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Appendix

A Derivation of Uk(tk−1) from the Limit of its Recursive Definition
in Discrete Time

Consider time intervals of length dτ . The lifetime utility of an unemployed worker at time τ can
be written by the following recursive relation:

Uk(τ) =

{
yk(τ)dτ + [1− λs(τ)dτ ]Uk(τ + dτ) + λs(τ)dτ

[
F [wr(τ)]Uk(τ + dτ) + F̄ [wr(τ)]W̄k(τ + dτ)

]}
1 + ρdτ

(A-1)

where s(τ)dτ is the probability that a job offer arrives between τ and τ + dτ . Rearrangement yields

ρdτUk(τ) = yk(τ)dτ +λs(τ)dτF̄ [wr(τ)]
[
W̄k(τ + dτ)− Uk(τ + dτ)

]
+ [Uk(τ + dτ)− Uk(τ)] . (A-2)

Dividing by dτ , taking the limit for dτ → 0 and using that λs(τ)F̄ [wr(τ)] ≡ p(τ) leads to the following
differential equation:

U̇k(τ)− [p(τ) + ρ]Uk(τ) = −
[
yk(τ) + p(τ)W̄k(τ)

]
(A-3)

Multiplying by P (τ, tk−1)e−ρ(τ−tk−1) leads to

1

dτ

(
Uk(τ)P (τ, tk−1)e−ρ(τ−tk−1)

)
= −

[
yk(τ) + p(τ)W̄k(τ)

]
P (τ, tk−1)e−ρ(τ−tk−1) (A-4)

Finally, integrating from tk−1 to tk results in

Uk(tk)P (tk, tk−1)e−ρ(tk−tk−1)−Uk(tk−1) = −
∫ tk

tk−1

[
yk(τ) + p(τ)W̄k(τ)

]
P (τ, tk−1)e−ρ(τ−tk−1)dτ , (A-5)

which after rearrangement yields equation (7), with Uk(tk) = Uk(tk) given by (8).
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B Optimality Conditions with Interrupted Job Spells

This appendix explains how the first-order conditions (FOC) (9), (10) and (11) must be modified
to take into account that individuals returning to unemployment after a temporary employment spell,
i.e. if i = 1, face a different, presumably lower and, for simplicity, fixed, probability of negative eval-
uation (π1

k), than individuals who did not yet experience such an interruption: π1
k 6= π0

k

[
S̄(tk, tk−1)

]
.

Since individuals are aware of this difference, their behavior will be affected accordingly and decision
variables are indexed by a superscript i.

In this new environment the two equivalent FOC of the reservation wage become 1

U ik (τ) = Wk(w
i
r(τ); τ) =

wir (τ) + δU1
k (τ)

ρ+ δ
⇔ wir (τ) = ρU ik (τ)− δ

[
U1
k (τ)− U ik (τ)

]
. (B-1)

wir(τ) + c[si(τ)] + δ
[
U1
k (τ)− U ik(τ)

]
= bk + ν + pi(τ)

E
[
w − wir(τ)|w > wir(τ)

]
ρ+ δ

+ U̇ ik(τ). (B-2)

The left-hand side of (B-2), the marginal cost of continuing search (for someone who is offered a job
paying the reservation wage) includes now the new term δ

[
U1
k (τ)− U ik(τ)

]
, which differs from zero if

i = 0. It measures the opportunity cost of foregoing the entitlement to a lower probability of negative
assessment if one accepts the job offer and loses it subsequently: In case π1

k < π0
k

[
S̄0(tk−1, tk)

]
the

expected lifetime utility in case of redundancy from the offered job is larger than before job acceptance,
i.e. U1

k (τ) > U0
k (τ). The FOC of search effort (11) is not affected if i = 0. By contrast, in case i = 1,

the probability of negative evaluation is independent of S1(tk−1, tk), so that the last term on the
right-hand side drops out: π′ 1k =0.

C Optimal Paths and Endpoint Conditions Allowing for Job Inter-
ruptions and Random Delays in the Timing of Evaluations

In this section we derive the first-order conditions and consider optimal paths for control variables,
along with the corresponding endpoint conditions. The exposition focuses on the time span between
two adjacent interviews (k − 1 and k) and explicitly considers the difference between the scheduled
and the delay intervals. The latter ends at a random instant and the first may start with delay.
We denote these sub-periods respectively [t∗k−1, t

′
k) and [t′k, T

∗
k ), where t∗0 = t0. We assume that an

assessment of job search effort occurs at some random instant T ∗k within the second sub-period, i.e.
the “delay interval”. If t∗k denotes the realization of T ∗k , the realized delay, (t∗k − t′k), is assumed to
be the minimum of a random draw from an exponential distribution with mean 1/q and some fixed
maximum delay t̄∗k, which is equal to the maximum observed delay in the data.

Let U ik,1(τ) (respectively, U ik,2(τ)) denote the expected lifetime utility at time τ in the first (re-

spectively, second) sub-period. The objective U ik,1(τ) is the same as (7) where t∗k−1, t′k, U
i
k,1(t∗k−1)

and Uik,1 (t′k) replace, respectively, tk−1, tk, Uk(tk−1) and Uk(tk). So, the problem at the start of the
scheduled interval writes:

max
si(τ),wir(τ)

U ik,1
(
t∗k−1

)
=

∫ t′k

t∗k−1

[
yik (τ) + pi (τ) W̄ i

k (τ)
]
P i
(
τ, t∗k−1

)
e−ρ(τ−t∗k−1)dτ

+ Uik,1
(
t′k
)
P i
(
t′k, t

∗
k−1

)
e−ρ(t′k−t

∗
k−1) (C-1)

1In Section C these FOC are derived in the more general setting allowing for random delays in the timing of interviews.
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s.t. : Uik,1
(
t′k
)

= U ik,2
(
t′k
)
, (C-2)

Ṗ i(τ, t∗k−1) = −pi(τ)P i(τ, t∗k−1),

˙̄Si(τ, t∗k−1) =
si(τ)− S̄i(τ, t∗k−1)

τ − t∗k−1

,

During the delay interval, the job search effort is assessed at a rate q. This assessment occurs not
later than t̄∗k, as expressed on the second line of (C-3). The discount rate is augmented by the arrival
rate of the meeting and, hence, is equal to ρ+ q. Lifetime utility at t′k can be written as

U ik,2(t′k) =

∫ t̄∗k

t′k

[
yik(τ) + pi(τ)W̄ i

k(τ) + qUik,2(τ)
]
P i(τ, t′k)e

−[ρ+q](τ−t′k)dτ

+ Uik,2(t̄∗k)P
i(t̄∗k, t

′
k)e
−[ρ+q](t̄∗k−t

′
k), (C-3)

Uik,2(τ) = πik
[
S̄i(τ, t∗k−1)

]
U ik+1,1(t∗k) +

(
1− πik

[
S̄i(τ, t∗k−1)

])
U+. (C-4)

This appendix assumes that the job arrival rate per unit of search effort λ is normalized to 1, an
assumption made in Section 5.2.

C.1 Scheduled Interval

Consider the scheduled interval [t∗k−1, t
′
k). We first show how the optimization problem can be

restated in terms of a “generalized current value Hamiltonian”. Next, we solve the problem.

