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Abstract: One of the ongoing issues with fractional-order diffusion models is the design of
efficient numerical schemes for the space and time discretizations. Until now, most models
have relied on a low-order finite difference method to discretize both the fractional-order
space and time derivatives. While the finite difference method is simple and straightforward
to solve integer-order differential equations, its appeal is reduced for fractional-order differential
equations as it leads to systems of linear equation defined by large full matrices. Alternatives to
the finite difference method exist but a unified presentation and comparison of these methods
is still missing. In this paper, we compare 4 different numerical discretizations of the space-time
fractional diffusion model. These consist of the finite difference, finite element, pseudo-spectral
and radial basis functions methods. We suggest that non-local methods, like the pseudo-spectral
and radial basis functions method, are well-suited to discretize the non-local operators like
fractional-order derivatives. These methods naturally take the global behavior of the solution
into account and thus do not result in an extra computational cost when moving from an
integer-order to a fractional-order diffusion model.

Keywords: Space-time fractional diffusion equation, finite difference, finite element,
pseudo-spectral and radial basis functions method, Mittag-Leffler functions

1. INTRODUCTION

One of the key issues with fractional-order diffusion models
is the design of efficient numerical schemes for the space
and time discretization. Until now, most models have re-
lied on the finite difference (FD) method to discretize both
the fractional-order space diffusion term (Meerschaert and
Tadjeran, 2004, 2006; Tadjeran et al., 2006) and time
derivative (Lin and Xu, 2007; Podlubny et al., 2009).
Some numerical schemes using low-order finite elements
(FE) have also been proposed (Fix and Roop, 2004; Roop,
2006). Fractional derivatives being non-local operators,
they require a large number of operations and a large
memory storage capacity when discretized with low-order
FD and FE schemes. To reduce the computational burden,
truncated numerical schemes based on a “short memory
principle” (Podlubny, 1999) and a “logarithmic memory
principle” (Ford and Simpson, 2001) have been proposed.
Another approach to design an efficient numerical scheme
is to discretize the equation with a non-local numerical
method, i.e. a numerical method that naturally takes the
global behavior of the solution into account. Following that
approach, Hanert (2010, 2011) has proposed a pseudo-
spectral (PS) method based on Chebyshev basis functions
in space and Mittag-Leffler basis functions in time to
discretize the space-time fractional diffusion equation. A
similar approach has been followed by Li and Xu (2009)

to discretize the time-fractional diffusion equation with a
Jacobi PS method.

In this paper, we compare different numerical discretiza-
tions of the space-time fractional diffusion equation on
the computational domain [0, L]. That equation can be
expressed as follows:
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t is the time-fractional Caputo derivative of
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α
L are the left and right space-

fractional Riemann-Liouville derivatives on [0, L] (see for
instance (Podlubny, 1999; Li and Deng, 2007)). The pa-
rameter β ∈ [−1, 1] is a skewness parameter representing
a preferential direction of jumps that can be observed in
heterogeneous systems. When β = 0, the space derivative
reduces to a so-called symmetric Riesz derivative (Pod-
lubny, 1999). The coefficient Kα,γ is a generalized diffu-
sivity whose dimension is [Kα,γ ] = mαs−γ . The fractional-
order derivatives can be defined as follows:
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where Γ(.) is Euler’s gamma function. For simplicity,
we have assumed that 1 < α ≤ 2 and 0 < γ ≤ 1.
The Riemann-Liouville derivatives being singular at the
domain boundaries, they are often replaced by space-
fractional Caputo derivatives of order α:
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2. DISCRETIZATION OF THE
FRACTIONAL-ORDER DIFFUSION TERM

In this section, we present 4 different discretization of
the fractional-order diffusion term in Eq. (1) and discuss
their respective advantages and disadvantages. The dis-
cretizations are presented by order of popularity (but not
efficiency or accuracy!). The finite difference is currently
the most widely used method to solve the fractional-order
diffusion equation. It is then followed by the finite element,
pseudo-spectral and radial basis functions methods. To our
knowledge, the latter has never been used to solve the
fractional-order diffusion equation.

