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Abstract. When radial basis functions (RBFs) are made increasingly flat, the interpolation
error typically decreases steadily until some point when Runge-type oscillations either halt or reverse
this trend. Because the most obvious method to calculate an RBF interpolant becomes a numerically
unstable algorithm for a stable problem in case of near-flat basis functions, there will typically also
be a separate point at which disasterous ill-conditioning enters. We introduce here a new method,
RBF-QR, which entirely eliminates such ill-conditioning, and we apply it in the special case when the
data points are distributed over the surface of a sphere. This algorithm works even for thousands of
node points, and it allows the RBF shape parameter to be optimized without the limitations imposed
by stability concerns. Since interpolation in the flat RBF limit on a sphere is found to coincide with
spherical harmonics interpolation, new insights are gained as to why the RBF approach (with non-flat
basis functions) often is the more accurate of the two methods.
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1. Introduction. Numerical computations in spherical geometries are ubiqui-
tous in many application areas, such as geophysics (including weather and climate
modeling), astrophysics, and quantum mechanics. The apparent simplicity of such
geometries can be very deceptive. The impossibility to place more than 20 nodes
in a completely uniform pattern on a spherical surface severely complicates most
high-order numerical methods, which usually rely on highly regular lattice-type node
layouts. Although double Fourier methods [12], [29], [30], [39], spherical harmonics
methods [2], [18], [40], [42] and spectral element methods [17], [41], [43] all can achieve
spectral accuracy (meaning that errors decay faster than algebraically with increas-
ing number of node points), all these approaches suffer from different computational
limitations, as noted in [7].

Radial basis functions (RBFs), when used as a basis for spectral methods in
general geometries or on curved surfaces, feature a striking algebraic simplicity. They
have recently been used very successfully by Flyer and Wright for purely convection-
type problems on a spherical surface [7], with an implementation for the shallow
water equations forthcoming [8]. However, challenges include numerical conditioning
and computational speed. The purpose of the present study is to introduce a new
computational algorithm, which successfully addresses the first of these two issues.
Our presentation of this RBF-QR algorithm does not imply that we always recommend
the use of very flat basis functions. It will depend entirely on the application whether
the best value of the shape parameter falls inside or outside the range that was already
previously available. What the RBF-QR algorithm achieves is that it makes also the
flat basis function range fully available for exploration (and, if so is appropriate, for
exploitation). For the convection-type test problem just mentioned, this has already
been investigated [13].

This paper starts with a very brief introduction to RBF interpolation, and we
then quote some relevant results from the literature, such as the potential significance
of the flat basis function limit. The subsequent sections include an introduction to the
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Name of RBF Abbreviation Definition
multiquadric MQ

√
1 + (εr)2

inverse multiquadric IMQ
1

√
1 + (εr)2

inverse quadratic IQ
1

1 + (εr)2

Gaussian GA e−(εr)
2

T���� 2.1

Definitions of some infinitely differentiable radial functions. The shape parameter ε controls
their ’flatness’.

RBF-QR method, a discussion of computational issues related to it, and numerical
test results. The ability to compute stably for all values of the shape parameter leads
to novel comparisons between RBFs and spherical harmonics (SPH) interpolations
(since the latter are found to arise in the limit of flat RBF). The main observations
are summarized in a concluding section.

2. RBF methodology. In order to explain and to motivate the RBF-QR algo-
rithm, we first give a brief introduction to RBFs, and then note how they can be used
for solving PDEs.

2.1. The form of an RBF interpolant. In the case of interpolating data
values fi at scattered distinct node locations xi, i = 1, 2, . . . n, in d dimensions, the
basic RBF interpolant takes the form

s(x) =
n∑

i=1

λi φ(‖x− xi‖), (2.1)

where || · || denotes the Euclidean norm. The expansion coefficients λi are determined
by the interpolation conditions s(xi) = fi, i.e. they can be obtained by solving a
linear system A λ = f. Written out in more detail:






φ(‖x1 − x1‖) φ(‖x1 − x2‖) · · · φ(‖x1 − xn‖)
φ(‖x2 − x1‖) φ(‖x2 − x2‖) · · · φ(‖x2 − xn‖)
...

...
...

φ(‖xn − x1‖) φ(‖xn − x2‖) · · · φ(‖xn − xn‖)











λ1
λ2
...
λn





=






f1
f2
...
fn





. (2.2)

In this study, we will limit our attention to the radial functions φ(r) listed in Table
2.1. The parameter ε is known as the shape parameter. As ε→ 0, the basis functions
become increasingly flat.

On domains with boundaries, polynomial terms are sometimes added to (2.1),
together with some constraints on the coefficients [33]. On a spherical surface, the
most natural counterpart is to include some low order SPH [20]. We will not explore
such variations here.

2.2. RBFs for interpolation and for solving PDEs. For about two decades
following the introduction of RBFs by Hardy in 1971 [19], they were mainly used
for multivariate data interpolation in a rapidly expanding range of applications. In
1990, Kansa introduced a meshless collocation method to solve PDEs using RBF
interpolants [21], [22]. In this method, a smooth RBF interpolant to the scattered data
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is differentiated analytically in order to approximate partial derivatives. Kansa used
this approach to solve parabolic, elliptic and viscously damped hyperbolic PDEs. This
approach is typically spectrally accurate (when boundary conditions are implemented
appropriately). Another notable advantage lies in the fact that it does not require any
kind of a mesh, as opposed to the case with most other types of PDE solvers, such as
finite difference, finite element and finite volume methods. Creating a suitable mesh
over an irregular domain in several dimensions can be highly challenging.