C.1.1 The Generalized Current Value Hamiltonian

Referring to (C-1) and (C-2), the Hamiltonian H i
k,1(τ) of the problem during the scheduled interval

is

[
yik (τ) + pi (τ) W̄ i

k (τ)
]
P i
(
τ, t∗k−1

)
e−ρ(τ−t∗k−1)−λiP (τ)pi(τ)P i(τ, t∗k−1) +λiS(τ)

si(τ)− S̄i(τ, t∗k−1)

τ − t∗k−1

,

(C-5)

where λiP (τ) and λiS(τ) are the multiplier functions associated to the state variables P i(τ, t∗k−1) and
S̄i(τ, t∗k−1). To get rid of λiP (τ)pi(τ)P i(τ, t∗k−1) in the last expression, consider the FOC wrt P i(τ, t∗k−1):

λ̇iP (τ) = −∂H i
k,1(τ)/∂P i(τ, t∗k−1) = λiP (τ)pi(τ)−

[
yik(τ) + pi(τ)W̄ i

k(τ)
]
e−ρ(τ−t∗k−1)

Subtracting λiP (τ)pi(τ) from both sides and multiplying by P i(τ, t∗k−1) yields

∂

∂τ

(
λiP (τ)P i(τ, t∗k−1)

)
= −

[
yik(τ) + pi(τ)W̄ i

k(τ)
]
P i(τ, t∗k−1)e−ρ(τ−t∗k−1).

Integrating this equation from τ to t′k gives

λiP (t′k)P
i(t′k, t

∗
k−1)−λiP (τ)P i(τ, t∗k−1) = −

∫ t′k

τ

[
yik(x) + pi(x)W̄ i

k(x)
]
P i(x, t∗k−1)e−ρ(x−t∗k−1)dx. (C-6)

The transversality condition for P i(t′k, t
∗
k−1) is

λiP (t′k) =

∂

(
Uik,1 (t′k)P

i
(
t′k, t

∗
k−1

)
e−ρ(t′k−t

∗
k−1)

)
∂P i(t′k, t

∗
k−1)

= Uik,1
(
t′k
)
e−ρ(t′k−t

∗
k−1)
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Inserting this in (C-6), rearranging and using the fact that P i(x, t∗k−1)e−ρ(x−t∗k−1) = P i(x, τ)e−ρ(x−τ)

P i(τ, t∗k−1) e−ρ(τ−t∗k−1) delivers by (C-1)

λiP (τ)eρ(τ−t∗k−1) =

∫ t′k

τ

[
yik(x) + pi(x)W̄ i

k(x)
]
P i(x, τ)e−ρ(x−τ)dx+Uik,1(t′k)P

i(t′k, τ)e−ρ(t′k−τ) ≡ U ik,1(τ).

(C-7)

By multiplying both sides by e−ρ(τ−t∗k−1) and inserting this in (C-5) one obtains

H i
k,1(τ) =

[
yik (τ) + pi (τ)

[
W̄ i
k (τ)− U ik,1(τ)

]]
P (τ, t∗k−1)e−ρ(τ−t∗k−1) + λiS(τ)

si(τ)− S̄i(τ, t∗k−1)

τ − t∗k−1

.

Defining the generalized current value of any variable x during the scheduled interval as

x̃ ≡ x · exp

{∫ τ

t∗k−1

(
pi(x) + ρ

)
dx

}
= x · exp

{
ρ(τ − t∗k−1)

}
/P i(τ, t∗k−1), (C-8)

and using the definition (4) of yik(τ), we can define the generalized current value Hamiltonian during
the scheduled interval as:

H̃ i
k,1 (τ) = bk + ν − c

[
si (τ)

]
+ pi (τ)

[
W̄ i
k (τ)− U ik,1 (τ)

]
+ λ̃iS (τ)

si (τ)− S̄i
(
τ, t∗k−1

)
τ − t∗k−1

.

Using the fact that W̄ i
k(τ) ≡ E

[
Wk(w; τ)|w > wir(τ)

]
=
∫∞
wir(τ)

w+δU1
k,1

(ρ+δ)F̄ [wir(τ)]
dw, we can write H̃ i

k,1 (τ)

in a slightly more convenient form, namely

H̃ i
k,1 (τ) = bk + v − c

[
si (τ)

]
+
si (τ)

ρ+ δ

∫ ∞
wir(τ)

{
w − ρU ik,1 (τ) + δ

[
U1
k,1 (τ)− U ik,1 (τ)

]}
dF (w) + λ̃iS (τ)

si (τ)− S̄i
(
τ, t∗k−1

)
τ − t∗k−1

.

One can easily see that the FOC for the control variables are not affected if one uses H̃ i
k,1 (τ) rather

than H i
k,1 (τ). The FOC of the state variables need, however, a slight modification. To see this,

consider S̄i
(
τ, t∗k−1

)
, written below S̄(τ) for short. The FOC for this state variable in H̃ i

k,1 (τ) is

∂H̃ i
k,1 (τ)

∂S̄(τ)
=
∂H i

k,1 (τ)

∂S̄(τ)

exp
{
ρ(τ − t∗k−1)

}
P i(τ, t∗k−1)

= −λ̇iS̄(τ) exp
{
ρ(τ − t∗k−1)

}
/P i(τ, t∗k−1)

=
[
pi(τ) + ρ

]
λ̃iS̄(τ)(τ)− ˙̃

λiS̄(τ)(τ) (C-9)

where the second equality follows from the FOC for S̄(τ) in H i
k,1 (τ) and the third equality from the

relationship between
˙̃
λS̄(τ)(τ) and λ̇i

S̄(τ)
(τ). The transversality condition is modified as follows:

λ̃iS̄(t′k) ≡ λiS̄(t′k)
exp

{
ρ(t′k − t∗k−1)

}
P i(t′k, t

∗
k−1)

=
∂Uik,1(t′k)

∂S̄(t′k, t
∗
k−1)

(C-10)

where the second equality follows from the transversality condition for λi
S̄

(t′k).
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C.1.2 First-Order Conditions

• Control variables

Considering search effort s (τ):

∂H̃ i
k,1 (τ)

∂si (τ)
= −c′

[
si (τ)

]
+

1

ρ+ δ

∫ ∞
wir(τ)

{
w − ρU ik,1 (τ) + δ

[
U1
k,1 (τ)− U ik,1 (τ)

]}
dF (w)+

λ̃iS (τ)

τ − t∗k−1

= 0

⇔ c′
[
si (τ)

]
=

1

ρ+ δ

∫ ∞
wir(τ)

{
w − ρU ik,1 (τ) + δ

[
U1
k,1 (τ)− U ik,1 (τ)

]}
dF (w)+

λ̃iS (τ)

τ − t∗k−1

. (C-11)

Considering reservation wage wr (τ):

∂H̃ i
k,1 (τ)

∂wir (τ)
= −s

i (τ)

ρ+ δ

{
wir (τ)− ρU ik,1 (τ) + δ

[
U1
k,1 (τ)− U ik,1 (τ)

]}
f
(
wir (τ)

)
= 0

which leads to (B-1) (except that subscript k in the last expression between braces becomes {k, 1} be-
cause we explicitly consider the scheduled interval here; Similar adjustments have to be implemented
below each time we refer to (B-1)).

• State variables

For average search effort S̄i
(
τ, t∗k−1

)
:

∂H̃ i
k,1 (τ)

∂S̄i
(
τ, t∗k−1

) = −
λ̃iS (τ)

τ − t∗k−1

=
[
pi (τ) + ρ

]
λ̃iS (τ)−

.

λ̃iS (τ)

⇔

.

λ̃iS (τ)

λ̃iS (τ)
= pi (τ) + ρ+

1

τ − t∗k−1

.

Acknowledging that
.