2.1 Finite difference method

A FD discretization of the fractional-order ADE can be ob-
tained by using the so-called Grünwald approximation of
the Riemann-Liouville derivatives (Podlubny, 1999; Meer-
schaert and Tadjeran, 2004). Such a FD scheme can easily
be implemented and generalized to higher dimensions. It is
only first order accurate in space but Tadjeran et al. (2006)
have proposed a method to improve the accuracy to second
order. By partitioning the computational domain in N −1
segments of length ∆x = L/(N − 1), we can consider the
following FD discretization of the fractional diffusion term:
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where fj(t) (1 ≤ j ≤ N) are the time-dependent FD
nodal values and D is the matrix resulting from the FD
discretization of the diffusion term. The elements of D have
the following expression:
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where wk =
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∆xα gk and

gk =
Γ(k − α)

Γ(−α)Γ(k + 1)
(0 ≤ k ≤ N)

are the normalized Grünwald weights.
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Fig. 1. First Grünwald weights gk for different values of
the exponent coefficient α and k = 0, 1, . . . , 10. When
α = 2, only weights corresponding to k = 0, 1 and
2 are non-zero. As soon as α < 2, all the other
weights become positive and see their value increase
as α decreases. Note that the y-axis is logarithmic and
discontinuous between positive and negative values.

As shown in Fig. 1, the FD stencil used to discretize
the fractional-order derivative covers the whole domain
as soon as α < 2. This could obviously be expected
as fractional-order derivatives are global operators that
have more similarities with integrals than with traditional
derivatives. However, since the FD method usually re-
quires a large number of nodes to obtain a precise ap-
proximation, the resulting increase in the computational
cost can be important. In 1D, the number of operations
required to compute the fractional-order derivative at a
given node will be about N/3 times larger than the number
of operations required to compute a second order deriva-
tive. Moreover, the use of an implicit time integration
scheme seems totally prohibitive as it would require to
solve a large full-matrix system of equations.

2.2 Finite element method

With the FE method, the exact solution is approximated
by an expansion in terms of piecewise polynomials φj(x):

f(x, t) ≈
N∑
j=1

fj(t)φj(x). (2)

The basis function φj(x) has a compact support and
corresponds to the node j of a grid (or mesh) that
partitions the computational domain (see Fig. 2a for an
example). The position of node j is denoted xj . Unlike
the FD method, the FE method is based on the exact
expression of the fractional derivative. The latter is a
linear operator and it can thus be easily applied to the
FE expansion. Computing the fractional derivative of the
solution then amounts to compute the fractional derivative
of all basis functions φj(x). Since these are low-order
piecewise polynomials, all the calculations can be done
analytically (see Hanert (2010) for details).

With the FE methods, it is common practice to use
a Galerkin formulation to derive the discrete equations.
That formulation amounts to write the model equation
in its weak form and perform integration by parts when
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Fig. 2. Example of (a) a linear FE basis function φj ,
and (b) the first-order derivative (φ′j , in red) and the

fractional-order derivatives (Dα−1
β φj , in blue) of φj

for α = 1.5, 1.6, 1.7, 1.8, 1.9 and β = 0. Note that
although φj and φ′j are local-support functions, the
fractional derivatives are not.

possible. Doing so, one can remove some of the singularities
of the Riemann-Liouville derivative. The fractional-order
diffusion term is then discretized as follows:
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where the elements of the diffusion matrix D read:
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is a combination of the left and right Riemann-Liouville
derivatives of order α− 1 of φj . That function is no more
a compactly supported function as it spans the entire
computational domain as soon as α < 2 (see Fig. 2b). More
details about the derivation can be found in the papers by
Fix and Roop (2004), Roop (2006) and Hanert (2010).