The flat basis function limit ε → 0 would appear to be severely ill-conditioned,
since all the basis functions then become constant, and thus linearly dependent. The
expansion coefficients λi will then diverge to plus or minus infinity, causing large
amounts of cancellations to arise both when solving (2.2) and when evaluating (2.1).
The first indication that the limit nevertheless could be of some interest arose in
connection with analysis of interpolants on infinite equispaced lattices, as summarized
in [3], Chapter 4. However, especially after the apparent ill-conditioning was expressed
in 1993 as a fundamental ‘uncertainty principle’ [37], the limit was not considered
seriously for numerical use for almost a decade. This started to change in 2002 when
Driscoll and Fornberg [6] proved that, in this flat basis function limit, a 1-D RBF
interpolant in general reduces to Lagrange’s interpolation polynomial. For extensions
of this result to more dimensions, see [26], [38]. Already the 1-D result led to the
realization that the complete task, going from data to interpolant, is well conditioned
even though the separate steps of going from data to RBF expansion coefficients and
then from RBF expansion coefficients both can be ill-conditioned. Interpolation with
near-flat RBFs has in much of the RBF literature been mistaken as an ill-conditioned
problem partly because the most obvious numerical method then is unstable.

As noted further in [15], and used to great advantage for solving elliptic PDEs in
[24], the polynomial limit results imply that the RBF approach for PDEs can be viewed
as a generalization (to irregular domains and scattered nodes) of the pseudospectral
(PS) method [1], [10], [44].

Another apparent contradiction is the following: Why would we ever consider
nearly (or totally) flat basis functions when solving convective-type PDEs, for which
the solutions might not be smooth at all - maybe even discontinuous? The RBF-QR
algorithm shows that, as ε→ 0, the flat basis functions span exactly the same space
as do the (distinctly non-flat, but still very smooth) SPH. We can then draw a parallel
to the very successful Fourier-PS methods which, for long-time integration, perform
excellently even in cases of non-smooth solutions ([10], Section 4.2).

Closed form expressions for RBF interpolation and differentiation errors in 1-D
periodic settings are given in [11]. The errors for smooth data are found to not only
decrease exponentially fast with increasing number of nodes, but also decrease rapidly
in this ε → 0 limit (unless potentially adverse effects due to the Runge phenomenon
are present, as discussed in [16]). These observations all agree very well both with
theoretical analysis [27], [47] and with computational experience in multidimensional
settings with irregular node layouts [24].

The contour-Padé method [14], based on contour integration in a complex ε-plane,
confirmed that RBF interpolants s(x) can be computed in a stable way, using standard
precision arithmetic, even in the limit of ε → 0. Although this algorithm formed a
very successful tool for discovering and further exploring several key features of RBF
approximations [15], [24], [46], it was limited to relatively low number of data points
(n � 200 in 2-D). This algorithm demonstrated explicitly that there is no fundamental
barrier against stable computation in the flat basis function limit. It thus confirmed
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that use of (2.2) followed by (2.1) can be viewed merely as a potentially ill-conditioned
approach for computing something that is intrinsically well conditioned.

Spherical geometries are of particular interest in many geophysical and astrophys-
ical applications. As noted in the introduction, Flyer and Wright [7] were the first
to use RBFs to solve purely convective (i.e. non-dissipative) PDEs over a spherical
surface. Their implementation followed what we here denote by ‘RBF-Direct’, i.e.
direct use of (2.2) followed by (2.1).

The comments above set the context which motivates the present work. We
introduce here a new computational algorithm RBF-QR which, for RBF computations
on a sphere, eliminates the ill-conditioning of RBF-Direct for small values of ε (at least
for up to several thousands of points). However, it will still depend on the application
whether the low ε regime, now made computationally available, is advantageous or
not.

3. The RBF-QR method. Compared to the contour-Padé method, the RBF-
QR method is faster, algorithmically simpler, and can be used for much larger numbers
of points. Although we introduce it here only for the special case of nodes located
on the surface of a sphere, it is being developed also for general domains in a parallel
research effort [25]. In this present case with nodes on a sphere, we measure all
distances that appear in (2.1) and in (2.2) as is customary between points in a 3-D
space, and not geodesically along great circle arcs.

3.1. The concept of an equivalent basis. The key idea behind the RBF-QR
method is to replace, in the case of small ε, the extremely ill conditioned RBF basis
with a well conditioned one that spans exactly the same space. It turns out to be
possible to do this in a way that does not at any stage involve numerical cancellations.
The concept of the base change is somewhat reminiscent of how {1, x, x2, ..., xn} forms
a very ill conditioned basis over [−1, 1], whereas the Chebyshev basis {T0(x), T1(x),
T2(x), . . . , Tn(x)} is much better conditioned. Since the spaces spanned by the two
bases are identical, the results of interpolation using the two bases will also be identi-
cal, except for the fact that computations with the latter are vastly more stable with
respect to the influence of truncation- and rounding errors.

In the present case of RBF-QR applied on the surface of a sphere, the new equiv-
alent bases that we introduce will be seen to converge to the spherical harmonics basis
as ε→ 0. We therefore next give a brief introduction to spherical harmonics.

