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Summary. The goal of this paper is to present a new repair process that includes
both model/mesh repair and mesh generation. The repair algorithm is based on an
initial mesh of the CAD that may contain topological and geometrical errors. This
initial mesh is then remeshed by computing a discrete parametrization with radial
basis functions (RBF’s).

[34] showed that a discrete parametrization can be computed by solving PDE’s
on an initial correct triangulation using finite elements. Paradoxically, the meshless
character of the RBF’s makes it an attractive numerical method for solving the
PDE’s for the parametrization in the case where the initial mesh contains errors.

In this work, we implement the Orthogonal Gradients method which was recently
introduced in [32], as a technique to solve PDE’s on arbitrary surfaces with RBF’s.
We will implement the low order version of the algorithm, which already gives great
results in this context.

Different examples show that the presented method is able to deal with errors
such as gaps, overlaps, T-joints and simple holes and that the resulting meshes are
of high quality. Moreover, the presented algorithm can be used as a hole-filling algo-
rithm to repair meshes with undesirable holes. The overall procedure is implemented
in the open-source mesh generator Gmsh [18].

Key words: geometry processing; hole filling algorithm; radial basis func-
tions; RBF; surface remeshing; surface parametrization; STL file format; sur-
face mapping; harmonic map; Orthogonal Gradients method

1 Introduction

Using CAD data for finite element analysis has become the actual standard
in the engineering practice. Yet, geometries that come out of design offices are
not free of problems: slivers, cross-overs, surfaces with multiples unnecessary
patches, super-small model entities and many other issues that are encoun-
tered in the CAD data make the meshing process a nightmare. Those dirty
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geometries are still the cause of time consuming repair processes. The same
kind of issues are present when dealing with STL triangulations as the in-
put geometry: the mesh may be noisy, self-intersecting, not watertight, with
T-junctions 1 and have undesirable holes. Figure 1 gives an example of such
dirty CAD models or STL triangulations that need to be repaired.

Fig. 1. Two examples for which a cad and mesh repair algorithm is needed. The
figure on the left shows an initial triangulation of a dirty CAD model with topological
errors: gaps (holes), overlaps and T-junctions. The right figure displays an STL
triangulation of a tooth that contains undesirable holes.

There are two approaches for cleaning dirty geometries: one acts on the
CAD model and one acts on the mesh.

The first approach corrects the geometry directly by using point and edge
merging algorithms [5, 19, 38]. Those approaches thus provide specific tools
for model correction that are controlled by the user [31, 37]. Presently, there
are also many commercial software modules that claim to be able to perform
automatic geometry healing. However, these third party software modules
can only rectify common geometry problems and a successful or unsuccessful
outcome is possible. Thus there is yet no absolute solution for geometry/mesh
healing of CAD models.

Another approach is that of correcting an initial triangulation of the model
through the addition of triangles and different stitching procedures [2, 1, 29].
In the same vein, Nooruddin and Turk [30] proposed a method to repair polyg-
onal meshes using volumetric techniques. Unfortunately, those algorithms do
not consider geometric intersections and inconsistent topology may be present.
Also based on an initial triangulation, Wu et al. [40] suggested some specific
hole-filling algorithms that employ RBF’s as an interpolation technique to

1A T-Junction is an intersection of two or more faces in a mesh where the vertex
of one face lies on the edge or interior of another face.
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construct an implicit surface patch and to intersect this implicit surface with
the existing triangulation. However, the intersection method to reconstruct
the mesh is quite complex.

In this paper, an original alternative approach is presented. The repair pro-
cess includes both model/mesh repair and mesh generation. The remeshing
procedure relies on an discrete parametrization. Surface parametrization tech-
niques [41, 27, 22] originate mainly from the computer graphics community:
they have been used extensively for applying textures onto surfaces [4, 24]
and have become a very useful and efficient tool for many mesh processing
applications [22, 36, 9]. In the context of remeshing procedures, the initial
surface is parametrized onto a surface in R2, the surface is meshed using
any standard planar mesh generation procedure and the new triangulation is
then mapped back to the original surface [7, 28]. We showed in [34, 26, 25]
that harmonic maps can be computed efficiently by solving partial differential
equations (PDE’s) on the initial triangulation with finite elements.

