
Approximating the joint spectral radius
using a genetic algorithm framework ?

Chia-Tche Chang ∗, Vincent D. Blondel ∗

∗ ICTEAM Institute, Université catholique de Louvain
Avenue Georges Lemâıtre, 4, B-1348 Louvain-la-Neuve, Belgium

(e-mail: {chia-tche.chang, vincent.blondel}@uclouvain.be)

Abstract: The joint spectral radius of a set of matrices is a measure of the maximal asymptotic
growth rate of products of matrices in the set. This quantity appears in many applications but
is known to be difficult to approximate. Several approaches to approximate the joint spectral
radius involve the construction of long products of matrices, or the construction of an appropriate
extremal matrix norm. In this article we present a brief overview of several recent approximation
algorithms and introduce a genetic algorithm approximation method. This new method does
not give any accuracy guarantees but is quite fast in comparison to other techniques. The
performances of the different methods are compared and are illustrated on some benchmark
examples. Our results show that, for large sets of matrices or matrices of large dimension,
our genetic algorithm may provide better estimates or estimates for situations where these are
simply too expensive to compute with other methods. As an illustration of this we compute in
less than a minute a bound on the capacity of a code avoiding a given forbidden pattern that
improves the bound currently reported in the literature.

Keywords: Joint spectral radius, generalized spectral radius, genetic algorithms, product of
matrices, dynamic systems, discrete-time systems.

1. INTRODUCTION

The joint spectral radius (jsr) ρ(Σ) of a set of matrices
Σ ⊂ Rn×n is a quantity characterizing the maximal
asymptotic growth rate of products of matrices in the set.
More precisely, it is defined by:

ρ(Σ) = lim
t→∞

ρt(Σ), (1)

with:

ρt(Σ) = max
{
‖M‖1/t |M ∈ Σt

}
,

independently of the chosen submultiplicative matrix
norm. Here, Σt denotes the set of products of length t
of matrices in Σ. In the particular case where Σ = {M},
the jsr is equal to the usual spectral radius, i.e., the largest
magnitude of the eigenvalues.

The jsr was introduced by Rota and Strang in Rota
and Strang (1960) and has since then appeared in many
applications such as stability of switched systems (Gurvits
(1995)), continuity of wavelets (Daubechies and Lagarias
(1992)), combinatorics and language theory (Jungers et al.
(2009)), capacity of codes (Moision et al. (2001)), etc.

The issue of approximating the jsr has been widely studied.
The first algorithms proposed consisted in constructing
products of increasing length and using (1) as upper

? This paper presents research results of the Belgian Network
DYSCO (Dynamical Systems, Control, and Optimization), funded
by the Interuniversity Attraction Poles Programme, initiated by
the Belgian State, Science Policy Office. The scientific responsibility
rests with the authors. Chia-Tche Chang is a F.R.S.-FNRS Research
Fellow (Belgian Fund for Scientific Research).

bounds. Lower bounds can be obtained using the general-
ized spectral radius ρ̄(Σ), defined by:

ρ̄(Σ) = lim sup
t→∞

ρ̄t(Σ),

with:

ρ̄t(Σ) = max
{
ρ(M)1/t |M ∈ Σt

}
.

Indeed, we have the following inequalities for all t (see
Jungers (2009)):

ρ̄t(Σ) ≤ ρ̄(Σ) ≤ ρ(Σ) ≤ ρt(Σ). (2)

The generalized spectral radius is equal to the jsr if Σ is a
bounded (in particular, a finite) set (see Berger and Wang
(1992)). This generalizes thus the well-known Gelfand
formula for the spectral radius of a single matrix.

Unfortunately, the sequence of bounds in (2) converges
slowly to ρ(Σ) except in some particular cases, and so
any approximation algorithm directly based on these in-
equalities is bound to be inefficient. The problem of ap-
proximating the jsr is indeed NP-Hard (see Tsitsiklis and
Blondel (1997)). Several branch-and-bound methods have
been designed, some of which even allowing arbitrarily
accurate approximations (see Gripenberg (1996)), but this
is thus at the expense of a high computation time. In
order to speed up this procedure, one could try to find
an appropriate norm that gives a fast convergence rate. In
some cases one can even find a norm that is extremal for
some set of matrices, that is, a norm such that the jsr is
reached with t = 1. More precisely, we have the following
definition:

Definition 1. (Extremal norm). A norm ‖ · ‖ is said to be
extremal for a set of matrices Σ if

‖M‖ ≤ ρ(Σ) for all M ∈ Σ.