3.2. Spherical harmonics (SPH). These functions are the counterparts on
the surface of the unit sphere S2 (defined by x2 + y2 + z2 = 1) to Fourier modes
around the periphery of the unit circle S1 (defined by x2 + y2 = 1). Although
both these function sets form orthonormal bases, they differ significantly when used
numerically, especially when it is needed to switch between spectral coefficients and
node values. A Fourier expansion with n coefficients corresponds naturally to node
values at n equispaced points. In numerical SPH calculations, it is most common to
use in physical space latitude-longitude type node sets involving about three times
as many nodes as there are SPH coefficients, and then rely on least squares when
transferring data from node values to coefficients. Although no direct counterpart to
the FFT algorithm is available, several relatively fast algorithms for large numbers of
modes have been proposed, e.g. [5], [31], [32], [34].

Closed form expressions for the SPH basis functions tend to be fairly complicated.
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F
�. 3.1. Spherical harmonics basis functions of the first five orders (cf. the functional forms
for the first three orders, given in Table 3.1). The shades of grey reflect numerical values; dashed
lines mark zero contours.
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SPH basis functions of the first few orders, expressed as low degree polynomials in x, y, z, which
are then evaluated over the unit sphere (x, y, z) ∈ S2, i.e. x2 + y2 + z2 = 1.

The definition that we adhere to here agrees for (x, y, z) ∈ S2 with

Y ν
µ (x, y, z) =






√
2µ+1
4π

√
(µ−ν)!
(µ+ν)!P

ν
µ (z) cos(ν tan

−1( yx)) , ν = 0, 1, . . . , µ,
√

2µ+1
4π

√
(µ+ν)!
(µ−ν)!P

−ν
µ (z) sin(−ν tan−1( yx)) , ν = −µ, . . . ,−1

.

(3.1)
Here P νµ (z) are the associated Legendre functions. The functions Y ν

µ (x) corresponding
to µ = 0, 1, . . . , 4 are illustrated in Figure 3.1.

As indicated in Table 3.1, the SPH can alternatively be viewed as simple polyno-
mials restricted to (x, y, z) ∈ S2. For each value of µ, the µ2 SPH of that and lower
orders span the space of all independent polynomials in (x, y, z) of degree µ (after the
dependence x2 + y2 + z2 = 1 has been accounted for).
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Radial Function Expansion coefficients cµ,ε

MQ −2π(2ε2+1+(µ+1/2)
√
1+4ε2)

(µ+3/2)(µ+1/2)(µ−1/2)

(
2

1+
√
4ε2+1

)2µ+1

IMQ 4π
(µ+1/2)

(
2

1+
√
4ε2+1

)2µ+1

IQ 4 π3/2µ!
Γ(µ+ 3

2
)(1+4ε2)µ+1 2F1(µ+ 1, µ+ 1; 2µ+ 2;

4ε2

1+4ε2 )

GA 4π3/2

ε2µ+1 e
−2ε2Iµ+1/2(2ε

2)
T���� 3.2

SPH expansion coefficients corresponding to different choices of smooth RBFs.

A SPH expansion of a function defined over the unit sphere takes the form

s(x, y, z) =
∞∑

µ=0

µ∑

ν=−µ

cµ,ν Y
ν
µ (x, y, z). (3.2)

Truncated SPH expansions (µ ≤ µmax) feature a completely uniform resolution over
the surface of the sphere. As was noted in the introduction, truncated SPH expansions
provide one of the main approaches for reaching spectral accuracy when numerically
solving PDEs on a sphere [2], [18], [40], [42]; see especially [7] for a comparison between
this and other methodologies (including RBFs).

3.3. Expansion formulas for RBFs in terms of SPH. We next quote some
formulas that can be used to transform a basis made up of RBFs to one based on
SPH. Hubbert and Baxter [20] give expressions for the coefficients cµ,ε in expansions
of the form

φ(‖x− xi‖) =
∞∑

µ=0

µ∑

ν=−µ

′{cµ,ε ε
2µ Y ν

µ (xi)} Y
ν
µ (x) , (3.3)

where the symbol
∑′ implies halving the ν = 0 term of the sum. The results for the

radial functions in Table 2.1 are shown in Table 3.2 (including IQ, not given in [20]).
A key feature of these formulas is that, even for vanishingly small ε, all coefficients can
be calculated without any loss of significant digits caused by numerical cancellations.
Below are some notes on these expansions:

• In the formula for IQ, 2F1(...) denotes the (Gauss) hypergeometric function.
• In the formula for GA, Iµ+1/2 denotes a Bessel function of the second kind.

It follows from the identity Iµ+1/2(2ε
2)

ε2µ+1 = 1
Γ(µ+1)

√
π

∫ 1
−1 e

2ε2t(1 − t2)kdt that
the apparent singularity of cµ,ε at ε = 0 is a removable one.

• In practice, we truncate the infinite outer sum in (3.3) after a finite number
of terms. This process is explained in more detail in Section 3.5.2.

• The shape parameter ε appears in (3.3) both in the factors ε2µ, and also inside
the expansion coefficients cµ,ε. Because the matrix algebra in the RBF-QR
algorithm requires numerical values of cµ,ε, we need to give a numerical value
to ε at the beginning of our algorithm. However, to eliminate any danger of
numerical underflow, we wait until the very end to introduce the ε2µ factors
seen in (3.3) (at which point they can be factored out and discarded).