In the context of CAD and mesh repair, the initial triangulation may
contain topological errors such as holes, T-junctions and overlaps that make
numerical techniques such as finite elements fail. The meshless character of the
RBF’s makes it then an attractive numerical method for solving those PDE’s.
Although the RBF method has been used as an interpolation technique since
the 1970s, it is only in the 1990s that it was introduced as a technique to
solve PDE’s [20, 21]. Its high accuracy and meshless character have made it
the method of choice for problems set on complicated geometries [8]. Often
overlooked for having poor stability and high complexity issues, the method
has finally gained acknowledgement. A number of studies showed the method’s
great potential by solving full-scale geophysical applications, and by showing
that RBF’s could compete with the most trusted numerical techniques [10,
12, 11, 39, 35]. Although a good part of the RBF literature deals with surface
reconstruction [6, 3], no technique has been developed to solve PDE’s on
them, until [32], which provides the very first methods, based on RBF’s, for
solving PDE’s on completely arbitrary surfaces. In this work, we implement
the RBF’s Orthogonal Gradients method of [32] which relies on a level set
representation of the initial surface.

The paper is organized as follows. In section 2, we present the PDE’s for
solving the parametrization. In section 3, we show how to solve the PDE’s
with RBF’s Orthogonal Gradients method centered on the mesh vertices of
the initial triangulation. Next, we explain in section 4 how to find the inverse
mapping in order to be able to project the new points on the 3D surface
(CAD patches or discrete surface). Finally, results are presented to validate the
method and to reveal the efficiency and accuracy of our proposed algorithm.
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2 Discrete Parametrization

The discrete parametrization aims at computing the discrete mapping u(x)
that maps every mesh vertex x of an initial triangulation of a surface Γ to a
point u of Γ ′ embedded in R2:

x = {x, y, z} ∈ Γ ⊂ R3 7→ u(x) = {u, v} ∈ Γ ′ ⊂ R2 (1)

In the remainder of this paper, we restrict ourselves to the parametrization
of non-closed surfaces meshes of zero genus. If the surface mesh is closed, of
genus greater that zero, or non-manifold, we partition the initial mesh into
different mesh patches [26, 25] and compute a discrete parametrization for
each of those mesh patches with the presented method.

In this work, we have chosen a harmonic mapping for the parametriza-
tion [28, 7, 34]. Harmonic maps u(x) can be computed by solving two Laplace’s
equations on the 3D surface Γ :

∇2u(x) = 0, ∇2v(x) = 0, ∀ x ∈ Γ (2)

with appropriate Dirichlet boundary condition for one of the boundaries of
the surface Γ ,

u(l) = cos(2πl/T ) , v(l) = sin(2πl/T ), (3)

and with Neumann boundary conditions for the other boundaries. In (3), l
denotes the curvilinear abscissa of a point along the boundary of total length
T .

We will show in the next section how to compute the discrete parametriza-
tion using RBF’s. Figure 2 shows a triangulation of a CAD model with topo-
logical and geometrical errors such as gaps, overlaps and T-junctions. Those
gaps presented in the initial mesh are magnified during the parametrization
procedure. The T-junctions are also visible in both the 3D space and the
parametric space. With the presented approach, there is no need to identify
those T-junctions and gaps. The mesh points of the dirty initial triangulation
are directly used to compute a discrete parametrization u(x) with RBF’s. The
remeshing procedure will then be performed in the parametric space given this
mapping u(x) and the parametric description of the 4 CAD patches uCADj

visible on the left figure 2. For the remeshing of the holes, RBF interpolations
will be used.

