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Many types of radial basis functions (RBFs) are global, in terms of having large magnitude across the
entire domain. Yet, in contrast, for example, with expansions in orthogonal polynomials, RBF expansions
exhibit a strong property of locality with regard to their coefficients. That is, changing a single data
value mainly affects the coefficients of the RBFs which are centered in the immediate vicinity of that
data location. This locality feature can be advantageous in the development of fast and well conditioned
iterative RBF algorithms. With this motivation, we employ here both analytical and numerical techniques
to derive the decay rates of the expansion coefficients for cardinal data, in both 1-D and 2-D. Furthermore,
we explore how these rates vary in the interesting high-accuracy limit of increasingly flat RBFs.
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1. Introduction

Radial basis functions (RBF) provide a well established approach to the task of interpolating scattered
data in multiple dimensions. With aradial functionφ(r) and with data valuesfk given at locationsxk,
k = 1,2, . . . ,n, the function

s(x) =
n

∑
k=1

λk φ(||x−xk||), (1.1)

where‖·‖ denotes the standard Euclidean norm, interpolates the data if we choose the expansion coeffi-
cientsλk in such a way thats(xk) = fk, k= 1,2, . . . ,n. During the last decade, it has become increasingly
well recognized that interpolants of this form – whenφ(r) is infinitely differentiable – provide a natural
generalization, to arbitrary geometries, of pseudospectral (PS) methods (Driscoll & Fornberg (2002),
Fornberg (1996), Fornberg et al. (2004)) for solving PDEs. These differentiable RBFs can be scaled by
means of ashape parameter, in this paper denoted byε, so that we frequently writeφ(r;ε). It turns out
thateveryclassical PS method (Fourier, Chebyshev, etc.) arises as a special case of RBF interpolation
Driscoll & Fornberg (2002), Fornberg et al. (2004) in the limit asφ(r;ε) becomes flat (i.e. asε → 0).

Successive basis functions in classical basis sets (such as Fourier and Chebyshev sets) are global
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and increasingly oscillatory. Altering a single data value will change all expansion coefficients by
roughly the same amount - i.e. there is no concept of ‘locality’ in the resulting expansion. The RBF
basis is fundamentally different in a number of ways. In return for giving up the orthogonality of the
basis functions, unconditional non-singularity is gained with scattered node locations for many cases
of radial functionsφ(r). Although the basis functions typically are global (e.g. the popular choice of
φ(r) =

√
1+(εr)2 ), the interpolant will nevertheless feature strong locality in the sense that changing

the data at one point will mainly influence expansion coefficients of basis functions centered in its
immediate vicinity. If the locality was perfect (only one coefficient being affected), the linear system to
solve would be diagonal, i.e. perfectly conditioned. Since lack of locality can cause ill-conditioning, a
study of locality will give insights into how different radial functions compare in this regard. The degree
of locality enters also in the convergence rates of some iterative procedures for rapid computation of the
expansion coefficients (Buhmann (2003) Chapter 7, Faul & Powell (2000)).

The concept of locality associated with RBF interpolation on equispaced lattices was first addressed
by Buhmann (Buhmann (1988), Buhmann (1993), Buhmann & Powell (1990)), who studied the behav-
ior of the RBF interpolant to cardinal data (a single data value being one and all others equal to zero)
in the asymptotic limit as||x|| → ∞ along a coordinate axis. While our analysis also considers cardinal
data, we instead concentrate on studying the behavior of the resulting RBF expansion coefficients,λk,
for increasing|k|. It should be noted that there is a striking similarity between the integrals that describe
the coefficients and those that represent the interpolant for cardinal data. This similarity is discussed and
developed further in the context of exploring Gibbs phenomena for RBFs Fornberg & Flyer (in press).
In cases where closed form expressions for the integrals that represent the coefficients are not possible
(which is the usual circumstance), we present an asymptotic approach using contour integration that
captures the behavior ofλk for both small and largek, noting very different trends in each case. It is
the former case (k small) that almost always determines the localization property of the RBF expansion
(thin plate splines being the exception). Also not previously observed in the literature is that the decay
rate ofλk for 2-D interpolation is dependent not only on radial distance but also on the angle in coeffi-
cient space (and likewise in higher dimensions). In addition, our study also illuminates the dependence
of the decay rate on the shape parameterε for infinitely smooth RBFs.

RBFs are mainly of interest when the data locations are scattered. Since effective theoretical anal-
ysis for such cases does not appear to be practical, this study is focused on cases with node points on
equispaced lattices (in one and more dimensions). In a follow-up studies, we will consider scattered
nodes, in particular when distributed over the surface of a sphere. Preliminary numerical results show
trends which qualitatively match those observed in the current paper.

The paper is organized as follows. Section 2 focuses on closed-form expressions for the RBF ex-
pansion coefficients in one or more dimensions using Fourier analysis. Explicit formulas are obtained
for a few RBF cases, exhibiting a variety of decay behaviors for the expansion coefficients. However,
such explicit expressions are rare even in 1-D, making it necessary to obtain asymptotic estimates. It is
shown in Section 3 how contour integration offers a particularly effective way to estimate the size of the
cardinal expansion coefficients in 1-D for both small and largek. These observations are summarized in
Section 4, with a discussion of the situation in higher dimensions given in Section 5. Section 6, with a
summary of observations, is followed by Appendix A proving non-singularity of a less commonly used
type of radial function. Appendix B presents the asymptotic analysis for the generalized multiquadric
RBF.
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2. Closed form expressions for cardinal coefficients

2.1 Basic formulas

We consider first the situation in 1-D and base the analysis in this section on the assumption of a constant
node spacingh= 1. The radial functionφ(r) takes, at the lattice pointsxk = k∈ Z, the valuesφ(k). The
cardinal expansion coefficientsλk, k∈ Z, will then satisfy

∞

∑
k=−∞

λk φ(n−k) =
{

1 n = 0
0 n 6= 0, n∈ Z

. (2.1)

In terms of the 2π-periodic functions

Λ(ξ ) =
∞

∑
k=−∞

λk eikξ

and

Ξ(ξ ) =
∞

∑
k=−∞

φ(k) eikξ ,

the convolution in (2.1) can be expressed as

Λ(ξ ) ·Ξ(ξ ) = 1.