λ̃iS (τ) /λ̃iS (τ) = ∂
∂τ ln λ̃iS (τ), pi (τ) = − Ṗ i(τ,t∗k−1)

P i(τ,t∗k−1)
= − ∂

∂τ lnP i
(
τ, t∗k−1

)
and

1
τ−t∗k−1

= ∂
∂τ ln

(
τ − t∗k−1

)
, the last result can be written as

∂

∂τ
ln λ̃iS (τ) = − ∂

∂τ
lnP i

(
τ, t∗k−1

)
+ ρ+

∂

∂τ
ln
(
τ − t∗k−1

)
.

Integrating from τ to t′k and rearranging

ln
λ̃iS (t′k)

λ̃iS (τ)
= − lnP i

(
t′k, τ

)
+ ρ

(
t′k − τ

)
+ ln

t′k − t∗k−1

τ − t∗k−1

⇔
λ̃iS (t′k)

λ̃iS (τ)
=
t′k − t∗k−1

τ − t∗k−1

eρ(t′k−τ)

P i
(
t′k, τ

) .

Applying the transversality condition

λ̃iS
(
t′k
)

=
∂Uik,1 (t′k)

∂S̄i
(
t′k, t

∗
k−1

) =
∂U ik,2 (t′k)

∂S̄i
(
t′k, t

∗
k−1

)
we finally see that

λ̃iS (τ) =
τ − t∗k−1

t′k − t∗k−1

∂U ik,2 (t′k)

∂S̄i
(
t′k, t

∗
k−1

)P i (t′k, τ) e−ρ(t′k−τ). (C-12)
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Inserting this result, together with (B-1), into (C-11) we obtain first order condition for search effort:

c′
[
si (τ)

]
=

1

ρ+ δ

∫ ∞
wir(τ)

[
w − wir (τ)

]
dF (w) +

1

t′k − t∗k−1

∂U ik,2 (t′k)

∂S̄i
(
t′k, t

∗
k−1

)P i (t′k, τ) e−ρ(t′k−τ) (C-13)

Using definition (1) in the paper (adding superscript i), we can write S̄i(τ, t∗k−1) = S̄i(t′k, t
∗
k−1)

t′k−t
∗
k−1

τ−t∗k−1
+

S̄i(τ, t′k)
τ−t′k
τ−t∗k−1

. Substituting this expression and (C-4) into (C-3) and partially differentiating the latter

equation with respect to S̄i
(
t′k, t

∗
k−1

)
yields

1

t′k − t∗k−1

∂U ik,2 (t′k)

∂S̄i
(
t′k, t

∗
k−1

) =

∫ t̄∗k

t′k

q
∂πik

[
S̄i
(
x, t∗k−1

)]
∂S̄i

(
x, t∗k−1

)
[
U ik+1,1 (t∗k)− U+

]
x− t∗k−1

P i
(
x, t′k

)
e−[ρ+q](x−t′k)dx

+
∂πik

[
S̄i
(
t̄∗k, t

∗
k−1

)]
∂S̄i

(
t̄∗k, t

∗
k−1

)
[
U ik+1,1 (t∗k)− U+

]
t̄∗k − t∗k−1

P i
(
t̄∗k, t

′
k

)
e−[ρ+q](t̄∗k−t

′
k). (C-14)

This expression can then be substituted in (C-13) to obtain the FOC of job search effort. In the sim-
pler problem considered in Section 4.3, we ignored that (i) individuals who return to unemployment
after an interruption are treated differently when their job search effort is evaluated and also that (ii)
the evaluation could be randomly delayed. This means that in that section we could in (C-13) (i)
ignore the superscript i and (ii) replace t∗k−1 and t′k by tk−1 and tk. Moreover, instead of substituting

1
t′k−t

∗
k−1

∂U ik,2(t
′
k)

∂S̄i(t′k,t
∗
k−1)

by (C-14), we now replace ∂Uk(tk)
∂S̄(tk,tk−1)

by π′k
[
S̄(tk, tk−1)

]
[Uk+1(tk)− U+], where the

last expression follows from (8). If we implement these changes and normalize λ = 1, then (C-13)
corresponds to the FOC of search effort (11) in the main text. Because of the existence of delays,
Eq. (C-14) shows that the effect of search effort on lifetime utility is no longer evaluated at the end
of the considered sub-period tk, but rather at some random instant on the delay interval. The inte-
gral on the right-hand side of (C-14) takes the expectation of this impact over the random timing of
the assessment over the delay interval [t′k, t̄

∗
k], while the last term is the expected impact at the max-

imum delay. This clearly demonstrates that the delay reduces the incentives of the monitoring scheme.

C.1.3 The evolution of the optimal controls and the lifetime utility in the scheduled
interval.

We now show that differentiating the FOC and the value of unemployment expressed in (C-1) with
respect to time yields a system of differential equations that describes the evolution of the optimal
controls and the lifetime utility in the scheduled interval. This system can be solved backwards from
the endpoint conditions for all the paths at t′k. Endpoint conditions for reservation wage and search
effort are found by solving the system of FOC (B-1), in which (again) subscript k has to be replaced
by {k, 1} since we look at consider here the scheduled interval, and (C-13). By differentiating these
two equations with respect to time we obtain the optimal paths of the control variables within the
scheduled interval. The optimal path for the reservation wage is

ẇir (τ) = ρU̇ ik,1 (τ)− δ[U̇1
k,1 (τ)− U̇ ik,1 (τ)]. (C-15)

and for the search effort is likewise

ṡi (τ) =
1

(ρ+ δ) c′′ [si (τ)]

∫ ∞
wir(τ)

[
−ẇir (τ)

]
dF (w)

+
pi (τ) + ρ

c′′ [si (τ)]

1

t′k − t∗k−1

∂U ik,2 (t′k)

∂S̄i
(
t′k, t

∗
k−1

)P i(t′k, τ)e−ρ(t′k−τ)
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Once i = 1, the last term drops out, since accumulated search effort S̄1
(
t′k, t

∗
k−1

)
does not affect

the probability of a negative evaluation during the delay interval. Otherwise, when i = 0, the term
containing the derivative multiplied by the expected discounted capital loss due to negative evaluation
can be substituted out using eq.(C-13). Thus, optimal path for search effort reads for i ∈ {0, 1}:

ṡi (τ) = −
ẇir (τ) F̄

(
wir (τ)

)
(ρ+ δ) c′′ [si (τ)]

+(1− i) p
i (τ) + ρ

c′′ [si (τ)]

[
c′
[
si (τ)

]
− 1

ρ+ δ

∫ ∞
wir(τ)

[
w − wir (τ)

]
dF (w)

]
. (C-16)

Both paths depend on the evolution of the value of unemployment: ẇir (τ) explicitly and ṡi (τ) im-
plicitly via ẇir (τ). Evolution of the value of unemployment can be obtained simply by differentiating
(C-1) at any τ ∈ [t∗k−1, t

′
k). We get

U̇ ik,1 (τ) =

∫ t′k

τ

[
yik (x) + pi (x) W̄ i

k (x)
] ∂
∂τ

(
P i (x, τ) e−ρ(x−τ)

)
dx− [yik (τ) + pi (τ) W̄ i

k (τ)]

+Uik,1
(
t′k
) ∂
∂τ

(
P i
(
t′k, τ

)
e−ρ(t′k−τ)

)
= ρU ik,1 (τ)− yik (τ)− pi (τ)

[
W̄ i
k (τ)− U ik,1 (τ)

]
.