• Expansions are possible also for piecewise smooth RBF. The expansions then
6



Radial Function Definition Expansion coefficients cµ
Cubic |r|3 36π

(µ+ 5
2
)(µ+ 3

2
)(µ+ 1

2
)(µ− 1

2
)(µ− 3

2
)

TPS r2 log |r| 16π
(µ+2)(µ+1)µ(µ−1)

T���� 3.3

Expansion coefficients for two cases of piecewise smooth radial functions.

take the form

φ(‖x− xi‖) =
∞∑

µ=0

µ∑

ν=−µ

′{cµ Y ν
µ (xi)} Y

ν
µ (x),

with some examples of expansion coefficients given in Table 3.3. Since such
RBF do not give spectral accuracy, and also have no ε dependence (and
therefore no flat limit), these cases are of less interest in the present context.

3.4. Matrix representation and QR-factorization.

3.4.1. Change of basis. Following (3.3), we rewrite the original ill-conditioned
basis as expansions in terms of successive SPH as






φ(‖x− x1‖) =
c0,ε
2 Y 0

0 (x1)Y
0
0 (x)+

+ε2c1,ε{Y
−1
1 (x1)Y

−1
1 (x) + 1

2Y
0
1 (x1)Y

0
1 (x) + Y 11 (x1)Y

1
1 (x)}+

+ε4c2,ε{......}+ ε6c3,ε{.........}+ ε8c4,ε{............}+ ...

φ(‖x− x2‖) =
c0,ε
2 Y 0

0 (x2)Y
0
0 (x)+

+ε2c1,ε{Y
−1
1 (x2)Y

−1
1 (x) + 1

2Y
0
1 (x2)Y

0
1 (x) + Y 11 (x2)Y

1
1 (x)}+

+ε4c2,ε{......}+ ε6c3,ε{.........}+ ε8c4,ε{............}+ ...
...

...
φ(‖x− xn‖) =

c0,ε
2 Y 0

0 (xn)Y
0
0 (x)+

+ε2c1,ε{Y
−1
1 (xn)Y

−1
1 (x) + 1

2Y
0
1 (xn)Y

0
1 (x) + Y 11 (xn)Y

1
1 (x)}+

+ε4c2,ε{......}+ ε6c3,ε{.........}+ ε8c4,ε{............}+ ...

(3.4)
This can be re-written in matrix×vector form as follows:






φ(‖x− x1‖)
φ(‖x− x2‖)
...
φ(‖x− xn‖)





=
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=






c0,ε
2 Y 00 (x1)

ε2c1,ε
1 Y −1

1 (x1)
ε2c1,ε
2 Y 0

1 (x1)
ε2c1,ε
1 Y 1

1 (x1) . . .
c0,ε
2 Y 00 (x2)

ε2c1,ε
1 Y −1

1 (x2)
ε2c1,ε
2 Y 0

1 (x2)
ε2c1,ε
1 Y 1

1 (x2) . . .

... ... ... ... . . .
c0,ε
2 Y 00 (xn)

ε2c1,ε
1 Y −1

1 (xn)
ε2c1,ε
2 Y 0

1 (xn)
ε2c1,ε
1 Y 1

1 (xn) . . .











Y 0
0 (x)

Y −1
1 (x)
Y 0
1 (x)

Y 1
1 (x)

Y −2
2 (x)

Y −1
2 (x)
Y 0
2 (x)

Y 1
2 (x)

Y 2
2 (x)
...






(3.5)

= B · Y (x)

The key observation in what follows is that, if we multiply both sides of (3.5)
with any nonsingular matrix from the left, the effect will be that we have formed new
linear combinations of existing basis functions, i.e. the space that the functions span
has not changed.

A QR factorization of B creates in the upper triangular matrix new linear com-
binations of the rows of B. In this process, elements in different columns are never
combined with each other. Powers of ε will appear in the same pattern in the result-
ing upper triangular matrix as they did in the B-matrix, and no mixing of large and
small elements will occur, no matter the value of ε. We thus factor B into a product
B = Q · E · R where Q is unitary, E is diagonal and R is upper triangular. From
the observations above, B · Y (x) and R · Y (x) will then span the same space. We
will do this factorization in such a way that the ill-conditioning issue becomes entirely
confined to the E-matrix, and thus has disappeared from the numerical problem when
using R · Y (x) in place of the original basis B · Y (x). The essential point that makes
the RBF-QR algorithm work is that the ill-conditioning of the original base given in
the left hand side of (3.5) and (3.6) has become entirely confined to the E-matrix.
This matrix both enters and disappears from the calculation analytically, i.e. it never
enters into the numerical calculation of the R · Y (x).

Written in equation form:






φ(‖x− x1‖)
φ(‖x− x2‖)
φ(‖x− x3‖)
φ(‖x− x4‖)
...
φ(‖x− xn‖)






=






Q











1
ε2

ε2

ε2

ε4

. . .






×
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×






∗ . . . . . . . . . ...

∗ ∗ ∗ . . . . . . ...

∗ ∗ . . . . . . ...

∗ . . . . . . ...

∗ ∗ ∗ ∗ ∗ . ...