We adhere to the convention of defining the Fourier transform through the relationsf (x)= 1√
2π

∫ ∞
−∞ f̂ (ω) eiωxdω,

f̂ (ω) = 1√
2π

∫ ∞
−∞ f (x) e−iωxdx. Furthermore, radial functions are symmetric, i.e.φ(r) = φ(−r) implying

λk = λ−k. It follows then from the Poisson summation formula that

Ξ(ξ ) =
√

2π

∞

∑
k=−∞

φ̂(ξ +2πk), (2.2)

and we obtain the cardinal expansion coefficients explicitly (as has been observed earlier, e.g. Buhmann
& Powell (1990), Buhmann (2003)) as

λk =
1

(2π)3/2

∫ 2π

0

eikξ

∞
∑

j=−∞
φ̂(|ξ +2π j|)

dξ . (2.3)

In cases where the regular Fourier transform forφ(r) fails to exist, the generalized Fourier transform
can be used (e.g. Arsac (1966), Jones (1966), Lighthill (1958)).

We can note that the expression for the interpolant becomes

s(x) =
1

2π

∫ ∞

−∞

φ̂(ξ )eixξ

∞
∑

j=−∞
φ̂(|ξ +2π j|)

dξ . (2.4)

This differs from (2.3) mainly in two ways: 1) the factor ofφ̂(ξ ) in the numerator and 2) the integral
is taken over(−∞,∞). As a result, there is a close relationship between the expansion coefficients,λk,
and the interpolant,s(x). Fuller exploration of this relationship will be postponed to a follow-up paper,
as it would distract from our current theme.
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For cardinal expansions inn-D, (2.3) generalizes to

λk1,...,kn =
1

(2π)(3n)/2

∫ 2π

0
. . .
∫ 2π

0

eik·ξ

∞
∑

j1=−∞
. . .

∞
∑

jn=−∞
φ̂(‖ξ +2π j‖)

dξ . (2.5)

Table 1 lists some examples of radial functionsφ(r) and their (generalized) Fourier transforms. Non-
singularity of the RBF interpolant in the SH case (for scattered data inn dimensions) was first shown in
Gneiting (1997). A new shorter proof is furnished in Appendix A.

The multidimensional Fourier transforms in Table 1 are most easily carried out by means of the
Hankel relation

φ̂(‖ξ‖) = (2π)−n/2
∫ ∞

−∞
. . .
∫ ∞

−∞
φ(‖x‖) e−iξ ·xdx (2.6)

=
1

ρ(n−2)/2

∫ ∞

0
φ(r) rn/2 J(n−2)/2(rρ)dr,

whereρ2 = ξ 2
1 +ξ 2

2 + . . .+ξ 2
n and r2 = x2

1 +x2
2 + . . .+x2

n.
With the use of some Bessel function identities, (2.6) can alternatively be expressed as follows:

n = 2m+1 odd:

φ̂(ρ) = (−2)m

√
2
π

dm

d(ρ2)m

∫ ∞

0
φ(r) cos(ρr)dr (2.7)

n = 2m+2 even:

φ̂(ρ) = (−2)m dm

d(ρ2)m

∫ ∞

0
φ(r) r J0(ρr)dr. (2.8)

2.2 Some 1-D special cases with simple explicit formulas

In rare cases, both the infinite sum and the integral in (2.3) can be obtained in closed form. However,
these examples are exceptions rather than the rule. They highlight the need for a more general approach
that can provide approximations on how the coefficients decay away fromk = 0 as|k| increases for
arbitrary radial functions.

2.2.1 Cubics For cubicsφ(r) = |r|3, we obtain (as was noted in Fornberg et al. (2002))

λ0 =−4+3
√

3, λ1 =
19
2
−6

√
3 andλk =

(−1)k3
√

3

(2+
√

3)k
, k > 2. (2.9)

(recalling thatλ−k = λk).

2.2.2 IQ In this case, the sum (but not the integral) can be evaluated in closed form. As was also
noted in Fornberg et al. (2002), we then get

λk =
(−1)kε sinh(π

ε
)

π2

∫
π

0

coskξ

cosh(ξ/ε)
dξ , k∈ Z. (2.10)
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Type of radial function Fourier transform φ̂(ρ) in n-D
Piecewise smooth

MN monomial |r|2 j+1 (−1) j+122 j+ n
2+1( j+ 1

2)Γ ( j+ 1
2)Γ ( j+ n+1

2 )
π

1
|ρ|2 j+n+1

TPS thin plate spline |r|2 j ln |r| (−1) j+122 j+ n
2−1 j! Γ

(
j + n

2

)
1

|ρ|2 j+n

Infinitely smooth

GMQ generalized MQ (1+(εr)2)β 2β+1

Γ (−β )εn/2−β

Kn/2+β

(
|ρ|
ε

)
|ρ|n/2+β

MQ
√

1+(εr)2 -
√

2
√

π ε
n−1

2

K n+1
2

(
|ρ|
ε

)
|ρ|

n+1
2

IMQ 1√
1+(εr)2

√
2

√
π ε

n+1
2

K n−1
2

(
|ρ|
ε

)
|ρ|

n−1
2

IQ 1
1+(εr)2

1

ε
n
2+1

K n
2−1

(
|ρ|
ε

)
|ρ|

n
2−1

GA Gaussian e−(εr)2 e−ρ2/(4ε2)

