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1 Introduction

The empirical literature on electricity markets has mainly focused on analyzing and modeling the
behavior of spot prices.1 However, due to the intrinsic nature of electricity - non-storability, genera-
tion constraints, transmission constraints, seasonality and weather dependence - futures represent a
larger market than spot trading. Energy risk management uses futures to hedge against spot price
fluctuations during the delivery period. Futures contracts are sold and bought to lock the price in
advance for the planned generation or consumption of the next years, quarters and months so that
spot trading is only used to optimize the procurement and sale of power in the short-run. Futures
are also the most natural vehicles for investors willing to take positions in power markets without
the underlying physical constraints.

The behavior of power prices is very specific and the absence of an empirical relationship between
spot and futures time series motivates us to use a separate model for futures prices. These futures
contracts constitute the main part of power investors’ portfolios and show evidence of high risk
concentration. Quantifying the level of risk concentration is crucial for risk management. Ignoring
the interdependences between the portfolio components could lead to wrong allocation or hedging
strategies in front of a wrong picture of aggregated risk. With this background, we consider that it
is adequate to model jointly the dynamics of volatilities and correlations of three electricity futures
contracts written on the index of the European Energy Exchange (EEX), corresponding to monthly,
quarterly, and yearly maturities.

We propose a new multivariate volatility model that allows both for smooth changes in the
unconditional volatilities and correlations, and for conditional volatility and correlation clustering
around the smoothly changing level. The unconditional component correspond to long-run effects,
and the conditional one to short-run dynamic effects. The unconditional covariance matrix is spec-
ified nonparametrically as a smooth function of time, while the conditional component is specified
as a generalized dynamic conditional correlation (DCC) process.2 The model has a multiplicative
structure, such that the long-run component is estimated by a kernel method, and the short-tun
DCC by quasi-maximum likelihood on the data purged from the long-run component.3

Applying our multiplicative DCC (mDCC) model to the EEX electricity futures contracts, we
find that the unconditional covariance matrix of the futures returns is varying over time. If this
variation is neglected, the persistence of conditional variances and correlations is spuriously high. We
also find that short-term (conditional) and long-term (unconditional) dynamics follow the evolution
of different fundamentals. Short-term dynamics reflect generation, transmission, and demand shocks

1See e.g. Carnero et al. (2007), Haldrup and Nielsen (2006), De Jong and Schneider (2009), and Bosco et al.
(2010).

2See Engle (2002) for the DCC model, and Hafner and Franses (2009) for the generalized version.
3Other GARCH models that deal with smooth changes in levels of variances and correlations are those of Engle

and Rangel (2008) and Rangel and Engle (2009), who use spline functions. Hafner and Linton (2010) propose a
multiplicative model of the covariance matrix where the unconditional component is estimated nonparametrically
and the conditional component is a BEKK process. Our model can be viewed as a DCC alternative to the latter.
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in the physical spot market. Inspired by Haldrup and Nielsen (2006), we introduce congestion
effects to account for transmission shocks in the conditional variances of electricity futures. We
also account for deterministic patterns associated with the delivery date of short-term contracts.
Long-term dynamics are more concerned with long-term trends in energy and financial markets.
We finally find that the forecasting performance of the mDCC model is improved compared to the
model that ignores the changing level of the long-term component.

The paper is structured as follows: in Section two, we provide a description of the EEX market
and we present the data of EEX futures prices that we use. In Section three, we introduce the
multiplicative DCC model. We apply this model to EEX futures in Section four. In the fifth
section, we discuss the forecasting performance of the new model compared to the standard DCC
process, and we conclude in the last section. Additional results are included in an online appendix.

2 The European Energy Exchange and electricity futures prices

The oldest electricity wholesale trading market is the Scandinavian market Nord Pool that was the
first to introduce electricity futures contracts in 1997 (see www.nasdaqomxcommodities.com). Most
papers dealing with electricity prices are referring to Nord Pool prices because of the exemplary
efficiency of the market and the availability of price series over long time horizons. Besides, the
European Energy Exchange (EEX) has recently become the leading energy exchange in continental
Europe in terms of sales and number of trading participants (see www.eex.com). EEX is the result
of a merger between the power exchanges in Leipzig and Frankfurt in 2002. Now based in Leipzig,
the exchange is a platform for trading in power, natural gas, emission rights and coal.

In 2008, the EEX power spot market concluded a joint venture with its French counterpart
Powernext to create the EPEX spot market for France, Germany/Austria and Switzerland. The
European Electricity Index (ELIX) was launched in October 2010 as the new market index in an
integrated European market. However, we prefer to use a more established index that has become
the reference in Germany and most of Europe: the Physical Electricity Index (Phelix). Phelix Base
is the arithmetic mean of twenty-four spot prices, each characterizing in Euros the price of one MWh
today delivered the next day in the market area Germany/Austria. To take account of intraday
patterns, Phelix Peak is the average of the twelve peak load hour spot prices from 8 am until 8 pm
for the same market area.

Spot prices are determined through daily auctions by matching supply and demand curves. The
supply curve for electricity is constructed such that each generation unit is stacked, ranked from the
lowest (hydropower and nuclear plants) to the highest (less efficient plants and peakers) marginal
generation cost (Geman (2005), p. 256). The characteristic of the resulting curve (also called power
stack function or merit order of electricity) is its convexity since it becomes steeper when production
moves to more expensive generation units, during peak hours for example. The shape of the supply
curve is therefore mainly technology-driven (plant efficiency) but economic factors such as the price
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of primary energies (e.g. gas, oil, coal) also have an impact either on the level of the curve (general
price movement) or on the merit order. On the demand side, the level of demand is sensitive to
weather and human activity such that it exhibits daily, weekly and yearly patterns. Despite the
recent deregulation and the following increase of competition in electricity markets, the demand
curve remains inelastic, as electricity is an essential commodity for human activity.

In commodity markets the mean reversion rate of prices is a function of the speed of adjustment
of the supply side to ’events’ in the market (Pilipovic (2007), p. 24). Because electricity is non-
storable, supply and demand have to match at any time. For this reason, daily power spot prices
tend to exhibit very strong mean reversion and high volatility. Jumps in electricity spot prices are
caused by physical events such as plant outages creating sudden abrupt changes in the shape of the
power stack function, or heat waves on the demand side. Because of the convex shape of the power
stack function, spot price jumps tend to occur more frequently to the upside followed by a rapid
opposite movement towards the mean level.