∗ ∗ ∗ ∗ . ...
. . . ... ... . ...











Y 00 (x)
Y −11 (x)
Y 01 (x)
Y 11 (x)
Y −22 (x)
Y −12 (x)
Y 02 (x)
Y 12 (x)
Y 22 (x)
...






(3.6)

= (Q ·E ·R) · Y (x)

where Q is a unitary n× n matrix, E is a n× n diagonal matrix and R is an upper
triangular n×m matrix (where the value for m will be discussed shortly in Section
3.5.2). The entries marked as ”∗” in the matrix R are of size ε0. These appear only
in upper triangular square blocks along the main diagonal, of sizes 1× 1, 3× 3, 5× 5,
etc. All the other non-zero entries of R, marked as ”·”, contain a higher order leading
power of the form ε2k, k = 1, 2, . . . , i.e. they vanish in significance when ε → 0. As
noted already, the entries in the matrix×vector product R · Y (x) form a basis which
spans exactly the same space as the original (as ε → 0, extremely ill-conditioned)
RBF basis.

Another way to arrive at the same R · Y (x) representation is described next.
Noting the structure of B from (3.5), we can factor it

B =




Y 0
0 (x1) Y −11 (x1) . . .

Y 0
0 (x2) Y −11 (x2) . . .

... ... . . .










ε0

ε2

. . .











c0,ε
2

c1,ε
. . .




 .

After QR decomposing the first factor




Y 0
0 (x1) Y −11 (x1) . . .

Y 0
0 (x2) Y −11 (x2) . . .

... ... . . .



 =



 Q










r11 r12 · · ·
r22 · · ·

. . .




 ,

we have



 B



 =



 Q










r11 r12 · · ·
r22 · · ·

. . .











ε0

ε2

. . .











c0,ε
2

c1,ε
. . .




 .

Transferring the diagonal matrix with powers of ε from the right hand side to the left
hand side of the upper triangular matrix gives exactly the same result as shown in
(3.6). An advantage of this second description (followed in the code in the Appendix)
is that it more clearly conveys that the QR decomposition can be carried out in a way
that is completely independent of the choice of RBF (and of the value of ε).

In the computational algorithm, we make a minor additional base modification.
The matrix R can be represented as [R1|R2], where R1 is a square upper triangular
matrix. Therefore, assuming that the diagonal entries in R are non-zero, we can
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further factor R = R1[ I |(R1)−1R2]. This produces the new basis [ I |(R1)−1R2] · Y,
which we will be using:

[ I |(R1)
−1R2] · Y =






1 . ...

1 . ...

1 . ...

1 . ...

1 . ...

1 . ...

1 . ...

1 . ...

1 . ...

1 . ...
. . . . ...











Y 00 (x)
Y −11 (x)
Y 01 (x)
Y 11 (x)
Y −22 (x)
Y −12 (x)
Y 02 (x)
Y 12 (x)
Y 22 (x)
...
...






(3.7)
Each new basis function is now a SPH, with a perturbation. These perturbations
fade away as ε → 0 because all the entries denoted with ”·” are of size O(ε2) or
smaller. With the previous assumption that the diagonal entries of R are non-zero,
this shows that, as ε → 0, the terms of the new basis converge to the successive
SPH. If the number of nodes (i.e. the number of rows and columns in the collocation
matrix A) is a perfect square n = µ20, then the RBF interpolants converge to a
unique SPH expansion (3.2) with µ < µ0. The computational procedure of using the
new (but mathematically equivalent) basis remains stable as ε → 0 on the further
assumption that the nodes are distributed in such a way that SPH interpolation is
nonsingular. Although this is very likely in any practical case, it follows from a simple
argument that no node-independent basis functions can exist in more than 1-D such
that nonsingularity is assured for all distinct node locations [28].

3.5. Computational considerations. In this section, we discuss the two issues
of code complexity and the truncation strategy for the infinite expansions in (3.7).

3.5.1. Code Complexity. A Matlab code for the RBF-QR algorithm is pre-
sented in the Appendix. The cost is dominated by the QR factorization, and it will
therefore have an O(n3) operation count, just as the RBF-Direct method (for which
the work is dominated by one matrix inversion). Figure 3.2 displays the computa-
tional times of both methods versus the number of nodes n. The trends appear as
slightly more favorable than O(n3), since Matlab’s data handling becomes more effi-
cient as matrices become larger. The figure also shows that the computational time
diminishes with ε. This is due to the fact that a smaller ε allows for earlier truncation
in the expansions (3.4) and fewer columns need to be retained, at first in R and then
in R−11 R2. This truncation procedure is described in more detail below.

3.5.2. Truncation. The matrix B in (3.5) features from the left 1 column with
elements of size O(ε0), 3 columns of size O(ε2), 5 columns of size O(ε4), etc., corre-
sponding to µ = 0, 1, 2, . . . respectively in (3.3). With n data points, the matrix B will
have n rows. We construct this matrix B as {B0, B1, B2, . . .} where the matrix block
Bµ is of size n × (2µ + 1). To ensure that all the new basis functions are obtained
to machine precision (16 significant digits), we include enough blocks that the max
norm of the last included one is less than 10−16 of the max norm of the block that
contains the nth column of B.
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running under Windows on a 1.86 GHz PC.

