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Abstract

The faster growth curves in the speed of GPUs relative to CPUs in the past decade
and its rapidly gained popularity have spawned a new area of development in com-
putational technology. In the past several years, non-graphical applications have been
adapted to the GPU by means of several improved programming models. There is
much potential in utilizing GPUs for solving evolutionary partial differential equations
and producing the attendant visualization. We are concerned with modeling tsunami
waves, where computational time is of extreme essence in broadcasting warnings We
have employed the NVIDIA board 8600M GT on a MacPro to test the efficacy of
the GPU on the set of shallow-water equations. (We have also tested this with the
NVIDIA Quattro FX5600). We have compared the relative speeds between CPU and
GPU on a single processor for two types of spatial discretization based on second-order
finite-differences and radial basis functions, which is a more novel method based on a
gridless and a multi-scale, adaptive framework. For the NVIDIA 8600M GT we found
a speedup by a factor of 8 in favor of GPU for the finite-difference method and a factor
of 7 for the RBF scheme. We have also studied the atmospheric dynamics problem of
swirling flows over a spherical surface and found a speed-up of 5.3 by the GPU. The
timesteps employed for the RBF method are larger than those used in finite-differences,
because of the much fewer number of nodal points needed by RBF. Thus, in modeling
the same physical time, RBF acting in concert with GPU would hold great promise
for tsunami modelling because of the spectacular reduction in the computational time
due to the explicit nature of the numerical scheme.

1



1 Introduction

Natural catastrophic disasters, like tsunamis, commonly strike with little warning. For most
people, tsunamis are underrated as major hazards ( e.g. [1]). People wrongly believed that
they occur infrequently and only along some distant coast. Tsunamis are usually caused by
earthquakes. Seismic signals usually can give some margin of warning, since the speed of
tsunami waves travels at about 1/30 of the speed of seismic waves. Still there is not much
time, between one hour and a few hours for distant earthquakes and much less, if you happen
to be unluckily situated in the near field region. Figure 1 shows an artist’s impression of the
tsunami caused by the March, 1964 Alaskan earthquake. The power associated with tsunami
waves may be imagined by Figure 1. Therefore it is important to have codes which are fast
to respond to the onset of tsunami waves. It is desirable to have codes which can deliver the
output in the course of a few minutes. With the introduction of GPU as a commodity item
into the computer graphics market, it is timely to adopt this new technology into solving
partial differential equations describing the propagation of tsunami waves. This may have
important consequences in the warning strategy, if a factor of around ten can be achieved
on a single CPU.

Figure 1: This image was illustrated by Pierre Mion for Popular Science in 1971, in response
to an earthquake that caused a tsunami near Prince William Sound, Alaska in 1964. The
train pictured was carried 50 meters by the humongous waves [1].

There has already been some work done in using GPUs for solving equations involving
fluid dynamics by the group at E.T.H. [2, 3] dealing with complicated physics, such as bubble
formation and wave breaking. Computational efforts in molecular dynamics [4],astrophysics
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[5] (and seismic wave propagation in 3D, using CUDA [6] have also been carried out on
GPUs.

In the next section we will give the mathematical equations used in the modeling. This
will be followed by an introduction to the concepts of GPU and CUDA, a recently devel-
oped software, which allows one to translate readily existing codes written in C language to
programs capable of being run on a GPU. We then give a brief introduction to RBFs and
the software, Jacket, which can translate the RBF code written in MATLAB to CUDA form
capable of running seamlessly on the GPU.

Radial basis functions (e.g. [7]) are a novel method to solve partial differential equations.
They represent a gridless approach [8] and require fewer grid points for solving the partial
differential equations because of its high accuracy. We will discuss their potential use in the
shallow-water equations together with their implementation on a GPU. We then give the
results on the comparison in computational times of CPU versus GPU for both the linear
shallow-water equations and the swirling flow problem in atmospheric flows. In the last
section we summarize our findings and give some perspectives for future work.

2 Tsunami Equations

We will now give a brief summary of how tsunamis are generated by earthquakes and how
tsunami waves propagate across the sea. Whereas ordinary storm waves break and dissipate
most of the energy in a surf zone, tsunami waves break at the shoreline. They lose little
energy as they approach a coast and can run up to heights an order of magnitude greater than
storm waves. The reader is kindly referred to [9, 10, 11, 12, 13] for a more thorough review
of the physics and classification of tsunami waves and the numerical techniques employed in
the modeling.

In brief, tsunami waves, which typically have periods spanning from 100 s to 2000 s, are
generated by earthquakes by means of transfer of large-scale elastic deformation associated
with earthquake rupturing process to increase of the potential energy in the water column of
the ocean. Most of the time, the initial tsunami amplitude waves are very similar to the static,
coseismic vertical displacement produced by the earthquake. In tsunami modeling [14] one
commonly calculates the elastic coseismic vertical displacement field from elastic dislocation
theory (e.g. [15] with a single Volterra (uniform slip) dislocation. Geist and Dmowska [11]
showed the fundamental importance that distributed time-dependent slip have on tsunami
wave generation. We note that because variations in slip are not accounted for, these sim-
ple dislocation models may underestimate coseismic vertical displacement that dictates the
initial tsunami amplitude. It is only recently (e.g. [16]) that horizontal displacements are
deemed to be important in tsunami modeling.