Another important specificity of the electricity market is its transmission network as there
is no alternative to it for the transportation of electricity. Haldrup and Nielsen (2006) suggest
that transmission constraints between interconnected regions may strongly impact the spot price
dynamics. Indeed, the price formation is different whether there is congestion or not between
interconnected zones operated by different Transmission System Operators (TSO).4 Normally, spot
prices are determined by means of separate auctions for each zone. For example, Germany/Austria
is considered as a joint market area, except in case of congestion between TSO zones.

Next to the spot market, EEX operates a market for power derivatives in Germany and France.
Power derivatives are traded both over-the-counter (OTC) and on exchanges. Although OTC trans-
actions represent the largest volume in the EEX market, we are interested in standardized contracts
for their high liquidity and the transparency of their prices. Futures with cash settlement (Phelix
futures), futures with physical settlement (Power futures) and options on financial futures (Phelix
options) are traded at EEX. For Power futures the delivery of power during base or peak load hours
at a specified TSO zone constitutes the underlying asset.

In this paper, we consider the price series of three Phelix baseload futures contracts correspond-
ing to monthly, quarterly and yearly maturities with respective delivery periods. The futures are
traded for the current and the next nine months (month future), for the next eleven quarters (quar-
ter future) and for the next six years (year future). It seems however relevant to focus on front
contracts that account for the majority of futures trading activity at EEX (Wilkens and Wimschulte
(2007)). Month contracts are fulfilled by cash settlement where the settlement price is the Phelix
Base monthly index, the arithmetic mean of Phelix Base indices for the delivery month. Quarter
and year futures contracts are fulfilled by cascading. Cascading means the automatic splitting of

4The TSO is an independent organization responsible for the efficient supply of the total demand of electricity in
a particular region. After the deregulation and the following unbundling of vertically integrated power companies in
Europe, the TSO remains a regulated entity in order to ensure non-discriminatory access to the grid.
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long-term contracts into contracts with the next shortest maturity/delivery period which together
total the volume of the long-term contract (Geman (2005), p. 274). For example, three trading days
before January 2005 the 2005-year future is divided into three month futures for January, February
and March and three quarter futures for the second, third and fourth quarters. Then, three trading
days before April the second quarter contract is divided into April, May and June futures, etc.

The database consists of three daily price series composed of successive nearest contracts over the
period 07.01.2002 until 04.14.2010 (yielding 1963 observations).5 These continuous futures prices
and returns (adjusted for contract switches) are depicted in Figure 1. Descriptive statistics for the
percentage returns of Phelix Base monthly index and Phelix Base futures prices are available in
an Appendix (available online). The standard deviations of returns are decreasing when maturity
increases from one day (spot index) to one year (year future). A linear relationship between spot
and futures returns is not observed, since correlations are comprised between -0.05 and -0.005. The
absence of a clear-cut relationship between observed spot and futures returns motivates our choice
to model the futures returns separately from the spot market return.

To simplify estimation, we opt for a two-step approach. In the first step, we model the conditional
means of futures returns jointly (see the Appendix). Using the trace rank test of Johansen (1991),
we identify two cointegration vectors that represent the month-year and quarter-year spreads. We
use therefore a vector error correction model (VECM) to filter the series from their co-movements
in the conditional means and from short-run effects. In the second step, developed in the next
sections, we model the dynamic volatility and correlation structure of the residuals of the VECM
model.
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Figure 1: Phelix futures prices and returns (month, quarter, year future)

Multivariate GARCH modeling of the VECM residuals is principally motivated by two obser-
vations. First, the autocorrelation functions of squared residuals show evidence of dependence that
could be typically captured by a GARCH model. Second, the high positive correlations between

5Source: Datastream. Series codes: EBMCS00, EBQCS00, EBYCS00.
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the residuals - 0.56 for month-year futures, 0.77 for quarter-year, and 0.79 for month-quarter - give
a clear incentive to consider a joint model for the volatility of the series.

3 A Multiplicative DCC model

3.1 Motivation and preliminary results

Multivariate GARCH models are increasingly used thanks to progresses in their specification, the
associated inference tools, and their increased availability in econometric software; see the surveys
of Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2009). For electricity futures as much
as for other financial returns, understanding the co-movements of their second-order moments is
important for risk management. Portfolio allocation, risk measures and hedging strategies can be
significantly improved by taking into account the correlations between futures of different maturities.
By neglecting the existence and the evolution of risk correlations, risk managers may discover that
the portfolio diversification or the hedges they thought to have are illusory: “... any VaR analysis will
have to assume some relationships between the behavior of forward prices on the same commodity
but with different expirations” (Pilipovic (2007), p. 418).

In the following, we use multivariate GARCH models for the volatility matrix of the vector
εt = (εMt, εQt, εY t)

′ of the VECM residuals of the electricity futures returns defined in the previous
section (M for monthly, Q for quarterly, and Y for yearly). These residuals can be interpreted as
the shock (or news) components of the returns.6 In general, a multivariate GARCH model for T

observations on a vector εt of n elements is defined by

εt = H
1/2
t zt, zt ∼ iid(0, In), t = 1, 2, . . . , T, (1)

where H
1/2
t is any n × n full rank matrix such that Var(εt|Ft−1) = H

1/2
t (H1/2

t )′ = Ht. The model
definition is completed by specifying the information set Ft−1 and the way in which the conditional
covariance matrix Ht depends on Ft−1 through a finite number of parameters. By default, Ft−1 is
the sigma-field generated by {εt−1, εt−2, ...} but it may be augmented by additional variables as we
do in Section 4.2.

Several specifications for Ht were tested7 and a ranking according to the Bayesian and Akaike
information criteria revealed the DCC model of Engle (2002) and the corrected DCC (cDCC)
model of Aielli (2009) to outperform the other models for our series. For this reason, the results
we present in this paper are based on this class of models. In conditional correlation models, the
conditional covariance matrix Ht is expressed as DtRtDt, where Dt = diag

(
h

1/2
11t , ..., h

1/2
nnt

)
collects

6If we model the volatility of the futures returns themselves, instead of the VECM residuals, the estimates reported
in this paper hardly change, as illustrated in the Appendix (see Tables 3-6).

7BEKK (Engle and Kroner (1995)), CCC (Bollerslev (1990)), DCC (Engle (2002)), TVC (Tse and Tsui (2002)),
O-GARCH (Alexander (2002)), GO-GARCH (van der Weide (2002)), and cDCC (Aielli (2009)). See Table 2 in the
Appendix.
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the conditional variances on its diagonal, and Rt is the conditional correlation matrix. If the
distribution of zt in (1) is assumed Gaussian, the DCC model lends itself to a two-stage quasi-
maximum likelihood (QML) estimation procedure, where in the first stage the parameters of the
conditional variance processes are estimated. In the second stage, the parameters of the conditional
correlation process are estimated conditionally on the estimates obtained in the first stage.