3 Harmonic map with Radial Basis functions

In the case where the initial triangulation contains topological and geometrical
errors (such as in Fig. 2), standard numerical methods based on meshes such
as finite elements, or finite volumes fail to compute the solutions to Laplace’s
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Fig. 2. Initial triangulation of a CAD model with topological and geometrical errors
such as gaps, overlaps and T-junctions (left) and its discrete parametrization u(x)
computed with RBF’s (right). One can see clearly the T-junctions, holes and overlaps
of the initial mesh in the parametric space.

Name of RBF Abbrevi- Definition
ation

Multiquadric MQ
√

1 + (εr)2

Inverse multiquadric IMQ
1√

1 + (εr)2

Inverse quadratic IQ
1

1 + (εr)2

Gaussian GA e−(εr)2

Table 1. Definitions of the most commonly used C∞ radial functions.

equation (2). The meshless character of the RBF’s makes it then an attractive
numerical method for solving the two Laplace’s equations (2) whose solution
is the harmonic map.

Different techniques have been recently suggested to solve PDE’s on arbi-
trary surfaces with RBF’s [32]. In this work, we use [32]’s simplest version of
the Orthogonal Gradients method, which relies on a level set representation of
the initial surface. Let M be the number of points on the initial triangulation
(points on the surface Γ in Figures 3 and 4).

In this work, we use the MQ (Table 1) radial function φ(r) to represent
the solutions (u, v) of the Laplace’s equations on Γ .2

2In the remainder of this section, we develop the Laplacian of u. The Laplacian
of v can be developed in a similar way
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u(x) =

N∑
i=1

λi φ(‖x− xi‖), with φ(r) =
√

1 + ε2r2 (4)

where || · || denotes the Euclidean norm, xi are the set of N data points, λi
are the RBF’s expansion coefficients, and ε is the shape parameter. All C∞
smooth radial functions yield a similar accuracy, and any of them could be
used.

Let us find a matrix D that discretizes, via an RBF representation, a
continuous differential operator L (for the Laplacian operator, we have L =
L = ∂xx + ∂yy + ∂zz). We can rewrite the RBF interpolation (4) in matrix
form for the N points:

AΛ = U, with Ai,j = φ(‖xi − xj‖), Ui = u(xi) (5)

where Ai,j is the RBF interpolation matrix of size N ×N and Λ is the vector
of expansion coefficients λi. Analytically applying the differential operator to
the radial function interpolation u(x) gives

uL(xk) =

N∑
j=1

λj Lφ(‖x− xj‖)x=xk︸ ︷︷ ︸
BL

k,j

, (6)

where uL is the value of the differential operator applied to u at each xk. Thus
we have BLΛ = UL in matrix form, where matrix B is of size K × N , and
K is the number of points on which we wish to compute the differentiation.
Eliminating the expansion coefficient vector Λ leads to:

UL = BLA−1︸ ︷︷ ︸
DL

U. (7)

where DL (of size K×N) is the matrix of differentiation, i.e the discretization
of L. Note that if L is the identity operator I, then DI is an interpolation
matrix that interpolates the values of u(xi) at points xk.

We wish now to compute the Laplacian operator of a function defined on
the 3D surface Γ by using the Orthogonal Gradients method of Piret [32]. This
method is loosely inspired from the closest point method [23] in that the goal
is to make that function constant in the direction normal to the surface Γ . If
that is the case, the Laplacian contribution from the normal direction vanishes
and leaves only the Laplacian contribution from the tangential direction, i.e.
the surface Laplacian.

In order to have a reliable RBF representation of the surface Γ and to
reliably compute the direction that is normal to the surface, it is now quite
usual to introduce additional points, on either side of the surface, and to define
the level set distance function as s(x) = 0 on Γ , s(x) = ±1 on Γ±, where Γ±

are surfaces that surround and that are parallel to Γ (as in Figures 3 and 4)
(see for example [3, 8]) The alternative to introducing additional points is to
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define a level surface s(x) = c (c 6= 0 to avoid the trivial RBF expansion) on
Γ through the original nodes only. However, it is known that RBFs do a poor
job of interpolating constant values [16]. The interpolated level-set would risk
to be self-intersecting, which would invalidate any result. Adding nodes on
either sides of Γ makes the distance function interpolation much more stable.
We thus extend the original M points of the surface inward and outward as
follows:

xei = xi ± δn(x), (8)

where n(x) is the unit normal at point xi and δ is the offset parameter.
The normals are computed from the differentiation of an RBF expansion for
smooth function σ(x) that is given a value of σ(x) = 1 on the M points on
the surface and a value of σ = 2 on an additional point located far away from
the surface 3:

n =
∇σ
‖∇σ‖ . (9)