After the excitation due to the initial seafloor displacement, the tsunami waves propa-
gate outward from the earthquake source region and follow the inviscid shallow-water wave
equation, since the tsunami wavelength (around hundreds of km) is usually much greater
than the ocean depths. For water depths greater than about 100 to 400 meters [17, 18], we
can approximate the shallow-water wave equations by the linear long-wave equations:
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where the first equation (1) represents the conservation of mass and the next two equations
(2, 3) govern the conservation of momentum. The instantaneous height of the ocean is given
by z x, y, t , a small perturbative quantity. The horizontal coordinates of the ocean are given
by x and y and t is the elapsed time, M and N are the discharge mass fluxes in the horizontal
plane along the x and y axes, g is the gravitational acceleration, h x, y is the undisturbed
depth of the ocean, and the total water depth

D x, y, t h x, y z x, y, t (4)

It is important to emphasize here that the real advantage of the shallow water equation is
that z is small quantity and hence a perturbation variable, which allows it to be computed
accurately.

The three variables of interest in the shallow-water equations are z x, y, t , the instan-
taneous height of the seafloor, and the two horizontal velocity components u x, y, t and
v x, y, t . We will employ the height z as the principal variable in the visualization. The
wave motions will be portrayed by the movements of the crests and troughs in the wave
height z, which are advected horizontally by u and v.

A thorough discussion of the limitations of the shallow-water equations in both the linear
and nonlinear limits, as well as 3-D waves, can be found in a recent lucid contribution by
Kervella et al. [19]. Shallow-water, long wavelength equations are commonly solved by
using second-order accurate finite-difference techniques (e.g. [17]). As a rule of thumb, there
should be 30 grid points covering the wavelength of a tsunami wave. For a tsunami with
a wave period of 5 minutes, this criterion requires a grid size of 100 m and 500 m where
the depth of the water exceeds respectively 10 m and 250 m. Accurate depth information is
more important than the width of the grid in modeling tsunami behavior close to the coast.
We note the shallow-water equations describing tsunamis are best employed for distances
about a few hundred kilometers from the source of earthquake excitation. Otherwise, the
full set of 3-D Navier-Stokes equations should be brought to bear [13, 20], especially in light
of recent suggestion of the importance of horizontal movement in tsunami excitation [16].

3 Computing Tsunamis on GPUs

In 2004, a humongous tsunami struck Sumatra, killing approximately 230,000 people. Never
before has a tsunami been known to be this deadly. Perhaps, if a method or computational
hardware tools had been available that could model tsunamis quickly and accurately after
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the onslaught of an earthquake, many people may still be alive today. The average depth of
the ocean is roughly 5000 meters. If a tsunami causing earthquake were to strike, a tsunami
wave would travel close to 800 kilometers per hour. Although the wave slows ,as it approaches
the shoreline, it continues to move quite quickly. The depth of the ocean near the shore is
typically around 100 meters, thus, the wave continues to move at over 110 kilometers per hour
[21]. Tsunamis are difficult to detect as they usually look like most other ocean waves. The
only warning is the earthquake. On average, a tsunami vertically displaces between twelve
and twenty-three inches of water. Therefore, the best way to accurately predict where a
tsunami will strike and how large it grows is through numerical simulations. Thus, the
quicker a simulation produces data, the quicker a tsunami warning could be issued. Figure 2
shows the generation and propagation of a tsunami by an earthquake in a subducting region.

Figure 2: This demonstrates how the tsunami is generated and how it propagates through
the ocean. ([22], adapted from universe-review.ca/F09-earth.htm).

Within the last decade, commodity graphics processing unit (GPU) specialized for ren-
dering of 2D and 3D scenes have seen an explosive growth in processing power compared to
their general purpose counterpart, the CPU. Currently capable of near teraflop speed and
sporting gigabytes of on-board memory, GPUs have indeed transformed from accessory video
game hardware to potentially useful computational co-processors. However, a GPU can also
be used to compute complex mathematical operations, thereby lifting the burden off the
CPU and allowing it to dedicate its resources to other tasks. More recently, the program-
ming research community has come up with programming models that would map well onto
GPUs. NVIDIA’s CUDA (Compute Unified Device Architecture), which was introduced in
2007, treats the GPU as a SIMD processor and allow for general purpose computing. CUDA
marked both a redesign of the hardware, plus the addition of a new software layer to accom-
modate general purpose computing. When our research group saw the potential speedup of
implementing simulations with a GPU armed with CUDA, we decided to investigate whether
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we could adapt our computational problems for a GPU. We looked at modeling tsunamis
through two different methods - the finite difference method and radial basis functions to
solve our PDEs. The GPU we used to implement the finite difference method tsunami simu-
lation was an NVIDIA GeForce 8800 and an NVIDIA GeForce 8600M GT to implement the
radial basis function simulation. The use of these GPUs permitted us to achieve a speedup
over running the simulations on the CPU alone.