In the first stage, information criteria decrease when we replace the standard GARCH(1,1)
specification by the asymmetric GJR-GARCH model of Glosten et al. (1993). A negative estimated
GJR parameter is found for month and quarter futures (see results in the Appendix) and suggests
the presence of an “inverse leverage” effect, meaning that positive shocks amplify the conditional
variance more than equivalent negative shocks. Knittel and Roberts (2005) attribute this effect in
electricity returns to the convexity of the power stack function, since positive demand shocks have
a larger impact on prices than negative demand shocks.

The second stage is devoted to the estimation of the conditional correlation parameters. The
DCC process is defined for the Qt n× n symmetric positive-definite matrix by

Qt = (1− a− b)Q̄ + aut−1u
′
t−1 + bQt−1, (2)

where a and b are scalar parameters (restricted by a + b < 1, a > 0, b ≥ 0), uit = εit/
√

hiit (i =
1, 2, . . . , n) are the "degarched" errors, and Q̄ is a positive-definite parameter matrix. Conditional
correlations are obtained by transforming Qt to (¯ denoting the Hadamard product)

Rt = (In ¯Qt)−1/2Qt(In ¯Qt)−1/2. (3)

The parameter Q̄ can be estimated by the sample covariance matrix of ut and concentrated out
of the likelihood function. However, Aielli (2009) notices that this method-of-moment estimator of
Q̄ is inconsistent. He proposes a corrected specification of Qt known as the cDCC model, such that
the empirical covariance of the corrected ut is consistent for Q̄. For our data, the DCC and cDCC
models are however empirically very similar; only a slight increase of the likelihood value (from
1949.18 to 1952.83) is observed in favour of the cDCC model.8

Our empirical results based on the standard DCC model underline the need for a more flexible
modeling of the conditional variances and correlations. For example, the estimates of the univariate
variance processes (see Tables 3 and 4 in the Appendix) imply a persistence measure larger than
one and the non-existence of the unconditional variances. The persistence of shocks in correlations
is also high (â + b̂ = 0.96), and estimations on subsamples give different unconditional correlation
levels. Moreover, we observe that bivariate DCC estimations lead to very different results for the
a and b parameters of each correlation (see Table 5 in the Appendix). We are therefore interested
in introducing flexibility in two directions: (1) time-varying unconditional variance and correlation

8As for the conditional variances, the (c)DCC process may be specified to include asymmetric effects, see Cappiello
et al. (2006). These effects are not significant at the 5% level for our data and are therefore not included in our models.
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levels, and (2) asset-specific correlation dynamics.
Developments of this kind are recent and show the growing interest of flexible modeling of

multivariate volatility. On item (1), extensions of the univariate GARCH model to deal with spu-
rious persistence have been proposed, such as component (Engle and Lee (1999); Bauwens and
Storti (2009)), regime switching (Haas et al. (2004b); Bauwens et al. (2010)), mixture (Haas et al.
(2004a)) and spline (Engle and Rangel (2008)) GARCH models. In the multivariate context, several
proposals deal with changing levels in unconditional correlations such as the regime switching dy-
namic correlation model of Pelletier (2006), the component DCC model of Colacito et al. (2009), the
smooth transition conditional correlation model of Silvennoinen and Teräsvirta (2005), the factor-
spline-GARCH DCC model of Rangel and Engle (2009), and the multiplicative BEKK model of
Hafner and Linton (2010). For item (2), asset-specific parameters for dynamic conditional correla-
tions have been introduced in the quadratic flexible DCC model of Billio and Caporin (2009) and
the generalized DCC model of Hafner and Franses (2009).

3.2 The model and its estimation

The strong persistence found in conditional variances and correlations, and the instability of the
unconditional covariance matrix estimates over different subsamples suggest that the standard DCC
model should allow for changes in the unconditional volatilities and correlations. These changes
are probably induced by different factors affecting the market environment and structure, such as
changing energy prices, growing market size, new technologies, the arrival of new market participants
and new products, and other elements.

The idea behind the multiplicative DCC (mDCC) model is to decompose the conditional covari-
ance matrix of εt into a component that can change smoothly over time, and another component
that captures the short-run dynamic structure typical of multivariate GARCH processes. To achieve
this, the square root matrix H

1/2
t in (1) is itself written as the product of two square root matrices

Σ(t/T )1/2 and G
1/2
t such that

Ht = Σ(t/T )1/2G
1/2
t (G1/2

t )′[Σ(t/T )1/2]′ = Σ(t/T )1/2 Gt [Σ(t/T )1/2]′ (4)

is positive-definite and symmetric. The matrix Gt is specified as a DCC process to capture the
short-run GARCH dynamics.9 By assuming that E(Gt) = In (for identification), it follows that

Var(εt) = E(Ht) = Σ(t/T )1/2E(Gt)[Σ(t/T )1/2]′ = Σ(t/T ),

so that Σ(t/T ) is the unconditional "long run" covariance matrix that is assumed to be a determin-
istic and smooth function of time.

9Hafner and Linton (2010) use the BEKK model in the same multiplicative structure as above. We use the DCC
because it provides a better fit for our data. Apart from empirical considerations, the DCC and BEKK models have
their respective advantages.
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Regarding estimation, the idea behind this semiparametric model is to combine the nonpara-
metric estimation of the unconditional covariance matrix with the two-stage QML estimation of the
parameters of the DCC component. Hence, the estimation procedure comprises three stages.

At the first stage, the unconditional covariance matrix can be estimated by the Nadaraya-Watson
estimator (or other nonparametric estimators) applied to the εt data (the VECM residuals):

Σ̂(τ) =
∑T

t=1 Kh

(
t
T − τ

)
εtε

′
t∑T

t=1 Kh

(
t
T − τ

) , (5)

where τ ∈ [0, 1], Kh(·) = (1/h)K(·/h), K(·) is a kernel function, and h is a positive bandwidth
parameter. Unconditional correlations are then estimated by

ρ̂ij(τ) =
Σ̂ij(τ)√

Σ̂ii(τ)Σ̂jj(τ)
. (6)

The standardized residuals derived from the first stage estimation, defined by ξt = Σ(t/T )−1/2εt,
have as unconditional covariance the identity matrix, and as conditional covariance the matrix Gt,
i.e. E(ξtξ

′
t) = In and E(ξtξ

′
t|Ft−1) = Gt.

