( ∫
F

|v + w|q−1|v|+
∫

F

|w|q−1|v|
)
.

Thus, by Hölder’s inequality,

I ≤ q
(
‖v + w‖q−1

Lq(F ) + ‖w‖q−1
Lq(F )

)
‖v‖Lq(F ) ≤ C

(
‖v‖q−1

Lq(Ω) + ‖w‖q−1
Lq(Ω)

)
‖v‖Lq(F ).

Inserting this estimate into (10.19), we get∫
F

|h| ≤ C
(
‖v‖q−1

Lq(Ω) + ‖w‖q−1
Lq(Ω)

)
‖v‖Lq(F ) + ‖v‖q−1

Lq(Ω)‖v‖Lq(F ).

This gives (10.18). Interchanging the roles of v and w, and replacing F by Ω\F , one
gets a similar estimate for the last integral in (10.17). Combining these estimates,
one deduces (10.16). �
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Proof of Theorem 10.1. For every k ≥ 1, let vk and wk be the solutions of

(10.20)

{
−∆z + |z|q−1z = γ in Ω,

z = 0 on ∂Ω.

with data αk and σk, respectively. Adding both equations, we observe that vk +wk

also satisfies problem (9.4) with datum

(10.21) λk = µk + hk,

where hk ∈ L1(Ω) is given by

hk = |vk + wk|q−1(vk + wk)− |vk|q−1vk − |wk|q−1wk.

We claim that

(10.22) hk → 0 in L1(Ω).

Since the sequence (σk) is concentrating, it follows from the proof of Proposi-
tion 10.1 that the sequence

(
|wk|q

)
is concentrating with respect to the capacity

capW 2,q′ . Let (Fk) be a sequence of Borel subsets of Ω such that

capW 2,q′ (Fk) → 0 and
∫

Ω\Fk

|wk|q → 0.

Applying Lemma 10.2 with functions vk and wk, and Borel set Fk, we have

‖hk‖L1(Ω) ≤ C
(
‖vk‖q−1

Lq(Ω) + ‖wk‖q−1
Lq(Ω)

)(
‖vk‖Lq(Fk) + ‖wk‖Lq(Ω\Fk)

)
.

Since (αk) and (σk) are bounded inM(Ω), the sequences (vk) and (wk) are bounded
in Lq(Ω). Thus,

‖hk‖L1(Ω) ≤ C̃
(
‖vk‖Lq(Fk) + ‖wk‖Lq(Ω\Fk)

)
∀k ≥ 1.

By the choice of the sets Fk, ‖wk‖Lq(Ω\Fk) → 0. On the other hand, since the
sequence (αk) is equidiffuse with respect to capW 2,q′ , (|vk|q) is also equidiffuse by
Lemma 10.1. Thus, ‖vk‖Lq(Fk) → 0. This implies (10.22).

We have thus showed that

‖λk − µk‖M = ‖hk‖L1 → 0.

In particular, the sequences (λk) and (µk) have the same weak∗ limit µ. In order
to identify their reduced limit, we note that if

vk → v# in L1(Ω),

then, since wk → 0 in L1(Ω),

uk + vk → v# in L1(Ω).

Thus, the reduced limit of (λk) coincides with the reduced limit of (αk), namely α#.
But since by Proposition 7.1 the sequences (µk) and (λk) have the same reduced
limits, we conclude that µ# = α#. This concludes the proof of the theorem. �
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11. Sufficient conditions for the equality µ# = µ

We present in this section some cases where the weak∗ limit and the reduced
limit µ# of a given sequence (µk) are equal. The first result should be compared
with Theorems 9.1 and 9.2.

Proposition 11.1. Let (µk) ⊂ G be a bounded sequence with weak∗ limit µ and
reduced limit µ#. If (µk) is bounded in H−1(Ω), then µ# = µ.

Proof. For each k ≥ 1, let uk be such that

(11.1)

{
−∆uk + g(uk) = µk in Ω,

uk = 0 on ∂Ω.

Passing to a subsequence if necessary, we may assume that uk → u# in L1(Ω) and
a.e. Since µk ∈ H−1(Ω), uk ∈ H1(Ω) and (see [4, 6])

(11.2)
∫

Ω

|∇uk|2 +
∫

Ω

g(uk)uk =
∫

Ω

uk dµk.

In particular, from the boundedness of (µk) inH−1(Ω), we deduce that the sequence
(uk) is bounded in H1(Ω). Thus,∫

Ω

g(uk)uk ≤
∫

Ω

uk dµk ≤ ‖uk‖H1‖µk‖M ≤ C ∀k ≥ 1.

Since g(t)t ≥ 0, ∀t ∈ R, this implies that
(
g(uk)

)
is an equi-integrable sequence in

L1(Ω). As g(uk) → g(u#) a.e., it follows from Egorov’s lemma that g(uk) → g(u#)
in L1(Ω). Therefore, µ# = µ. �

Proposition 11.2. Let (µk) ⊂ G be a bounded sequence with weak∗ limit µ and
reduced limit µ#. Assume that there exists ν ∈M(Ω) such that

(11.3) |µk| ≤ ν ∀k ≥ 1.