Inserting into the last expression eq. (B-1), which tells us here that U ik,1 (τ) = 1
ρ+δ [wir (τ) + δU1

k,1 (τ)],

and the expression for W̄ i
k (τ) we finally get

U̇ ik,1 (τ) =
ρ

ρ+ δ
wir (τ)− yik (τ)− si (τ)

ρ+ δ

∫ ∞
wir(τ)

[
w − wir (τ)

]
dF (w) +

ρδ

ρ+ δ
U1
k,1 (τ) . (C-17)

Differential equations (C-15), (C-16) and (C-17) form a system that describes the evolution of
optimal controls and the lifetime utility in the scheduled interval. This system can be solved backwards
from the endpoint conditions for all the paths at t′k. Endpoint condition for the utility function at t′k
is given by U ik,1 (t′k) = U ik,2 (t′k). Endpoint conditions for reservation wage and search effort are found
by solving the system of FOC (B-1) and (C-13) evaluated at t′k. wir (t′k) = ρU ik,2 (t′k)− δ

[
U1
k,2 (t′k)− U ik,2 (t′k)

]
c′
[
si (t′k)

]
= 1

ρ+δ

∫∞
wir(t

′
k)

[
w − wir (t′k)

]
dF (w) + 1

t′k−t
∗
k−1

∂U ik,2(t
′
k)

∂S̄i(t′k,t
∗
k−1)

for
{
wir (t′k) , s

i (t′k)
}

, where we have already invoked that U ik,1 (t′k) = U ik,2 (t′k).

C.2 Delay Interval

C.2.1 The Generalized Current Value Hamiltonian

Referring to (C-3) and (C-4), the definition of the generalized current value of any variable x is
now:

x̃ ≡ x · exp

{∫ τ

t′k

(
pi(x) + ρ+ q

)
dx

}
= x · exp

{
(ρ+ q)(τ − t′k)

}
/P i(τ, t′k), (C-18)

Following the same steps as in the scheduled interval, the generalized current value Hamiltonian in
the delay period reads

H̃ i
k,2 (τ) = bk + ν − c

[
si (τ)

]
+ pi (τ)

[
W̄ i
k (τ)− U ik,2 (τ)

]
+ qUik,2 (τ) + λ̃iS (τ)

si (τ)− S̄i
(
τ, t∗k−1

)
τ − t∗k−1

.
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Using the definition of W̄ i
k(τ), we can write H̃ i

k,2 (τ) in a slightly more convenient form, namely

H̃ i
k,2 (τ) = bk + ν − c

[
si (τ)

]
+ qUik,2 (τ)

+
si (τ)

ρ+ δ

∫ ∞
wir(τ)

{
w − ρU ik,2 (τ) + δ

[
U1
k,2 (τ)− U ik,2 (τ)

]}
dF (w) + λ̃iS (τ)

si (τ)− S̄i
(
τ, t∗k−1

)
τ − t∗k−1

.

C.2.2 First-order conditions

• Control Variables

FOC for control variables repeat the derivations in C.1.1 leading us to (B-1), in which from now on
subscript {k, 2} replaces k since we look at the delay interval, and to

c′
[
si (τ)

]
=

1

ρ+ δ

∫ ∞
wir(τ)

{
w − ρU ik,2 (τ) + δ

[
U1
k,2 (τ)− U ik,2 (τ)

]}
dF (w) +

λ̃iS (τ)

τ − t∗k−1

. (C-19)

• State variables

For average search effort S̄i
(
τ, t∗k−1

)
:

∂H̃ i
k,2 (τ)

∂S̄i
(
τ, t∗k−1

) = q
∂πik

[
S̄i
(
τ, t∗k−1

)]
∂S̄i

(
τ, t∗k−1

) [
U ik+1,1 (t∗k)− U+

]
−

λ̃iS (τ)

τ − t∗k−1

=
[
pi (τ) + ρ+ q

]
λ̃iS (τ)−

.

λ̃iS (τ)

⇔
.

λ̃iS (τ)−

(
pi (τ) + ρ+ q +

1

τ − t∗k−1

)
λ̃iS (τ) = −q

∂πik
[
S̄i
(
τ, t∗k−1

)]
∂S̄i

(
τ, t∗k−1

) [
U ik+1,1 (t∗k)− U+

]
Multiplying both sides with P i (τ, t′k) exp{−

∫ τ
t′k

[ρ+ q + 1/(x− t∗k−1)]dx} we recognize that

.

λ̃iS (τ)P i
(
τ, t′k

)
e
−

∫ τ
t′
k

[ρ+q+1/(x−t∗k−1)]dx

−

(
pi (τ) + ρ+ q +

1

τ − t∗k−1

)
λ̃iS (τ)P i

(
τ, t′k

)
e
−

∫ τ
t′
k

[ρ+q+1/(x−t∗k−1)]dx

= −q
∂πik

[
S̄i
(
τ, t∗k−1

)]
∂S̄i

(
τ, t∗k−1

) [
U ik+1,1 (t∗k)− U+

]
P i
(
τ, t′k

)
e
−

∫ τ
t′
k

[ρ+q+1/(x−t∗k−1)]dx

⇔ ∂

∂τ

(
λ̃iS (τ)P i

(
τ, t′k

)
e
−

∫ τ
t′
k

[ρ+q+1/(x−t∗k−1)]dx
)

= −q
∂πik

[
S̄i
(
τ, t∗k−1

)]
∂S̄i

(
τ, t∗k−1

) [
U ik+1,1 (t∗k)− U+

]
P i
(
τ, t′k

)
e
−

∫ τ
t′
k

[ρ+q+1/(x−t∗k−1)]dx
.

Integrating the last result from τ to t̄∗k we see that

λ̃iS (t̄∗k)P
i
(
t̄∗k, t

′
k

)
e
−

∫ t̄∗k
t′
k

[ρ+q+1/(x−t∗k−1)]dx
− λ̃iS (τ)P i

(
τ, t′k

)
e
−

∫ τ
t′
k

[ρ+q+1/(x−t∗k−1)]dx

= −
∫ t̄∗k

τ
q
∂πik

[
S̄i
(
x, t∗k−1

)]
∂S̄i

(
x, t∗k−1

) [
U ik+1,1 (t∗k)− U+

]
P i
(
x, t′k

)
e
−

∫ x
t′
k

[ρ+q+1/(z−t∗k−1)]dz
dx.

Applying the transversality condition

λ̃iS (t̄∗k) =
∂Uik,2 (t̄∗k)

∂S̄i
(
t̄∗k, t

∗
k−1

) =
∂πik

[
S̄i
(
t̄∗k, t

∗
k−1

)]
∂S̄i

(
t̄∗k, t

∗
k−1

) [
U ik+1,1 (t∗k)− U+

]
8



and rearranging further shows that

λ̃iS (τ) =

∫ t̄∗k

τ
q
∂πik

[
S̄i
(
x, t∗k−1

)]
∂S̄i

(
x, t∗k−1

) [
U ik+1,1 (t∗k)− U+

]
P i (x, τ) e−

∫ x
τ [ρ+q+1/(z−t∗k−1)]dzdx

+
∂πik

[
S̄i
(
t̄∗k, t

∗
k−1

)]
∂S̄i

(
t̄∗k, t

∗
k−1

) [
U ik+1,1 (t∗k)− U+

]
P i (t̄∗k, τ) e−

∫ t̄∗k
τ [ρ+q+1/(x−t∗k−1)]dx

⇔
λ̃iS (τ)

τ − t∗k−1

=

∫ t̄∗k

τ
q
∂πik

[
S̄i
(
x, t∗k−1

)]
∂S̄i

(
x, t∗k−1

)
[
U ik+1,1 (t∗k)− U+

]
x− t∗k−1

P i (x, τ) e−[ρ+q](x−τ)dx

+
∂πik

[
S̄i
(
t̄∗k, t

∗
k−1

)]
∂S̄i

(
t̄∗k, t

∗
k−1

)
[
U ik+1,1 (t∗k)− U+

]
t̄∗k − t∗k−1

P i (t̄∗k, τ) e−[ρ+q](t̄∗k−τ).