We also have the property (see Berger and Wang (1992)):

ρ(Σ) = inf
‖·‖

sup
M∈Σ

‖M‖, (3)

where the infimum is taken on the set of matrix norms.
So, an extremal norm attains the infimum in (3).

In order to obtain a good approximation of the jsr using
matrix norms, we can thus use two different approaches.
Either we try to approximate an extremal norm, i.e.,
build a sequence of norms that converges to an extremal
norm, or we solve the optimization problem (3), taking the
infimum on a well-chosen set of norms which hopefully
contains an extremal norm. Most recent approximation
algorithms focus on building an adequate norm to obtain
good bounds on the jsr. In our approach, we focus on
building an adequate product of matrices at a low compu-
tational cost in order to obtain good lower bounds thanks
to (2). This is achieved by the use a genetic algorithm
framework: the method starts with a set of random prod-
ucts of limited length and iteratively generates new prod-
ucts by heuristically combining existing ones depending on
their performance. The maximal allowed product length
is slowly increased during the computation and each new
product may provide a better bound. Experimental results
tend to show that the bounds obtained by our method
are tighter than those obtained by other algorithms and
are often optimal on examples of small size. The required
computation time is also much smaller, however, there is
no a priori guarantee on the quality of the bounds returned
by our method.

The remainder of the paper is organized as follows. In the
following section, we will present a brief survey of existing
methods to approximate the jsr, such as branch-and-bound
or semidefinite optimization. In the subsequent section,
we present a new approach to this problem using genetic
algorithms. The different methods are then compared on
several examples in order to illustrate their performances
and finally, we end with some conclusions in Section 5.

2. EXISTING METHODS APPROXIMATING THE
JOINT SPECTRAL RADIUS

2.1 A branch-and-bound approach to generate matrix
products

A first method for the approximation of the jsr is
Gripenberg’s branch-and-bound algorithm (see Gripen-
berg (1996)). This algorithm is based on (2) but tries to
reduce the number of products to consider by removing
candidates known to be suboptimal.

More precisely, given a tolerance ε, the algorithm starts
with the set Π1 = Σ of candidates, the lower bound α1 =
maxM∈Σ ρ(M) and the upper bound β1 = maxM∈Σ ‖M‖
for a fixed norm ‖ · ‖. At the kth iteration, we define:

Πk = {MP |M ∈ Σ, P ∈ Πk−1, µ(MP) > αk−1 + ε} ,
where µ(M1 . . .Mk) = min1≤i≤k ‖M1 . . .Mi‖1/i. The
bounds are then updated as follows:

αk = max

{
αk−1, max

P∈Πk

ρ(P)1/k

}
,

βk = min

{
βk−1,max

{
αk−1 + ε, max

P∈Πk

µ(P)

}}
.

At each iteration, the bounds satisfy αk ≤ ρ(Σ) ≤ βk and
we have limk→∞(βk − αk) ≤ ε. However, the number of
iterations required to achieve this absolute accuracy of ε
is not known a priori and may depend much on the choice
of the norm ‖ · ‖. It may also be necessary to analyze very
long products in order to reach the tolerance threshold.

2.2 The ellipsoidal norm approximation

As mentioned in the introduction, an alternative approach
to the construction of long products is to try to find
an extremal norm, for instance by considering (3). As
optimizing on the set of all matrix norms is not easy,
one can instead consider a smaller class of norms so that
the modified problem becomes easily solvable. One such
example is the class of ellipsoidal norms.

Given a positive definite matrix P ∈ Rn×n, which is
denoted by P � 0, we can define a vector norm with

‖x‖P =
√
xTPx for x ∈ Rn. The associated ellipsoidal

norm is the corresponding induced matrix norm:

‖M‖P = max
x 6=0

‖Mx‖P
‖x‖P

= max
x 6=0

√
xTMTPMx√

xTPx
. (4)

The ellipsoidal norm approximation ρ̂Ell(Σ) is defined in
Blondel et al. (2005) by:

ρ̂Ell(Σ) = inf
P�0

max
i=1,...,q

‖Mi‖,

which is obviously an upper bound on the jsr.