Compared to the FD method, the FE method has the
advantage of allowing a straightforward extension to high-
order discretizations of the fractional diffusion equations.
Indeed, it is based on the exact expression of the fractional-
order derivative and not on an approximation like the
Grunwald expansion. Therefore increasing the order of
the scheme can simply be achieved by increasing the
polynomial order of the basis functions. While the FE
method can be more accurate than the FD method, it is
not really more efficient since it is based on an expansion
of the solution in terms of piecewise basis functions. These
basis functions and their integer-order derivatives have a
local support and thus lead to sparse discrete operators.
However, the fractional order derivative of a FE basis
function is not a compactly supported function anymore.
The resulting diffusion matrix is therefore also a large full
matrix and the computational issues mentioned for the FD
method remain.

2.3 Pseudo-spectral method

Like the FE method, the PS method is also based on
an expansion of the solution in terms of polynomial ba-
sis functions. That expansion has the same form as (2).
However, the basis functions φj(x) are now global high-
order functions that span over the entire computational
domain. For problems with non-periodic boundary condi-
tions, Chebyshev or Legendre polynomials are often used
as basis functions (Boyd, 2001). As an illustration, the
8th-order Chebyshev polynomials φ8(x) is represented in
Fig. 3a. All these basis functions take non-zero values on
the boundaries of the domain and their Riemann-Liouville
fractional derivative therefore diverges on the boundaries.
Such a spurious behaviour can be avoided by using instead
a Caputo fractional derivative in the diffusion term. With
a Galerkin formulation, the following diffusion matrix is
then obtained:

Dij = Kα,γ

∫ L

0

φi(x)CDαβφj(x)w(x) dx.

where CDαβ represents the combination of the left and right
Caputo derivatives:
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and w(x) is the weight function associated with Chebyshev
polynomials. The fractional derivative of φ8(x), CDαβφ8(x),
is represented in Fig. 3b for different values of α. It can
be seen that the second-order and all the fractional-order
derivatives are global functions.

Thanks to the use of high-order basis functions, the PS
method can achieve the same accuracy as the FD and
FE methods with much less degrees of freedoms (dof’s).
Since the basis functions span over the entire domain, the
diffusion matrix is always a full matrix whatever the order
of the diffusion term. Therefore the computational cost of
the numerical scheme is not substantially increased when
going from a second-order to a fractional-order diffusion
equation. In each case, we have to handle a small full
diffusion matrix. The main disadvantage of the PS method
is that high-order approximations are prone to Gibbs
oscillations when the model solution is not smooth. The
number of dof’s required to obtain a good approximation
of a steep function might also be pretty large. For those
situations, the FD or FE methods might perform better.

2.4 Radial basis functions method

With the RBF method, the model solution is generally
expressed as follows:

f(x, t) ≈
N∑
j=1

fj(t)φ(|x− xj |),

where φ(r) is a radial function and xj its center. There are
many possible radial functions (see for instance Fasshauer
(2007)) but here we will only consider the Gaussian radial

functions φ(r) = e−(εr)2 , where the shape parameter ε
controls the flatness of the function. By introducing a set

of basis functions {φj(x)}Nj=1 such that φj(x) = φ(|x−xj |),
we can write the RBF expansion in the same form as
(2). With the RBF method, a collocation formulation is
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Fig. 3. Example of (a) the 8th-order Chebyshev PS basis
function φ8, and (b) the second-order derivative (φ′′8 ,
in red) and the fractional-order derivatives (CDαβφ8,

in blue) of φ8 for α = 1.5, 1.6, 1.7, 1.8, 1.9 and β = 0.
Note that φ8, φ′′8 and all the fractional derivatives are
global functions.

generally used to derive the discrete equations. In that
case, the diffusion matrix takes the following form:
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]
,

= CDαβφj(xi),
where we have again replaced the Riemman-Liouville
derivative by a Caputo derivative to avoid the singularities
on the boundaries. Fig. 4 shows an example of a Gaussian
radial function and its fractional derivatives. Details on
how to compute the fractional derivative of a radial func-
tion can be found in Piret and Hanert (2012).