4. Numerical tests for interpolation on a sphere. We initially consider
two different node distributions, both containing n = 1849 nodes: (a) near-uniform
distribution, obtained as the solution to a minimum energy problem - as would arise
from the equilibrium of freely moving and mutually repelling equal electric charges
[45], and (b) uniformly random distribution, as generated for example by the Matlab
statements

n = 1849

z = 2*rand(1,n)-1;

r = sqrt(1-z.^2);

theta = 2*pi*rand(1,n);

x = r.*cos(theta);

y = r.*sin(theta);

(The number n = 1849 = 432 gives the same number of nodes as there are coefficients
in a SPH expansion that is truncated to µ ≤ 42, as commonly used in SPH tests, and
then denoted ”T42” [41]). The two types of node distributions are shown in Figure
4.1. We consider the following two test functions

Gaussian bell: g(x, y, z) = e−(
2.25
R arccosx)2 ,

Cosine bell: c(x, y, z) =

{
1
2(1 + cos(

π
R arccosx)) x > cosR,

0 x ≤ cosR,
(4.1)

of smoothness C∞ and C1 respectively. R is here a parameter which controls how
peaked the bells are, going from spike-like at R = 0 to flat for increasing R. The
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b. Random node distributiona. Near uniform node distribution

F
�. 4.1. Different point distributions for n=1849 node points on the unit sphere S2.

F
�. 4.2. Three illustrations of the Gaussian bell (a) as a function of x, according to (4.1),
(b) grey-scale on sphere surface, viewed from positive x-direction, and (c) unrolled on a spherical
coordinate ϕ, θ-plane (with the n=1849 near-uniform node locations also marked).

cosine bell features a jump in the second derivative at the edge of its region of support.
An equivalent way to describe the two bells is to replace arccosx by ω, where ω is the
angle, as seen from the center of the sphere, between a point on the sphere and the
center of the respective bell. The support of the cosine bell is then given by ω < R.
Figures 4.2 and 4.3 show each of these two test functions in three different ways. In

12



F
�. 4.3. Cosine bell, displayed in the same manner as the Gaussian bell in Figure 4.2.

parts c of these figures, as well as in the rest of this paper, we adhere to the standard
definition of spherical coordinates






x = ρ sinϕ cos θ
y = ρ sinϕ sin θ
z = ρ cosϕ

and restrict this to ρ = 1 for the unit sphere. The angle ϕ is the co-latitude and is
measured from the z-axis.

The test functions are sampled over the two node sets and the max norm errors
of the MQ RBF interpolants are then evaluated (by dense sampling over the sphere)
for different values of ε, using both RBF-Direct (based on (2.2) and (2.1)), and the
new RBF-QR method.

4.1. Results for the Gaussian bell. Figure 4.4 shows the interpolation errors
as functions of ε. Near-uniform node distributions are seen to give 2-3 orders of mag-
nitude higher accuracy than random node distributions. Even with ill-conditioning
issues eliminated, it is still detrimental to the overall accuracy that some small areas,
purely by chance, have become much less resolved than others. We will thus not
consider the random node case any further in this study.

When ε is decreased, RBF-Direct fails around ε = 1, whereas the RBF-QR
method can be used for the remaining interval 0 ≤ ε ≤ 1. The rapid improvement in
accuracy as ε is lowered from 102 to 100 is similar to what is described analytically
(in a simplified setting) in [11]. This improvement trend ceases around ε = 1. In the
case of the wide bell (R = 0.6), this is due to the limited precision available in 64-bit
floating point. In the case of the narrower bell (R = 0.4), the machine rounding level

13
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�. 4.4. Log-log plots of the max norm error vs. values of ε for the Gaussian bells of two
different widths. The subplots in the top row show the results with nearly uniform nodes and the
bottom row with random nodes. In both cases, the number of nodes was n = 1849. Note that the
vertical scales are different between the R = 0.6 and R = 0.4 plots.

is not reached. The errors increase slightly as ε approach the SPH case of ε = 0.
Figure 4.5 displays in more detail how the interpolation error over the sphere varies
with both ε and R. We have here run RBF-Direct to as low ε-values as possible before
it breaks down due to ill-conditioning, and used RBF-QR for the remaining ε-range.
The large flat region for large R and small ε is a direct consequence of the 10−16

precision of standard floating point. The lower ε-limit for RBF Direct is imposed by
ill-conditioning. There is no equally sharp upper limit for RBF-QR but the conver-
gence in (3.4) degrades severely when ε increases above one. In the present case of
n = 1849, both methods work well in a narrow overlap region for ε slightly larger
than one. For lower values of n, the overlap becomes wider, whereas it may vanish for
higher values of n (leaving some gap in the ε-range in which neither of the methods
will be practical unless the arithmetic precision is increased beyond standard double
precision).

4.2. Results for the cosine bell. Figure 4.6 shows that the lack of smooth-
ness of the cosine bell (featuring a discontinuous second derivative around its edge)
somehow causes much larger errors than in the Gaussian bell case, with especially
large errors arising as ε→ 0 (the SPH case). Figure 4.7 displays, in the same style as
used earlier in the Gaussian bell case, the interpolation error as a function of ε and
R. In the Gaussian bell case, errors decrease very rapidly with increasing R (note
the different vertical scales in the two columns of subplots in Figure 4.4). The cosine
bell case is fundamentally different in that errors drop only weakly with increasing R
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and also grow significantly as ε→ 0. A more detailed discussion of this seemingly less
favorable situation (and two remedies that greatly improve the accuracy at small ε)
can be found in [13].