The GPU has multiple types of memory buffers available on it, and when used correctly,
they can further speedup a simulation. There are significant advantages to reading from
texture memory as compared to the global GPU memory. Therefore, our simulations use
both texture and linear memory since texture is necessary to experience the full benefits
of the GPU architecture. Textures act as low-latency caches that provide high bandwidth
for reading and processing data. Thus, we are able to read data on the GPU very quickly,
since it is essentially a memory cache. Textures also provide for linear interpolation of voxels
through texture filtering that allows for ease of calculations done at sub-voxel precision.
Data access using textures also provides automatic handling for out of bounds addressing
conditions, such that sloppy programming can by forgiven by automatically clamping to the
extents of a volume or wrapping to the next valid voxel.

Coalesced memory access refers to accessing consecutive global GPU memory locations
by a group of CUDA threads (in the same warp) and creates the best opportunity to maxi-
mize memory bandwidth. Unfortunately, many applications cannot be mapped to coalesced
reads and therefore an expensive increase in latency results in significantly less than opti-
mal bandwidth. Fortunately, CUDA provides the opportunity to map global memory to
a texture that allows data to be entered in a local on-chip cache with significantly lower
latency. In order to be optimal, the texture cache still requires locality in data fetches, but
it provides significantly more flexibility especially when using multi-dimensional textures for
2D and 3D reads. Therefore, memory reads using texture fetching can significantly increase
memory bandwidth, as long as there is some locality in the fetches. For our purposes, we are
always making local texture fetches from memory as our computation requires access only to
neighboring voxels in the 2D data. In practice, texture memory can be accessed in 1-2 cycles
resulting in bandwidths around 70GB/s (86.40GB/s theoretical max) as compared to global
(non-coalesce) memory reads that require a significant 400-600 cycle latency that results in
a poor bandwidth of 3.5GB/s. Although it needs to be stressed that these numbers vary
greatly depending on exact memory access patterns and how often the texture cache needs
to be updated.

There is a tradeoff though, for our techniques, since using texture memory requires the
allocation of an additional volume in global memory. Since the texture cache is not guaran-
teed to remain coherent (clean) when global memory writes occur in the same function call,
we need to ensure that no data is written to the global memory pointed to by a texture-
mapped address. Therefore, we cannot read and write from the same volume during a single
kernel call and must write to a temporary output volume that can then be copied to the
texture-mapped memory after completion of the kernel call. Writing to global memory dur-
ing a kernel call is only relevant to texture-mapped linear memory (kernels can never write
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to CUDA arrays), but care must be taken since undefined data is returned by a texture fetch
when the cache loses coherency (i.e. when dirty).

However, since it is very time consuming to write to texture memory, we found the
optimal process for our particular simulation was to use linear memory much of the time.
Although linear memory takes a considerable amount of time to read, it can easily be written
to. Therefore, we would copy the data from the linear memory into texture, so we could
read the data quickly, while also being able to quickly update the values in linear memory.
A problem we ran into with texture memory is that many of our calculations referenced
multiple arrays, each of whose index referenced a different position. Therefore, we were
unable to use texture memory as much as we would have liked. Currently, we are working
on resolving this issue in order to eliminate reading data from linear memory, and reading
only from texture.

Eventually, we would also like to visualize the simulation ,as it is running. This would
be accomplished by creating a graphical user interface to show the tsunami propagating
through the water as the data is computed. Currently, we output a file every sixty time steps
to visualize the tsunami. After the simulation has finished running, we take those files and
import them into visualization software called Amira [22]. However, the file writing process
is quite time consuming because the CPU must write the file. Therefore, our simulation is
constantly copying data to the CPU in order to write the file and then back to the GPU to
perform our computations. By eliminating the constant movement between the CPU and
the GPU, greater speedup could be attained. Ideally, we would like to visualize the projected
path of the tsunami in faster than real time, enabling a tsunami warning to be issued to the
people in the vicinity of the tsunami path before the wave arrives.

4 CUDA and Tsunami Computation

As discussed above, we have elected to use CUDA, which can be downloaded for free from
the NVIDIA website along with its compiler. There is a large user community in CUDA,
including a few dozen universities which use it in classes. This programming development
greatly facilitates the GPU to be used as a data-parallel supercomputer with no need to
write functions within the restrictions of a graphics API. NVIDIA designed CUDA for their
G8x series of graphics cards, which includes the GeForce 8 Series, the Tesla series, and some
Quadro cards. We will describe basic details of the CUDA programming model, but for
further details we advise the reader to refer to the CUDA Programming Guide [23]. Before
GPU programming languages became widely accessible, the only way to program a GPU
was through assembly language. Assembly language is very difficult to implement; therefore,
not many people attempted GPU programming. Recently, GPU programming has become
more accessible through the development of a variety of languages, such as RapidMind from
Waterloo, Brook from Stanford and then came CUDA. The CUDA programming interface is
an extension to the C programming language and therefore provides a relatively easy learning
curve for writing programs that will be executed on the device. Within the CUDA lanugage
the CPU is commonly called the host and the GPU is the device. As already mentioned,
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CUDA programs follow a SIMD paradigm where a single instruction is executed many times,
but independently on different data and by different threads. The resulting program, which
we call a kernel, needs to be written as an isolated function that can be executed many times
on any block of the data volume.

There are some limitations to GPU programming with CUDA. For example, CUDA only
works on certain graphics cards, all of which are developed by NVIDIA. These cards include
the GeForce 8000 series, along with a few selected Teslas and Quadros. Therefore, it may
be difficult to find a computer with the ability to run CUDA. Additionally, CUDA only
supports 32-bit floating point precision on the GPU. Although it does recognize the double
variable type, when a double is cast to the GPU, it is reduced to a float. Currently, a new
language is being developed by AMD called Brooks+, which would support 64-bit precision;
however, currently no such language exists. But these problems will ameliorate.