At the second stage, the conditional variance parameters for the elements of ξt are estimated
by QML. As for the standard DCC model, any univariate GARCH process satisfying appropriate
stationarity conditions and non-negativity constraints can be used. We use for our application in
Section 4 the GJR model with ξit as shock, and imposing a unit variance:

giit = (1− αi − βi − 0.5γi) + αiξ
2
it−1 + βigiit−1 + γiξ

2
it−1I{ξit−1<0}, (7)

where giit = Var(ξit|Ft−1) and I{ξit<0} is a dummy variable equal to one when the past shock is
negative. The constant term (1 − αi − βi − 0.5γi) ensures that giit is standardized to have an
unconditional mean equal to one. The Gaussian log-likelihood for stage two is

`2 = −1
2

n∑

i=1

T∑

t=1

[
log(giit) +

ξ2
it

giit

]
.

The second-stage "degarched" residuals, defined by ut = D−1
t ξt, where Dt = diag

(
g
1/2
11t , ..., g

1/2
nnt

)
,

have consequently an identity matrix as unconditional covariance matrix, unitary conditional vari-
ances, and are conditionally correlated, i.e. E(utu

′
t) = In and E(utu

′
t|Ft−1) = Rt, where Rt is the

conditional correlation matrix.
At the third stage, the parameters of the conditional correlation matrix are estimated. The

proposed dynamic correlation structure is a DCC model for the second-stage residuals:

Qt = (1− a− b)In + aut−1u
′
t−1 + bQt−1, (8)
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where a and b are scalar parameters restricted by a + b < 1, a > 0, and b ≥ 0. Notice that the
constant matrix Q̄ is restricted to an identity matrix. The conditional correlations are obtained by
applying (3). This DCC model à la Engle is not subject to Aielli’s critique, since the expectation
of Qt (equal to an identity matrix) is equal to the unconditional correlation matrix of ut. The
Gaussian log-likelihood for stage three is

`3 = −1
2

T∑

t=1

[
log (|Rt|) + u′tR

−1
t ut

]
.

Finally, if the model is correctly specified, both unconditional and conditional covariance matrices
of the third-stage residuals ẑt = Ĥ

−1/2
t εt are asymptotically equal to the identity matrix, so that

these residuals can be used for misspecification diagnostics.
The mDCC model presented above is designed to account for a time-varying unconditional

covariance matrix. The question of asset-specific correlation dynamics is addressed empirically in
Subsection 4.3, where we use the generalized DCC model of Hafner and Franses (2009) in the
multiplicative framework.

4 Application to Phelix futures

4.1 Smoothly time-varying unconditional covariance matrix

The multiplicative DCC model contains a long-term component that is slowly changing over time.
The bandwidth parameter h serves to separate the long-term and short-term movements. The
smaller the bandwidth, the larger the size of movements that is captured by the long-term compo-
nent, and the smaller the amplitude of short-term conditional movements.

Several procedures are available to select the bandwidth based on the minimization of quadratic
error measures for a regression curve. For nonparametric regression, a common criterion for choosing
the optimal bandwidth is the least squares cross-validation criterion. Härdle (1990) shows that
the procedure amounts to choosing the bandwidth that minimizes the sum of squared differences
between model predictions and observed data, where small values for the bandwidth are penalized.
As penalty, we use Rice’s function, defined as (1− 2u)−1. Since the long-term covariance matrix is
not observed, we take a six-month rolling covariance as the reference for the computation of squared
differences. The optimal bandwidth is the bandwidth that minimizes this criterion and is equal to
0.05 for a Gaussian kernel.

To assess the quality of fit of long-term variances and correlations, the estimated unconditional
levels are compared with alternative measures of long-term variances and correlations. In Figures 2
and 3, we compare the estimated unconditional variances and correlations (black smooth lines) with
their six-month realized levels (black dots) and their six-month rolling levels (black discontinuous
lines). The light grey lines (with peaks) are the total levels of variances and correlations including
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the unconditional and conditional components. Results of Section 4 and Section 5 are generated
using Ox version 6.10 (see Doornik (2009)).
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Figure 2: Unconditional variances (month, quarter, year future). The estimated unconditional variance
of futures contracts of maturity i is sig(ii) = Σ̂ii,t, see (5). The estimated total variance of contract i is
V ar(i) = Ĥii,t, see (4).

In Figure 4, we present pointwise confidence bands (black dashed lines) at 95% confidence
level for the kernel estimator of the unconditional covariance matrix as defined in Härdle (1990, p.
127). The confidence intervals give a clear indication that unconditional variances and covariances
are not constant. Changing regimes in variances and covariances should coincide with structural
changes in power markets. During the period 2006-2008, Germany experienced a period of high
power consumption growth caused by an increase of residential consumption (with the widespread
use of traditional appliances and the introduction of new consumer electronics, information and
communication technology equipment). The high power demand led to increasing volumes of traded
derivatives on the EEXmarket. As mentioned above, a strong demand growth increases the volatility
of electricity prices. Like for other commodities, a higher volatility may be caused by a probable
shortage of the resource. For electricity, a shortage is implied by generation and transmission
constraints.
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Figure 3: Unconditional correlations (month-quarter, month-year, quarter-year). The estimated uncondi-
tional correlation between contracts of maturity i and contracts of maturity j is rho(i, j) = ρ̂ij,t, see (6).
The estimated total correlation between contracts i and j is Cor(i, j) = Ĥij,t/(Ĥii,tĤjj,t)1/2, see (4).
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Figure 4: Unconditional variances (left panel) and covariances (right panel), and their 95 %-level confidence
intervals. The unconditional covariance of contracts i and j is sig(ij) = Σ̂ij,t, see (5).
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Dependence between electricity and natural gas (usually referred as the marginal fuel in the
power stack function) was accentuated during the period November 2005 - March 2006. During
this period, the correlations between the unconditional variance and covariance estimates of Phelix
futures and the estimated long-term variance of the natural gas day ahead returns at the Zeebrugge
and National Balancing Point (NBP) hubs are all larger than 0.99. This period corresponds to a
sudden increase of European natural gas prices, which led to a surge of EEX on-peak spot prices
(Janczura and Weron (2010)). The long-term variances of natural gas day ahead returns at the
Zeebrugge and NBP hubs, estimated nonparametrically (by a Gaussian kernel with a bandwidth
equal to 0.05), are shown on Figure 5. We observe a small volatility bump in 2004 for the NBP
natural gas volatility, and a larger bump in 2006, which coincides with increasing natural gas prices
and increasing variances and covariances of all Phelix futures contracts.
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Figure 5: Top panel: Zeebrugge and NBP natural gas day ahead unconditional variance estimates. Middle
panel: S&P500 and Brent spot unconditional variance estimates. Bottom panel: estimates of unconditional
variances of quarter and year futures and their covariance. Their correlations with S&P 500 and Brent
unconditional variances are given in parentheses. Correlations are for the period 01.01.2007-04.14.2010.