Then,

(11.4) µ# = µ.

Proof. We split the proof in two steps:
Step 1. (11.4) holds if, in addition,

(11.5) λ1 ≤ µk ≤ λ2 ∀k ≥ 1.

where λ1, λ2 ∈ G.
For each k ≥ 1, let uk be such that

(11.6)

{
−∆uk + g(uk) = µk in Ω,

uk = 0 on ∂Ω.

Denote by v1 and v2 the solutions of (11.6) with data λ1 and λ2, respectively. By
the comparison principle, we have

v1 ≤ uk ≤ v2 a.e. ∀k ≥ 1.

Hence, since g is nondecreasing,

g(v1) ≤ g(uk) ≤ g(v2) a.e. ∀k ≥ 1.
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On the other hand, passing to a subsequence if necessary, we may assume that
uk → u in L1(Ω) and a.e. Since g(v1), g(v2) ∈ L1(Ω), we conclude that

g(uk) → g(u) in L1(Ω).

Therefore, u satisfies (11.6) with right-hand side µ, whence µ is the reduced limit
of the (µk).

Step 2. Proof completed.
In view of the previous step, it suffices to find λ1, λ2 ∈ G satisfying (11.5). For

this purpose, note that by (11.3) we have

−ν− ≤ µk ≤ ν+ ∀k ≥ 1.

We recall (see [6, Section 6]) that the reduced measure (ν+)∗ is the largest measure
in G which is dominated by ν+. Since µ+

k ∈ G and µ+
k ≤ ν+,

µ+
k ≤ (ν+)∗ ∀k ≥ 1.

Similarly, (−ν−)∗ is the smallest measure in G which dominates −ν−. Since −µ−k ∈
G and −ν− ≤ −µ−k ,

(−ν−)∗ ≤ (−µk)− ∀k ≥ 1.
Thus, (11.5) holds with λ1 = (−ν−)∗ and λ2 = (ν+)∗. By the previous step, (11.4)
follows. �

We now show that the reduced limit and the weak∗ limit always coincide under
weak-L1 convergence.

Proposition 11.3. Given ν ∈M(Ω), let (hk) ⊂ G ∩ L1(Ω; ν). If

(11.7) hk ⇀ h weakly in L1(Ω; ν),

then hν is the reduced limit of the sequence (hkν).

Proof. By a diagonalization procedure, one can find an increasing sequence of in-
tegers (kj) such that, for every integer n ≥ 1, the sequence (Tn(hkj

))j≥1 converges
weakly in L1(Ω; ν) to some function h̃n, where Tn is given by (3.2). We may also
assume that the reduced limit µ# of (hkjν) exists. Since∣∣Tn(hkj )ν

∣∣ ≤ nν ∀j ≥ 1,

it follows from Proposition 11.2 that h̃nν is the reduced limit of the sequence(
Tn(hkj )ν

)
.

On the other hand, by the Dunford-Pettis theorem (see [13]), the sequence (hk)
converges weakly in L1(Ω; ν) if and only if (hk) is bounded in L1(Ω; ν) and for
every ε > 0 there exists δ > 0 such that

(11.8) E ⊂ Ω Borel and ν(E) < δ =⇒
∫

E

|hk| dν < ε ∀k ≥ 1.

Let C0 > 0 be such that

(11.9)
∫

Ω

|hk| dν ≤ C0 ∀k ≥ 1.

Let Aj,n = [|hkj | > n]; by the Chebyshev inequality,

ν(Aj,n) ≤ 1
n

∫
Ω

|hkj | dν ≤
C0

n
∀j, n ≥ 1.
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Take n ≥ 1 sufficiently large so that C0/n < δ. Then, by (11.8) we have

(11.10)
∥∥hkjν − Tn(hkj )ν

∥∥
M =

∫
Ω

∣∣hkj − Tn(hkj )
∣∣ dν ≤ ∫

Aj,n

|hkj | dν < ε.

By lower semicontinuity of the norm in M(Ω), as we let j →∞ we get

(11.11) ‖hν − h̃nν‖M ≤ ε.

Denote by µ# the reduced limit of the sequence (hkjν). By Proposition 7.1 applied
to (hkjν) and

(
Tn(hkj )ν

)
,

(11.12) ‖µ# − h̃nν‖M ≤ ‖hν − h̃nν‖M + lim inf
j→∞

∥∥hkjν − Tn(hkj )ν
∥∥
M ≤ 2ε.

Combining (11.11)–(11.12) we deduce that

‖µ# − hν‖M ≤ 3ε.