This approximation can be easily computed using semidef-
inite programming. Indeed, (4) implies that for all i:

‖Mi‖2PxTPx ≥ xTMT
i PMix, ∀x ∈ Rn,

which can be rewritten as:

xT
(
‖Mi‖2PP −MT

i PMi

)
x ≥ 0, ∀x ∈ Rn.

This means that for every i, ‖Mi‖2PP − MT
i PMi is a

positive semidefinite matrix. The ellipsoidal norm approx-
imation can thus be viewed as the minimum value of γ
such that there exists a positive definite matrix P � 0
with γ2P − MT

i PMi � 0 for all i. For a given value of
γ, the problem of finding a matrix P corresponds to an
SDP feasibility problem, and the optimal value of γ can
be found by bisection.

It is possible to prove the following bounds for the ellip-
soidal norm approximation:

Proposition 2. For an arbitrary set of q n× n matrices Σ,
the ellipsoidal norm approximation ρ̂Ell(Σ) of the jsr ρ(Σ)
satisfies the following inequality:

1√
min {n, q}

ρ̂Ell(Σ) ≤ ρ(Σ) ≤ ρ̂Ell(Σ).

Notice that in order to obtain bounds of arbitrary accu-
racy, one can compute the ellipsoidal norm approximation
on a lifted set of matrices. Indeed, we have the following
identity (see Blondel and Nesterov (2005)):

ρ(Σ)k = ρ(Σk) = ρ(Σ⊗k),

where Σ⊗k denotes the kth Kronecker power of Σ.

2.3 A generalization using sum-of-squares

In Parrilo and Jadbabaie (2008), the authors propose a
generalization of the ellipsoidal norm approximation, by
replacing the norms by polynomials. Upper bounds on the
jsr can be obtained using the following theorem:

Proposition 3. Let Σ = {M1, . . . ,Mq} be a set of n ×
n matrices and p(x) be a strictly positive homogeneous
polynomial of degree 2d with n variables that satisfies
p(Mix) ≤ γ2dp(x)∀x ∈ Rn for all i. Then, ρ(Σ) ≤ γ.

Even though positive polynomials are hard to characterize,
a positivity constraint can be relaxed into a sum-of-
squares constraint: instead of p(x) ≥ 0, we require the
existence of a decomposition p(x) =

∑
i pi(x)2. A sum of

squares is obviously nonnegative, whereas most (but not
all) nonnegative polynomials can be rewritten as sums of
squares. The sum-of-squares decomposition can also be

written as p(x) =
(
x[d]
)T
Px[d], where x[d] is a vector

containing all monomials of degree d with n variables, and
P � 0 is positive semidefinite. The problem of checking if
a polynomial is a sum-of-squares is thus equivalent to an
SDP feasibility problem. Again, the optimal value of γ can
be found by bisection.

The sum-of-squares approximation can thus be defined by:

ρ̂SOS,2d(Σ) = min γ

s.t. ∃ p(x) ∈ R[x]2d homogeneous

p(x), γ2dp(x)− p(Mx) are SOS ∀M ∈ Σ.

In the particular case d = 1, we have the same problem as
with the ellipsoidal norm case: all quadratic nonnegative
polynomials are SOS. In the general case, we have the
following bounds on the approximation accuracy:

Proposition 4. For an arbitrary set of q n× n matrices Σ,
the sum-of-squares approximation ρ̂SOS,2d(Σ) of the jsr
ρ(Σ) satisfies the following inequality:(

1
√
η

)d

ρ̂SOS,2d(Σ) ≤ ρ(Σ) ≤ ρ̂SOS,2d(Σ),

where η = min
{(

n+d−1
d

)
, q
}

.

In theory, one can thus obtain arbitrary sharp approxi-
mations by taking polynomials of sufficiently large degree,
but the computational cost increases accordingly.

Another generalization of the ellipsoidal norm approxima-
tion has also been studied in Protasov et al. (2010), where
the authors extend the SDP problem to conic program-
ming in the general case. Indeed, this extension allows to
derive upper and lower bounds on the jsr, provided that
the matrices in Σ leave a common cone K invariant, i.e.,
MK ⊂ K for all M ∈ Σ. In particular, for an arbitrary

set Σ, it is possible to build a set Σ̃ leaving the cone Sn+
invariant and satisfying ρ(Σ̃) = ρ(Σ)2. The result is then
equivalent to the ellipsoidal norm approximation.