In 2009, we observe a volatility bump in quarter and year futures, and in their co-volatility, see
Figure 5 (bottom panel). In the middle panel, we observe a similar pattern in the volatilities of
the S&P 500 index and of the Brent spot price following the 2008 financial crisis. Nonparametric
estimates of the variances of the S&P 500 and Brent spot returns are taken as proxies for the
volatility of the financial and oil markets, respectively. The S&P 500 volatility reached extreme
levels after the announcement of the Lehman Brothers bankruptcy in September 2008. The following
economic recession caused oil prices to plummet after a long period of slowly increasing prices. This
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sudden drop induced a maximal volatility of Brent returns in late 2008-early 2009 corresponding
to the volatility bump we observe for quarter and year Phelix futures. As a result, the 2009 bump
observed for the volatility of quarter and year electricity futures is related to the high volatility of
oil prices during the 2008-2009 recession period. As quantitative measure of these relations, the
correlations between the unconditional variances of the long-term electricity futures contracts and
the S&P 500 and Brent unconditional variances range from 0.37 to 0.99 during the crisis (see Figure
5).

The consumption growth and the evolution of primary energy prices are certainly not the unique
elements to explain the long-term levels of the variances and covariances of electricity futures. Other
long-term factors may be responsible for these changes, such as political decisions in favor of cleaner
electricity, the launch of new generation technologies or the introduction of emission rights changing
the merit order, a raising awareness of resource scarcity affecting the risk aversion of investors, and
new regulations ensuring the independence of TSOs. The arrival of new market participants, new
financial products, mergers, acquisitions and other alliances also change the market structure by
rebalancing the actual forces governing the market. The integration of European power exchanges
such as the merger of the German and French spot exchanges in 2008 may also have impacted the
variance-covariance levels of futures. Risk aversion, market power or the impact of some market
trends are however hard to measure quantitatively. For this reason, the nonparametric component
of our model is convenient as it is exclusively based on data evidence and does not require identifying
and measuring the variables influencing the long-term levels of the variances and covariances.

4.2 A periodic congestion model for conditional variances

We turn to the modeling of the conditional variances of the electricity futures. The estimation
results of GJR-GARCH(1,1) models within the multiplicative structure and without it show two
differences (see Table 3 in the Appendix). First, the persistence of each conditional variance is
smaller than one when the multiplicative model is used, while it is larger than one otherwise. Thus,
the existence of the unconditional variances is implied by the multiplicative model, contrary to the
standard model. Second, the inverse leverage parameters for month and quarter futures are also
more negative with the multiplicative model. This effect is not significant for the year future in
both models and is therefore not included.

With the decomposition of the variances into long-term and short-term components, we are
able to identify variables explaining short-term movements in the volatility of electricity futures.
Next to supply and demand shocks, grid transmission shocks may influence the volatility of elec-
tricity futures. As already mentioned, the spot price formation at EEX is different whether there is
congestion between TSO zones (inside the same market area) or not. Haldrup and Nielsen (2006)
model Nord Pool spot prices with directional congestion as the state variable in a regime-switching
model. Their proxy for congestion is the difference of spot prices between Nord Pool regions where
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the region with the highest price is the region with excess demand. Moreover, transmission con-
straints also exist between countries or market areas and may also affect the short-term volatility of
electricity futures. We adapt the congestion variable of Haldrup and Nielsen (2006) to account for
the impact of international congestion on the conditional variances. The proxy employed for con-
gestion is the squared difference of log baseload or peakload indices between EEX and neighboring
markets.10 Adding these variables in the GJR process (7), the model is

giit = φi +αiξ
2
it−1 +βigiit−1 + γiξ

2
it−1I{ξit−1<0}+

K∑

k=1

δik [log (pEEX,t−1/pk,t−1)]
2 +κi (TMD − t) (9)

where

φi = 1− αi − βi − 0.5γi −
K∑

k=1

δikT
−1

T∑

t=2

[log (pEEX,t−1/pk,t−1)]
2 − κiT

−1
T∑

t=1

(TMD − t),

pk,t−1 is the index of market k at date t−1, K is the number of adjacent market areas and TMD− t

is the number of days before the first day of the next delivery period of the month future. The
parameter κi captures the deterministic effect or periodicity attached to the expiry date of the futures
contract. A negative κi is a manifestation of the so-called “Samuelson effect”: futures volatilities
increase when the contracts approach their maturity date (Samuelson (1965)). The periodicity of
the month contract seems to be strongly significant to explain the variances of Phelix month and
Phelix quarter returns, since t-statistics are less than −4. The periodicity effect for the year contract
is excluded from the yearly futures GJR equation as it is not significant at 5%.11 We know that the
month future is directly followed by a delivery period while other futures are cascading at maturity.
Since the month Phelix contract is still traded during the delivery month we prefer to call this effect
a day-to-delivery effect rather than a Samuelson (day-to-maturity) effect.

The congestion variables are lagged by one day to allow for forecasting and their selection is
based on BIC minimization for the second stage estimation. The estimation results of the selected
congestion models, with the day-to-delivery effect, are presented in Table 1 (left part). The param-
eter estimates of the periodic congestion models can be compared with the estimates obtained with
a GJR model without exogenous variables for the same sample period (right part of Table 1).

The congestion and day-to-delivery parameters in Table 1 are probably all significant at least
at the 10% level. The congestion parameter estimates are all positive and the day-to-delivery ones

10Neighboring markets: APX for the Netherlands, Nord Pool West and East Denmark, GME for Italy, Powernext
for France and the Dow Jones index for Swiss electricity prices. The list is not exhaustive. These price indices are
available in Datastream.