Since ε > 0 is arbitrary, we must have µ# = hν. In particular, the reduced limit µ#

does not depend on the sequence (kj). Therefore, the reduced limit of the whole
sequence (hkν) exists and equals hν. �

12. Characterization of sequences for which µ# = µ

In the previous section, we presented some sufficient conditions in order that
the weak∗ limit and the reduced limit of a given sequence (µk) coincide. Our goal
in this section is to provide necessary and sufficient conditions for this property
to hold. Before we present our next result, we observe that every µ ∈ G has a
decomposition of the form

(12.1) µ = f −∆v in Ω,

where f ∈ L1(Ω), v ∈ L1(Ω) and g(v) ∈ L1(Ω). For instance, we can take f = g(u)
and v = u, where u is the solution of problem (1.2). But the decomposition (12.1)
of µ is not unique.

Theorem 12.1. Let (µk) ⊂ G be a bounded nonnegative sequence with weak∗ limit
µ and reduced limit µ#. Then,

(12.2) µ# = µ

if and only if for every k ≥ 1 there exist fk ∈ L1
loc(Ω) and vk ∈ L1

loc(Ω) such that

(12.3) µk = fk −∆vk in Ω, g(vk) ∈ L1
loc(Ω),

where both sequences (fk) and
(
g(vk)

)
converge strongly in L1(ω) for every subdo-

main ω b Ω.

For the proof of Theorem 12.1 we need the following auxiliary results.

Lemma 12.1. Let (µk) ⊂ G be a bounded nonnegative sequence with weak∗ limit µ
and reduced limit µ#. Let uk ∈ L1(Ω) be the solution of

(12.4)

{
−∆uk + g(uk) = µk in Ω,

uk = 0 on ∂Ω

and assume that (uk) converges in L1(Ω). Then, the following assertions are equiv-
alent:

(i) µ = µ#;
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(ii)
(
g(uk)

)
converges in L1(ω) for every subdomain ω b Ω;

(iii)
(
g(uk)

)
is equidiffuse with respect to capH1 in every subdomain ω b Ω.

Proof. (i) ⇒ (ii). Since µk ≥ 0, we have uk ≥ 0 a.e., ∀k ≥ 1. Let u# ∈ L1(Ω) be
such that

uk → u# in L1(Ω).
Passing to a subsequence if necessary, we may also assume that uk → u# a.e. By
assumption, µ = µ#. Thus,∫

Ω

g(uk)ζ →
∫

Ω

g(u#)ζ ∀ζ ∈ C2
0 (Ω).

By a density argument, we get∫
Ω

g(uk)ρ0 →
∫

Ω

g(u#)ρ0,

where

(12.5) ρ0(x) = d(x, ∂Ω) ∀x ∈ Ω.

Since g(uk) ≥ 0 a.e., ∀k ≥ 1, and g(uk)ρ0 → g(u#)ρ0 a.e., it follows from the
Brezis-Lieb lemma (see [5]) that

g(uk)ρ0 → g(u#)ρ0 in L1(Ω).

(ii) ⇒ (iii). By the Poincaré inequality,

|K|1/2 ≤ C capH1(K),

for every compact set K ⊂ Ω. By regularity, this inequality holds for every Borel
subset of Ω. Thus, if

(
g(uk)

)
converges strongly in L1(ω), then it is equidiffuse

with respect to capH1 in ω.

(iii) ⇒ (i). By Proposition 3.2, µ − µ# is the concentrated limit of
(
g(uk)

)
with

respect to capH1 . In particular, if
(
g(uk)

)
is equidiffuse in ω for every ω b Ω, then

we must have µ− µ# = 0. �

Lemma 12.2. Let (µk) ⊂ G be a bounded nonnegative sequence with weak∗ limit µ
and reduced limit µ#. If µ# = µ, then for every sequence (hk) ⊂ L1(Ω) such that
hk → h strongly in L1(Ω), the sequence (λk) given by

(12.6) λk = µk + hk ∀k ≥ 1

has reduced limit λ# = µ+ h.

Proof. For every k ≥ 1, let uk be the solution of the problem

(12.7)

{
−∆z + g(z) = γ in Ω,

z = 0 on ∂Ω.

with datum γ = µk. Given a ∈ (0, 1), let vk be the solution of the linear problem

(12.8)
{−∆v = f in Ω,

v = 0 on ∂Ω.

with datum f = T1/a(hk). Since vk ∈ L∞(Ω) and a ∈ (0, 1), it follows that
g(auk + vk) ∈ L1(Ω) and, consequently,

νk := aµk + T1/a(hk) + g(auk + vk)− ag(uk) ∈M(Ω).
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We observe that auk + vk is the solution of (12.7) with datum γ = νk.
If uk → u in L1(Ω) then, by Lemma 12.1, g(uk) → g(u) in L1(ω) for every ω b Ω.
By dominated convergence, it follows that

g(auk + vk) → g(au+ v) in L1(ω),

where v is the solution of (12.8) with f = T1/a(h).
Let wk and w̃k denote the solutions of (12.7) with data

βk = g(auk)− ag(uk) and τk = aµk + T1/a(hk)− ag(uk) + g(auk),

respectively. Passing to a subsequence if necessary we may assume that wk → w
and w̃k → w̃ in L1(Ω) and a.e. For every ω b Ω,

g(auk)− ag(uk) → g(au)− ag(u) in L1(ω).