2.4 Iterative schemes to construct a Barabanov norm

A particular class of extremal norms, viz. Barabanov
norms, can also be considered for the approximation of
the jsr. These norms are defined as follows:

Definition 5. (Barabanov norm). Given a set of n × n
matrices Σ = {M1, . . . ,Mq}, a vector norm ‖ · ‖ on Rn is
said to be a Barabanov norm for Σ if we have the condition
maxi ‖Mix‖ = ρ(Σ)‖x‖ for all x ∈ Rn.

All Barabanov norms are thus extremal.

Two different iterative schemes are proposed in Kozyakin
(2010a,b) for the construction of a Barabanov norm.
Suppose we are given an arbitrary initial norm on Rn. In
the first algorithm (called the Linear relaxation iteration
or LR-procedure), we build a sequence of norms by using
linear combinations of already computed norms. Bounds
on the jsr are available at each iteration.

More precisely, the LR-procedure defines a sequence of
norms (‖ · ‖k)k∈N according to the following rules:

• Start with a norm ‖ · ‖0 on Rn and let e 6= 0 be a
vector such that ‖e‖0 = 1. Let us also choose λ−, λ+

such that 0 < λ− ≤ λ+ < 1.
• At each iteration, bounds on the jsr are given by
ρ(Σ) ∈ [ρ−k , ρ

+
k] with:

ρ+
k = max

x6=0

maxi ‖Mix‖k
‖x‖k

, ρ−k = min
x 6=0

maxi ‖Mix‖k
‖x‖k

.

• Let λk be in the interval [λ−, λ+] and define the new
norm ‖ · ‖k+1 as follows:

‖x‖k+1 = λk‖x‖k + (1− λk)
maxi ‖Mix‖k
maxi ‖Mie‖k

.

This procedure converges to a Barabanov norm, and the
two sequences

(
ρ±k
)
k∈N converge to ρ(Σ). Alternatively,

one can also apply the Max-relaxation iteration that re-
places the linear combination with a maximum operation
and an averaging function. The MR-procedure has similar
convergence properties as the LR-procedure, and more
details can be found in Kozyakin (2010a,b).

2.5 An approximation of the joint spectral radius using
polytope norms

A geometric approach involving polytopes has been stud-
ied in Cicone et al. (2010). The procedure has been used
in Guglielmi and Zennaro (2009) where complex polytopes
are used to compute the jsr of real matrices:

Definition 6. (Balanced complex polytope). Let P ⊂ Cn

be bounded. P is called a balanced complex polytope if
there exists a finite set of vectors V = {v1, . . . , vk} such
that span(V) = Cn and P = absconv(V), that is:

P =

{
x ∈ Cn

∣∣∣∣∣ x =

k∑
i=1

λivi with

k∑
i=1

|λi| ≤ 1, λi ∈ C

}
.

A complex polytope norm is any norm whose unit ball is a
balanced complex polytope. It is known (see Guglielmi and
Zennaro (2007)) that the set of induced matrix polytope
norms is dense in the set of induced matrix norms, so (3)
holds even if we take the infimum on all polytope norms.

In order to find a polytope norm, the authors present an
algorithm which essentially considers the trajectory of a
vector x̃ under all possible products of matrices in Σ∗. If x̃
is well-chosen and some hypotheses hold, then the convex
hull of the trajectory will describe a balanced polytope,

which will give us the value of the jsr. More precisely,
it is supposed that the set Σ has the finiteness property,
i.e., its jsr is reached by some periodic product: ρ(Σ) =
ρ(Mi1 . . .Mit)

1/t. The vector x̃ is then taken as a leading
eigenvector of a candidate product. This method requires
thus a good initial guess, but if this candidate product is
optimal, then it can be certified by the algorithm. Note
that the finiteness property does not hold for all sets of
real matrices (see Bousch and Mairesse (2002); Blondel
et al. (2003); Hare et al. (2011)) even though it seems that
it is the case for nearly all sets arising in practice.