11Significance is decided using standard Gaussian tests. The standard errors reported in Table 1 (and further
tables) are conditional on the VECM estimation and the nonparametric estimation of the first step. Taking account
of these previous estimations should in principle increase the estimator variances, though this may not be the case
in small samples for estimated variances. Therefore significance test results as we report them must be interpreted
with care. However no t-ratio implied by Table 1 is smaller than 2.09 in absolute value, so that significance at 10%
at least seems likely for all parameters.
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are negative, as expected. The likelihood ratio statistics implied by the results are larger than 8.5
when we include the congestion and day-to-delivery variables. It turns out that different markets
influence Phelix futures according to their maturity; the month futures reacts to congestion with
Switzerland (Swiss) while the quarter and year futures are subject to transmission shocks during
the day from France (FR Peak) and East Denmark (E.DK Peak), respectively.

periodic congestion GJR GJR
Month Baseload Future Coefficient Std. error Coefficient Std. error

ARCH (α) 0.250 0.029 0.285 0.037
GARCH (β) 0.747 0.032 0.709 0.041
GJR (γ) -0.116 0.035 -0.117 0.039

Congestion (δSwiss) 0.193 0.087 - -
Day-to-delivery (κ) -0.007 0.001 - -
Log-likelihood: -1826.85 -1850.53

periodic congestion GJR GJR
Quarter Baseload Future Coefficient Std. error Coefficient Std. error

ARCH (α) 0.200 0.028 0.203 0.029
GARCH (β) 0.762 0.030 0.759 0.033
GJR (γ) -0.090 0.034 -0.076 0.036

Congestion (δFR Peak) 0.431 0.206 - -
Day-to-delivery (κ) -0.008 0.002 - -
Log-likelihood: -1918.45 -1936.80

periodic congestion GJR GJR
Year Baseload Future Coefficient Std. error Coefficient Std. error

ARCH (α) 0.144 0.015 0.134 0.013
GARCH (β) 0.811 0.021 0.827 0.019

Congestion (δE.DK Peak) 0.061 0.025 - -
Log-likelihood: -1837.56 -1841.83

Table 1: Conditional variance parameter estimates for ξt (multiplicative model). See eq (9) and eq (7).
Sample period: 06.23.2004-04.14.2010 (1467 observations)

4.3 Asset-specific dynamic conditional correlations

The third and last stage of the estimation procedure consists in the estimation of the process of
conditional correlations between pairs of electricity futures contracts. The results reported below
are all based on the estimations of the GJR-GARCH processes where congestion and periodicity
effects are included. The mDCC estimated parameters are reported in Table 2. The estimate of
a + b of the mDCC model (about 0.88) is lower than in the standard DCC model (about 0.95),
implying a much smaller persistence of conditional correlations.

We have already mentioned that bivariate estimations for the standard DCC model lead to
very different estimates of the parameters for the dynamics of the different pairs of correlations.
Although the model was originally conceived for a large number of assets, the generalized DCC
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(GDCC) of Hafner and Franses (2009) also appears to be useful in the present context. The
conditional correlation structure of the multiplicative GDCC (mGDCC) model is

Qt = (ιι′ − aa′ − bb′)¯ In + aa′ ¯ ut−1u
′
t−1 + bb′ ¯Qt−1,

where ι is an (n×1) vector with each element equal to one, a and b are (n×1) vectors of parameters,
restricted by a2

i + b2
i < 1, ai > 0, and bi ≥ 0. Hence (ιι′− aa′− bb′)¯ In is positive-semi-definite for

all a and b, ensuring a positive-definite Qt (if so is Q0). Based on non-rejection by a likelihood-ratio
test, we consider a simplified version of the GDCC model, where only the elements of a differ:

Qt = (ιι′ − aa′ − b2In)¯ In + aa′ ¯ ut−1u
′
t−1 + b2Qt−1, (10)

where b is now a scalar. The mGDCC parameter estimates are provided in Table 3.

mDCC Coefficient Std. error
a 0.067 0.010
b 0.812 0.031

Log-likelihood: 38.76

Table 2: mDCC parameter estimates (eq (8)). Sample period: 06.23.2004-04.14.2010 (1467 observations)

mGDCC Coefficient Std. error
a2

M 0.035 0.013
a2

Q 0.116 0.036
a2

Y 0.070 0.027
b2 0.804 0.031

Log-likelihood: 41.55

Table 3: mGDCC parameter estimates (eq (10)). Sample period: 06.23.2004-04.14.2010 (1467 observations)

We show the mDCC and mGDCC short-term conditional correlations of the second stage resid-
uals ut in Figure 6. Notice that they fluctuate around zero since the long-run changing level has
been removed by the kernel estimation of the long-run component. While the mDCC correlations
have by assumption the same dynamics, we see that the correlations of the mGDCC model exhibit
different patterns. For the correlation process between month and quarter futures, there is little
change between the mDCC and mGDCC correlation processes. Compared to the mDCC parameter
estimate â (0.067), the mGDCC parameter associated to innovations in the month-quarter correla-
tion process has a slightly lower estimate (âM âQ = 0.064). This mGDCC parameter is estimated
to be much lower for the correlations between month and year contracts (âM âY = 0.049) such that
the conditional correlation process between these two contracts exhibits the lowest persistence. In
quarter-year correlations, we find the highest mGDCC estimated parameter (âQâY = 0.09) and the
highest persistence implying amplified movement for short run correlation dynamics.
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Figure 6: mDCC and mGDCC conditional correlations of ut (month-quarter, month-year, quarter-year).
DCC(i, j)/GDCC(i, j) are the conditional correlations between contracts i and j estimated with the
mDCC/mGDCC model.

We test the lack of autocorrelation in the squared residuals ẑtẑ
′
t (where ẑt = Ĥ

−1/2
t εt) using the

multivariate portmanteau statistic. The values of the statistic do not allow us to accept the null
hypothesis both for the DCC and multiplicative DCC models. However, the statistic values (about
2500) are substantially reduced compared to its value (25143) for the VECM squared residuals
(εtε

′
t). To compare the multivariate volatility models in terms of in-sample fit, we look at the total

log-likelihood value, ˆ̀= −0.5
[∑T

t=1 log(|Ĥt|) + ε′tĤ
−1
t εt

]
. The highest value (−1904.5) is obtained

for the mGDCC, the smallest (−2000.3) for the standard DCC, and the mDCC is in the middle
(−1907.3). These log-likelihood values are all computed using the periodic congestion GJR models
for the conditional variances and the VECM model for the conditional means.

5 Short-term forecasts of Phelix futures covariance matrix

Our ultimate objective is to provide forecasts of the volatility matrix of Phelix baseload futures.
Covariance matrix forecasts can be used to compute joint density forecasts of electricity futures
returns. From the forecasted joint probability distributions, the distribution of future portfolio
returns can be derived and risk measures such as Value-at-Risk computed.