Therefore, by Lemma 12.1,

g(wk) → g(w), in L1(ω).

Since
βk ≤ τk ≤ νk

we have
wk ≤ w̃k ≤ auk + vk a.e.,

which implies that
g(wk) ≤ g(w̃k) ≤ g(auk + vk) a.e.

Since
(
g̃(wk)

)
converges a.e. to g(w̃), by dominated convergence,

g(w̃k) → g(w̃) in L1(ω)

for every subdomain ω b Ω. This implies that w̃ is the solution of (12.7) with
datum τa where τa is the weak* limit of (τk),

τa = aµ+ T1/a(h)− ag(u) + g(au).

Thus, w̃ does not depend on the subsequence and τa is the reduced limit of the
whole sequence (τk). By Proposition 7.1,

‖λ# − τa‖M(ω) ≤
∥∥(µ+ h)− τa

∥∥
M(ω)

+ lim inf
k→∞

∥∥λk − τk
∥∥
M(ω)

≤ (1− a)‖µ‖M(ω) + 2
∥∥h− T1/a(h)

∥∥
L1(ω)

+

+ 2
∥∥ag(u)− g(au)

∥∥
L1(ω)

+ (1− a) lim sup
k→∞

‖µk‖M(ω).

As a→ 1, the right-hand side of this inequality tends to 0, while

τa → µ+ h strongly in M(ω).

Therefore, λ# = µ+ h in every subdomain ω b Ω, whence in Ω. �

Proof of Theorem 12.1. (⇒). Assume that µ# = µ. For each k ≥ 1, let uk be such
that

(12.9)

{
−∆uk + g(uk) = µk in Ω,

uk = 0 on ∂Ω.

Then, uk → u in L1(Ω), where u is the solution of (12.9) with datum µ. Since by
Lemma 12.1, g(uk) → g(u) in L1(ω) for every ω b Ω, we have the conclusion with
fk = g(uk) and vk = uk.
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(⇐). We fix a subdomain ω̃ b Ω. By Lemma 6.1, the sequence (vk) is relatively
compact in L1(Ω). Thus, passing to a subsequence if necessary, vk → v in L1(Ω).
By assumption, for every k ≥ 1,

−∆vk + g(vk) = µk − fk + g(vk) in ω̃.

Since g(vk) → g(v) strongly in L1(ω̃), the reduced limit ν# of
(
µk − fk + g(vk)

)
coincides with its weak∗ limit. Thus,

ν# = µ− f + g(v) in ω̃.

Since fk − g(vk) → f − g(v) in L1(ω̃), it follows from the previous lemma applied
to the sequences

(
µk − fk + g(vk)

)
and

(
fk − g(vk)

)
that

µ# = (µ− f + g(v)) + (f − g(v)) = µ in ω̃.

Since µ# = µ in every subdomain ω̃ b Ω, the conclusion follows. �

In [6, Theorem 4.5], we prove that µ ∈ G(g) for every nonlinearity g if and only
if the measure µ is diffuse with respect to capH1 . Using this result we characterize
the sequences of measures (µk) for which the weak∗ limit and the reduced limit
coincide for every g.

Theorem 12.2. Let (µk) ⊂M(Ω) be a bounded sequence of nonnegative measures
with weak∗ limit µ. Assume that every measure µk is diffuse with respect to capH1 .
Then,

(12.10) µ# = µ for every nonlinearity g

if and only if (µk) is equidiffuse with respect to capH1 in every subdomain ω b Ω.

Proof. First we observe that, since µk is diffuse, µk ∈ G(g) for every nonlinearity g.
(⇐) Without loss of generality, we may assume that the sequence (µk) is equidiffuse
in Ω. Let uk be such that

(12.11)

{
−∆uk + g(uk) = µk in Ω,

uk = 0 on ∂Ω.

Passing to a subsequence if necessary, we may assume that

uk → u# in L1(Ω).

Since (µk) is equidiffuse, it follows from [9, Lemma 3] that
(
g(uk)

)
is also equidiffuse.

By Lemma 12.1, µ is the reduced limit of (µk) with respect to g.

(⇒) Assume that µ = µ#. We closely follow the proof of [6, Theorem 4.5]. Suppose
by contradiction that (µk) is not equidiffuse in some subdomain ω b Ω. Passing to
a subsequence if necessary, one finds ε > 0 and a sequence of compact sets (Kk) in
ω such that

µk(Kk) ≥ ε and capH1(Kk) → 0.
By [6, Lemma 4E.1], for every k ≥ 1 there exists ϕk ∈ C∞0 (Ω) such that 0 ≤ ϕk ≤ 1
in Ω, ϕk = 1 on Kk and

(12.12)
∫

Ω

|∆ϕk| ≤ 2 capH1(Kk) +
1
k
→ 0.