Another limitation to GPU programming is the bottleneck caused by the latency and
bandwidth between the CPU and GPU, since it is easier to copy data from the CPU to
the GPU rather than vice versa. To understand this more fully, we will describe how the
CUDA program works. First, all of the variables need to be set up for both the host and
device. When allocating linear memory on the GPU, we use the command cudaMalloc().
Additionally, during this time we also set up the texture memory locations as well. Next,
we populate the data on the host before calling the kernel. In order to execute our kernel
upon the device, we must copy the data to the GPU. To perform this operation we use
cudaMemcpy() to copy the data from the CPU to the GPU. Finally, once the data has been
copied to the device, the kernel can be executed. The kernel in effect runs in a parallel fashion
on the GPU processors as each thread executes the kernel simultaneously, thus decreasing
the elapsed time the CPU would have needed to run it in a sequential fashion. When the
kernel reaches the end, the program returns to the host. However, in order to work with
the data computed on the GPU, we need to use the cudaMemcpy() command to copy the
data from the GPU to the CPU. Now, the program may continue its execution. Figure 3
illustrates this process. Finally, right before the program ends, we want to be sure to use the
cudaFree(device variable) to ensure the device’s memory locations are cleared so that it
may perform optimally its other tasks. Therefore, as the number of data transfers between
the CPU and GPU increase, the less effective the GPU becomes.

A major advantage of the CUDA architecture over prior GPU programming environments
is the availability of DRAM memory addressing which allows for both scatter and gather
memory operations, essentially allowing a GPU to read and write memory in the same way
as a CPU. CUDA also provides a parallel on-chip shared memory that allows threads to
share data with each other and read and write very quickly. This shared memory feature
circumvents many expensive calls to DRAM and reduces the bottleneck of DRAM memory
bandwidth.

Overall, we found CUDA to be the best language to fulfill our needs. In order to accom-
plish the task of GPU programming, we found it beneficial and the most useful to first port
the finite difference tsunami simulation from FORTRAN 77 to C. Although it was possible
to keep the simulation in FORTRAN and call upon CUDA kernels, we believed it to be
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easier if the entire simulation was written using the same language. However, later when we
were faced with the task of putting MATLAB code on the GPU, we felt a different option
through the Jacket software was more constructive. Jacket will be elaborated on later in
this paper.

Figure 3: Flow chart portraying how a typical CUDA program operates and the potential
bottle-neck involving data-transfer.
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5 Sample CUDA Code for GPU

The next two figures demonstrate how a CUDA kernel can be written and how it is called
from the main program. This example doubles every value stored in the array, using addition.
Figure 4 represents the kernel that will be executed inside the GPU, while Figure 5 is the
rest of the program that is run on the CPU.

g l o b a l void addArray ( int ∗a , int s i z e )
{

int i = b lockIdx . x ∗ blockDim . x + threadIdx . x ;
i f ( i < s i z e )

a [ i ] = a [ i ] + a [ i ] ;
}

Figure 4: This is an example of a CUDA kernel. It displays how arrays can be added together
on the GPU.

main ( )
{

int s i z e = 10 ; // the s i z e o f the arrays
int ∗a h , ∗a d ; // c r ea t e s two po in te r arrays , one

// f o r each the hos t and dev i c e
s i z e t N = s i z e ∗ s izeof ( int ) ;
a h = ( int ∗) mal loc (N) ; // a l l o c a t e s space on CPU for array
cudaMalloc ( ( void∗∗)&a d , N) ; // a l l o c a t e s space on GPU for array

. . . // i n i t i a l i z e the hos t array to de s i r e d va l u e s

. . . // s e t the thread and g r i d s i z e

// cop i e s the con ten t s o f the hos t array i n t o the dev i c e array
cudaMemcpy( a d , a h , N, cudaMemcpyHostToDevice ) ;
// c a l l to the CUDA ke rne l
addArray<<<gr id , thread>>>(a d , s i z e ) ;
// cop i e s the con ten t s o f the dev i c e array i n t o the hos t array
cudaMemcpy( a h , a d , s izeof ( int )∗ s i z e , cudaMemcpyDeviceToHost ) ;
for ( int i = 0 ; i < s i z e ; i++)

p r i n t f ( ”%d\n” , a h [ i ] ) ; // p r i n t s r e s u l t s
f r e e ( a h ) ; cudaFree ( a d , s i z e ) ; // f r e e s the hos t and dev i c e memory

}

Figure 5: This section is taken from the main part of the program. It shows how the arrays
are set up for the GPU, and how to call the CUDA kernel. Moreover, it displays how the
data is copied back to the CPU after being computed on the GPU.
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6 A Description of RBF (Radial Basis Function) Methodology