We give priority to short-run forecasting, where it makes sense to approximate the future un-
conditional covariance matrix by a constant. One could simply take the estimated unconditional
matrix on the last day of the estimation sample. However, this procedure is problematic for two
reasons: the nonparametric estimator is less accurate near the boundary of the observation sample,
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and for forecasting, the level of the unconditional covariance on the last day is not useful since the
estimate is obtained using out-of-sample data. A solution is then to use a one-sided kernel. We
follow an alternative method, where the future unconditional covariance matrix is approximated
by replacing the Gaussian kernel by a bounded one (e.g. Epanechnikov kernel), and stopping the
regression h× T days before the out-of-sample limit (with h = 0.09, the optimal bandwidth for the
Epanechnikov kernel, and T the in-sample size). This ensures that the nonparametric regression is
exclusively based on in-sample data.

For the conditional part, due to the non-linearity of the DCC process, there is no analytic
solution for forecasting correlations over longer horizons than one day. Engle and Sheppard (2001)
discuss two approximation methods to generate multi-step ahead forecasts. We limit ourselves to
one-step ahead forecasts, for which the one-day ahead forecast of the covariance matrix is given by
Ĥt+1 = Σ̂(t/T −h)1/2Ĝt+1Σ̂(t/T −h)1/2, where Σ̂(t/T ) is calculated using the Epanechnikov kernel.

We compute 130 one-day ahead forecasts for the variances and covariances of the baseload
futures. The forecasts are all obtained using the estimates at the end of the in-sample period. With
recursive estimation (adding one observation to the estimation sample each day so that parameters
are daily updated), the mean squared forecasting errors (MSFE) are slightly larger and do not give
a different message, so we do not show these results.

The forecasts (black lines) for six months (130 trading days) from 04.15.2010 until 10.15.2010
are illustrated in Figure 7 for the best performing model. Because of the lack of intraday data for
futures prices, we cannot compare the forecasts with realized variances and covariances. Instead,
we take the squares and cross-products of the VECM residuals as proxies for the variances and
covariances, respectively.

We compare different specifications for the covariance matrix of Phelix futures in terms of MSFE
in Table 4. The mGDCC model with day-to-delivery (p) and congestion (c) (pc-mGDCC) is the
best performing model. The largest improvement comes with the mDCC model compared to the
DCC model that ignores slowly evolving trends in volatilities and co-volatilities. The multiplicative
generalized DCC model (mGDCC) and the day-to-delivery and congestion effects in volatilities only
give small improvements. As expected, only the forecasts of short-term maturity products (month
and quarter futures) are improved when incorporating the day-to-delivery effect (p-mGDCC). The
congestion model for volatilities seems also to be more useful for short-term products, for which we
observe the largest spikes in the conditional variances and covariances. In this case, the exogenous
variables are able to capture, to some extent, the spikes that are induced by transmission constraints
so that the congestion model is favored during more hectic times.

In risk management, the Value-at-Risk (VaR) is a widespread tool to measure the market risk
associated to a portfolio. The VaR at level p (e.g. one percent) of a Phelix baseload futures (long)
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portfolio at time t with composition weight w = (wM , wQ, wY )′ is given by

V aRt(w, p) = w′µ̂t+1 +
(
w′Ĥt+1w

)1/2
zp, (11)

where µ̂t+1 is the forecasted VECM mean and zp is the p-percent quantile of the Gaussian distribu-
tion. Since only a small part of return changes is explained by the conditional mean, the forecasted
covariance matrix Ĥt+1 is responsible for the largest VaR changes over time. From equation (11),
the implication of the smaller forecasting error of the pc-mGDCC model for a higher accuracy of
VaR calculations is clear. Capturing the dynamic dependence of electricity futures and some styl-
ized facts of power markets in the covariance, the new model should achieve higher performance of
risk measurement for Phelix futures portfolios.
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Figure 7: 130 day one-day ahead forecasts (periodic congestion mGDCC). The variance forecasts of contract
i is V ar(i) forecast = Ĥii,t+1 (left panel). The covariance forecasts of contracts i and j is Cov(i, j) forecast
= Ĥij,t+1 for i 6= j (right panel). res(i) are VECM residuals.

Model Var(M) Var(Q) Var(Y) Cov(M,Q) Cov(M,Y) Cov(Q,Y) Total
DCC 10.107 6.691 3.657 7.403 4.865 4.129 36.852
mDCC 9.552 6.307 3.496 7.011 4.637 3.932 34.935
mGDCC 9.520 6.317 3.502 6.995 4.619 3.945 34.897
p-mGDCC 9.257 6.306 3.511 6.955 4.616 3.956 34.601
pc-mGDCC 9.230 6.305 3.517 6.944 4.616 3.957 34.569

Table 4: MSFE (MSFE of 130 one-day ahead forecasts)
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6 Conclusions

We have presented a new multiplicative model for the multivariate volatility of Phelix baseload
futures where the unconditional volatilities and correlations are allowed to change smoothly over
time. The unconditional covariance is estimated by a nonparametric method, and its evolution
is interpreted in the light of long-term factors observed in power markets. The confidence bands
around the kernel estimates lead us to reject constant unconditional levels. The standardization of
returns with the unconditional component offers several advantages. First, it leads to a substantial
reduction of the persistence measure in conditional variances and correlations. In the case of Phelix
futures, the reduction of the persistence implies the existence of unconditional variances in the
multiplicative model. Second, the three-step estimation procedure allows us to identify factors
explaining short-term variance and correlation dynamics.

In the conditional variance models, we introduce exogenous variables accounting for transmission
shocks and the periodicity associated to month futures delivery. It is shown that futures respond
to congestion with different markets according to their maturity. Using a generalized multiplica-
tive DCC model, we also find different dynamics for the three conditional correlation processes of
electricity futures.

The estimation method appears to be economically relevant for power markets. Kernel estima-
tion of the smooth unconditional component is purely based on data evidence such that we do not
need to identify the exact nature of long-term factors affecting electricity futures. On the other
hand, the exogenous variables explaining short-term dynamics are more ‘natural’ fundamentals to
identify, since they are linked to the physical power market.