We may assume that suppϕk ⊂ ω̃, ∀k ≥ 1, where ω b ω̃ b Ω. Up to a subsequence
we also have ϕk → 0 a.e., ∆ϕk → 0 a.e. and there exists F1 ∈ L1(Ω) such that

|∆ϕk| ≤ F1 a.e. ∀k ≥ 1.
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According to a result of de La Vallée Poussin [12, Remarque 23], there exists a
convex function h : [0,∞) → [0,∞) such that h(0) = 0, h(s) > 0 for s > 0,

lim
t→∞

h(t)
t

= +∞, and h(F ) ∈ L1(Ω).

Let

g(t) =

{
h∗(t) if t ≥ 0,
0 if t < 0,

where h∗ is the convex conjugate (or Fenchel transform) of h. For each k ≥ 1, let
uk be the solution of (12.11) for this nonlinearity g. Since µ coincides with the
reduced limit of (µk), by Lemma 12.1 above we have

g(uk) → g(u) in L1(ω̃).

Passing to a subsequence if necessary, one finds F2 ∈ L1(ω̃), with

0 ≤ g(uk) ≤ F2 a.e. ∀k ≥ 1.

On the other hand, for every k ≥ 1,

(12.13) ε ≤ µk(Kk) ≤
∫

Ω

ϕk dµk =
∫

Ω

[
g(uk)ϕk − uk∆ϕk

]
.

Note that ∣∣g(uk)ϕk − uk∆ϕk

∣∣ → 0 a.e.

and ∣∣g(uk)ϕk − uk∆ϕk

∣∣ ≤ 2g(uk)χω̃ + h(|∆ϕk|) ≤ 2F2χω̃ + F1 ∀k ≥ 1.

By dominated convergence, the right-hand side of (12.13) converges to 0 as k →∞.
This is a contradiction. Therefore, the sequence (µk) is equidiffuse in ω with respect
to capH1 . �

13. Absolute continuity between µ# and ν#

In addition to our standard assumptions on the nonlinearity g (continuity and
monotonicity), throughout this section we assume that

(13.1) g is convex.

The goal of this section is to prove that if a sequence (νk) is uniformly absolutely
continuous with respect to another sequence (µk), then the reduced limit ν# is
absolutely continuous with respect to µ#. More precisely,

Theorem 13.1. Let (µk), (νk) ⊂ G be bounded sequences of nonnegative measures
with reduced limits µ# and ν#, respectively. If for every ε > 0 there exists δ > 0
such that

(13.2) E ⊂ Ω Borel and νk(E) < δ =⇒ µk(E) < ε ∀k ≥ 1,

then

(13.3) µ# � ν#.

We first establish the following
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Lemma 13.1. Given nonnegative measures µ, ν ∈ G, let u and v be the solutions
of

(13.4)

{
−∆z + g(z) = γ in Ω,

z = 0 on ∂Ω,

with data µ and ν, respectively. If µ ≤ aν for some a ≥ 1, then

(13.5) u ≤ av a.e.

Proof. Since µ ≤ aν, subtracting the equations satisfied by u and v we get∫
Ω

(u− av)∆ζ =
∫

Ω

[
g(u)− µ− ag(v) + aν

]
ζ ≥

∫
Ω

[
g(u)− ag(v)

]
ζ,

for every ζ ∈ C2
0 (Ω), ζ ≥ 0 in Ω. Thus, by Lemma 5.1,

(13.6)
∫

Ω

(u− av)+∆ζ ≥
∫

Ω
[u≥av]

[
g(u)− ag(v)

]
ζ.

On the other hand, since g is convex and g(0) = 0, the function g(t)/t is nonde-
creasing on (0,∞). Hence, for a ≥ 1 we have

g(at) ≥ ag(t) ∀t ≥ 0.

In particular,

(13.7) g(u)− ag(v) ≥ 0 a.e. on [u ≥ av].

It follows from (13.6)–(13.7) that

(13.8)
∫

Ω

(u− av)+∆ζ ≥ 0 ∀ζ ∈ C2
0 (Ω), ζ ≥ 0 in Ω.

This immediately gives (13.5). �

Proposition 13.1. Let (µk), (νk) ⊂ G be bounded sequences of nonnegative mea-
sures with reduced limits µ# and ν#, respectively. Assume that there exists a ≥ 1
such that

(13.9) µk ≤ aνk ∀k ≥ 1.

Then,

(13.10) µ# ≤ aν#.

Proof. Denote by uk, vk ∈ L1(Ω) the solutions of (13.4) with data µk and νk,
respectively. In particular, for every k ≥ 1 we have

∆(avk − uk) = ag(vk)− g(uk)− aνk + µk in Ω.

Passing to a subsequence if necessary, we may assume that (µk) and (νk) have
concentrated limits σ and τ , respectively. On the other hand, the sequences

(
g(uk)

)
and

(
g(vk)

)
have concentrated limits µ− µ# and ν − ν#. Since avk − uk ≥ 0 a.e.

for every k ≥ 1, it follows from Theorem 4.2 that

(13.11) a(ν − ν#)− (µ− µ#)− aτ + σ ≤ 0.

