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Motivation: switching linear iterations

Discrete-time linear system of the form:
z(t+1) = Az(t), A e RV for all ¢.

Growth and stability ruled by the spectral radius p(A).
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Motivation: switching linear iterations

Discrete-time linear system of the form:
z(t+1) = Az (1), Ay e X CR™™ for all t.

Growth and stability ruled by the joint spectral radius p(%).
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Motivation: switching linear iterations

Discrete-time linear system of the form:
z(t+1) = Az (1), Ay e X CR™™ for all t.

Growth and stability ruled by the joint spectral radius p(%).

¢ No restriction on the sequence of matrices A;.

¢ Switching depending on the state, external signal, due to
asynchronism, randomness...
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The joint spectral radius

o For a single matrix A: p(A) = klirn | A®||*/* (Gelfand).
—00
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The joint spectral radius

o For a single matrix A: p(A) = lim ||A*||"/* (Gelfand).
k—o0
o For a set ¥ of matrices:
» Joint spectral radius (Rota, Strang)
A(Z) = lim max{||4;, LA VE) A e B
— 00
» Generalized spectral radius (Daubechies, Lagarias)

p(X) = limsup max{p(A4,, ... A4, )/* | A; € £}.

k—o0
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Motivation — what is the joint spectral radius?

The joint spectral radius

8 % 0
7 —x(t+1) = Ax(@)| A= ( 1 f;)
—x(t+1) = Bx(t) 3 1
6 ] —( 1
5= 1)
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a4l ] A, B are both stable:
o , p(4), p(B) <1
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Motivation — what is the joint spectral radius?

The joint spectral radius

7 —x(t+1) = Ax(t)| | A= ( 13 )
—x(t+1) = Bx(t) 3 1
6r 1 B = 4
(&)

A, B are both stable:
p(4), p(B) <1

p(AB) = I+ 1V13>1

T p(2) > p(AB)2 > 1 (unstable)
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Motivation — what is the joint spectral radius?

The joint spectral radius

7 —x(t+1) = Ax(t)| | A= ( 13 )
—x(t+1) = Bx(t) 3 1
6r 1 B = 4
(&)

A, B are both stable:
p(4), p(B) <1

p(AB) = I+ 1V13>1

7 8 p(X) = p(AB)% > 1 (unstable)
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The joint spectral radius is difficult to evaluate

In the last example, p(¥) = p(AB)%.
Finiteness property: Maximal growth rate given by a periodic product.

Finiteness conjecture (false): All sets ¥ C R™*" possess the FP.

WeMO05-1 A genetic algorithm approach for the approximation of the joint spectral radius



Motivation — what is the joint spectral radius?

The joint spectral radius is difficult to evaluate

In the last example, p(¥) = p(AB)%.
Finiteness property: Maximal growth rate given by a periodic product.

Finiteness conjecture (false): All sets ¥ C R™*" possess the FP.

o Approximating the JSR is NP-Hard, even for binary matrices.

o Determining if p(X) < 1 is undecidable, even for nonnegative rational
matrices.
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How to compute the joint spectral radius?

Define:
Pe(%) = max{|| Ay ... Ay [|VF | A € 23,

pe(2) = max{p(A; ... A, )/* | A; € B}.
Recall that by definition of the JSR:

limsup pi(X) = p(¥) = lim pj(X).

k—o00 k—o0

WeMO05-1 A genetic algorithm approach for the approximation of the joint spectral radius



Computation methods for the joint spectral radius

How to compute the joint spectral radius?

Define:
Pe(%) = max{|| Ay ... Ay [|VF | A € 23,

pe(2) = max{p(A; ... A, )/* | A; € B}.
Recall that by definition of the JSR:
limsup pi(X) = p(¥) = lim pj(X).

k—o00 k—o0

We have:

Values of py(X) depends on the norm!
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Computation methods for the joint spectral radius

First approach: consider a large set of products

For all k, we have the converging bounds pi(X) < p(2) < pp(2).