Inserting this result, together with (B-1), into (C-19) leads to:

c′
[
si (τ)

]
=

1

ρ+ δ

∫ ∞
wir(τ)

{
w − wir(τ)

}
dF (w)

+

∫ t̄∗k

τ
q
∂πik

[
S̄i
(
x, t∗k−1

)]
∂S̄i

(
x, t∗k−1

)
[
U ik+1,1 (t∗k)− U+

]
x− t∗k−1

P i (x, τ) e−[ρ+q](x−τ)dx

+
∂πik

[
S̄i
(
t̄∗k, t

∗
k−1

)]
∂S̄i

(
t̄∗k, t

∗
k−1

)
[
U ik+1,1 (t∗k)− U+

]
t̄∗k − t∗k−1

P i (t̄∗k, τ) e−[ρ+q](t̄∗k−τ). (C-20)

The interpretation is similar as during the delay interval.

C.2.3 The evolution of the optimal controls and the lifetime utility in the delay interval.

Differentiating equations (B-1) and (C-20) with respect to time we get the optimal paths of the
control variables during the interview delay. The optimal path for the reservation wage is

ẇir (τ) = ρU̇ ik,2 (τ)− δ
[
U̇1
k,2 (τ)− U̇ ik,2 (τ)

]
. (C-21)

The optimal path for search effort is likewise the time-derivative of (C-20)

c′′
[
si (τ)

]
ṡi (τ) = −

ẇir (τ) F̄
(
wir (τ)

)
ρ+ δ

− q
(
πik
[
S̄i
(
τ, t∗k−1

)])′
τ − t∗k−1

[
U ik+1,1 (t∗k)− U+

]
+
(
pi (τ) + ρ+ q

) [∫ t̄∗k

τ
q

(
πik
[
S̄i
(
x, t∗k−1

)])′
x− t∗k−1

[
U ik+1,1 (t∗k)− U+

]
P i (x, τ) e−[ρ+q](x−τ)dx

+

(
πik
[
S̄i
(
t̄∗k, t

∗
k−1

)])′
t̄∗k − t∗k−1

[
U ik+1,1 (t∗k)− U+

]
P i (t̄∗k, τ) e−[ρ+q](t̄∗k−τ)

]
.

Once i = 1, all terms but the first drop out, since ∀τ :
(
π1
k

[
S̄i
(
τ, t∗k−1

)])′
= 0 on the delay interval.

Otherwise, when i = 0, the last term in the square brackets can be substituted out using eq. (C-20).
With this substitution, optimal path for search effort reads

ṡi (τ) = −
ẇir (τ) F̄

(
wir (τ)

)
(ρ+ δ) c′′ [si (τ)]

− q

c′′ [si (τ)]

(
πik
[
S̄i
(
τ, t∗k−1

)])′
τ − t∗k−1

[
U ik+1,1 (t∗k)− U+

]
+ (1− i) p

i (τ) + ρ+ q

c′′ [si (τ)]

[
c′
[
si (τ)

]
− 1

ρ+ δ

∫ ∞
wir(τ)

{
w − wir (τ)

}
dF (w)

]
. (C-22)

9



Finally note that with q → 0, i.e. when the end of the delay interval is deterministic meaning that
delay interval becomes just another scheduled interval, the path in (C-22) reduces to the path in
(C-16).

Like before, optimal paths for both control variables depend on the evolution of the value of
unemployment. The evolution of the value of unemployment can be obtained by differentiating (C-3)
at any τ ∈ [t′k, t̄

∗
k). We get

U̇ ik,2 (τ) =

∫ t̄∗k

τ

[
yik (x) + pi (x) W̄ i

k (x) + qUik,2 (x)
] ∂
∂τ

(
P i (x, τ) e−[ρ+q](x−τ)

)
dx

= (ρ+ q)U ik,2 (τ)− yik (τ)− pi (τ)
[
W̄ i
k (τ)− U ik,2 (τ)

]
− qUik,2 (τ) .

Inserting into the last expression eq. (B-1), which tells us that U ik,2 (τ) = 1
ρ+δ

[
wir (τ) + δU1

k,2 (τ)
]
,

and the expression for W̄ i
k (τ) we finally get

U̇ ik,2 (τ) =
ρ+ q

ρ+ δ
wir (τ)−yik (τ)−s

i (τ)

ρ+ δ

∫ ∞
wir(τ)

[
w − wir (τ)

]
dF (w)+δ

ρ+ q

ρ+ δ
U1
k,2 (τ)−qUik,2 (τ) . (C-23)

Differential equations (C-21), (C-22) and (C-23) form a system that describes evolution of the
optimal controls and the lifetime utility in the delay interval. This system can be solved backwards
from the endpoint conditions for all the paths at t̄∗k. Endpoint conditions are found by solving the
system of FOC (B-1) and (C-20) together with eq.(C-3), all evaluated at t̄∗k:

wir (t̄∗k) = ρU ik,2 (t̄∗k)− δ
[
U1
k,2 (t̄∗k)− U ik,2 (t̄∗k)

]
c′
[
si (t̄∗k)

]
= 1

ρ+δ

∫∞
wir(t̄∗k)

[
w − wir (t̄∗k)

]
dF (w) +

(πik[S̄
i(t̄∗k,t

∗
k−1)])

′

t̄∗k−t
∗
k−1

[
U ik+1,1 (t∗k)− U+

]
U ik,2 (t̄∗k) = πik

[
S̄i
(
t̄∗k, t

∗
k−1

)]
U ik+1,1 (t∗k) +

(
1− πik

[
S̄i
(
t̄∗k, t

∗
k−1

)])
U+

for
{
wir (t̄∗k) , s

i (t̄∗k) , U
i
k,2 (t̄∗k)

}
, where for after the last interview (k = 3) U i4,1 (t∗k) ≡ U−.

D Identification

Consider the FOC (10) and (11) of the reservation wage and job search effort. Let us first focus on
individuals who are notified, did not interrupt their unemployment spell, are not yet evaluated, and
are in the scheduled interval. These individuals are entitled to an UB that is equal to bh. To stress that
we are considering a group of individuals that is homogeneous in bh, x and u we drop in the notation
the explicit dependence on these: c0 ≡ ex

′ζε+u, ν ≡ ν(x), δ ≡ δ(x), and S̄(t1, t0) ≡ S̄0(t1, t0;x;u). If
we insert the specifications chosen in Section 5.1 into these FOC and use s(τ) = s̃(τ)/λ, we obtain:

wr(τ) + c0

(
e
ε
λ
s̃(τ) − 1

)
= bh + ν + p(τ)

E [w − wr(τ)|w > wr(τ)]

ρ+ δ
+ U̇k(τ)

c0
ε

λ
e
ε
λ
s̃(τ) =

F̄ [wr(τ)]E [w − wr(τ)|w > wr(τ)]

ρ+ δ
− β1

λ

e−α1−β1
λ

˜̄S(t1,t0)

t1 − t0
[
U2(t1)− U+

]
P (t1, τ)e−ρ(t1−τ).

in which ˜̄S(t1, t0) =
∫ t1
t0
s̃(τ)dτ/(t1 − t0).