Note that (aνk−µk) is a sequence of nonnegative measures with weak∗ limit aν−µ
and concentrated limit aτ − σ. Hence, by Corollary 2.2,

(13.12) aτ − σ ≤ aν − µ.
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Combining (13.11)–(13.12), we deduce that

−aν# + µ# ≤ 0,

which is precisely (13.10). �

Proof of Theorem 13.1. Given a ≥ 1, we apply the Hahn decomposition to µk−aνk.
We may thus write Ω = Ek ∪ Fk as a disjoint union of measurable sets such that

µk ≥ aνk on Ek and µk ≤ aνk on Fk

(for simplicity of notation we omit the dependence of Ek and Fk on a). In particular,

νk(Ek) ≤ 1
a
µk(Ek) ≤ 1

a
‖µk‖M ≤ C0

a
∀k ≥ 1,

since the sequence (µk) is bounded in M(Ω). Thus, for a ≥ 1 sufficiently large, we
have C0/a < δ. By (13.2) we deduce that

(13.13) µk(Ek) < ε ∀k ≥ 1.

Consider the sequences

λk = µkbFk
and τk = νkbFk

∀k ≥ 1.

Then,
λk ≤ aτk ∀k ≥ 1.

Passing to a subsequence if necessary, we may assume that (λk) and (τk) have
reduced limits λ# and τ#, respectively. Thus, by Proposition 13.1,

(13.14) λ# ≤ aτ#.

Let E ⊂ Ω be a Borel set such that ν#(E) = 0. Since 0 ≤ τk ≤ νk, ∀k ≥ 1, by
Theorem 7.1 we have

τ#(E) = ν#(E) = 0.
It follows from (13.14) and λ# ≥ 0 that

(13.15) λ#(E) = 0.

On the other hand, applying Proposition 7.1 to the sequences (µk) and (λk), we
get

‖µ# − λ#‖M ≤ ‖µ− λ‖M ≤ lim inf
k→∞

‖µk − λk‖M = lim inf
k→∞

µk(Ek) ≤ ε.

Thus, in view of (13.15),

µ#(E) =
∣∣µ#(E)− λ#(E)

∣∣ ≤ ‖µ# − λ#‖M ≤ ε.

Since ε > 0 is arbitrary we conclude that µ#(E) = 0. Therefore, µ# � ν#. �

14. Reduced limit of max {µk, νk}

Throughout this section, we assume in addition to our usual assumptions on g
that

g is convex.
Given bounded sequences (µk), (νk) ⊂ M(Ω) converging weakly∗ to µ and ν, if

µ⊥ν, then the measures λk = max {µk, νk} converge weakly∗ to max {µ, ν}. In this
section we prove the counterpart of this statement for reduced limits. In order to
do so we need the following result proved in [6, Corollary 4.4]: if µ, ν ∈ G, then
max {µ, ν} ∈ G.
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Theorem 14.1. Let (µk), (νk) ⊂ G be bounded sequences of nonnegative measures
with reduced limits µ# and ν#, respectively. If µ#⊥ν#, then the sequence (λk)
given by

(14.1) λk = max {µk, νk} ∀k ≥ 1

has reduced limit λ# = max {µ#, ν#}.

We first prove a variant of Lemma 13.1.

Lemma 14.1. Given nonnegative measures λ, µ, ν ∈ G, let w, u, v ∈ L1(Ω) be the
solutions of

(14.2)

{
−∆z + g(z) = γ in Ω,

z = 0 on ∂Ω,

with data λ, µ and ν, respectively. If λ ≤ µ+ ν, then

(14.3) w ≤ u+ v a.e.

Proof. Since λ ≤ µ+ ν, we have∫
Ω

(w−u−v)∆ζ =
∫

Ω

[
g(w)−λ−g(u)+µ−g(v)+ν

]
ζ ≥

∫
Ω

[
g(w)−g(u)−g(v)

]
ζ,

for every ζ ∈ C2
0 (Ω), ζ ≥ 0 in Ω. Thus, by Lemma 5.1,

(14.4)
∫

Ω

(w − u− v)+∆ζ ≥
∫

Ω
[w≥u+v]

[
g(w)− g(u)− g(v)

]
ζ ≥ 0,

where we used the property

g(s+ t) ≥ g(s) + g(t) ∀s, t ≥ 0.

From estimate (14.4) we deduce (14.3). �

Proof of Theorem 14.1. Since µk, νk ∈ G, we have λk ∈ G. We observe that by
Proposition 7.1, µ# ≤ λ#. Thus,

(14.5) max {µ#, ν#} ≤ λ#.

We now prove that

(14.6) λ# ≤ µ# + ν#.

For this purpose, let wk, uk, vk ∈ L1(Ω) be the solutions of (14.2) with data µk, νk

and λ̃k, respectively, where
λ̃k = (µk + νk)∗.

In particular, since λk ∈ G and λk ≤ µk + νk, λk ≤ λ̃k. Passing to a subsequence
if necessary, we may assume that (λ̃k) has reduced limit λ̃# . By Lemma 14.1, we
have

(14.7) wk ≤ uk + vk a.e. ∀k ≥ 1.