6.1 Introduction

Rolland Hardy (1971) introduced the RBF methodology with what he called the Hardy
multiquadric (MQ) method. The method originally came about in a cartography problem,
where scattered bivariate data needed to be interpolated to represent topography and pro-
duce contours. The common interpolation methods of the time (e.g. Fourier, polynomials,
bicubic splines, etc...) were not guaranteed to produce a non-singular system with any set
of distinct scattered nodes. It can be shown, in fact, that when the basis terms of an in-
terpolation method are independent from the nodes to be interpolated, there is an infinite
amount of node sets leading to a singular system. Hardys method bypassed this issue. It
was innovative in that his method represented the interpolant as a linear combination of
one basis function (originally the multiquadric function, Figure 6), centered at each node
location, making the basis terms dependent on the nodes to be interpolated. Furthermore,
it was shown that the basis terms of Hardys method produced an interpolation system that
was unconditionally non-singular. Although orthogonality of the basis terms was lost, a well-
posedness was achieved for any set of scattered nodes, and in any dimension. Throughout
the years, more such ’radial functions’ were used than the original MQ with which Hardy
introduced the method (Figure 7). All radial functions have the particular property to only
depend on the Euclidean distance from their center, making them radially symmetric. The
name of the method was therefore generalized to the Radial Basis Functions (RBF) method.
It is not until the 1990s, with Ed Kansa, that RBFs were used to solve partial differential
equations (PDEs) for the first time [24]. Although the method is young and still relatively
unknown, it offers great prospects for modelling in geophysical fluid dynamics.

Figure 6: The RBF method consists in centering a radial function at each node location and
imposing that the interpolant take the nodes associated function value.
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Figure 7: Commonly used radial basis functions. The piecewise smooth RBFs only give rise
to low accuracy, while the infinitely smooth RBFs provide spectral accuracy. MN is shown
in the case of k 1, i.e. φ r r.

6.2 RBF representation

Given the data values fi at the scattered node locations xi, i 1, 2, . . . n in d dimensions,
a radial basis function interpolant takes the form

s x
n

i 1

λi φ x xi , (5)

where denotes the Euclidean L2-norm.
We obtain the expansion coefficients λi by solving a linear system A λ f , imposing the

interpolation conditions s xi fi. The system takes the form

φ x1 x1 φ x1 x2 φ x1 xn

φ x2 x1 φ x2 x2 φ x2 xn
...

...
φ xn x1 φ xn x2 φ xn xn

λ1

λ2

...
λn

f1

f2

...
fn

(6)
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It is sometimes necessary to append a low order polynomial term to the RBF interpolant in
order to guarantee the non-singularity of the collocation matrix. More on this subject and
on RBFs in general can be found in [8].

There are two kinds of radial functions, the piecewise smooth and the infinitely smooth
radial functions. The piecewise smooth radial functions have a jump in one of their deriva-
tives, which limits them to yielding only an algebraic accuracy. The infinitely smooth radial
functions, on the other hand, offer spectral accuracy. They have a shape parameter, ε, which
controls how steep they are. The closer this parameter is to 0, the flatter the radial function
becomes. Table 1 contains some of the most commonly used piecewise and infinitely smooth
radial functions φ r .

Name of RBF Abbreviation φ r , r 0 Smoothness

multiquadric MQ 1 εr 2 Infinitely smooth
inverse multiquadric IMQ 1

1 εr 2

inverse quadratic IQ 1

1 εr 2

Generalized multiquadric GMQ 1 εr 2 β

Gaussian GA e εr 2

Thin Plate Spline TPS r2 log r Piecewise smooth
Linear LN r
Cubic CU r3

Monomial MN r2k 1

Table 1: Definitions of some of the most common radial functions.

It is interesting to note this heuristic reasoning behind the spectral accuracy of the in-
finitely smooth radial functions. In 1D, the cubic radial function φ r r3 has a jump in
its 3rd derivative, making its interpolant O h4 accurate (h is inversely proportional to the
number of node points, N . It can be thought of as the typical node distance, since no grid
is required.) The quintic radial function, φ r r5, has a jump in its 5th derivative and
leads to an O h6 accurate interpolant. In general, the MN radial function φ r r2k 1

has a jump in its 2k 1st derivative and its interpolant will be O h2k accurate. Thus, the
smoothness of the radial function is the key factor behind the accuracy of its interpolant.
The piecewise continuous radial functions therefore converge algebraically towards the in-
terpolated function, as we increase the number of node points. We note here that a radial
function could not take the form φ r r2k since it could interpolate a maximum of 2k 1
nodes (in 1-D), due to the fact that the resulting interpolant reduces to a polynomial of de-
gree 2k. On the other hand, a radial function which is infinitely continuously differentiable
(and not of polynomial form) will produce a spectrally accurate interpolant, which converges
as O e

const

h towards the interpolated function, if no counterpart to the Runge phenomenon

enters [25]. The Gaussian RBF is an exception to the rule, as it converges as O e
const

h2 , i.e.
’super-spectrally’ [26]. This rule holds on 1-D equispaced grids, but equivalent results seem
to hold also in higher dimensions, when using scattered nodes.
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The accuracy of the infinitely smooth radial functions also depends on their shape param-
eter and can be improved by changing the flatness of the radial function. The limit of ε 0,
has become very interesting in that respect. The range of small ε used to be inaccessible
because of the ill-conditioning that it caused. Since the introduction of the Contour-Padé
method, developed by Fornberg and Wright [27] , this obstacle commonly known as ’the
uncertainty principle’ was lifted and it was finally possible to explore the features of the
small ε RBFs. Recently, the RBF-QR algorithm was introduced by Fornberg and Piret [7].
Similarly to the Contour-Padé method, it allows to compute the RBF interpolant in the low
ε regime. However, unlike the Contour-Padé method, the RBF-QR method is not limited to
work for only small numbers of nodes.