Brute-force is only reasonable for small problems but branch-and-bound
approach is possible.
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Computation methods for the joint spectral radius

First approach: consider a large set of products

For all k, we have the converging bounds pi(X) < p(2) < pp(2).
Brute-force is only reasonable for small problems but branch-and-bound

approach is possible.

Gripenberg's algorithm: given €, uses a branch-and-bound technique to
return lower and upper bounds p~ < p(X) < pt with pt — p~ <.
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Computation methods for the joint spectral radius

First approach: consider a large set of products

For all k, we have the converging bounds pi(X) < p(2) < pp(2).

Brute-force is only reasonable for small problems but branch-and-bound
approach is possible.

Gripenberg's algorithm: given €, uses a branch-and-bound technique to
return lower and upper bounds p~ < p(X) < pt with pt — p~ <.

¢ Guaranteed converging bounds at each step.

¢ Convergence may be slow depending on the norm used.

o Number of steps to reach an interval of length € is unknown.
¢ May require very long products.
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Second approach: consider a large set of norms

Norm dependency of the upper bounds py(X)
— try to find a norm giving good bounds with short products.

A norm is extremal if p(¥) = max I|A;|| (product of length 1).
i€
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Second approach: consider a large set of norms

Norm dependency of the upper bounds py(X)
— try to find a norm giving good bounds with short products.

A norm is extremal if p(¥) = max I|A;|| (product of length 1).
i€

It can be proven that p(X) = inf max || 4;]|.
p p(2) ind g}egll ill

Idea: minimize over a well-chosen set of norms.
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Computation methods for the joint spectral radius

Finding an ellipsoidal norm using optimization

Ellipsoidal vector norm: ||z||p = V2T Pz for a given P > 0.

Ellipsoidal norm approximation: pey;(X) = ]ijnfo max I|A:] p-
~0A4,¢e
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Computation methods for the joint spectral radius

Finding an ellipsoidal norm using optimization

Ellipsoidal vector norm: ||z||p = V2T Pz for a given P > 0.

Ellipsoidal norm approximation: pey;(X) = ]ijnfo max I|A:] p-
~0A4,¢e

Upper bound pg;;(3) can be computed using semidefinite optimization:

~ . 2 T
Peu(3) = min {7y [7*P — A} PA; = 0 for all 4; € ©}.
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Computation methods for the joint spectral radius

Finding an ellipsoidal norm using optimization

Ellipsoidal vector norm: ||z||p = V2T Pz for a given P > 0.

Ellipsoidal norm approximation: pey;(X) = ]ijnfo max I|A:] p-
~0A4,¢e

Upper bound pg;;(3) can be computed using semidefinite optimization:
Peu(S) = min {y[+*P— Al PA; = 0forall 4; € £}.

YER,P>0
1 ~ ~
e < < .
¢ Guarantee max{mm'}Pell(E) < p(2) < pen(X)
o Extensions: polynomials and sum-of-squares, conic programming.

© May require solving a large SDP problem.
¢ Subject to numerical issues.
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Computation methods for the joint spectral radius

Third approach: build an extremal norm

Instead of considering a large set of norms and “hope” that it contains an
extremal one, try to directly construct such an extremal norm.

Several algorithms, e.g., Kozyakin's LR and MR-procedures use this
approach.
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Third approach: build an extremal norm

Instead of considering a large set of norms and “hope” that it contains an
extremal one, try to directly construct such an extremal norm.

Several algorithms, e.g., Kozyakin's LR and MR-procedures use this
approach.

¢ Guaranteed converging bounds at each iteration in theory.

© Most algorithms require manipulation of geometric objects
(polytopes, unit balls of norms, .. .)

¢ Practical convergence may be slow due to discretization and
numerical problems.
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Why using a genetic algorithm?

Most “classical” methods have some theoretical guarantees but are often
too slow and/or fail due to numerical problems if we want a good accuracy.
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Why using a genetic algorithm?