Fig. 3. Illustration of the RBF Orthogonal Gradients method. M points are uni-
formly distributed on the main surface Γ (in red). They are the mesh vertices of the
initial triangulation. At each point, the normal n to the surface is computed and 2
new points are obtained at distance δ from the surface, one on either side of Γ . One
can see these 2M additional points on the two grey layers (which we call Γ+ and
Γ−) that surround Γ .

A schema of the RBF Orthogonal Gradients method is displayed in Fig-
ure 4 . M points (full red dots) are uniformly distributed on Γ . At each point,
the normal n to the surface is computed and two new points are obtained

3This additional point guarantees that the normal is always well defined even on
planar surface parallel to the coordinate axis.
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where matrix D BA 1 is the global differentiation matrix to invert. However, in Zhou et al, we
find inconsistencies. First, they set up their iterative method as

un 1
i un

i D 1
i fn

i Diu
n
i (7)

¡Expand on how does their pseudocode relates to the standard ASM.¿

4 The global matrix

4.1 Without domain decomposition, what does the spectrum look like?

• Figure

• How good is it?

4.2 Zhou’s method on the sphere

Zhou’s scheme can be described by the following pseudocode

while tol δ do
for each subdomain do

�un 1
Ωj

�un 1
Γj

DΩj ,Ωj DΩj ,Γj

0 I

1 �fΩj

�un
Γj

end for
end while

DΩj ,Ωj DΩj ,Γj

0 I

�un 1
Ωj
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Γj

�fΩj
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Γj

(8)

4.3 Our global matrix on the sphere

Adding to the operator 1
n
�1.�1T will have the effect of translating the eigenvalue of value 0 to 1 and

subtracting will have the effect of translating that value to 1.

4.4 Comparison of the spectra

4.5 Notes

One great thing is that, the Spherical Harmonics are solutions of the Laplacian on the sphere. As
� gets small, we should get a better and better approximation.

• Generalize Zhou on a domain split: RBC? And sudy the behavior of the eigenvalues

• Generalize our algorithm on a domain split?

• How do we know that Zhou’s algorithm really converges towards the true Laplacian?
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Fig. 4. Schema of the RBF Orthogonal Gradients method.

at distance δ from the surface, one on either side of Γ (empty red dots). We
define two RBF expansions on these 3M nodes, one for the level set distance
function s(x) and one for the solution to the PDE u(x) . We set s(x) = 0 on
Γ , s(x) = ±1 on Γ±, thus ∇s points in the normal direction to Γ . Moreover,

as we let u(xi) = ui on Γ , we set u(x±
i ) = ui, where x±

i are the points corre-
sponding to xi on Γ±, making u(x) constant in the direction that is normal
to Γ . This guarantees that, when we apply the Laplacian to u(x), the normal
component of the laplacian will vanish, and only the surface laplacian will
remain.

We have thus a set of N = 3M points that we use to compute the differ-
entiation matrix for the Laplacian DL. This differentiation matrix is of size
M×3M . In order to restrict the Laplacian operator to the surface Γ , we have
to cancel the derivative of u in the direction normal to the surface:

∇nu = 0, ∇n · ∇nu = 0 (10)

so that we only keep the restriction of the Laplacian on the surface Γ .

∇2u = (∇n +∇t) · (∇n +∇t)u = ∇t · ∇tu, (11)

In (11), n and t denote respectively the surface normal and tangential direc-
tions.

There are two versions of the RBF Orthogonal Gradients method. The
first version is less accurate but very easy to implement. This method assigns
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a constant value of u(x) in the normal direction to the surface, i.e at the
inward and outward points of xi, i.e u(xi) = u(xei ).