(
√

2ε)n

SH sech sechεr π
n
2

(2ρ)
n
2−1

ε
n
2+1

∞
∑

k=0
(−1)k(2k+1)

n
2 K1− n

2
( πρ

2ε (k+ 1
2))

BSL Bessel
Jd

2−1
(εr)

(εr)
d
2−1


(

1− |ρ|2

ε2

) d−n
2 −1

εn2
d
2−1

Γ ( d−n
2 )π

n
2
, if |ρ|6 ε

0, if |ρ|> ε

Table 1. Regular or generalized Fourier transforms for some cases of radial functions
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2.2.3 GA The exact result can be written as a ratio of two sums

λk =
e(εk)2

2
·

∞
∑
j=k

(−1) j e−ε2( j+ 1
2)2

∞
∑
j=0

(−1) j( j + 1
2) e−ε2( j+ 1

2)2
, k∈ Z. (2.11)

This is most easily verified by substituting (2.11) into (2.1), noting that the denominator in (2.11) does
not depend onk, and switching the order in the resulting double sum. A way to arrive at (2.11) (and also
(2.12) below) is outlined in Section 3.4.

2.2.4 SH The result becomes particularly simple in this case. We find

λk =
1

∞
∑

j=−∞
(−1) jsech2(ε j)

(−1)ksech(εk), k∈ Z. (2.12)

In the case thatε is small, the sum can be evaluated very fast by means of either of the identities

∞

∑
j=−∞

(−1) jsech2(ε j) =
4π2

ε2

∞

∑
j=0

( j + 1
2)csch

(
π2

ε
( j + 1

2)
)

=
2π2

ε2

∞

∑
j=0

coth
(

π2

ε
( j + 1

2)
)

sinh
(

π2

ε
( j + 1

2)
)

3. Asymptotic analysis in 1-D by means of contour integration

We describe this approach first in the case of MQ and apply then the same methodology to other cases
of radial functions.

3.1 MQ

The radial function is in this caseφ(r) =
√

1+(εr)2. For algebraic simplicity, we assumeε = 1 (but
comment on other choices below). From (2.3) follows

λk =− 1
4π

∫ 2π

0
h(ξ ) eikξ dξ

where

h(ξ ) =
1

∞
∑

j=−∞

K1(|2π j+ξ |)
|2π j+ξ |

.

The functionh(ξ ) is 2π-periodic and can, over[0,2π], be written (without taking magnitudes) as

h(ξ ) =
1

∞
∑
j=0

K1(2π j+ξ )
2π j+ξ

+
∞
∑
j=1

K1(2π j−ξ )
2π j−ξ

. (3.1)
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FIG. 1. Magnitude ofh(ξ ), as given by (3.1), over the domain 06 Reξ 6 2π,−8 6 Imξ 6 8.

In this form, h(ξ ) can be extended as a single-valued analytic function throughout the strip 06
Reξ 6 2π. Figure 1 illustrates the magnitude of this function, and Figure 2 shows its schematic charac-
ter.

We change the integration path, as is indicated in Figure 2, and note that the two leading contribu-
tions to the integral ask increases will come from (i) the first pole only and (ii) from the non-cancelling
contributions in the vicinity of the branch points atξ = 0 andξ = 2π. Each type of singularity con-
tributes a different type of decay behavior to the asymptotic approximation ofλk for increasingk, as
noted below.

• Contribution from the pole singularity

Along the lineξ = π + i t , the functionh(ξ ) is purely real and 1/h(ξ ) features decaying oscilla-
tions whose roots mark the pole locations. The first pole appears nearπ +1.04 i and has a residue
of approximately−34.6, contributing a term of 17.3 (−1)k+1 e−1.04k to λk. The second pole at
t ≈ 3.42 would give a contribution ofO(e−3.42k), negligible compared to that of the first pole with
further poles giving even smaller contributions.

• Contribution from the branch points

The singularity ofh(ξ ) around the origin comes from one term only in the denominator of (3.1),
that is ξ

K1(ξ ) = ξ 2+(1
4−

γ

2 + ln2
2 − lnξ

2 )ξ 4+ . . . The branch singularity is of the form−1
2ξ 4 lnξ =
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π

FIG. 2. Character of the functionh(ξ ) in the complex plane. The original and the modified integration paths are shown. The
additional paths marked{1}, {2}, {3}, and{4} enter in the discussion in Appendix B.

−1
2ξ 4(ln |ξ |+ i argξ ) (and similarly aroundξ = 2π). What does not cancel between the two sides

but instead adds up (hence an extra factor of 2) amounts to 2(− 1
4π

)
∫ i·{someδ > 0}

0 (−1
2)ξ 4i π

2 e−ikξ dξ .
Lettingξ = it and noting that, ask→∞, we can change the upper integration limit to infinity, this
simplifies to− 1

8

∫ ∞
0 t4e−ktdt =− 3

k5 .