On the other hand,

∆(uk + vk − wk) = g(uk) + g(vk)− g(wk)− µk − νk + λ̃k ∀k ≥ 1.

Proceeding as in the proof of Proposition 13.1, one deduces that

(14.8) λ̃# ≤ µ# + ν#.
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On the other hand, since λk ≤ λ̃k, ∀k ≥ 1, by Theorem 7.1 we also have

(14.9) λ# ≤ λ̃#.

Combining (14.8)–(14.9) we deduce (14.6). Since µ# and ν# are nonnegative and,
by assumption, µ#⊥ν#,

µ# + ν# = max {µ#, ν#}.
Thus,

(14.10) λ# ≤ max {µ#, ν#}.
The conclusion follows from (14.5) and (14.10). �

15. Open problems

This section is devoted to questions related to the present work. The first open
problem concerns a possible extension of Theorem 1.4.

Open Problem 1. Given q ≥ N
N−2 , let (µk) ⊂ Gq be a bounded nonnegative

sequence with weak∗ limit µ. For every k ≥ 1, let uk be such that{
−∆uk + |uk|q−1uk = µk in Ω,

uk = 0 on ∂Ω.

If (µk) is equidiffuse with respect to capW 2,q′ and if uk → 0 in L1(Ω), does µ = 0?

In terms of reduced limits, this problem is equivalent to the question of whether
µ# = 0 implies µ = 0. More generally, we would like to know whether the measure
µ is absolutely continuous with respect to the reduced limit µ#. By Theorem 1.4, if
one makes the stronger assumption that (µk) is bounded in W−2,q(Ω), then indeed
µ� µ#.

We recall that by a result of Boccardo-Gallouët-Orsina [3] (see also [6, Theo-
rem 4.3]) every finite measure µ in Ω, diffuse relative to capacity capH1 , can be
written as µ = f + S, where f ∈ L1(Ω) and S ∈ H−1(Ω). In connection with
this decomposition, it would be interesting to have the following counterpart for
equidiffuse sequences.

Open Problem 2. Let (µk) ⊂ M(Ω) be a bounded sequence converging weakly∗

to µ. Assume that, for every k ≥ 1, µk is diffuse with respect to capH1 . If (µk) is
equidiffuse with respect to capH1 , is it possible to find sequences (fk) ⊂ L1(Ω) and
(Sk) ⊂ H−1(Ω) such that, for every k ≥ 1,

(15.1) µk = fk + Sk in Ω,

where (fk) converges strongly in L1(Ω) and (Sk) is bounded in H−1(Ω)?

Let q ≥ N
N−2 . By a result of Baras-Pierre [2], every finite measure µ in Ω,

diffuse relative to capW 2,q′ can be written as µ = f + S, where f ∈ L1(Ω) and
S ∈W−2,q(Ω). One can pose a similar question with respect to this capacity:

Open Problem 3. Let q ≥ N
N−2 . Let (µk) ⊂ M(Ω) be a bounded sequence

converging weakly∗ to µ. Assume that, for every k ≥ 1, µk is diffuse with respect
to capW 2,q′ . If (µk) is equidiffuse with respect to capW 2,q′ , is it possible to find
sequences (fk) ⊂ L1(Ω) and (Sk) ⊂W−2,q(Ω) such that, for every k ≥ 1,

(15.2) µk = fk + Sk in Ω,
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where (fk) converges strongly in L1(Ω) and (Sk) is bounded in W−2,q(Ω)?

If one replaces the assumption of boundedness of (Sk) in W−2,q(Ω) by the con-
dition that (Sk) converges strongly in this space, then the answer is negative. In
fact, if such decomposition were true, then by Theorem 12.1 we would have µ# = µ
for every equidiffuse sequence, but this is impossible by Theorem 9.2.

In this paper we present some conditions that assure that the reduced limit and
the weak∗ limit of a given sequence (µk) ⊂ G coincide. It would be interesting
to fully investigate what happens in other cases, for instance with the sequence of
convolutions (ρn ∗ µ) for some given measure µ.

Open Problem 4. Given µ ∈ G and a sequence of smooth mollifiers (ρk), let µ#

be the reduced limit associated to the sequence (ρn ∗ µ). Does µ# = µ?

The answer is known to be yes if g+ and g− are both convex (see [6]). If the
answer to Open Problem 4 is negative for some nondecreasing nonlinearity g, then
is it possible to find some sequence of smooth functions (ψk) ⊂ C∞(Ω) such that

ψk
∗
⇀ µ weakly∗ in M(Ω),

and (ψk) possesses a reduced limit µ# equal to µ?

Appendix A. G = G0

In this appendix we prove the following result:

Theorem A.1. For each nonlinearity g, let G(g) and G0(g) be defined as in the
Introduction. Then,

G(g) = G0(g).

The proof is based on two lemmas.