3. FINDING A LOWER BOUND WITH A GENETIC
ALGORITHM

In practice, the performance of all these techniques varies
widely. A branch-and-bound method such as Gripenberg’s
algorithm provides an interval containing the value of
the jsr, but the computation time becomes prohibitive
when a small interval is required. Optimization methods
such as the ellipsoidal norm approximation only give an
upper bound but may be able to find the exact value
as upper bound in some cases. However, the computation
time increases rapidly when the size of the problem grows
and numerical problems may become a significant issue.
The balanced polytope technique requires a good initial
guess, and other geometric algorithms such as the LR-
procedure require the manipulation of geometric objects.
The accuracy of the result is thus significantly influenced
by the discretization level and numerical errors.

Hence, the objective of our algorithm is to provide approx-
imations of the jsr at a low computational cost. Thanks to
(2), as any product of finite or infinite length can provide a
lower bound, the idea of our method is to initially generate
a given number of products, and then try to combine them
in order to obtain candidates that can provide “good”
lower bounds. These results can also be combined with
another algorithm, e.g., a method that checks if a given
candidate is optimal, or that returns an upper bound on
the jsr. We have chosen the genetic algorithm framework
for these purposes. There will be no guarantee on the
quality of the bounds returned by the algorithm, but this
heuristic approach does not require expensive computation
steps, which is the main objective here.

The different steps of the algorithm are presented below:

• Initialization. Evaluate the spectral radius all prod-
ucts of matrices of length at most κ, where κ is chosen
depending on |Σ| in order to limit this step to a small
number of products. Let K = 2κ. Create a population
P0 of size S. Each element of this set is a product of
matrices Mi1 . . .Mik , satisfying k ≤ K.
• Evaluation. At each generation g, the spectral radius

of all products of the corresponding population Pg

is evaluated in order to obtain lower bounds on the
jsr ρ(Σ). If this improves the current lower bound
on ρ(Σ), the algorithm explores the neighborhood of
the product and tries to obtain a better lower bound.
More precisely, the neighborhood corresponds to all
products that can be obtained with a single deletion,
substitution or insertion of a matrix in the candidate
product, while keeping a length of at most K. If such
an improvement is possible, then the corresponding

product is inserted in the population, replacing the
worst product in the set.

• Selection. In order to obtain the next population
Pg+1, the current population Pg is partitioned into
several subsets. The nA best products are kept un-
changed, while the nB worst population elements are
discarded and replaced by randomly generated prod-
ucts, for some values of nA and nB . The remaining
products are obtained using crossover operations so
that the new population has size S.

• Crossover I. A first crossover operation generates
products of the form Ma1

. . .Mac
Mbc+1

Mbk for some
value of c and where bothMa1

. . .Mak
andMb1 . . .Mbk

are among the 50% best products in Pg. This cor-
responds thus to swapping operations between two
products. At most S

2 elements of the next population
Pg+1 are obtained using the crossover I.

• Crossover II. A second crossover gives products of the
form Mi1 . . .Mik . For each product, the matrix Mij
at position j corresponds to either Maj

or Mbj , where
Ma1

. . .Mak
and Mb1 . . .Mbk are products present

in Pg. This corresponds thus to mixing operations
between two elements.

• Mutation. A mutation operation is applied on the new
population Pg+1: each element has a given probability
to be mutated. If this is the case, then some matrices
in the product are replaced by random matrices
chosen in Σ. The number of modified positions can
be fixed. It can also depend on the value of K, e.g.,
if we choose to modify x% of the positions.

• Stopping criteria. If there is no improvement on the
lower bound during T1 generations, then the maxi-
mum allowed length K is increased. If the best lower
bound continues to stall during T2 > T1 iterations, or
if the total number of generations reaches a specified
threshold, then the algorithm terminates and returns
the best lower bound found.

To summarize, the algorithm considers a set of S products
of length at most K, with K slowly increasing during the
computation. New candidates are generated by heuristi-
cally combining existing products according to their per-
formance. The current lower bound is updated with each
new product and the algorithm terminates if there is no
improvement during too many iterations. The generation
of new candidates is mainly done by the crossover steps,
and some random perturbation may be applied at each
generation to ensure an exploration of the search space.

4. NUMERICAL RESULTS

The different algorithms presented in this paper have been
implemented in Matlab R©. Some results 1 are presented
below in order to compare several techniques for the
approximation of the jsr. Main parameters used for the
genetic algorithm are 15 ≤ S ≤ 100, T1 ∈ {10, 15}, and
T2 ∈ {50, 100}. In particular, results shown in the tables
correspond to S = 100, T1 = 15, T2 = 100. Tests have
been repeated 25 times in order to take the randomness of
the genetic algorithm into account.
1 Experiments have been done with Matlab R© 7.6.0 (R2008a) and
SeDuMi 1.21 on an Intel R© CoreTM2 Duo 2.80 GHz CPU with 3 GiB
RAM and Ubuntu Linux 10.04. The implementation of Gripenberg’s
algorithm has been done by G.Gripenberg.