Combing these contributions gives the asymptotic approximation toλk for increasingk:

λk ≈ (−1)k+1 17.3 e−1.04k + . . .︸ ︷︷ ︸ − 3
k5 + . . .︸ ︷︷ ︸

exponential part algebraic part

(3.2)

Figure 3 compares, using log-linear and log-log scales, the true values for|λk| (as calculated with
an accurate direct numerical approach) with the 2-term approximation in (3.2). The agreement is seen
to be near-perfect. The same procedure can be carried through for any value of the shape parameterε.
Corresponding results forε = 0.1 and in the limit asε → 0 are included in Table 2.

We describe next, in more abbreviated form, the remaining cases of smooth radial functions.

3.2 IQ

Proceeding in a manner analogous to the MQ case, we find that, for generalε,
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FIG. 3. Comparison between correct values of|λk| for MQ in 1-D, ε = 1 (dots) and the 2-term asymptotic formula (3.2) (solid
line). The subplot to the left is log-linear and the one to the right is log-log.

λk ≈
(−1)kε2sinh(π

ε
)

2π cosh( kπε

2 )
−

tanh(π

ε
)2

π2

1
k2 . (3.3)

Figure 3.4 compares this approximation with an explicit computation of theλk. Panels (a) and (b) depict,
respectively, as a function of bothk andε, the exponential and algebraic decay surfaces corresponding
to the first and second terms of (3.3). Panel (c) shows the union of these surfaces, which compares
favorably with (d), the actual expansion coefficients when computed directly.

3.3 GMQ

The generalized multiquadric RBF isφ(r) = (1+(εr)2)β . Since the analysis is very similar to the MQ
case, it is given in Appendix B . Figure 5 shows, forε = 1, log|λk| as a function ofβ andk. Note the
sharp dips in the algebraic decay regime at positive half integer values ofβ . There are no analogous
features in the exponential decay regime. In both regimes the expansion coefficients approach infinity
at nonnegative integer values ofβ .

The exponential decay of the GMQ RBF is given by the single equation (B.2), while a collection of
equations, (B.5), (B.6), (B.7), (B.8), and (B.9), is needed to describe the algebraic decay, each equation
corresponding to a different set ofβ values. Positive half-integer values ofβ are optimal in that they
result in logarithmic branch points rather than algebraic, leading to much more rapid decay than achieved
by other positive values (Figure 5). Indeed, judging from equation (B.5), it would seem that larger
positive half-integer values would be better than smaller ones. However, in practice, to generate an
interpolant to a finite number of scattered data points, a linear system is solved in order to determine
the expansion coefficientsλk, and this system becomes markedly more ill-conditioned asβ increases,
in spite of the enhanced locality. That is, there is a trade-off between locality and conditioning. In this
regard,β = 1

2 is a good compromise, consistent with the reputation of the MQ RBF as being particularly
useful.
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FIG. 4. Comparison of approximate and actual surfaces illustrating the decay of IQ expansion coefficients for 1-D equispaced,
cardinal data. (a), the exponential decay (first term of (3.3)). (b), the algebraic decay (second term of (3.3)). (c), combination of
(a) and (b). (d), actual expansion coefficients, computed explicitly. Note how well (c) approximates (d).
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3.4 GA and SH

In these cases, there are no branch cuts, and both the locations and residues of the poles ofh(ξ ) can be
written down explicitly. The first pole provides the leading asymptotic term. The steps in arriving at
(2.11) and (2.12) include moving the integration path increasingly high up in the complex plane. In the
case of (2.11), the result can be further simplified by means of the relation

ξ (x) =
1

x3/2
ξ (

1
x
). (3.4)

for the function

ξ (x) =
∞

∑
j=0

(−1) j( j + 1
2) e−π( j+ 1

2)2x. (3.5)

3.5 BSL

The oscillatory Bessel RBF,φ(r) = Jd
2−1(εr)/(εr)

d
2−1, gives non-singular interpolants ifd > n,

whered is an integer andn is the dimension of the space Fornberg et al. (2006). These are included
in this study mainly to illustrate the unusual locality properties of their expansion coefficientsλk. The
BSL RBFs are different from other RBFs in that their Fourier transforms have compact support, being
non-zero only on the interval[−ε,ε] in 1-D (see Flyer (2006)). This implies that forε < π, the Poisson
sumΞ(ξ ) in equation (2.2) will be zero over a portion of the interval[−π,π], resulting in a divergent
integral forλk in (2.3). In such a case the coefficientsλk become extremely large and essentially lack
locality (as seen in the top left diagram of Figure 6).

On the other hand, ifε > π the Poisson sum (2.2) is everywhere positive. Equation (2.3) applies
and the coefficientsλk exhibit locality. For these values ofε, Ξ(ξ ) (and therefore 1/Ξ(ξ )) will always
have two discontinuities in some derivative on the interval[−π,π] due to the character of the Fourier
transform and the 2π periodicity of the Poisson sum. This will lead to an algebraic decay rate forλk of
the typeO(1/k(d−1)/2). The preceding schematic discussion is illustrated in Figure 6.

4. Summary of asymptotic observations in 1-D

The general picture that has emerged is that, for the main types of radial functions considered here, there
is always an exponential decay for the leading coefficients. In the RBF cases for whichh(ξ ) has branch
points atξ = 0 andξ = 2π (which also includes TPS), there will also be algebraic terms, which then
will come to dominate for high values ofk. Table 2 summarizes the different rates that arise for the
types of radial functions introduced in Table 1.