The RBF method can be seen as a sort of compromise
between the FE and the PS methods. On the one hand, the
RBF method is based on an expansion into basis functions
that have a spatial location like with the FE method.
In that sense, these basis functions can be clustered in
a specific region to locally increase the accuracy of the
method. On the other hand, the radial functions used in
the RBF expansion are high-order functions that span the
entire domain like with the PS method. The parameter ε
determines the degree of locality of the radial function.
Increasing (resp. decreasing) the value of ε makes the
radial function more local (resp. global). For smooth
solutions, it is thus better to select a small value of ε while
a better representations of solutions with steep gradients
will be achieved by clustering basis functions with a larger
value of ε in the region where the solution is steep.

Driscoll and Fornberg (2002) proved that when using the
RBF method, we recover PS methods in the limit of
ε → 0. Thus the RBF method is a generalization to
irregular domains and scattered nodes of PS methods
(Fornberg and Piret, 2008). However, although lowering
the shape parameter value tends to improve the accuracy,
it also has the detrimental effect of increasing the condition
number of the collocation matrix. Thus using the direct
implementation of the RBF method does not allow us
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Fig. 4. Example of (a) Gaussian RBF φj , and (b)
the second-order derivative (φ′′j , in red) and the

fractional-order derivatives (CDαβφj , in blue) of φj for

α = 1.5, 1.6, 1.7, 1.8, 1.9 and β = 0. Note that φj , φ
′′
j

and all the fractional derivatives are global functions.

to fully take advantage of the RBF properties. In order
to avoid this ill-conditioning issue, Fornberg and Piret
(2007) introduced the RBF-QR method, which consists
of finding a new basis, which spans exactly the same space
as the original radial function translates, but whose terms
are strongly linearly independent with each other. The
RBF-QR method thus allows us to safely compute and
evaluate RBF expansions for any small value of the shape
parameter. If one finds a better accuracy when the shape
parameter is very small, why should one use the RBF
method rather than a PS method? The first reason is that
RBFs are suitable for local node refinements that provides
local resolution enhancements. Secondly, one can use the
flexibility of both node location and shape parameter
values to eliminate the Gibbs phenomenon (Fornberg
and Zuev, 2007). Thirdly, while a node distributions on
different geometries can lead to singular systems with
the PS method, the RBF collocation matrix remains
unconditionally nonsingular in any dimension and on any
geometry under minimal constraints. In addition, even
the RBF-QR code is fairly simple to implement and the
new basis is usually given in terms of combinations of
polynomials and exponentials, for which the fractional
derivatives are easy to compute.

3. DISCRETIZATION OF THE
FRACTIONAL-ORDER TIME DERIVATIVE

A FD or a FE scheme could be used to discretize the
fractional-order time derivative in a similar fashion as
for the diffusion term. However that would be rather
inefficient as the solution values at all the previous time
steps would have to be kept in memory. Instead, we prefer
to consider an approach based on the PS method in
order to limit as much as possible the computational cost
associated with the discrete fractional time derivative. The
following PS expansion in time of the model solution is
thus considered:
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Fig. 5. Behaviour of the Mittag-Leffler function Eγ(−tγ)
for γ = 0.5, 0.6, 0.7, 0.8, 0.9, 1. It decays exponentially
when γ = 1 and algebraically (as a power-law) as soon
as γ < 1.

f(x, t) ≈
M∑

k=−M

fk(x)ψk(t),

where {ψk(t)}Mk=−M is a given set of basis functions. The
coefficients fk(x) still depend on x since only the time
discretization is considered at the moment. Chebyshev
polynomials could still be used for the time expansion
but other choices other choices could prove more efficient.
In the present work, we have considered the PS method
with Mittag-Leffler basis functions introduced by Hanert
(2011).

The Mittag-Leffler function Eγ(t) is defined as follows:

Eγ(t) =

∞∑
n=0

tn

Γ(γn+ 1)

and can be seen as a generalization of the exponential
function since Γ(n + 1) = n! and thus E1(t) = exp(t).
When the order γ is not an integer, these functions
exhibit power-law asymptotic behaviour (Mainardi and
Gorenflo, 2000). Interestingly, Mittag-Leffler functions are
eigenfunctions of the Caputo fractional-derivative of order
γ ≤ 1 (see for instance Mainardi and Gorenflo (2000)):
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Fig. 5 shows a sketch of the function Eγ(−tγ), which is the
solution of the fractional relaxation equation C

0 D
γ
t g(t) =

−g(t) with the initial condition g(0) = 1. A long-tail,
power-law behaviour is observed as soon as γ < 1.
As the value of γ decreases, the thickness of the tail
increases, indicating a slowly-decaying, scale-free memory
effect. Mittag-Leffler functions thus generalize the classical
exponential relaxation to systems with a non-Markovian
dynamics (Metzler and Klafter, 2002).