7 Software Used in MATLAB for Translating RBF into
CUDA

Although Matlab provides an API to interface with C code, and in essence with CUDA
through MEX files [28], we decided to use software developed by AccelerEyes called Jacket
to run the RBF simulation in conjunction with a GPU. However, we decided to use software
developed by AccelerEyes called Jacket. By using Jacket, we are able to access the GPU
without leaving the MATLAB environment. Jacket is an engine that runs CUDA in the
background, eliminating the need for the user to know any GPU programming languages.
Instead of writing CUDA kernels, one just needs to tell the MATLAB environment when
and what should be transferred to the GPU and then when to copy it back to the CPU [29].
See Figure 8 for an example on how to implement MATLAB code on the GPU by using
Jacket.

A = eye ( 5 ) ; % crea t e s a 5x5 i d e n t i t y matrix
A = g s i n g l e (A) ; % cas t s A from the GPU to the CPU
A = A ∗ 5 ; % mu l t i p l i e s matrix A by a s ca l a r on the GPU
A = double (A) ; % cas t s A from the GPU back to the CPU

Figure 8: Demonstrates how a MATLAB program can take advantage of the GPU by using
the software Jacket.

Since Jacket wraps the MATLAB language into a form that is compatible with the GPU,
the commands that would have otherwise been written in C are eliminated. However, the
CUDA drivers and toolkit must be installed on the computer before Jacket can be used.
Additionally, once MATLAB has opened, a path needs to be added to the Jacket directory
so that MATLAB knows where it can access the files that would allow it to cast the data
onto the GPU. Moreover, we are visualizing images on the GPU through MATLAB because,
thus far, Jacket only supports OpenGL in Linux. There are plans to expand Jacket so that it
can support OpenGL in other environments as well. When this becomes available, we shall
be able to visualize the RBF within the native MATLAB environment on any computer
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that supports CUDA, thereby eliminating the step of writing data back to the CPU. Thus,
by using RBFs to model tsunamis in conjunction in the GPU would enable us to visualize
the tsunami faster than it is propagating through the water, allowing a tsunami warning to
be issued readily. Figure 9 demonstrates how our simulation in MATLAB currently works.
Futher information about Jacket can be found in the user guide distributed by Accelereyes
[30].

Figure 9: The configuration of the current MATLAB simulation.

8 Comparison of GPU and CPU Results

8.1 Linear Tsunami Waves

After implementing both the finite difference method and the radial basis function shallow-
water simulations on the GPU using CUDA, we received significant speedup in the simula-
tion’s run times. The finite difference method simulation was run upon an NVIDIA 8800
GPU. This simulation has a two dimensional grid size of 601 by 601 and contains 21,600
timesteps where each timestep represents one second. Originally, the simulation was run
upon an Opteron-based system in its original form of FORTRAN 77 and it took over four
hours to complete its run. However, running the same simulation in conjunction with the
GPU took approximately half an hour. Thus, the simulation was about eight times faster
than using the CPU alone. However, even with the GPU, we are still outputting a file every
sixty time steps so that we can visualize the tsunami in Amira. Figure 10 shows a visualiza-
tion of the data with Amira. If we could eliminate writing data to a file, but rather produce
images in real time, the speedup could be increased, since it takes a considerable amount of
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time to copy data back to the CPU [31]. Therefore, implementing a visualization interface
using OpenGL would allow us to visualize the data, as it is being created.

Figure 10: The tsunami as visualized in Amira. The first image (A), shows the tsunami early
in its propagation, while the second one (B), illustrates the tsunami later in the simulation.
Visually, there is no difference in running the simulation on the GPU than with the CPU.

Moreover, we also implemented the radial basis function simulation on an NVIDIA 8600
GPU using the software Jacket. Comparing the simulation that ran strictly on the CPU of
a MacBook Pro to the simulation that implemented a GPU, the speedup we received was
about seven times faster. This simulation contained four hundred time steps and a grid size
of 30 by 30. Overall, we found that running a RBF simulation in conjunction with the GPU
would produce the speediest results, thereby allowing the shortest time in issuing a tsunami
warning.

8.2 Swirling Flows

Another area of interest is using radial basis functions to model atmospheric simulations.
This includes swirling flow problems such as solid body rotation, which are found in weather
models. Meteorologists resort to these types of models in order to predict the weather;
however, these simulations can take a very long time to run. Therefore, it is very difficult
to predict the weather far into the future. One example we looked at dealt with solid body
rotation; specifically, we looked at how the height field of a cosine bell as modeled by Flyer
and Wright [32], would travel around the earth. In order to look at this phenonoma, the
following equations were solved in spherical coordinates:

h

t

u

acosθ

h

λ

v

a

h

θ
0

u u0 cosθcosα sinθcosλsinα

v u0sinλsinα

(7)

(8)

(9)
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The first equation (7) models the advection of the height field, while the next two equa-
tions (8, 9) demonstrate the movement of the wind, with a representing the radius of the
earth and u0 being the speed of the rotation of the earth. The angles λ and θ represent the
latitude and longitude respectively, and α is the angle relative to the pole of the standard
longitudelatitude grid. Following Flyer’s and Wright’s model, one complete revolution is
made every twelve days. Initially, the cosine bell is centered at the equator, and begins
by following a northward path around the globe. Figure 11 shows the cosine bell traveling
around a spherical object, such as the world.