The algebraic trend, if present at all, is noticeable only after the coefficients have decreased by sev-
eral orders of magnitude. Furthermore, for decreasingε, it gets progressively more insignificant in view
of the rapid growth of the coefficient for the leading exponential term. From a computational point of
view, the rapid growth of all the coefficients poses less of a problem than one might fear. Because of the
nature of floating point arithmetic, uniform scalings will not generally lead to any loss of computational
accuracy. The exponential rate for MN and TPS becomes less favorable whenj increases. This forces
for these radial functions a trade-off with accuracy, which generally gets better with increasingj.

The cases whenφ(r) is an entire function (GA and BSL) become particularly bad whenε → 0. For
GA, the decay is of the formO(e−ε2k) as opposed toO(e−const· εk), and it is essentially lost altogether
for BSL whenε < π.
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FIG. 6. First row: decay ofλk. Notice the difference in vertical scale between the left and right figures. Second row: the interpolant
s(x). Third row: thej = 0,± terms of the Poisson sum for the indicated value ofε andd. Left column:ε = 7

8π < π; right column:
ε = 4

3π > π.
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Type of radial function Exponential rate Algebraic rate
Piecewise smooth
MN j = 1 (−1)k 5.20e−1.32k N/A

j = 2 (−1)k+11.38e−0.843k N/A

j = 3 (−1)k 0.224e−0.625k N/A

j = 4 (−1)k+10.0235e−0.498k N/A

TPS j = 1 (−1)k 5.30e−1.81k 3
π2k4

j = 2 (−1)k+11.81e−1.02k 5
π2k6

j = 3 (−1)k 0.377e−0.717k 7
π2k8

j = 4 (−1)k+10.0486e−0.554k 9
π2k10

Infinitely smooth
MQ ε = 1 (−1)k+117.3e−1.04k − 3

k5

ε = 1
10 (−1)k+11.46×1013e−0.150k −3000

k5

ε → 0 (−1)k+1 π
√

ε

23/2 e
π
ε e−

π
2 εk − 3

ε3k5

IQ ε = 1 (−1)k+13.68e−1.57k − 1
π2k2

ε → 0 (−1)k+1 ε2

2π
e

π
ε e−

π
2 εk − 1

π2k2

IMQ ε = 1 (−1)k+17.82e−1.38k −0.922
4k(logk)2+0.927k logk+9.92k

GA ε2k >> 1 (−1)k ε3

π3/2 e
π2

4ε2 e−ε2k N/A

SH εk >> 1 (−1)k ε2

2π
e

π2
2ε e− εk N/A

Table 2. Leading order exponential and algebraic cardinal coefficient decay rates in 1-D for some different radial functions



Localization properties of RBF expansion coefficients for cardinal interpolation 15 of 25

5. Analysis and observations in 2-D and higher

In the case of GA, we can again find a closed form solution for the cardinal expansion coefficients in
any number of dimensions. For the other RBFs, we limit ourselves to 2-D and relate the numerically
observed decay rates to characteristics of the 2-D Fourier transform.

5.1 GA

With λk chosen according to (2.11), it holds that

∞

∑
k=−∞

λke
−ε2(k−m)2

=

{
1, if m= 0;

0, if m= 1.

Therefore, inn dimensions,

∞

∑
k1=∞

. . .
∞

∑
kn=−∞

(λk1· . . . ·λkn)e
−ε2[(k1−m1)2+...+(kn−mn)2]

=

(
∞

∑
k1=−∞

λk1e−ε2(k1−m1)2

)
· . . . ·

(
∞

∑
kn=−∞

λkne−ε2(kn−mn)2

)

=

{
1, if m1 = m2 = · · ·= mn = 0;

0, otherwise,

and we have obtainedλk1,k2,...,kn = λk1 ·λk2 · . . . ·λkn. This is an exact formula for the RBF coefficients
in n-D. Notice that they are simply a product of the 1-D coefficients along each of then dimensions,
immediately confirming the pyramid shaped angular dependence seen later on in the GA case of Figure
10. The lack of a simple generalization of Cauchy’s Theorem to functions of several complex variables
makes the type of analysis we used in 1-D difficult to carry over. However, numerical computation
of the cardinal coefficients is again straightforward (noting that the integrals in (2.5) can be rapidly
approximated by FFTs).

We will return to the GA RBF in Section 5.3.

5.2 Cubic RBF

Figure 7 shows numerically computed values for log|λk1,k2| near the origin in thek1,k2-plane.
The coefficients decay exponentially fast for smallk, with different rates depending on the direction in
thek1,k2-plane, as shown in Figure 8.

Each of the subplots in Figure 8 is similar to the 1-D case in the left subplot of Figure 3 in that there
are two decay regimes. While we have not been able to find any closed form analytic expressions for
the direction dependent exponential decay regime, the algebraic decay regime that dominates for large
k, is shown below to be

λk1,k2 ≈ −
(

5
2π

)2 1
k7 (5.1)



16 of 25 B. FORNBERG, N. FLYER, S. HOVDE, and C. PIRET

k1

k2

log |λk1,k2
|

FIG. 7. Display of log|λk1,k2 | for cubic RBFs in 2-D centered at(k1,k2) = (0,0).

wherek =
√

k2
1 +k2

2. Figure 9 shows the six subplots from Figure 8 superposed on each other, together
with (dashed) the curve corresponding to (5.1). The agreement is excellent. A different method of arriv-
ing at the algebraic decay rates (by repeated integration-by-parts) is given in Section 4.2.4 of Buhmann
(2003).