By considering the following Mittag-Leffler basis functions:

ψk(t) = Eγ

(
ik

(
2πt

T

)γ)
for k = −M, . . . ,M and using a Galerkin formulation, we
can easily compute the time-derivative matrix T resulting

FD FE PS RBF

δij

∫ L

0

φi(x)φj(x) dx

∫ L

0

φi(x)φj(x)w(x) dx φj(xi)

Table 1. Expression of the mass matrix ele-
ments Mij for the different space discretiza-

tions.

from the discretization of C0 D
γ
t f(x, t):

Tlk =

∫ T

0

ψl(t)
C
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γ
t ψk(t) dt,

= ik

(
2π
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)γ ∫ T

0

ψl(t)ψk(t) dt,

≡ ik
(

2π

T

)γ
Nlk,

where T is the duration of the simulation and N is the
mass matrix associated with the basis functions ψk(t).

4. DISCRETIZATION OF THE FULL SPACE-TIME
FRACTIONAL DIFFUSION EQUATION

We now consider the discretization in space and time of
Eq. (1). For the time discretization, we use the Mittag-
Leffler PS scheme derived in the previous section. For the
space discretization, we would like to have the possibility
to use either the FD, FE, PS or RBF methods. For the
sake if illustration, let us assume that we approximate the
solution f(x, t) with a series-expansion in terms of some
basis functions ψk(t) and φj(x). The former correspond to
the Mittag-Leffler basis functions previously defined while
the latter can be either FE, PS or RBF basis functions.
The discrete solution can then be expressed in terms of a
matrix of unknown nodal values Fjk:

f(x, t) ≈
N∑
j=1

M∑
k=−M

φj(x)Fjkψk(t).

By using the Mittag-Leffler PS scheme in time and the
relevant space discretization, we obtain a set of discrete
equations that can be expressed in matrix form as follows:

MFT = DFN, (3)

where M and D are the mass and diffusion matrices, respec-
tively, corresponding to the selected spatial discretization.
The expression of the mass matrices M obtained with the
FD, FE, PS and RBF is given in Table 4. At this stage, it is
important to note that the space and time discretizations
are totally independent in Eq. (3) and that the matrices
M and D could also have been obtained by using the FD
method in space. Therefore, although a series-expansion
method has been used to illustrate the derivation of Eq.
(3), the FD method could fit within that formulation as
well.

In order to be able to solve Eq. (3), we shall first recast it
in a more convenient form. To do so, we make use of the
Kronecker product (represented by “⊗”) to express Eq.
(3) as follows:

(Tt ⊗M− Nt ⊗ D)vec(F) = 0, (4)

where vec(F) is the vector obtained by stacking the
columns of F on top of one another (see Appendix for



details) and the superscript t denotes the transpose. Eq.
(4) has to be supplemented with the initial and boundary
conditions. On the one hand, the initial condition f(x, 0) =
f0(x) can be discretized with a Galerkin formulation in
space as follows:〈

φiφj

〉
x

Fjkψk(0) =
〈
φif0(x)

〉
x
,

where 〈.〉x represents the integral over space. In matrix
form, it reads

(Ψ(0)t ⊗M)vec(F) =
〈

Φ(x)f0(x)
〉
x
,

where Ψ(0) = (ψ−N (0), . . . , ψN (0))t and Φ(x) = (φ0(x), . . . ,
φM (x))t. On the other hand, the left boundary condition

cdf(0, t) + cn
∂f
∂x (0, t) = fl(t), where cd and cn ∈ [0, 1] are

coefficients that allow us to specify Dirichlet or Neumann
boundary conditions, can be discretized as follows(

cdφj(0) + cn
∂φj
∂x

(0)

)
Fjk
〈
ψkψl

〉
t

=
〈
fl(t)ψl

〉
t
.