Most “classical” methods have some theoretical guarantees but are often
too slow and/or fail due to numerical problems if we want a good accuracy.

Here, we are willing to drop guarantees® in exchange of a fast running
algorithm able to handle reasonably large size problems.

(*) Only return a lower bound on the JSR but with no a priori guarantee
on its quality.
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What is a genetic algorithm?

GA is a stochastic beam-search evolutionary method...

¢ Stochastic: include random elements.
© Beam-search: keep a set of candidates at each iteration.

o Evolutionary: generate new candidates by combining current ones.

Many variants are possible for the generation of new candidates from old
ones.
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Application to the joint spectral radius

© Preprocess and generate an initial population of size M.

» Evaluate all products of length < k for some k.
» Best product gives an initial lower bound on the JSR.
» Generate M random products of length < K = 2k as initial population.
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Application to the joint spectral radius

© Preprocess and generate an initial population of size M.

At each generation:
¢ Evaluate the performance of all population members.

> If the bound on the JSR is improved, explore the neighborhood of the
corresponding product (Levenshtein distance of 1).

> If a better product is found in this neighborhood, insert it in the
population, replacing the worst one.
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Application to the joint spectral radius

¢ Preprocess and generate an initial population of size M.

At each generation:
¢ Evaluate the performance of all population members.
¢ Generate the new population based on the current one.

» Best products are kept (elitism).

» New products are produced by swapping good ones:
A1A2A3A4A5 &%) BlBQBgB4B5 — A1A23334B5.

» Others are produced by mixing old products:
A1A2A3A4A5 X BlBQB3B4B5 — A1B233A4B5.

» New random products are inserted to ensure exploration.
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Application to the joint spectral radius

© Preprocess and generate an initial population of size M.

At each generation:
¢ Evaluate the performance of all population members.
o Generate the new population based on the current one.

¢ Apply random mutations with some probability.
» Randomly modify some parts of a small number of products to ensure
exploration.
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Application to the joint spectral radius

Preprocess and generate an initial population of size M.

<

At each generation:
Evaluate the performance of all population members.
Generate the new population based on the current one.

Apply random mutations with some probability.

S0 O 0

Enlarge the search space if no improvement is done.
» If the bound keeps stalling for T} generations, increase the maximum
product length K and try again.
> If there is still no improvement for T5 generations, abort the algorithm
and return the best bound found.
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Numerical results

A first numerical example

Test sets: 100 sets of randomly-generated matrix with entries in [—5, 5]

Smaller problems: || =2, ¥ C R2*2,
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Numerical results

A first numerical example

Test sets: 100 sets of randomly-generated matrix with entries in [—5, 5]

Smaller problems: || =2, ¥ C R2*2,

Comparison of lower bounds given by brute-force approach, Gripenberg's
algorithm (1st approach), LR/MR-procedures (3rd approach), and genetic
algorithm.

Performance mesured by the number of times the algorithm returns the
best bound among all algorithms, within a given tolerance.
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Numerical results

Small sets (2 random matrices of size 2x2)

2 matrices of size 2 x 2, tolerance 0.0001 2 matrices of size 2 x 2, tolerance 1e-08

100 djn O O O O Bruteforce 100 djn O O O O Bruteforce
80 ] 80f ]
15y o
e e
= 60| 1 = 6ot 1
[0 [0
o o
c f=4
£ £
5 40 1 5 4o ]
© b=
[ [0}
a o
20f , ] 20f 1
0
107 107 10° 10° 10 107 10 10° 10° 10!
Computation time [s] Computation time [s]

Brute-force: products of length 2 ~ 12, manageable due to small size
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Numerical results

Small sets (2 random matrices of size 2x2)

2 matrices of size 2 x 2, tolerance 0.0001 2 matrices of size 2 x 2, tolerance 1e-08
100