5.2.1 Proof of (5.1) The generalized 2-D Fourier transform for cubics isφ̂(ρ) = 9
ρ5 (cf. Table 1).

The denominatorg(ξ1,ξ2) = ∑∞
j1=−∞ ∑∞

j2=−∞ φ̂(‖ξ +2π j‖) in (2.5) will therefore go to infinity in this

manner at the origin and at each 2π-periodic repetition of the origin. The functionh(ξ1,ξ2) = 1
g(ξ1,ξ2)

will, at the origin (and at its periodic repetitions), take the form

h(ξ1,ξ2) =
1
9
(ξ 2

1 +ξ
2
2 )5/2 + {a smooth function}. (5.2)

We note that the cardinal expansion coefficients are proportional to the Fourier series coefficients of
the doubly 2π-periodic functionh(ξ1,ξ2). To see what effect these irregularities have on the coefficient
decay rate, we consider also:

Poisson’s summation formula in 2-D:If a function f (ξ1,ξ2) has the Fourier transform̂f (ω1,ω2), then
the doubly periodic function

∞

∑
j1=−∞

∞

∑
j2=−∞

f (ξ1 +2π j1,ξ2 +2π j2)

has the Fourier series
1

2π

∞

∑
k1=−∞

∞

∑
k2=−∞

f̂ (k1,k2) ei(k1ξ1+k2ξ2).
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2.



18 of 25 B. FORNBERG, N. FLYER, S. HOVDE, and C. PIRET

0 5 10 15 20 25 30

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

(k
1
2+k

2
2)1/2

|λ
 k 1,k

2|

FIG. 9. Decay rates of|λk1,k2 | in different directions in thek1,k2-plane, with the result from (5.1) superimposed as a dashed curve.

To use this result effectively, we first apply the Laplacian operator∆ = ∂ 2

∂ξ 2
1

+ ∂ 2

∂ξ 2
2

several times (e.g.

four times; the exact number does not influence the result) toh(ξ1,ξ2), leading to a function which is
dominated by the singularities:

∆
4h(ξ1,ξ2) = 25(ξ 2

1 +ξ
2
2 )−3/2 + {a smooth function}.

Its Fourier transform at the integer lattice points,−25(k2
1 +k2

2)
1/2, should equal the Fourier coefficients

of the functionh(ξ1,ξ2), with the Laplacian applied four times, i.e.(k2
1 +k2

2)
4λk1,k2. This gives (5.1).

5.3 TPS, GA, AND SH

In contrast with the situation for the cubic RBF (Section 5.2.1), the functionsg(ξ1,ξ2) for the TPS,
GA, and SH RBFs are infinitely smooth at the origin and at their 2π-periodic repetitions (cf. Table 1).
Therefore the decay of the coefficients never becomes algebraic, as can be seen in Figure 10. It should
be noted that the type of angular symmetry observed in the GA case is directly due to the grid layout,
e.g. a rectalinear (Cartesian) grid layout produces four fold symmetry, a hexagonal grid layout will
produce six fold symmetry.

5.4 MQ, IMQ, and IQ

The situation in these cases is analogous to that of the cubic RBF since the 2-D generalized Fourier
transforms of these RBFs each go to infinity as the origin(ρ = 0), but do this in such a way that their
inverses are non-smooth acrossρ = 0 (cf. Table 1). That is, we expect the decay of the coefficients to
become algebraic after an initial exponential decay regime. Figure 10 shows that this is indeed the case.
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Following a procedure similar to that described in Section 5.2.1, it has been found that the algebraic

decay for MQ goes to leading order as
(

3
2π

)2 1
k5 , and for IMQ as

(
1

2π

)2 1
k3 . The decay for IQ is more

complicated, involving logarithmic components.

6. Summary of observations for RBF cardinal coefficient decay

Previous literature on the topic has left many questions unanswered: To what extent are the RBF cardi-
nal coefficients,λk, localized? If there is a localization attribute to the coefficients, what is the behavior

of the coefficients as|k|=
√

k2
1 +k2

2 increases from small to large? What happens in higher dimensions?

Is the decay rate ofλk only dependent on radial distances or do angular dependencies come in? In this
study, we have addressed these and other questions through both analytical (primarily contour integra-
tion in the complex plane) and numerical techniques. In addition, we have also introduced a seldom (if
ever) used radial function sech(εr), giving a proof of the non-singularity of its interpolation matrix in
n dimensions for scattered data. The observations that have emerged for the RBFs considered in this
paper are summarized below.

1. For all RBFs in 1-D and 2-D, except Bessel RBFs (for which the Poisson sum can be zero due to
the compactness of its Fourier transform), the leading order behavior of the expansion coefficients
for small|k| is exponential decay.

2. However, the leading order behavior of the coefficients can change from exponential decay (as
noted in (1)) to algebraic decay as|k| increases, exhibiting two different decay regimes in this
limit. In particular, this will occur when 1/φ̂(ρ) is non-smooth across the origin. Such cases
include MN in even dimensions, TPS in odd dimensions, MQ, IMQ, and IQ.

3. For those RBFs that do exhibit two different decay regimes for increasingk and do not grow
rapidly far out, which would exclude TPS, the exponential decay behavior of the coefficients for
smallk determines the localization property of the RBF interpolant. When the leading order be-
havior becomes algebraically decaying,λk has typically decreased by many orders of magnitude
(e.g. for MQ in 1-D, withε = 1, λk ≈ O(10−6), contributing less than 1% to the value of the
interpolant at the cardinal point.

4. For 2-D, in the regime of exponential decay, (i.e. for small|k|, |k| =
√

k2
1 +k2

2), the behavior of
the coefficients always has an angular dependence in thek1, k2 plane. If algebraic decay comes
to dominate the leading order behavior ask increases, the dependence will then become purely
radial.