In matrix form, it reads(
Nt ⊗

(
cdΦ

t(0) + cn
∂Φt

∂x
(0)

))
vec(F) =

〈
fl(t)Ψ(t)

〉
t
.

The discretization of the right boundary condition at
x = L is similar.

Note that the matrix approach presented here shares sim-
ilarities with the approach presented by Podlubny et al.
(Podlubny et al., 2009). However, the present approach
does not require homogeneous initial and boundary con-
ditions. It can also easily accommodate space-dependent,
linear reaction terms in a similar fashion as in Podlubny
et al. (2009). For non-linear reaction terms, like for in-
stance in the fractional-order Fisher equation, a non-linear
solver would be required.

5. NUMERICAL EXAMPLES

5.1 Convergence analysis

The accuracy and efficiency of the 4 spatial discretizations
can be assessed by performing a convergence analysis.
For simplicity, we consider the one-dimensional benchmark
problem introduced by Sousa (2011) which consists in
finding f(x, t) such that

∂f(x, t)

∂t
= d(x)0D

α
xf(x, t)+q(x, t) for x ∈ [0, 1] and t > 0,

(5)

with d(x) = Γ(5−α)
24 xα, q(x, t) = −2e−tx4, f(x, 0) = x4,

f(0, t) = 0 and f(1, t) = e−t. In that case, the exact
solution of (5) reads:

f(x, t) = e−tx4.

Eq. (5) involves only a left-sided Riemann-Liouville frac-
tional derivative and thus amounts to set γ = 1 and
β = 1 in Eq. (1). Note that both the solution slope
and value vanish on the left boundary and hence the left
Riemann-Liouville and Caputo derivatives of f(x, t) are
totally equivalent. Eq. (5) has been discretized with the
FD, FE, PS and RBF schemes and solved until t = 1. A
second-order Crank-Nicolson time integration scheme with
a time step equal to 10−3 has been used. At the end of the
simulation, the numerical solutions have been compared
with the exact solution.
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Fig. 6. Convergence analysis of the FD, FE, PS and RBF
methods for Sousa (2011)’s test case.

Fig. 6 shows the rate of convergence of the 4 methods.
For the FE, PS and RBF schemes, the relative error
has been computed in the L2 norm. A root mean square
error has been computed for the FD scheme. As expected,
the convergence rate of the FD scheme is linear but it
could be increased to quadratic by using the approach
proposed by Tadjeran et al. (2006). The FE scheme
basis functions being piecewise linear, its convergence
rate is quadratic. The PS scheme converges very quickly
to the exact solution. This was obviously expected as
the exact solution is a 4th-order polynomial in space.
A PS expansion with only 5 Chebyshev polynomials is
therefore sufficient to represent it exactly. A test case
with a more complex solution would be necessary to
clearly highlight the exponential convergence rate of the
PS method. Regarding the RBF scheme, the convergence
rate is on average of order 6 until N = 20. For larger
values of N , the system matrix becomes ill-conditioned
and convergence is lost. This highlights one of the main
issues with the direct RBF method. The conditioning of
the system matrix gets worse as the number of dof’s
increases and as the shape parameter ε decreases. The
latter controls the flatness of the radial functions and thus
the accuracy of the numerical scheme. Ideally one would
have to use the RBF-QR method or at least to increase
ε as N increases in order to prevent the system matrix
from becoming ill-conditioned. These approaches will be
considered in a future study.

Since all the schemes result in a full diffusion matrix, the
computational cost per dof is similar for the 4 schemes. In
this example, the PS scheme is obviously the most efficient
but that might not be very representative. However, this
example shows how global numerical methods, like the
PS and RBF methods, can outperform the FD and FE
methods to solve fractional-order integrodifferential equa-
tions. While the computational cost per dof is similar for
all methods, the former require much less dof’s to achieve
the same level of accuracy.