Figure 11: This is an image of the cosine bell traveling around the sphere. The pairs of the
sphere images show both sides of the sphere simultaneously, meaning, one side is the front
of the sphere, the other side is the back. Initially, the bell begins at the equator and then
moves northward, where eventually it travels to the other side of the sphere. After twelve
days, the bell has finally returned to its starting location.

Since radial basis functions are able to employ much larger timesteps compared to other
methods, this simulation is able to complete twelve days in a very short amount of time.
Visually, there is no difference between the results of the currently accepted methods and
radial basis functions. Since, radial basis functions can model this phenomenon quickly and
accurately, we decided to look into placing the simulation on the GPU by using Jacket since
the simulation was written in MATLAB. After placing the most computationally extensive
parts of the simulation on the GPU, we calculated a speedup of about 5.3 times faster
than running the simulation the CPU alone. Therefore, if radial basis functions are used to
model weather simulations, which are subsequently placed upon a GPU, forecasters would
be able to look at the weather much further into the future, without losing the precision
they currently have.
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8.3 Comparison in Physical Timesteps Between Finite-Differences
and RBFs

8.3.1 Tsunami Governing Equations

We have employed equations (1) to (3), in their simplest form, which are the linearized
long wave equations without bottom friction in two-propagation. They take the form of the
coupled PDE system

ηt Mx Ny 0

Mt D x, y ηx 0

Nt D x, y ηy 0

(10)

(11)

(12)

where η is the water depth, and M and N are the discharge fluxes in the x and y directions,
respectively. The function D x, y in equations (11) and (12) incorporates the bathymetry
and is illustrated in Figure 14. We assume for sake of simplicity periodic boundary conditions.

We use the method of lines (e.g. [33, 35]) adapted to RBFs. It consists in discretizing
the PDE in space using RBFs, and solving the resultant system of ordinary differential
equations in time with an ODE integrator, such as the 4th order Runge-Kutta. Discretizing
a differential operator L in terms of RBFs can be done as follows. Let’s define

u x
n

i 1

λi φ x xi (13)

Applying an operator L on both sides gives

Ls x
n

i 1

λi Lφ x xi (14)

where Lφ r can be analytically determined. We can evaluate equations (13) and (14) at
all the nodes and obtain in matrix form, respectively u Aλ and v Bλ. Matrix A is
unconditionally non-singular, thus we can eliminate λ and obtain v BA 1u. The newly
formed matrix E BA 1 is the PDE’s differentiation matrix. In our case, we let E1, E2,
E3 and E4 be the differentiation matrices respectively corresponding to the operators x,

y, D x, y x and D x, y y. Let

F
0 E1 E2

E3 0 0
E4 0 0

Thus, F is the matrix discretizing the spatial operator in the system of equations (10), (11)
and (12). The remaining system of ODEs in time is the following

ut Fu (15)
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where u η, MT , N T . It is customary to use an O.D.E. method such as RK4 to solve
equation (15), so long as the differentiation matrix spectrum fits in its stability region. The
periodic boundary conditions in space can be integrated in the RBF definition itself by
making use of the fact that the domain is 2D doubly periodic (topologically equivalent to
the nodes laying on the surface of a torus). The Euclidean distance between two points on
the unit circle is 2 sin r 2 , where r θ θc. Thus, on a periodic domain in 1D, we would
use as a radial function, ψ r φ 2 sin r 2 . Similarly in the case of a 2D doubly periodic

domains, we use ψ x xc, y yc φ 2 sin2 x xc

2
sin2 y yc

2
[34].

8.4 Comparison of the RBF Method with a Finite-Difference Scheme

The most commonly used methods to solve tsunami governing equations are finite-difference
schemes. The goal of this section is the show, by comparing RBFs with such a scheme,
that radial basis functions, although more computationally expensive, have the potential to
outperform the commonly used methods. The staggered leapfrog method (SL) is particularly
well-suited for this type of PDE (equations (10), (11) and (12)) and a simple geometry will
allow for the grid staggering. It is a second order method both in space and in time. For
the sake of simplicity, instead of computing the analytic solution to the system, we choose
a convenient solution to equation (10) (η x, y e t 10 sin x sin y cos y , M x, y
1 10e t 10 cos x sin y and N x, y 1 10e t 10 sin x sin y ), which creates forcing terms
in equations (11) and (12). This new system is the one that we solve numerically using the
RBF and the staggered leapfrog schemes. The domain is a square equispaced grid, with N
total nodes (N1 2 N1 2 regular grid). Table (2) shows the relative max-norm error computed
after a fixed time of t 5, along with the minimum amount of grid points and the maximum
possible time-step to reach it. We see that for a similar error, the method of lines with RBF
used in the spatial discretization, and a 4th order Runge-Kutta scheme used in advancing the
large set of ordinary differential equations associated with each grid point in time [35, 33],
(this is what we refer to when we mention the ”RBF method” in this section) allows for much
larger time-steps and requires a much sparser grid than the leapfrog method. In realistic
cases, using a method such as the staggered leapfrog method, we are expecting N to be
around 6502 to 12002. The asymptotic behaviors of the different curves in Figure 12 allow to
determine that, to obtain an equivalent error with the RBF method, we will only need N to be
from 392 to 432 and the time steps will be from 24 to 41 times larger than the steps required
when using the staggered leapfrog scheme, as illustrated in Figure 13. This observation is
consistent with Flyer and Wright’s conclusions in [32] and in [36] that although the RBF
method has a higher complexity than most commonly used spectral methods, RBFs require
a much lower resolution and a surprisingly larger time-step than these methods. Overall,
RBFs have therefore the potential to outperform these methods both in their complexity
and in their accuracy. In addition, RBFs have the clear advantage of not being tied to any
grid or coordinate system, making them suitable for difficult geometries. All this added
to the code’s undeniable simplicity makes the RBF method an excellent alternative to the
commonly used methods, in particular in the context of tsunami modeling.
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Table 2: Comparison between RBF and the staggered leapfrog (SL) methods. We compare
the smallest resolution and the largest time step allowed by each method to yield a similar
error.