Table 1. Bounds on ρ(Σ(D)) obtained with
Gripenberg’s algorithm, the ellipsoidal norm
and SOS approximations and our genetic al-
gorithm. The number of matrices in Σ(D) and

their size is given for each example.

D1 = {++}, (|Σ|, n) = (2, 2), Exact value ρ = φ

Gripenberg 1.6180 ≤ ρ ≤ 1.6180 < 1 s
Ellipsoidal ρ ≤ 1.6180 < 1 s
SOS(d = 2) ρ ≤ 1.6180 < 1 s
Genetic 1.6180 ≤ ρ 3 s

D2 = {0 + +−}, (|Σ|, n) = (4, 8), Exact value ρ ≈ 1.7549

Gripenberg 1.7549 ≤ ρ ≤ 1.7649 100 s
Ellipsoidal ρ ≤ 1.7556 3 s
SOS(d = 2) ρ ≤ 1.7549 226 s
Genetic 1.7549 ≤ ρ 4 s

D3 = {0 + 0+}, (|Σ|, n) = (16, 8), Exact value ρ unknown

Gripenberg 1.6585 ≤ ρ ≤ 1.6685 120 s
Ellipsoidal ρ ≤ 1.6822 20 s
SOS(d = 2) ρ ≤ 1.6663 about 32, 000 s
Genetic 1.6585 ≤ ρ 9 s

D4 = {00 + 0−}, (|Σ|, n) = (256, 16), Exact value ρ unknown

Gripenberg 1.6663 ≤ ρ ≤ 1.9663 150 s
Ellipsoidal Out of memory
SOS(d = 2) Out of memory
Genetic 1.6738 ≤ ρ 17 s

4.1 Capacity of codes

In Moision et al. (2001), the authors use the jsr to compute
the capacity of binary codes avoiding a set of forbidden
difference patterns. The jsr gives a measure of the maximal
theoretical performance we can obtain with a code subject
to a specific type of constraint, the forbidden difference
constraint. The number of matrices in the set Σ and their
size n may both grow exponentially with the length of the
forbidden patterns. Four algorithms have been tested on
the sets Σ(D) arising from sets D consisting of a single
forbidden pattern, for all patterns of length 2 to 5. This is
illustrated in Table 1. Methods such as the LR-procedure
are not showed in this part due to numerical issues,
the large memory consumption and high computation
time required to achieve a good accuracy for such high-
dimensional problems. In fact, these memory requirements
are already too expensive for the setD3 with 8×8 matrices.

The set D1 shows a trivial case with ρ(Σ(D1)) = φ =
1+
√

5
2 . The four presented methods reach this value, but

the genetic algorithm is slower due to the nature of its
stopping criterion as the methods needs to stall during a
given number of iterations. In fact, the running time will
not be significantly influenced by the size of the problem,
even if obtaining good results will be more difficult as
the search space increases in size. In the second example,
Σ contains four 8 × 8 matrices and there is already a
significant increase in time for Gripenberg’s algorithm and
the sum-of-squares approach. However, they both reach
the exact value of ρ, which is not the case for the ellipsoidal
norm approximation. This is even more apparent with D3,
where the SOS method returns a (suboptimal) bound after
nearly 9 hours. The exact value of the jsr is unknown and is
thus contained in the interval [1.6585; 1.6663]. This lower
bound has been found by both Gripenberg’s algorithm and
the genetic algorithm, the corresponding product following
the pattern M2

1M2M
2
3M4, which is nontrivial. For a larger

Table 2. Quality of the bounds obtained with
different algorithms on 100 sets of random ma-
trices. The three columns represent the number
of cases where the bound found by the method
was equal to the exact value of the jsr, distant
of at most 10−4 or 10−1 respectively. The num-
ber of points for the LR and MR algorithms
corresponds to the number of discretization

points on the unit ball of the norms.