Lemma A.1. If µ ∈ G0(g), then µ+ ∈ G0(g) and −µ− ∈ G0(g).

Proof. First we show that µ ∈ G0(g+). Since u ∈ G0(g) problem (1.2) possesses a
(unique) solution u. It follows that u is a supersolution of the problem

(A.1)

{
−∆v + g+(v) = µ in Ω,

v = 0 on ∂Ω.

Next w be such that

(A.2)

{
−∆w = −µ− in Ω,

w = 0 on ∂Ω,

Then, w ≤ 0, hence g+(w) = 0. Consequently, w is a subsolution of (A.1). By [16,
Corollary 5.4], this implies the existence of a solution of (A.1).
Let ν∗ denote the reduced limit of a measure ν ∈M(Ω) relative to the nonlinearity
g+ (for the definition of reduced limit see [6]). Since µ ≤ µ+ it follows that µ∗ ≤
(µ+)∗ (see [6, Proposition 4.4]). As µ ∈ G0(g+), µ = µ∗. On the other hand, for
any finite measure ν, ν∗ ≤ ν. In particular (µ+)∗ ≤ µ+. We thus have

µ = µ∗ ≤ (µ+)∗ ≤ µ+.

Since the measure (µ+)∗ is nonnegative (see [6, Corollary 4.1]), this implies that

µ+ ≤ (µ+)∗ ≤ µ+.
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Thus, µ+ = (µ+)∗ ∈ G0(g+). But if v is a solution of (A.1) with µ replaced by µ+,
then v is positive and consequently satisfies

(A.3)

{
−∆u+ g(u) = µ+ in Ω,

u = 0 on ∂Ω.

Therefore, µ+ ∈ G0(g).
Observe that the function g̃ : R → R defined by g̃(t) = −g(−t) is a nonlinearity
possessing the same properties as g. Furthermore, µ ∈ G0(g) if and only if −µ ∈
G0(g̃). Hence, by the first part of the proof, µ− ∈ G0(g̃), which in turn implies that
−µ− ∈ G0(g). �

Lemma A.2. G0(g) + L1(Ω) = G0(g).

Proof. Clearly, G0(g) + L1(Ω) ⊃ G0(g). In order to prove the reverse inclusion, let
ν ∈ G0(g) and f ∈ L1(Ω). We have to show that ν+ f ∈ G0(g). Let u and v denote
the solutions of (1.2) with µ = ν and µ = f respectively. If both ν and f are
nonnegative, then u and v are nonnegative functions. Therefore, u and v satisfy
the problem

(A.4)

{
−∆v + g+(v) = µ in Ω,

v = 0 on ∂Ω.

with µ = ν and µ = f , respectively. By [6, Corollary 4.7], ν + f ∈ G0(g+) and
therefore ν + f ∈ G0(g) since ν + f is nonnegative. Similarly, one verifies that if ν
and f are nonpositive then ν + f ∈ G0(g).
In the general case, we observe that by Lemma A.1, ν+ and −ν− belong to G0(g)
and therefore, by the first part of the proof, ν++f+ and −ν−−f− belong to G0(g).
Since

−ν− − f− ≤ ν + f ≤ ν+ + f+

the existence of a solution of (A.1) for µ = ν + f follows from the existence of a
supersolution and a subsolution for the problem (see [16]). �

Proof of Theorem A.1. We only need to establish the inclusion G(g) ⊂ G0(g). We
first prove that if µ ∈ G(g) and if ϕ ∈ C∞0 (Ω) is such that 0 ≤ ϕ ≤ 1, then

ϕµ ∈ G0(g).

Indeed, let u be a solution of (1.1). We first observe that |g(ϕu)| ≤ |g(u)|. Since
g(u) ∈ L1

loc(Ω) and ϕ has compact support in Ω, g(ϕu) ∈ L1(Ω). Next,

−∆(ϕu) + g(ϕu) = ϕµ+ h in Ω,

where
h = g(ϕu)−

(
u∆ϕ+ 2∇ϕ · ∇u+ ϕg(u)

)
.

Since ϕ has compact support, h ∈ L1(Ω). Thus, ϕµ+ h ∈ G0(g) and consequently,
by Lemma A.2, ϕµ ∈ G0.
Now let (ϕk) be a sequence of nonnegative functions in C∞0 (Ω) such that 0 ≤ ϕk ≤ 1
and ϕk ↗ 1 locally uniformly in Ω. It follows by dominated convergence that
ϕkµ→ µ in M(Ω). Consequently, if uk is the solution of (1.2) with µ replaced by
ϕµk, then (uk) converges in L1(Ω) to a solution u of (1.2). Thus, µ ∈ G0(g). �
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[1] A. Ancona, Une propriété d’invariance des ensembles absorbants par perturbation d’un
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[3] L. Boccardo, T. Gallouët, and L. Orsina, Existence and uniqueness of entropy solutions for
nonlinear elliptic equations with measure data. Ann. Inst. H. Poincaré Anal. Non Linéaire
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Université catholique de Louvain
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