The following in these FOC is either known or can be identified from the observed data: (i)
wr(τ), F̄ [wr(τ)] and E [w − wr(τ)|w > wr(τ)] can, with the functional forms assumed in Section 5.1,

be identified from the observed distribution of accepted wages; (ii) p(τ), P (t1, τ), s̃(τ) and ˜̄S(t1, t0)
can be identified from the observed transitions to employment (given that F̄ [wr(τ)] is known); (iii)
[U2(t1)− U+] and U̇k(τ) are identified if the parameters in all future monitoring stages are identified,
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which is the case if one proceeds by backward induction; (iv) α1 and β1/λ can be identified from

the observed fractions of negative evaluations at the first interview and from ˜̄S(t1, t0); (v) δ can be
identified from the observed transitions from employment back to unemployment; (vi) bh, t0 and t1
are observed in the data.

This leaves us with the following unknown parameters: c0, ε, λ, ν, β1 and ρ. Clearly, with two
FOC we can identify at most two unknowns. However, if we consider another monitoring regime,
e.g. individuals who have been evaluated negatively at the first assessment, this provides us with
an additional set of independent FOC, because (i) behavior changes (the distribution of accepted
wages and the transition rate to employment is affected), (ii) expectations about the future change
(which affects the terms [U2(t1)− U+] and U̇k(τ)), (iii) the probability of negative evaluation no
longer matters in case of a positive evaluation or prior to the notification, and (iv), as from the second
interview, the benefit level may change in case of a sanction. Therefore, as we are simultaneously
considering many monitoring regimes, we have a sufficient number of independent FOC to identify the
unknown parameters. However, increasing the number of FOC in this way is not helpful in identifying
ε and λ on the one hand, and β1 and λ on the other hand, because these unknown parameters appear
in these FOC as ratio’s: ε

λ and β1

λ . This therefore reveals an identification problem. It can be checked
that this problem does not disappear if another, e.g. isoelastic, specification is chosen for the cost of
effort. We therefore normalize λ = 1.

E Derivation of the Sample Average Probability of Negative Eval-
uation

To obtain the sample averages of the probabilities of negative evaluation π̄k (for k ∈ {1, 2, 3}) we
account for the facts that not every individual ι in the sample has the same probability to be assessed
for a second or third time, and that the sanction probability depends on the average realized search
effort S̄0(t∗k, t

∗
k−1; vj), on whether one was temporarily employed prior to the meeting (i = 0 or i = 1),

and on unobservables. We therefore appropriately aggregate individual sanction probabilities across
e, u and S̄0

ι (τ, t∗k−1; vj) into the expected probability of negative evaluation Eπkι for each notified

individual ι and then weigh this expected probability by the relative probability PEkι that the kth

evaluation takes place.
More precisely, subscript ι refers to a notified individual characterized by a specific UB level,

gender and schooling level. Eπkι denotes the expected probability of negative evaluation for a notified
individual ι conditional on being evaluated for the kth time (k ∈ {1, 2, 3}) and irrespective of having
experienced an employment spell since the last evaluation (i = 0 or i = 1). PEkι denote the probability
that the kth evaluation takes place for individual ι. Then, if N denotes the number of notified
individuals, one can write the sample average probability as a weighted average of expected individual
probabilities:

π̄k =
N∑
ι=1

PEkι∑N
j=1 PEkj

Eπkι (E-1)

where

PEkι =

k−1∏
l=0

Eπlι (E-2)

and where Eπ0ι ≡ 1. In the model one cannot escape a first evaluation (PE1ι = 1), since the
duration counter that determines whether an evaluation will take place is temporarily halted rather
than reset to zero if an individual leaves unemployment for employment. Since employment spells
are exponentially distributed and since t̄∗1, the maximum duration at which the evaluation takes
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place, is finite, individuals will always eventually return to unemployment and be evaluated with
probability one.2 A second evaluation can only take place if one is negatively evaluated at the first:
PE2ι = Eπ1ι. Finally, a third evaluation takes place only if the evaluation at the previous two was
negative: PE3ι = Eπ1ιEπ2ι.

We now derive Eπkι. For compactness, we abstract from the vector of observed characteristics x.
The probability of negative evaluation depends on whether the unemployment spell was interrupted
by employment (i = 1) or not (i = 0), and if i = 0 on the timing τ of the interview within the delay
interval (τ ∈ [t′k, t̄

∗
k]) and on the average search effort S̄0

ι (τ, t∗k−1; vj) of individual ι with unobserved
mass point vj :

π0
kι

[
S̄0
ι (τ, t∗k−1; vj)

]
= exp

{
−κk(α1,vj + β1S̄

0
ι (τ, t∗k−1; vj)

}
(E-3)

π1
k = exp(−κkγ1) (E-4)

where κ1 ≡ 1. The expected probability of negative evaluation Eπkι is a weighted average of these
probabilities, where the weights depend on the probability of their realization. We first derive these
probabilities conditional on the unobserved mass points and denote these by Eπkι(vj). Subsequently,
we write the unconditional probability as a function of the conditional probabilities.

Eπkι(vj) =

{[
1− e

−
∫ t′k
t∗
k−1

p0
ι (z;vj)dz

]
+ e
−

∫ t′k
t∗
k−1

p0
ι (z;vj)dz

∫ t̄∗k

t′k

p0
ι (τ ; vj)e

−
∫ τ
t′
k
[p0
ι (z;vj)+q]dzdτ

}
π1
k

+ e
−

∫ t′k
t∗
k−1

p0
ι (z;vj)dz

{∫ t̄∗k

t′k

qe
−

∫ τ
t′
k
[p0
ι (z;vj)+q]dzπ0

kι

[
S̄0
ι (τ, tk−1; vj)

]
dτ

+e
−

∫ t̄∗k
t′
k

[p0
ι (z;vj)+q]dz

π0
kι

[
S̄0
ι (t̄∗k, tk−1; vj)

]}
(E-5)

for k ∈ {1, 2, 3}. The expression contains four terms. The first two terms weigh the probability of
negative evaluation for i = 1 (π1

k) by the probability of having found employment before the kth

interview. This occurs if employment is found during the scheduled interval [t∗k−1, t
′
k) (first term)

or if employment is found during the delay interval [t′k, t̄
∗
k) before an interview takes place (second

term). The third term weighs for each τ ∈ [t′k, t̄
∗
k) the probability of negative evaluation for i = 0

(π0
kι

[
S0
ι (τ, t∗k−1; vj)

]
) by the probability that an evaluation occurs before employment is found and

integrates (“sums”) this over the delay interval. The last term is the probability of negative evaluation
for i = 0 if it takes place at the end of the delay interval (

[
S0
ι (t̄∗k, t

∗
k−1; vj)

]
) weighted by the probability

of neither having the kth interview nor a transition to employment before t̄∗k.
The expected probability of negative evaluation, unconditional on vj can then be expressed as

follows:

Eπkι =

∑2
j=1Qje

−
∫ t∗0
0 p0

ι (z;vj)dz
∏k
l=0Eπlι(vj)∑2

j=1Qje
−

∫ t∗0
0 p0

ι (z;vj)dz
∏k−1
l=0 Eπlι(vj)

(E-6)

for k ∈ {1, 2, 3} and where Eπ0ι(vj) ≡ 1. Each conditional expected probability of negative evaluation
Eπkι(vj) is weighted by the conditional probability that the mass point is equal to vj , conditional on
individual ι of type vj being evaluated for the kth time, and, hence, conditional on k−1 negative evalua-

tions, i.e. it is weighted by

[
Qje

−
∫ t∗0
0 p0

ι (z;vj)dz
∏k−1
l=0 Eπlι(vj)

]
/

[∑2
j=1Qje

−
∫ t∗0
0 p0

ι (z;vj)dz
∏k−1
l=0 Eπlι(vj)

]
,

where e−
∫ t∗0
0 p0

ι (z;vj)dz is the probability that individual ι of type vj survives in unemployment until
notification.