Method Rel. l Error N ∆t Rel. l Error N ∆t Rel. l Error N ∆t

RBF 9.34e-3 192 1.00 8.94e-4 262 0.55 1.01e-4 322 0.38
SL 1.08e-2 202 0.35 1.04e-3 652 0.11 1.05e-4 1852 0.037
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Figure 12: The left figure shows the Log of the relative l error in computing η, M and N via
both the RBF method (we note the spectral accuracy - in fact, errorRBF O e 0.35N1 2

)
and the staggered leapfrog method (second order accurate in time and in space - errorSL

O N ). The right figure shows a plot of the largest ∆t allowing for stable time stepping
for both methods. The dashed lines follow the asymptotic leading behaviors of the ∆t
curves: ∆tRBF N 9 10 and ∆tSL N 1 2, which is consistent with the CFL condition in
time-stepping.
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Figure 13 shows that the RBF method will shine over the finite-difference method, as the
number of grid points increase, because of its asymptotic property for larger time-steps to
be taken.

9 Summary and Perspectives for Future

We have shown that the combination of GPU together with the use of RBFs makes good
sense in terms of speeding up the tsunami wave computations. The linear shallow-water
equations based on RBFs can be solved very fast on laptops, equipped with GPUs. They
can be used at remote sites and can serve as beacons for warning the populace.

Modeling of tsunamis in the near-field close to the source may require 3-D formulation
because of the recent findings of the potential importance of horizontal velocity field in the
fluid movements [16]. For implementing the finite difference method in 3D, the method
is also straightforward [20, 13]. In 2D, we have used the 4-neighborhood connectivity for
a simulation node. The data of neighboring simulation nodes are fetched via the texture
fetching instructions. In 3D, we have to use the 18-neighborhood for a simulation node.
The required data are fetched in the same way. This is a significantly more time-consuming
sampling process, especially because of the fact that 3D texture sampling is much slower
than 2D texture sampling. Therefore, we plan to adopt a simple acceleration approach,
where a 3D texture volume is flattened into a large 2D texture. The 3D volume of texels is
mapped to a 2D texture by laying out each of the n x n slices into a 2D texture tile. At the
same time, slice boundary should be carefully handled to avoid any sampling artifact. Since
in 3D the simulation nodes become much more than in the 2D scenario, we expect that the
speedup will be more significant.

We expect greater prospects from the improvements in double-precision on GPUs. There
are two major brands in Graphics Processing Units market, AMD (ATI) and NVIDIA. We
have tested our method on the NVIDIA cards using CUDA. It is also possible to implement
our method in AMDs platform. However, we need to put some major efforts to rewrite our
code into AMDs GPU programming interface, Brook+. Initially, Brook is an extension to
the C-language for GPU programming originally developed by Stanford University. AMD
adopted Brook and extended it into Brook+ as the GPU programming specification on
AMD’s computation abstraction layer. In Brooks+, there are GPU data structures, which
usually are called streams, and kernel function defined in the language extension. Streams
are collections of data elements of the same type which can be operated on the GPU in
parallel. Kernel functions are user-defined operations that operate on stream elements. The
Brook+ source codes are compiled into C/C++ language codes via a customized preproces-
sor provided by AMD. Although functionally equivalent as the NVIDIA platform, AMDs
platform has the advantage of supporting double precision computation as early as in late
year 2007. This is crucial in scientific computation where accuracy is often times the first
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priority than speed. Without a proper level of accuracy, the simulation results will be use-
less. Recently, however, NVIDA has also announced the double precision support in its
G200 series and up. It has been reported that the speed of double precision computation is
satisfactory [37] (a 16-fold speedup of double precision computation vs. a 27-fold speedup of
mixed computation of single/double precision computation). Inspired by these results, we
plan to pursue further the lores of double precision as long as the hardware is available to us.
The recent introduction of the Tesla by NVIDIA, which is a third generation GPU dedicated
for number crunching using 64-bit arithmetic, heralds a new era in desktop supercomputing,
which will undoubtedly revolutionize the way tsunami warning will be issued in the future.
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