If the initial approximation of the normals (9) (which we use to compute
the additional 2M points, thus before the level set distance function has been
defined) is not accurate enough, the extended points xei need to be corrected in
order to guarantee the cancelation of the derivatives in the normal direction.
The orthogonality condition is then u(xi) = u(xeci ), where u(xeci ) can be
computed from (7) as Uec = DIU , so that we come up with the following
linear system of size 3M × 3M to solve: DL

IΓ −DI

IΓ −DI

U = 0̄, (12)

where IΓ is an M × 3M matrix whose entries are zero everywhere except for
the entries (i, i) (corresponding to points xi on Γ ) that have a value of 1.

The second version of the RBF Orthogonal Gradients method is more ac-
curate, and we will implement it as part of our future work. Dirichlet boundary
conditions (3) on the boundary nodes of xi are then applied directly on the
linear system (12) by setting the entries of the corresponding line to zero, the
diagonal term to 1 and the right hand side to the cosine value (3). This algo-
rithm has a global and a local version. In the global version, the derivatives are
computed using all the nodes, while in the local version, the derivatives at a
particular point are computed using only the points in a cluster of neighbors.
Although the local method loses the potential for spectral accuracy in the so-
lution representations, it still is a high order method and it has a significantly
reduced complexity compared to the global method, since the differentiation
matrices are now sparse.

The only two parameters that need to be properly defined are the shape
parameter ε defined in (4) and the offset parameter δ defined in (8). Both
of these parameters have a direct impact on both the accuracy and the con-
ditioning of the differentiation matrix. A lot of work has been done on the
search for an ’optimal’ shape parameter ε. Since the topology and the nodes’
distribution and density also impact the conditioning, finding a formula for
this ’optimal’ ε is near impossible. As ε gets smaller, the accuracy improves
but the conditioning worsens [8, 17]. Unless one uses one of the algorithms
that bypass the small shape parameter conditioning issue [15, 14, 13], the
shape parameter will need to be set large enough to have a good condition-
ing. Since we know the smallest distance between two nodes (dmin), and that
the nodes are uniformly distributed, we can ’normalize’ the shape parameter
as ε = ε∗

dmin
. ε∗ will vary with the total number of nodes (global method) or

with the number of nodes in a cluster (local method). A lot less work has been
made in finding an optimal δ. However, the accuracy seems less sensitive to
its value than to the value of the shape parameter. In order to avoid level sets
crossing, we set δ = dmin × δ∗, where 0 < δ∗ < 1. For our examples, which
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feature relatively small sets of nodes, we set δ∗ = 0.33 and ε∗ = M/300. If M
were to be much larger, ε∗ would need to grow exponentially with M.

4 Inverse mapping

Once the harmonic map has been computed, it can be used as input for
planar surface meshers (delaunay, frontal, etc.) to produce high quality trian-
gulations [34]. It is this remeshing step performed in the parametric space that
will remove the overlaps, intersections or T-junctions. The only information
we need to provide to the planar meshers is the inverse map x(u) and the
Jacobians of the mapping xu and xv. The jacobians are then used to build
the metric tensor (or first fundamental form)

M = xT,ux,u =

[
x,u · x,u x,u · x,v
x,v · x,u x,v · x,v

]
(13)

in order to compute edge lengths, angles and areas.
In this section, we explain how to compute the inverse mapping. We al-

ready have the solution of the harmonic map at the M points of the mesh:
ui(xi). The planar mesh algorithm needs to insert a new point up in the para-
metric space and needs therefore to know xp(up) as well as the mesh metric
in order to have edge length and angle measures.

Figure 5 shows the remeshing procedure in the parametric space as well as
the resulting mesh for the CAD model of Fig. 2. As can be seen from Fig. 5,
the presented algorithm is also able to keep some specified shape features such
as topological edges.

Let suppose that our first mesh is obtained by meshing different CAD
patches that have a given parametric description uCAD. In the case the new
mesh point to be inserted by the meshing algorithm, lies within a mesh triangle
Tj , then the inverse mapping can be found as follows [34].