2This is an approximation, since in reality the duration counter determining the moment of evaluation is reset to zero
after an uninterrupted full time employment spell of 12 months.
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F Likelihood Contributions

To write down the likelihood contribution of an unemployed individual, consider first the probabil-
ity of surviving in unemployment until some given moment t. For that, given the normalization λ = 1,
let p0(τ ;x, u) be given by (5) with superscript i = 0 denoting that the worker with type (x, u) did not
interrupt unemployment since t0, and let p+(x, u) ≡ s+(x, u)F̄ (w+

r (x, u)) designate the exit rate in
a stationary environment with a flat benefit bh. Furthermore define t′k ≡ min{t, t′k}, t∗k ≡ min{t, t∗k}
and t′4 ≡ t∗4 ≡ ∞. With these definitions, the probability of surviving in unemployment until t, being
notified at t∗0 and being evaluated at {t∗k}

3
k=1, conditional on the type (x, u) and on the outcome of

the notification (O0 ≡ 1) and of the evaluations ({Ok}3k=1) is

P
{
t, {t∗k}3k=0|x, u, {Ok}3k=0

}
= exp

{
−p+(x, u)t∗0

}
× exp

{
−1 [t ≥ t∗0]

4∑
k=1

Ok−1

[∫ t′k

t∗k−1

p0 (τ ;x, u) dτ + 1
[
t ≥ t′k

] ∫ t∗k

t′k

[
p0 (τ ;x, u) + q

]]
dτ

}

×
3∏

k=1

q1[t≥t∗k] exp

{
−

3∑
k=1

(1−Ok) p+(x, u) (t− t∗k)

}
, (F-1)

Note that if O3 = 1,∀τ > t∗3, i ∈ {0, 1} : pi(τ ;x, u) = p−(x, u) ≡ s−(x, u)F̄ (w−r (x, u)) where the
superscript ‘-’ designates the levels achieved when the entitlement to unemployment insurance has
been lost, i.e. when the individual has been sanctioned. The first term on the right-hand side in (F-1)
is the survivor rate in unemployment between entry into unemployment and t or the notification t∗0,
depending on which of the two comes first. The term following on the next line gives for each k the
survivor rates in the scheduled interval [t∗k−1, t

′
k) and in the delay interval [t′k, t

∗
k). In the latter interval

re-employment and the occurrence of an evaluation are competing risks, which explains the presence
of q in the expression. However, if an evaluation takes place, the worker still remains unemployed.
Consequently, the probability of surviving in unemployment after t∗k is the density of being evaluated
at t∗k times the probability of surviving in unemployment beyond t∗k. Since this density at t∗k is the
product of the arrival rate of evaluation q and the corresponding survivor function, this explains the
presence of q in the last term on the third line on the right-hand side of (F-1). The last term also
contains the survivor rate in unemployment after a positive evaluation at any interview k.

The density of the duration t spent in unemployment before exiting to a job, conditional on (x, u)
reads

g0 (t|x, u) ≡ p0 (t;x, u)P
{
t, {t∗k}3k=0|x, u, {Ok}3k=0

}
(F-2)

where we neglect for notational convenience the dependence on {t∗k}3k=0 and {Ok}3k=0. The dura-
tion data are grouped into monthly intervals. We account for this grouping by integrating over the
corresponding time intervals and by assuming that at most one transition occurs within an interval.
Conditional on x and the elapsed unemployment duration at selection ts, but marginal on the un-
observed factor u affecting the cost of search, an individual contribution of an unemployment spell
lasting du months followed by an employment spell of length de paying the observed wage wo writes
for uncensored unemployment durations:

`(du, de, w
o; ts) =

∑2
j=1Qj

∫ du
du−1

{
g0 (t|x; vj) [fo(w

o; t,x1, vj)]
cw dt

}∑2
j=1Qj exp {−p+(x; vj)ts}

[
e−δ(x1)de − cee−δ(x1)(de+1)

]
(F-3)

where the density fo has been defined in (15), ce = 0 if the employment spell that follows the transition
from unemployment is right censored (ce = 1 otherwise), and cw = 0 if the wage upon this transition
is unobserved (cw = 1 otherwise). For unemployment durations censored between durations du−1 and
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du, the contribution to the likelihood becomes:

`(du, de, w
o; ts) =

∑2
j=1Qj

(
1−

∫ du−1
0 g0 (t|x, vj) dt

)
∑2

j=1Qj exp {−p+(x; vj)ts}
(F-4)

Finally, the likelihood function for the realized evaluation outcomes at the first interview conditional
on it taking place at time t∗1 is

` (O1, i; t
∗
1) =

∑2
j=1

(
QjP

{
t∗1, {t∗k}3k=0|x, vj , {Ok}3k=0

} [
exp

{
−(α1,vj + β1 S̄

0 (t∗1, t
∗
0;x, vj))

}O1∑2
j=1QjP

{
t∗1, {t∗k}3k=0|x, vj , {Ok}3k=0

} ×

(
1− exp

{
−(α1,vj + β1 S̄

0 (t∗1, t
∗
0;x, vj))

})1−O1
]1−i

)[
exp{−γ1}O1 (1− exp{−γ1})1−O1

]i
(F-5)

for i ∈ {0, 1}.

G Solving the Optimal Control Problem and Estimation

Estimation requires that the optimal control problem described in Section 4.4 has to be solved at
each iteration of the numerical optimization. Given a vector of all parameters of the model, for each
sampled individual the problem is solved, both for e = 0 and e = 1, by backward induction in the
following steps:

Step 0: The stationary problems are solved in case of a positive evaluation and in case of a sanction
after a third interview; U+ and U− are calculated.

Step 1.1: Given U+ and U−, the FOC for control variables are solved at t̄∗3 to determine the endpoint
conditions for the paths of control variables at t̄∗3. First we solve for endpoint conditions under
effort-independent evaluation (e = 1), since for e = 1 FOC depend only on the knowledge of U+

and U−. Then we solve for endpoint conditions under effort-dependent evaluation (e = 0), as
for e = 0 FOC require knowledge of U1

3,2(t̄∗3), available now from the former solution. Moreover,

these FOC also require knowledge of π0
[
S̄0(t̄∗3, t

∗
2)
]
, which itself contains an integral of the yet

unknown path of the search effort. An initial guess for this probability is taken.

Step 1.2: Given the endpoint conditions of Step 1.1, the system of differential equations that describe
the evolution of the optimal paths of control variables is solved in the interval [t′3, t̄

∗
3). This system

is obtained by the differentiation of the FOC for control variables with respect to time. First we
solve for optimal paths under effort-independent evaluation (e = 1). Then we solve for optimal
paths under effort-dependent evaluation (e = 0), since the solution of the system of differential
equations in this case requires knowledge of the path of U1

3,2(τ), τ ∈ [t′3, t̄
∗
3), available now from

the former solution. Moreover, this system also requires knowledge of π0
[
S̄0(t̄∗3, τ)

]
, τ ∈ [t′3, t̄

∗
3),

for which the initial guess is maintained for the moment. Using both solutions, U1
3,2(t′3) and

U0
3,2(t′3) at the scheduled date of the third interview t′3 are computed.