5.2 Numerical solution of the space-time fractional diffusion
equation

In this section, we present some numerical solutions of Eq.
(1) for different values of α and γ and the following initial
and boundary conditions



f(x, 0) = exp(−10(x− L/2)2),

∂f

∂x
(0, t) = 0,

f(L, t) = 0,

for L = 10 and T = 2. To account for the change of dimen-
sion of the diffusion coefficient Kα,γ when changing the
values of α and γ, we define it as Kα,γ = kLαT −γ where
L and T are characteristic length and time scales, respec-
tively, and k is a dimensionless constant. This amounts to
make Eq. (1) dimensionless with respect to those scales
and take a dimensionless diffusion coefficient equal to k.
For the example presented here, we have selected the
following values: k = 1

62.5 , L = L
8 , T = T

8 .

The time discretization is based on a Mittag-Leffler PS
schemes with M = 7, i.e. the expansion uses 15 dof’s
in time. However, when γ = 1, the Mittag-Leffler basis
functions reduce to the traditional Fourier basis functions
(ψk(t) = exp(i2πkt/T )). Since the model solution is not
periodic in time, such an approximation is not optimal and
a 2nd-order Crank-Nicolson FD time discretization is used
instead. That scheme is unconditionally stable. Note that
when γ = 1, the time derivative is local and the use of
a FD time discretization leads to sparse matrices T and
N. The model performances are thus not impaired despite
the largest number of dof’s. Because of the steepness of
the initial solution, we had to use a PS scheme with
191 dof’s for the space discretization. For this example,
it could have been more advantageous to use a FE or a
RBF scheme. However, since the goal here is to provide
qualitative results showing the evolution of the solution
behavior for different values of α and γ, the choice of the
numerical scheme is less important.

Fig. 7 shows the evolution of the solution of Eq. (1) for
different values of α and γ. The classical diffusion pattern
is recovered when α = 2 and γ = 1. A superdiffusive
effect is observed when α < 2. In that case, the diffusion
operator is non-local and the initially-localized solution
is quickly spread over the entire domain. A subdiffusive
effect is observed when γ < 1. In that case, the solution
spreads more slowly and eventually almost freezes. Such a
behavior highlights the memory effect that is introduced
in the model by replacing the first-order time derivative by
a fractional-order derivative of degree less than 1. For the
general case where α < 2 and γ < 1, the superdiffusive
effect in space competes with the subdiffusive effect in
time. The resulting behavior of the solution depends on
the ratio 2γ

α . For 2γ
α > 1, superdiffusion dominates, while

subdiffusion dominates for 2γ
α < 1 (Metzler and Klafter,

2000). Here, 2γ
α = 3

4 and the diffusion processes is thus
“mostly” subdiffusive as the solution spreads more slowly
than predicted by classical models based on the Brownian
motion assumption.

6. CONCLUSION

Unlike integer-order derivatives, fractional-order deriva-
tives are non-local operators. As such, they are not well
suited to standard numerical methods like the FD and
FE methods. These numerical methods are generally of
low order and thus require many grid points to obtain
an accurate solution. For local differential operators, this
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Fig. 7. Diffusion patterns obtained for different values of
α and γ at equidistant time instants.

results in large sparse matrices that can usually be han-
dled easily. However, for global differential operators, like
fractional-order derivatives, the resulting matrix is full as
the global behavior of the function has to be taken into
account. The efficiency of the FD or FE methods is thus
severely impaired. High-order, global numerical methods
like the PS and RBF methods therefore appear to be a
better choice as they naturally take the global behavior
of the solution into account and use a limited number of
degrees of freedom.

Appendix A. KRONECKER PRODUCT

If we consider the matrices A ∈ Rm×n and B ∈ Rp×q, then
the Kronecker product of A and B is defined as the matrix

A⊗ B =

 a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 ∈ Rmp×nq.

The Kronecker product has the useful property that for
any 3 matrices A, B and C for which the matrix product
is defined, we have:

vec(ABC) = (CT ⊗ A)vec(B), (A.1)

where vec(B) is the vector obtained by stacking the
columns of B on top of one another (Laub, 2005).
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