1. Find a triangle Tj of the parametric space Γ ′ that contains point u; Note
that in the case the parametrization contains overlaps or intersections that
come from the dirty model (see right Fig. 2), then any of the triangles
containing the point u can be chosen;

2. Compute local coordinates ξ = (ξ, η) of point u inside triangle Tj ;
3. Compute the parametric coordinate of the CAD patch as follows:

uCAD(ξ, η) = (1− ξ − η)uCAD1 + ξuCAD2 + ηuCAD3 ;
4. Use the CAD model to obtain the inverse mapping x(uCAD) and the

derivatives of this mapping.

Suppose now that the point to be inserted does not lie within any parametrized
triangle or suppose that the triangulation does not have an underlying CAD
model (stl triangulations obtained from image segmentation). In this case, the
inverse mapping xp for a point up = (up, vp) is computed with a local RBF
interpolation of the form (7):
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Fig. 5. Starting from a initial triangulation of a CAD model with topological and
geometrical errors and from its parametrization (see the Fig. 2), we compute with
a planar mesh generator the new mesh. The left figure shows an intermediate step
of the frontal mesh algorithm (the grey triangles are the resolved layers, the red the
active layers and the white the waiting layers) in the parametric space and the right
figure shows the resulting mesh in the 3D space.

XL = BLuA
−1
u︸ ︷︷ ︸

DL
u

X, (14)

where X is taken as the vector of the closest P points xi. Those closest points
are found by computing the P closest4 parametrized points ui to up in the
set of the M parametrized points and by taking the corresponding points in
the 3D space xi. In 14, XL is the inverse mapping we are looking for (of size
K = 1) and DL

u is the matrix of differentiation in the parametric space of size
K × P (i.e. with the radial basis functions written in the parametric space:
φ(u − ui)). From (14), we obtain easily the inverse quantities needed by the
planar meshes. Indeed, when L = I , we get the inverse map xp(xu), when
L = ∂u, we obtain the Jacobian xu,p and when L = ∂v, we have the Jacobian
xv,p.

From Fig. 5, we can see that the proposed method can be used as a hole-
filling algorithm. Indeed, thanks to the RBF interpolation, we are able to
find new mesh vertices xp corresponding to parametrized points up that are
located inside undesirable holes.

5 Results

Two examples aim to show that the presented algorithm can be seen as a
CAD and mesh repair algorithm.

4A fast kdtree method is used for computing those closest points.
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The first example shows a raw mesh model of a face (Fig. 6). The trian-
gulation is made of 1048 triangles, contains different self-intersection triangles
(see red triangles in Fig. 6) and has two undesirable holes. It follows that
the parametrization cannot be computed with a finite element Laplacian.
The parametrization computed with RBF’s is shown in Fig. 7. A Frontal-
Delaunay algorithm [33] was used for the remeshing in the parametric space.
We first compare the quality of the initial and final mesh by computing for
every triangle the aspect ratio κ that is the ratio between the inscribed and
circumscribed radius of the triangle [18, 34]. Parameter κ is such that an
equilateral triangle has κ = 1 and a degenerated flat triangle has κ = 0. The
initial triangulation of the face has κ̄ = 0.69 and κmin = 0.01, while the new
mesh made of 2705 triangles has κ̄ = 0.94 and κmin = 0.36. The L2 Hausdorff
distance (normalized by the bounding box) between the initial triangulation
and the new mesh is only 0.0007. This small error show that the underlying
shape is predicted with good geometric fidelity.The total time for remeshing
the face is 1s5, and 25% of that time is for computing the parametrization
with RBFs.

κ̄ = 0.69 κ̄ = 0.94

Fig. 6. Dirty raw mesh model of the face (left) and the new mesh (right) and the
average quality κ̄ of the meshes. The red triangles on the left are the self-intersecting
triangles.

In the next example we consider a dirty CAD model from a rocket rein-
forcement of a vehicle.