Lower bounds Exact < 10−4 < 10−1

LR or MR (104 points) 0 46 100

LR or MR (5× 105 points) 0 100 100
Gripenberg (500 evals) 96 96 100
Brute-force (length ≤ 10) 97 97 100
Genetic algorithm 98 98 100

Upper bounds Exact < 10−4 < 10−1

Brute-force (length ≤ 10, ‖ · ‖2) 0 6 76
Ellipsoidal norm 0 56 77
Sum-of-squares (d = 2) 0 78 93
Gripenberg (500 evals, ‖ · ‖2) 0 55 100

LR or MR (104 points) 0 46 100

LR or MR (5× 105 points) 0 100 100

size such as with D4, solving the SDP problem requires too
much memory for this configuration of Matlab R©/SeDuMi.
Gripenberg’s algorithm was able to return an interval in
about 2.5 minutes, but this is at the expense of the interval
length, which is much larger than in the previous cases.
The genetic approach has been able to find a better lower
bound with a product of the form M1M2M3M4M3M2, but
the exact value is still unknown. As |Σ| = 256, examining
all products is computationally prohibitive, even for length
4 or 5. The balanced polytope technique with the product
found by the genetic algorithm as candidate is subject to
the same problem when the problem size is large, even if
it does work on small instances.

4.2 Pairs of random matrices

The different algorithms have also been tested on 100 pairs
of randomly generated 2 × 2 matrices. The entries were
chosen between −5 and 5 with uniform distribution. Lower
and upper bounds were obtained using different methods.
This may also provide the exact value, e.g., when the two
bounds coincide, or when a product of matrices can be
certified as optimal using techniques such as the balanced
polytope algorithm. The results are shown in Table 2.

As the size of the problem is quite small, it was possible
to apply a brute-force algorithm enumerating all products
of given length. This also shows that there were three
cases where the optimal product has a length greater
than 10. The LR- and MR-procedures are converging to
the exact value, but their accuracy depends on the dis-
cretization level. Furthermore, the performance is much
weaker for higher problem sizes. Indeed, obtaining a uni-
form discretization of a unit ball in R2 is much easier
than in Rn for n ≥ 3. Optimization methods may give
fairly good results at a low cost, but more accurate upper
bounds are much more expensive and numerical errors
become non-negligible. Concerning Gripenberg’s branch-
and-bound method, stopping the algorithm after 500 eval-
uations of norms and spectral radii gives a success rate
of 96% for lower bounds. However, measuring this perfor-

10
−4

10
−2

10
0

10
2

10
4

0

20

40

60

80

100
4 matrices of size 4 x 4, tolerance 0.0001

Computation time [s]

P
e
rf

o
rm

a
n
c
e
 [
/1

0
0
]

Brute−force

Gripenberg

LR−procedure

MR−procedure

Genetic (T
2
=100)

Genetic (T
2
=50)

Fig. 1. Lower bounds on the jsr for 100 sets of four random
4×4 matrices. The performance is the number of cases
with results of relative accuracy less than 10−4.

mance after 1000 evaluations gives a lower success rate.
Indeed, the algorithm is then subject to numerical prob-
lems for several instances due to the large product lengths.

If we increase the problem size, for example by considering
lower bounds for sets of four 4 × 4 matrices (see Fig. 1),
it appears that LR- and MR-procedures fail in nearly all
cases, due to numerical issues. Gripenberg’s algorithm is
still able to provide some good lower bounds, but the
success rate is significantly lower. In fact, if we increase
|Σ| and n to 16, the performance for the same tolerance
drops below 50% whereas the genetic algorithm is still able
to find better bounds in a couple of seconds. Of course,
the main drawback is that there is no information about
the accuracy of these results without relying on another
method. As far as upper bounds are concerned, only
Gripenberg’s method manages to achieve an acceptable
success rate, but already at a high computational cost.

5. CONCLUSION

The approximation of the joint spectral radius is a difficult
computational problem. Methods constructing long prod-
ucts were introduced first and, can only provide approxi-
mations of limited accuracy in practice, due to excessive
computation time. Lyapunov methods such as the ellip-
soidal norm method, or the SOS approach may provide
good upper bounds or the exact value in several cases
but are not bound to work in general due to numerical
problems when the optimization problem increases in size.
Methods explicitly building an extremal norm are reason-
ably fast and may perform well but are subject to require-
ments such as the need of a good discretization, which can
be difficult to obtain and has a high computational cost.