It may also be convenient to have available some heuristic guidelines with regard to RBFs in general
that allow for quick assessment of the cardinal coefficient decay rate. Hence, we note the following in
1-D:

1. If φ(r) decays exponentially fast to zero for increasingr (e.g. GA and SH),̂φ(ξ ) will be analytic
in a strip around theξ -axis, implying that the decay ofλk will be of exponential form for allk
(i.e. will not be overtaken by any slower algebraic rate for largek).



20 of 25 B. FORNBERG, N. FLYER, S. HOVDE, and C. PIRET

−20
0

20
−20

0
20

−10

−5

0

k
1

k
2

TPS

−20
0

20
−20

0
20

−8

−6

−4

−2

0

k
1

k
2

MQ

−20
0

20
−20

0
20

−10

−5

0

k
1

k
2

GA

−20
0

20
−20

0
20

−6

−4

−2

0

k
1

k
2

IMQ

−20
0

20
−20

0
20

−10

−5

0

k
1

k
2

SH

−20
0

20
−20

0
20

−4

−2

0

k
1

k
2

IQ

FIG. 10. Decay of expansion coefficients for 2D cardinal data for the TPS, MQ, GA, IMQ, SH, and IQ RBFs displayed in the
same log-linear format used in Figure 7. Note that the TPS, GA, and SH RBFs manifest an exponential decay regime only.
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2. If φ(r) is of the formφ(r) = |r|2 j+1, j = 0,1, . . . (MN, or a linear combination of such), the decay
will again be purely exponential.

3. If φ(r) is analytic and grows for increasingr like |r|α (e.g. GMQ), there will be an algebraic
decay rate present, which is particularly small wheneverα is an odd positive integer (e.g. MQ).

4. If φ(r) is analytic in a finite width strip|Im r|6 a(ε) around the real axis, the exponential part of

the decay will typically (e.g. GMQ, SH) be of the formO
(

e−kπ/(2a(ε))
)

whenε → 0.
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A. Non-singularity of the RBF interpolant (in n dimensions, scattered data) in the SH case (φ(r) =
sech(εr))

By the Schoenberg interpolation theorem (Cheney & Light (2000), p. 101), the result follows if we can
show that sech(

√
x) is a completely monotone function. By the Bernstein-Widder theorem (Cheney &

Light (2000), p. 95) this will be the case if and only if the inverse Laplace transformγ(s) of sech(
√

x) is
non-negative for 0< s< ∞. From the expansion sech(

√
x) = 2(e−

√
x−e−3

√
x +e−5

√
x−+ . . .) follows

γ(s) =
1√

πs3/2

(
e−

1
4s −3e−

9
4s +5e−

25
4s −7e−

49
4s +− . . .

)
.

This can be written asγ(s) = 1√
πs3/2 ξ ( 1

4πs) using theξ -function defined in (3.5) It remains only to show

thatξ (s) > 0 for 0< s< ∞. This result is trivial fors> 1 (since the positive terms in (3.5) forj = 0 and
j =−1 then dominate all remaining terms), and it then holds also for 0< s6 1 because of (3.4).

B. Asymptotic analysis for GMQ in 1-D

The generalized multiquadric RBF has the formφ(r;β ,ε) = (1+ ε2r2)β . Its Fourier transform is given
by

φ̂(ρ;β ,ε) =
2β+1

Γ (−β )ε

(
Kβ+1/2(

|ρ|
ε

)

( |ρ|
ε

)β+ 1
2

)
.

Note thatφ̂ for nonnegative integer values ofβ is singular, as also indicated by Figure 5. By equation
(2.3),

λk =
εΓ (−β )

2β+ 5
2 π

3
2

∫ 2π

0

eikξ dξ

∞
∑

j=−∞

Kβ+1/2( |ξ+2π j|
ε

)

( |ξ+2π j|
ε

)β+ 1
2

. (B.1)
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We find the analog of (3.1) to be

h(ξ ;β ,ε) =
1

∞
∑
j=0

Kβ+1/2( 2π j+ξ

ε
)

( 2π j+ξ

ε
)β+ 1

2
+

∞
∑
j=1

Kβ+1/2( 2π j−ξ

ε
)

( 2π j−ξ

ε
)β+ 1

2

.

B.1 Exponential decay

The poles ofh(ξ ;β ,ε) are located on the lineξ = π + it . On this line, the value ofh(ξ ;β ,ε) is purely
real. In order to find their contribution to the integral, it is necessary to find the locations of the poles as
well as the residues associated with them. Because we are looking for the leading terms, it is sufficient to
find the location of the first pole ofh(ξ ;β ,ε) only. We then look for the first zero ofg(ξ ;β ,ε) = 1

h(ξ ;β ,ε)
on ξ = π + it . Due to the rapid decay of theK Bessel function, it is sufficient to use only the center
term of the sum inh(ξ ;β ,ε). For small enoughε, the K Bessel function can be approximated by
formula 9.7.2 of Abramowitz & Stegun (1981). For|β | < 5

2 the first two terms are adequate:Kν(z) ≈√
π

2z e−z
(

1+ 4ν2−1
8z

)
. We get

g(π + it ;β ,ε) ≈
Kβ+1/2(π+it

ε
)

(π+it
ε

)β+ 1
2

≈
e−

π+it
ε

√
π

2

(
π+it

ε

)−β
ε(2π +2it +β (1+β )ε)

2(π + it )2

The zero ofg(π + it ;β ,ε) can therefore be found by solving

(β +2) tan−1
( t

π

)
+

t
ε

+ tan−1
(

−2t
2π +β (1+β )ε

)
=

π

2
+πσ ,

whereσ is an integer. Settingσ = 0 and approximating tan−1(z)≈ z, we gettpole≈ π

2
(

2+β

π
+ 1

ε
− 2

2π+β (1+β )ε

) .