Most of the time, a straightforward meshing of the patches of a clean
CAD does not give a suitable mesh for finite element analysis. An efficient

5on a MACBOOK PRO clocked at 2.4 GHz



Title Suppressed Due to Excessive Length 13

Fig. 7. The parametrized mesh computed with RBFs. The red triangles are the
self-intersecting triangles.

manner to build a high quality mesh for those CAD models is then to build
from the initial CAD mesh a cross-patch parametrization that enables the
remeshing of merged patches. Indeed, as most surface mesh algorithms mesh
model faces individually, mesh points are generated on the bounding edges of
those patches and if thin patches exist in the model they will result in the
creation of small distorted triangles with very small angles. Those low quality
elements present in the surface mesh will often hinder the convergence of the
FE simulations on those surface meshes. An efficient manner to build a high
quality mesh for those CAD models is then to build from the initial CAD
mesh a cross-patch parametrization that enables the remeshing of merged
patches. The new mesh is then build in the cross-patch parametric space and
the new points are projected back onto the CAD patches using the parametric
representation of the patches uCAD (e.g. NURBS). Now, if the CAD is dirty
such as the example of Fig. 8, standard techniques for computing cross-patch
parametrizations will fail and the method we present in this paper can be
considered as an original approach for creating a finite element mesh based of
the dirty CAD that does that bypasses the geometrical repair. The dirty CAD
model of Fig. 8 is given in IGES format, and includes 141 NURBS surfaces.
The CAD model contains a lot of gaps, overlaps, redundant surfaces, T-joints
and patches with reverted normals. This CAD model has so many topological
and geometrical errors that none our available commercial packages that claim
to perform geometrical CAD healing was able to repair the model.
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Seventeen groups of patches (also called compounds) have been created and
a cross-patch parametrization has been computed with the presented method
for every of those compounds. This is implemented quite simply in Gmsh by
creating a .geo file that reads:

Mesh.RemeshParametrization=2; // (2) for rbf

Merge "CAD.iges";

Mesh.CharacteristicLengthFactor = 0.1;

Compound Surface(20000) = {34:65,118} ;

The new mesh (Fig. 8 bottom) is obtained with a planar Delaunay mesh
algorithm with a given uniform mesh size field. This new mesh is made of
13216 triangles that have a high mean quality of κ̄ = 0.94. The total time
for meshing the compounds is 30s. This example also demonstrates that our
method works with non-uniformly distributed nodes. The minimum distance
between two nodes is 1.e− 3 while the maximum distance is 5.2.

6 Conclusion

In this paper, we presented a brand new approach for repairing and generat-
ing meshes, which paradoxically finds its strength in the meshless character of
the RBF method on which our approach is based. We showed that our algo-
rithm gives excellent results in repairing serious topological and geometrical
errors such as holes, reversed normals, overlaps and T-junctions, non-manifold
vertices.

The approach makes use of the RBF Orthogonal Gradients method, re-
cently introduced in [32], to solve PDEs on arbitrary surfaces using RBF’s.
We use this method to solve Laplace’s equation (with Dirichlet boundary
conditions on a closed boundary curve of the surface) to obtain a discrete
parametrization. Next, the surface is remeshed in the parametric space with
a computed inverse mapping. We showed that the presented algorithm can be
seen as a CAD and mesh repair algorithm but also a global quality remeshing
algorithm, and a hole filling-algorithm.

Our technique can be further improved by using the higher order version
of the RBF Orthogonal Gradients method, or by computing conformal map-
pings instead of harmonic mappings. Indeed, as conformal mappings preserve
angles, they will enable us to generate also high quality quadrilateral meshes.
Moreover, they require only two Dirichlet boundary conditions for the solution
of the mapping. Also different algorithmic advances involving hierarchical and
fast-multipole like methods combined with interpolatory filters can be used
to reduce the computational cost associated to the RBF interpolation.
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Fig. 8. Example of an initial triangulation of a CAD model from the automotive
industry that contains a lot of gaps, overlaps and T-joints. The bottom figure shows
the new mesh that is suitable for finite element simulations.