T T 100 T T
- o UOB A O7 Brute-force 5 o I'_'log o8 O Bruteforce
801 1 80 1
15y o
e e
= 6o o 1 = eof o ]
o : o .
c o Gripenberg| c (o] Gripenberg
g Qo0 0 © g %00 0 ©
S 40r 1 S 40t 1
£ £
[ [0}
Q o
20r 1 201 1
4 2 ) 2 4 0 ) 0 2 4
10 10 10 10 10 10 10 10 10 10

Computation time [s] Computation time [s]

Gripenberg: 100 ~ 10° evaluations, fails due to numerical accuracy
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Numerical results

Small sets (2 random matrices of size 2x2)

2 matrices of size 2 x 2, tolerance 0.0001 2 matrices of size 2 x 2, tolerance 1e-08
100 dj o UOB oA U7 Brute-force 100 d:‘ o Ijoe od O Brute-force
80+ ﬁA 1 80+ 1
g A g
= 6o o 1 = eof o ]
o : o .
c o Gripenberg| c (o] Gripenberg
g §o o oo g %00 o
ksl 401 1 g 401
& &
, A B , ,
20 A 20
A A LR VR LR MR
X VY W
0 4 ) ) > 4 0 — > AR .
10 10 10 10 10 10 10 10 10 10
Computation time [s] Computation time [s]

LR/MR-procedures: 500 ~ 105 points, imprecise and numerical issues
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Numerical results

Small sets (2 random matrices of size 2x2)

2 matrices of size 2 x 2, tolerance 0.0001 2 matrices of size 2 x 2, tolerance 1e-08
100 o I'_'loa & = Brute-force | 100 o d 06 & = Brute-force’
e Genetic (T5=100) ! Genetic (T5=100)
ﬁ Genetic:( T'2=>50) Genetic (T'2=50)
80 A 1 80r 1
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= 60 o 1 = el (o) ]
3 fo) Gripenb S o Gripenbe
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S 40 . k] 40F 1
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20 A 1 20r 1
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A VYWY WY
07 ) ) > 4 0, = AV —
10 10 10 10 10 10 10 10 10 10
Computation time [s] Computation time [s]

Genetic: population size 15 ~ 100, stalling threshold T} € {10, 15}.
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Numerical results

Larger sets (4 random matrices of size 4x4)

4 matrices of size 4 x 4, tolerance 0.0001 4 matrices of size 4 x 4, tolerance 1e-08
100 : 5 100 : vk : 5
Genetic (T = 100) j'!“ o o Genetic (T2=100) & o o
Lenetic (T2=50) Brute-force Genetic (T'2=50) I:| Brute-force
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Gripenberg Gripenberg
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Running time of the genetic algorithm is similar to the smaller problem.
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Numerical results

Even larger sets (16 capacity matrices of size 16x16)

Performance [/10]

16 matrices of size 16 x 16, tolerance 0.0001

10 SRR =)
Genetic (T2 100)
Genetic (T2=>50) o Brute-force
8l
6 Gripenberg |
o [m] (o]
4t
2r o
0 ©
107 107 o° 10° 10

Computation time [s]

Performance [/10]

16 matrices of size 16 x 16, tolerance 1e-08

10 3 #e% =)
Genetic (T2 100
Genetic (T2=50 o Brute-force
sl
6f Gripenberg
o o (o]
4l
2 o
0 ©
107 107 0° 10° 10

Computation time [s]

Genetic algorithm can manage the problem size increase.
LR/MR-procedures require too much memory.
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Conclusions

¢ The approximation of the JSR is a difficult computational problem.

o “Classical” methods have theoretical guarantees but are unable to
handle large size problems in practice (computation time, memory
usage, numerical issues).

¢ The genetic algorithm has no a priori guarantee but performs very
well with a low running time.
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Conclusions

Conclusions

¢ The approximation of the JSR is a difficult computational problem.

o “Classical” methods have theoretical guarantees but are unable to
handle large size problems in practice (computation time, memory
usage, numerical issues).

¢ The genetic algorithm has no a priori guarantee but performs very
well with a low running time.

Further work: parameter selection, other joint spectral quantities, ...
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