Step 1.3: Given U1
3,2(t′3) and U0

3,2(t′3) from Step 1.2, the FOC for control variables are solved at
t′3 to determine the endpoint conditions for the paths of control variables at t′3. The endpoint
conditions are solved first for the effort-independent evaluation, followed by the effort-dependent
evaluation (for the same reason as in Step 1.1).

Step 1.4: Given the endpoint conditions of Step 1.3 the system of differential equations that describe
the evolution of the optimal paths of control variables is solved in the interval [t∗2, t

′
3). First

we solve for optimal paths under effort-independent evaluation, followed by effort-dependent
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evaluation (for the same reason as in Step 1.2). Likewise, the system of differential equations
under effort-dependent evaluation requires knowledge of π0

[
S̄0(t′3, τ)

]
, τ ∈ [t∗2, t

′
3), for which the

initial guess is currently maintained.

Step 1.5: The solution of Steps 1.1-1.4 provides us with the optimal path of search effort s0 (τ) on
[t∗2, t̄

∗
3). This is used to update the initial guess about π0

[
S̄0(t̄∗3, τ)

]
, τ ∈ [t∗2, t̄

∗
3), and Steps 1.1-1.4

are repeated again until convergence in s0 (τ). Upon convergence the value of the lifetime utility
U0

3,1(t∗2) at the actual date of the second interview is evaluated.

Step 2: We go back to Step 1.1, replace U− by U0
3,1(t∗2), as calculated in Step 1.5, and iterate until

convergence. The result is the lifetime utility U0
2,1(t∗1) at the actual date of the first interview.

Step 3: We continue in this way until arriving at t∗0, the moment of notification.3

The above described solution algorithm takes the vector of all parameters of the model as given.
Parameters of the model are described by the following likelihood functions: (F-3)-(F-4) determine
all parameters but {α1,vjβ1}j=1,2, and (F-5) determines {α1,vjβ1}j=1,2. Consequently the estimation
is performed in two stages:

Stage 1: For the initial values of {α1,vjβ1}j=1,2 and the rest of the parameters, (F-3)-(F-4) are
maximized conditional on {α1,vjβ1}j=1,2. The resulting estimates are used to compute, based
on Steps 0 to 3, the average search effort at the first interview S̄0(t∗1, t

∗
0) for all individuals who

are observed to have the first interview.

Stage 2: Given S̄0(t∗1, t
∗
0) from Stage 1, (F-5) is maximized with respect to {α1,vjβ1}j=1,2. {αk,vj

βk}j=1,2 with k = 2, 3 are updated as described in Section 5.2 and in Appendix C. Based on
these new parameter estimates Steps 0 to 3 are implemented as input for Stage 1.

Stages 1 and 2 are iteratively repeated until convergence in all parameters of the model.

H Intertemporal Indicators

The intertemporal indicators are the lifetime utility in unemployment denoted U , the lifetime
earnings of an unemployed denoted X and government’s discounted expenditures denoted Y . Below,
we only write down the expressions for the first subperiod, [t0, t

∗
1], where t0 is the month of notifi-

cation. The expressions for the next subperiods are analogous and are therefore not reported. For
computational considerations we take intertemporal indicators conditional on the expected duration
of interview delays, rather then explicitly model their expected values with respect to the distribution
of random delay times.

1. “Lifetime Utility U” defined as the expected discounted stream of benefits and leisure net of
search costs plus future labor earnings of an unemployed. Limited to the first subperiod, this measure
is nothing but the lifetime value of unemployment for i = 0 (with expectations being taken at the
moment of notification t0).

U0
1 (t0) =

∫ t′1

t0

[(
bh + ν − c

[
s0 (x)

])
+ p

(
w0
r (x) , s0 (x)

)
W̄ 0

1 (x)
]
P 0 (x, t0) e−ρ(x−t0)dx

+P 0
(
t′1, t0

)
e−ρ(t′1−t0)

{∫ t∗1

t′1

[(
bh + ν − c

[
s0 (x)

])
+ p

(
w0
r (x) , s0 (x)

)
W̄ 0

1 (x) + qU0
1 (x)

]
×P 0

(
x, t′1

)
e−[ρ+q](x−t′1)dx

}
+ P 0 (t∗1, t0) e−ρ(t

∗
1−t0)−q(t∗1−t′1)U0

1 (t∗1)

3Detailed expressions of the systems of endpoint conditions and optimal paths at each step are provided in Section C
of this online appendix.
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where U0
1 (x) = π0

1

[
S̄0 (x, t0)

]
U0

2 (t∗1) +
(
1− π0

1

[
S̄0 (x, t0)

])
U+.

2. “Lifetime Earnings X” defined as the expected discounted stream of labor earnings. This measure
excludes instantaneous utility of unemployment (benefits and leisure net of search costs) from the
lifetime utility U . In the first subperiod,

X0
1 (t0) =

∫ t′1

t0

[
(0 + 0− 0) + p

(
w0
r (x) , s0 (x)

)
W̄ 0
X1

(x)
]
P 0 (x, t0) e−ρ(x−t0)dx

+P 0
(
t′1, t0

)
e−ρ(t′1−t0)

{∫ t∗1

t′1

[
(0 + 0− 0) + p

(
w0
r (x) , s0 (x)

)
W̄ 0
X1

(x) + qX0
1 (x)

]
×P 0

(
x, t′1

)
e−[ρ+q](x−t′1)dx

}
+ P 0 (t∗1, t0) e−ρ(t

∗
1−t0)−q(t∗1−t′1)X0

1 (t∗1)

where

W̄ 0
X1

(x) =

∫ ∞
wr(x)

1

ρ+ δ

[
w + δX1

1 (x)
] f (w)

F̄ (wr (x))
dw.

X0
1 (x) = π0

1

[
S̄0 (x, t0)

]
X0

2 (t∗1) +
(
1− π0

1

[
S̄0 (x, t0)

])
X+,

X1
1 designating the same expression as X0

1 when the unemployment spell has been interrupted by
temporary employment (i = 1) and X+ having the same interpretation as U+ above.

3. “Government’s Discounted expenditures Y ” includes the discounted stream of benefit payments
(unemployment insurance and means-tested assistance benefits) augmented with the fixed cost c̃ per
capita and per meeting with a caseworker. Y takes into account the risk that someone who exits to a
job eventually returns in unemployment after being laid-off. Considering again the first period after
notification only, we have:

Y 0
1 (t0) =

∫ t′1

t0

[
(bh + 0− 0) + p

(
w0
r (x) , s0 (x)

)
× δY 1

1 (x)

ρ+ δ

]
P 0 (x, t0) e−ρ(x−t0)dx

+P 0
(
t′1, t0

)
e−ρ(t′1−t0)

{∫ t∗1

t′1

[
(bh + 0− 0) + p

(
w0
r (x) , s0 (x)

)
× δY 1

1 (x)

ρ+ δ
+ q

[
Y0

1 (x) + c̃
]]

×P 0
(
x, t′1

)
e−[ρ+q](x−t′1)dx

}
+ P 0 (t∗1, t0) e−ρ(t

∗
1−t0)−q(t∗1−t′1)

[
Y0

1 (t∗1) + c̃
]

where

Y0
1 (x) = π0

1

[
S̄0 (x, t0)

]
Y 0

2 (t∗1) +
(
1− π0

1

[
S̄0 (x, t0)

])
Y +,

Y 1
1 designating the same expression as Y 0

1 when the unemployment spell has been interrupted by
temporary employment (i = 1) Y + having the same interpretation as U+ above.
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