5. Some comments on the choice of ‘Optimal’ ε. By using RBF-Direct for
large ε and RBF-QR for small ε, we have the capability to compute RBF interpolants
(and also, to solve PDEs) over a sphere for all values of ε (at least for up to a few
thousands of nodes when using standard double precision). This offers new opportu-
nities for exploring issues such as determining an ‘optimal’ ε, and assessing whether
truncated SPH expansions (i.e. RBF in the ε → 0 limit) provide a ‘best possible’
representation of functions on a sphere.
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As Figures 4.4 and 4.6 illustrated (and which has been seen in many earlier cal-
culations, e.g. [4], [9], [23], [35], [36]), the interpolation error when using RBF-Direct
often decreases monotonically with decreasing ε until some point ε = εic when dis-
astrous ill-conditioning kicks in. This has frequently raised the question of whether
still much better accuracy would be attained if the ill-conditioning somehow could be
eliminated. Previous results using the contour-Padé algorithm [14], [24] have shown
this sometimes can be the case. With RBF-QR, we can now extend such tests to
much larger numbers of nodes. What the results in Figures 4.4 and 4.6 show is that
the trend of accuracy improvement (with decreasing ε) can get broken even without
ill-conditioning playing a role, although typically in a less abrupt way. There will
often be a quite well defined error minimum at some location εopt. In the presently
chosen test cases for interpolation, it so happened that εic ≈ εopt whereas in other con-
texts, e.g. solving elliptic equations [24] or generating scattered-node finite-difference
type stencils [46], it often happened that εic > εopt. Major improvements were then
achieved by computing well into a regime that was not reachable with RBF-Direct.

6. Conclusions. The recent work by Flyer and Wright [7] clearly demonstrated
the strengths of RBF methods for solving convective-type PDEs over spherical geome-
tries (computationally, the most difficult type of PDEs since they are dissipation free;
also the most important case for many geophysical applications). The best accuracy
was then obtained when the basis functions were so flat (condition number for the
RBF-Direct approach often around or above 108) that the possibility of adverse effects
from ill-conditioning could not be ignored.

We have here presented a new computational algorithm, RBF-QR, that can over-
come this ill-conditioning even in the ε→ 0 limit, thereby allowing a more extensive
study of how the choice of this shape parameter will affect computational accuracy.
The present test cases for interpolation have been followed up by tests for both short
and long time integration of a convective PDE [13]. While RBF-QR is the second
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algorithm (following contour-Padé [14]) that allows stable computations when ε→ 0,
it is the first one which is practical in the case of thousands of data points on the
surface of the sphere.

It follows from the RBF-QR algorithm that ε → 0 leads to the same results as
when using SPH basis functions. One might therefore ask why not just use SPH as a
computational basis on the sphere. There are several reasons for not doing that:

• The limit of ε→ 0 is often not the best parameter choice.
• RBF can combine spectral accuracy with local refinement wherever this is

needed (cf. discussion on RBF Runge phenomenon in [16]); SPH offer no
such opportunities.

• Non-singularity is guaranteed whenever ε > 0, but not for all node sets if
ε = 0.

7. Acknowledgements. Discussions with Natasha Flyer, Grady Wright and
Elisabeth Larsson, are gratefully acknowledged. Comments from two referees have
been very helpful in making our presentation more clear.

8. Appendix: A Matlab code for the RBF-QR algorithm. The test code
below computes and then plots the RBF interpolant to n data points. This data is
obtained from evaluating a test function at n random locations, marked as black dots
in Figures 8.1 a,b. The test function and the error (difference between it and the
interpolant) are also plotted. The shape parameter ε, the radial function, the number
of data points to interpolate, the resolution of the grid, and the test function can all
be easily modified in the initial driver part of the code. In the code listings below,
the driver code is given first, followed by main function RBFQR and two supporting
functions, named COEF and SPH. The function COEF evaluates expansion coeffi-
cients according to the formulas in Table 3.2 and the routine SPH evaluates spherical
harmonics basis functions at specified locations. The code produces the output shown
in Figure 8.1.

% =============================== DRIVER CODE ======================================

clear all; close all

epsilon = 10^-6;

rbf = ’IQ’; % Basis function; valid choices: ’MQ’,’IMQ’,’IQ’,’GA’

n = 100; % Number of points to interpolate

rand(’seed’,4078) % Create n random node locations

theta = 2*pi*rand(1,n); randCos = 2*rand(1,n)-1; phi = acos(randCos);

[x,y,z] = sph2cart(theta,phi-pi/2,1);

fi = @(x,y,z) x.*exp(y-z); % Test function to interpolate

res = 50; m = res^2; % Resolution of the grid for evaluating the interpolant

f = fi(x,y,z); % Evaluate the data values to interpolate

% ___________________ Evaluation of the interpolant by RBF-QR ______________________

[theta_grid,phi_grid] = meshgrid(linspace(0,2*pi,res),linspace(0,pi,res));

theta_eval = reshape(theta_grid,1,res^2); phi_eval = reshape(phi_grid,1,res^2);

[xe,ye,ze] = sph2cart(theta_eval,phi_eval-pi/2,1);fe = fi(xe,ye,ze);