We propose a heuristic approach based on the genetic
algorithm in order to obtain lower bounds at a low cost.
Although there is no a priori guarantee on the quality of
the bounds, numerical experiments tend to show that the
method may give significantly good results. However, an-
other method has to be used in order to assess their quality.
More investigation on the parameters of the method may
also lead to an improved version of the algorithm.

REFERENCES

Berger, M.A. and Wang, Y. (1992). Bounded semi-groups
of matrices. Linear Algebra Appl., 166, 21–27.

Blondel, V.D. and Nesterov, Y. (2005). Computationally
Efficient Approximations of the Joint Spectral Radius.
SIAM J. Matr. Anal. Appl., 27(1), 256–272.

Blondel, V.D., Nesterov, Y., and Theys, J. (2005). On the
accuracy of the ellipsoid norm approximation of the joint
spectral radius. Linear Algebra Appl., 394(1), 91–107.

Blondel, V.D., Theys, J., and Vladimirov, A.A. (2003). An
Elementary Counterexample to the Finiteness Conjec-
ture. SIAM J. Matr. Anal. Appl., 24(4), 963–970.

Bousch, T. and Mairesse, J. (2002). Asymptotic height
optimization for topical IFS, Tetris heaps, and the
finiteness conjecture. Journal of AMS, 15(1), 77–111.

Cicone, A., Guglielmi, N., Serra-Capizzano, S., and Zen-
naro, M. (2010). Finiteness property of pairs of 2x2
sign-matrices via real extremal polytope norms. Linear
Algebra Appl., 432(2-3), 796–816.

Daubechies, I. and Lagarias, J.C. (1992). Two-Scale Dif-
ference Equations II. Local Regularity, Infinite Products
of Matrices and Fractals. SIAM J. Math. Anal., 23(4),
1031–1079.

Gripenberg, G. (1996). Computing the joint spectral
radius. Linear Algebra Appl., 234, 43–60.

Guglielmi, N. and Zennaro, M. (2007). Balanced complex
polytopes and related vector and matrix norms. Journal
of Convex Analysis, 14, 729–766.

Guglielmi, N. and Zennaro, M. (2009). Finding extremal
complex polytope norms for families of real matrices.
SIAM J. Matr. Anal. Appl., 31(2), 602–620.

Gurvits, L. (1995). Stability of discrete linear inclusion.
Linear Algebra Appl., 231, 47–85.

Hare, K.G., Morris, I.D., Sidorov, N., and Theys, J.
(2011). An explicit counterexample to the Lagarias-
Wang finiteness conjecture. Advances in Mathematics,
226(6), 4667–4701.

Jungers, R.M. (2009). The Joint Spectral Radius: Theory
and Applications. Springer-Verlag, Berlin, Germany.

Jungers, R.M., Protasov, V.Y., and Blondel, V.D. (2009).
Overlap-free words and spectra of matrices. Theor.
Comp. Sci., 410(38-40), 3670–3684.

Kozyakin, V.S. (2010a). A relaxation scheme for computa-
tion of the joint spectral radius of matrix sets. Journal
of Difference Equations and Applications, 1–16.

Kozyakin, V.S. (2010b). Iterative building of Barabanov
norms and computation of the joint spectral radius
for matrix sets. Discrete and Continuous Dynamical
Systems - Series B, 14(1), 143–158.

Moision, B.E., Orlitsky, A., and Siegel, P.H. (2001). On
codes that avoid specified differences. IEEE Trans. Inf.
Theory, 47(1), 433–442.

Parrilo, P.A. and Jadbabaie, A. (2008). Approximation of
the joint spectral radius using sum of squares. Linear
Algebra Appl., 428(10), 2385–2402.

Protasov, V.Y., Jungers, R.M., and Blondel, V.D. (2010).
Joint spectral characteristics of matrices: a conic pro-
gramming approach. SIAM J. Matr. Anal., 31(4), 2146–
2162.

Rota, G.C. and Strang, G. (1960). A note on the joint
spectral radius. Indag. Math., 22, 379–381.

Tsitsiklis, J.N. and Blondel, V.D. (1997). The Lyapunov
exponent and joint spectral radius of pairs of matrices
are hard — when not impossible — to compute and to
approximate. Math. Control Sign. Syst., 10(1), 31–40.