Therefore,λk, for relatively small values ofk, can be approximated as

λk ≈ ε Γ (−β )

2β+ 5
2 π

3
2

(2π i Res(h(z)eikz,z= π + itpole))

= (−1)k+1 ε Γ (−β )

2β+ 3
2
√

π

1
d
dt g(π + it ) t=tpole

e−ktpole. (B.2)

B.2 Algebraic decay

We again approximateh(ξ ;β ,ε) by means of just one term of the Poisson sum:

h(ξ ;β ,ε)≈ f (ξ ;β ,ε)≡

(
ξ

ε

)β+ 1
2

K
β+ 1

2

(
ξ

ε

) (B.3)

B.2.1 Positiveβ
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β A HALF -INTEGER Whenβ = µ +1/2, with µ a non-negative integer, the leading singularity looks

like
(−1)µ+1( ξ

ε
)4µ+4 log( ξ

ε
)

(µ!)2(µ+1)!23µ+1 . To compute the contribution of the branch point singularity to the integral

in (B.1), we start by noting thath(ξ ;β ,ε) is purely real along both of the straight lines Imξ = 0 and
Reξ = π. Then, by the Schwarz reflection principle, the contour integral, which should be taken along
sections{1} and{2} in Figure 2 (and also along a connection path high up), can just as well be taken
along sections{1} and{4}, leading to a simple treatment of the branch issue. We therefore get

λk ≈
εΓ (−µ−1/2)
(2π)3/22µ+3/2

(−1)µ+1iπ
(µ!)2(µ +1)!23µ+1

∫ i∞

0

(
ξ

ε

)4µ+4

eikξ dξ . (B.4)

Settingξ = it and integrating leads to

λk =
Γ (−β )(4β +2)!

24β+2
√

π
((

β − 1
2

)
!
)2(

β + 1
2

)
! ε4β+1

1

k4β+3
. (B.5)

β NOT A HALF-INTEGER In this case the branch point at the origin is algebraic (instead of logarith-
mic):

f (ξ ;β ,ε)≈
ξ 1+2β cos(πβ )Γ (1

2 −β )

2β− 1
2 π ε2β+1

Computing the contour integral along sections{1} and{4} in Figure 2 leads to

λk ≈
(2β +1)cot(πβ )

2π ε2β

1

k2(β+1) (B.6)

B.2.2 Negativeβ

β >−1 Referring to equation (B.3), we make the approximation that, for smallξ ,

K1
2+β

(
ξ

ε

)
≈−γ− log

(
ξ

2ε

)
.

This yields

f (ξ ;β ,ε)≈− Γ (−β )ε
1
2−β ξ

1
2+β

2β+1
[
γ + log

(
ξ

2ε

)] .
Now the equivalent of equation (B.4) will contain logarithms. We make the change of variablesz= logξ

and then apply Laplace’s method for integrals with movable maxima as described in Ablowitz & Fokas
(2003) and Bender & Orszag (1999). The result is that

λk ≈−
(3+2β )ε

1
2−β Γ (−β )

[
π cos

(
π

4 (1+2β )
)
−2
(

γ + log
(

3+2β

4kε

))
sin
(

π

4 (1+2β )
)]

21+β e
3
2+β

(
3
2 +β

)−β
π

(
4γ2 +π2 +8γ log

(
3+2β

4kε

)
+4log2

(
3+2β

4kε

)) 1

k
3
2+β

.

(B.7)
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This approximation works well for values ofβ near−1
2. Degradation of the approximation near the

ends of the interval(−1,0) is due to the lack ofβ dependence in the approximation for the BesselK
function. Adding more terms to the BesselK approximation solves this problem at the cost of a much
more complicated expression forλk.

β =−1 In this case we have

φ̂(ρ;ε) =
√

π√
2ε

e−
|ρ|
ε

and

f (ξ ;ε) =
√

2ε√
π

e
ρ

ε .

Integrating as before yields

λk ≈− 1
π2k2 . (B.8)

Numerical tests have confirmed that the leading algebraic decay does not depend onε.

β < −1 We note now thatK−ν(z) = Kν(z). Then, whenβ < 0, it must be true thatKβ+1/2(z) =
K1/2+(−1−β )(z). Let β̂ =−1−β >−1. Then,

( ξ

ε
)β+1/2

Kβ+1/2(
ξ

ε
)

=
(

ξ

ε

)1+2β ( ξ

ε
)β̂+1/2

K
β̂+1/2(

ξ

ε
)

=
(

ξ

ε

)1+2β

f (ξ ; β̂ ,ε)

where f (ξ ; β̂ ,ε) is the approximation ofh(ξ ; β̂ ,ε), defined forβ̂ =−1−β >−1. Taking the two-term
approximation

f (ξ ; β̂ ,ε)≈
cos(πβ )Γ (1

2 − β̂ )

23β̂+ 1
2 π Γ (3

2 + β̂ )

(
ξ

ε

)1+2β̂
((

ξ

ε

)1+2β̂

Γ (1
2 − β̂ )+21+2β̂

Γ (3
2 + β̂ )

)

and computing the contour integral as before gives

λk ≈
(cos(πβ )Γ (−β )Γ (3

2 +β ))2

π3 ε−2β−2

1

k−2β
. (B.9)
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