[beta R] = RBFQR(theta,phi,epsilon,f,rbf); index = 1;

for mu = 0:sqrt(size(R,1))-1 % Each loop adds a block of columns of SPH of order mu

% to Y, evaluated at the grid points

Y(:,index:2*mu+index) = SPH(mu,theta_eval,phi_eval);

index = index + 2*mu + 1;

end

f_RBFQR = (Y*R*beta)’; % Call to RBFQR routine
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% __________________ Plot of the interpolant and of the error ______________________

colormap(gray);

subplot(2,1,1)

surf(theta_grid,phi_grid,reshape(f_RBFQR,res,res),’FaceColor’,’none’,’LineWidth’,0.05)

axis([0 2*pi 0 pi min(f_RBFQR) max(f_RBFQR)]); hold on;

plot3(theta,phi,f,’k.’,’MarkerSize’,10); title(’Plot of the interpolant’);

view([-10,50]);xlabel(’\phi’); ylabel(’\theta’); set(gca,’ydir’,’reverse’);

subplot(2,1,2)

surf(theta_grid,phi_grid,reshape((f_RBFQR-fe),res,res),’FaceColor’,’none’,...

’LineWidth’,0.05)

axis([0 2*pi 0 pi min((f_RBFQR-fe)) max((f_RBFQR-fe))]); hold on;

plot3(theta,phi,zeros(size(f)),’k.’,’MarkerSize’,10); title(’Plot of the error’);

view([-10,50]); xlabel(’\phi’); ylabel(’\theta’); set(gca,’ydir’,’reverse’);

% ============================== FUNCTION RBFQR ====================================

function [beta, R_new] = RBFQR(theta,phi,epsilon,f,rbf)

% This function finds the RBF interpolant, with shape parameter epsilon, through the

% n node points (theta,phi) with function values f. It outputs beta, the expansion

% coefficients of the interpolant with respect to the RBF_QR basis. It calls the

% functions SPH(), which gives spherical harmonic values and COEF() which provides the

% expansion coefficients.

n = length(theta); Y = zeros(n); B = zeros(n);

mu = 0; index = 1; orderDifference = 0;

mu_n = ceil(sqrt(n))-1; %the order of the n_th spherical harmonic

while orderDifference < -log10(eps) %eps is the machine precision

% Each loop adds a block of columns of SPH of order mu to Y and to B.

% Compute the spherical harmonics matrix

Y(:,index:2*mu+index) = SPH(mu,theta,phi);

% Compute the expansion coefficients matrix

B(:,index:2*mu+index) = Y(:,index:2*mu+index)*COEF(mu,epsilon,rbf);

B(:,index+mu) = B(:,index+mu)/2;

% Truncation criterion

if mu > mu_n-1

orderDifference = log10(norm(B(:,[mu_n^2+1:(mu_n+1)^2]),inf)/...

norm(B(:,(mu+1)^2),inf)*epsilon^(2*(mu_n-mu)));

end

index = index+2*mu+1; mu = mu+1; % Calculate column index of next block

end

[Q,R] = qr(B); % QR-factorization to find the RBF_QR basis

E = epsilon.^(2*(repmat(ceil(sqrt(n+1:mu^2))-1,n,1) - ... % Introduce the

repmat(ceil(sqrt(1:n))-1,mu^2-n,1)’)); % powers of epsilon

%Solve the interpolation linear system

R_new = [eye(n),E.*(R(1:n,1:n)\R(1:n,n+1:end))]’; beta = Y*R_new\f’;

% ================================ FUNCTION COEF ======================================

function c_mu = COEF(mu,epsilon,rbf)
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% Returns the expansion coefficients in the cases of MQ, IMQ and GA radial functions.

switch rbf

case ’MQ’

c_mu = -2*pi*(2*epsilon^2+1+(mu+1/2)*sqrt(1+4*epsilon^2))/...

(mu+1/2)/(mu+3/2)/(mu-1/2)*(2/(1+sqrt(4*epsilon^2+1)))^(2*mu+1);

case ’IMQ’

c_mu = 4*pi/(mu+1/2)*(2/(1+sqrt(4*epsilon^2+1)))^(2*mu+1);

case ’IQ’

c_mu = 4*pi^(3/2)*factorial(mu)/gamma(mu+3/2)/(1+4*epsilon^2)^(mu+1)*...

hypergeom([mu+1,mu+1],2*mu+2,4*epsilon^2/(1+4*epsilon^2));

case ’GA’

c_mu = 4*pi^(3/2)*exp(-2*epsilon^2)*besseli(mu+1/2,2*epsilon^2)/...

epsilon^(2*mu+1);

end

% =============================== FUNCTION SPH =====================================

function SPHBlockMu = SPH(mu,theta,phi)

% Returns a matrix containing the spherical harmonics of order mu, evaluated at the

% (theta,phi) node points.

n = length(theta);L_mu_nu(:,1:mu+1) = legendre(mu,cos(phi))’; a = 0:mu;

t = repmat(sqrt(factorial(1+mu-a-1)./factorial(1+mu+a-1)),n,1) ...

.*L_mu_nu(:,a+1).*exp(i*repmat(a,n,1).*repmat(theta’,1,mu+1));

SPHBlockMu = sqrt((2*mu+1)/(4*pi))*[imag(t(:,end:-1:2)),real(t)];
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