Finally, one-day ahead forecasts are derived and a higher forecasting performance is achieved
with the multiplicative DCC model compared to the standard DCC model that ignores the changes
in unconditional volatilities and correlations. The periodic congestion model and the augmented
DCC also reduce the forecasting error but their contribution is smaller in that respect. A next
step is the application of the new multivariate volatility model for measuring the risk associated
to Phelix futures portfolios. The higher forecasting performance of the multivariate multiplicative
volatility model should be reflected in the accuracy of risk measures such as the Value-at-Risk.

Further research opportunities are left open. Firstly, the conditional normality assumption is
primarily motivated by the possibility to decompose the DCC estimation into two steps. Distri-
butions with fat tails may significantly improve the model fit and could be highly relevant for risk
measurement. Secondly, the extension to more than three dimensions is also practically relevant.
The inclusion of other markets or other energy products in the portfolio may give insights about
causality and spillovers. Thirdly, the multivariate GARCH models could also be compared to mul-
tivariate stochastic volatility models. Finally, the new multiplicative DCC model should also be
useful to model other financial returns that are subject to changing long-term trends.
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MULTIVARIATE VOLATILITY MODELING OF ELECTRICITY FUTURES:

ONLINE APPENDIX

Luc Bauwens1, Christian Hafner2∗, and Diane Pierret3

October 13, 2011

1 Phelix spot and futures returns: descriptive statistics

Descriptive statistics for the percentage returns of Phelix Base monthly index and Phelix Base
futures prices are presented in the Table 1. Phelix Base monthly index is the arithmetic mean of
Phelix Base indices for the delivery month. Futures prices series are continuous series composed of
successive front contracts and futures returns series are adjusted for contract switches. The month
futures price series is constructed such that the nearest contract month forms the first values for
the continuous series until the first business day of the actual contract month. The quarter and
year futures series are also composed of nearest contracts but the contract switch-over is made on
the cascading day.

Phelix Base Month Future Quarter Future Year Future
Phelix Base 1
Month Future -0.005 1
Quarter Future -0.032 0.791 1
Year Future -0.051 0.559 0.773 1

Mean -0.014 -0.118 -0.008 0.025
St. Deviation 7.871 2.383 1.462 1.098
Skewness -1.773 -0.131 -0.149 -0.176

Excess Kurtosis 32.841 4.467 3.541 6.952

Table 1: Descriptive statistics of spot and futures returns (1962 observations). The upper panel
shows the sample correlation matrix.

2 Vector-error correction model for Phelix futures

To filter the the log-price series from possible co-movements in the conditional means, we use a
vector error correction model (VECM). Based on a lag-structure analysis of log prices, we specify
the following VECM:

∆yt = Πyt−1 + Γ∆yt−1 + ut,

∗Correspondence to: Christian Hafner, ISBA, 20 Voie du Roman Pays, B-1348 Louvain-La-Neuve, Belgium.
Tel.: +32 10 47 43 06; fax: +32 10 47 30 32; e-mail: christian.hafner@uclouvain.be
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where yt = (yMt yQt yY t)′ is the vector of log prices for different maturities.1 The long-run
matrix Π can be factorized into αβ′ where α (of dimension 3×r) contains the speed of adjustment to
disequilibrium coefficients and β (of dimension 3× r) contains the coefficients of the r cointegration
relationships such that β′yt is stationary. The vector Γ contains the autocorrelation parameters.
We estimate the model by QML under the assumption of homoskedastic errors, even if we know
that conditional heteroskedasticity exists in our data. This allows us to separate the estimation of
the VECM conditional mean parameters from the parameters of the multivariate GARCH model we
assume later for the error vector. This approach does not invalidate the consistency of the estimator
of the parameters of the conditional mean.

The trace rank test of Johansen (1991) indicates the presence of two cointegration vectors. 2 The
matrices α and β are identified by imposing β = (I2 B′)′ . Their maximum likelihood estimates
are:

β̂ =

 1 0
0 1

−0.898 −0.960

 α̂ =

 −0.010 0.016
−0.004 0.009
0.000 0.001

 .

Given the p-value of 64% for the likelihood ratio test, we conclude that the last row of the alpha
matrix (α31 α32) is not rejected to be null. Year futures returns are therefore not subject to error-
correction, and can be interpreted as the common trend of the system. Integrating the restriction
that the last row of α is equal to zero, we get β̂1 = (1 0 −0.91) and β̂2 = (0 1 −0.968) as
estimated cointegration vectors.

Conditional on the parameter estimates β̂, a parsimonious VECM model (after removing non
significant variables at the 5% level) is estimated by maximum likelihood (assuming Gaussian errors)
as

∆yMt = 0.066
(0.096)

+ 0.121
(0.029)

∆yMt−1 − 0.010
(0.004)

β̂′1yt−1 + 0.014
(0.005)

β̂′2yt−1 + εMt

∆yQt = 0.028
(0.056)

+ 0.15
(0.025)

∆yQt−1 − 0.003
(0.002)

β̂′1yt−1 + 0.006
(0.002)

β̂′2yt−1 + εQt

∆yY t = 0.026
(0.025)

+ 0.071
(0.020)

∆yQt−1 + εY t

where Newey-West autocorrelation- and heteroskedasticity-consistent (HAC) standard errors are
reported in parentheses. Note that we keep the non-significant constants in the equations to obtain
zero-mean residuals for the next step devoted to multivariate volatility modeling.

3 Comparison of multivariate GARCH models for Phelix futures

Table 2 provides a ranking of different multivariate GARCH models applied to Phelix futures ac-
cording to the log-likelihood, Bayesian and Akaike information criteria.3

1Note that yt−1, like the returns, is adjusted for contract switches.
2The estimation results of this section are obtained using the PcGive module of OxMetrics version 6.10 (see

Doornik and Hendry (2009)).
3These estimation results are obtained using the G@RCH module of OxMetrics version 6.10 (see Laurent (2009)).
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# parameters Log-likelihood BIC AIC
cDCC, Aielli (2009) 14 -7716.403 7.924 7.884
DCC, Engle (2002) 14 -7721.455 7.929 7.889

DCC, Tse and Tsui (2002) 14 -7734.057 7.942 7.902
CCC, Bollerslev (1990) 12 -7803.046 8.005 7.971

BEKK, Engle and Kroner (1995) 24 -7864.649 8.114 8.046
GO-GARCH (NLS), van der Weide (2002) 12 -7940.692 8.145 8.111

O-GARCH, Alexander (2002) 9 -8244.385 8.443 8.418

Table 2: Ranking of multivariate GARCH models for Phelix futures (GARCH variances, Gaussian
distribution). Sample period: 07.03.2002-04.14.2010 (1961 observations)

4 DCC and mDCC estimation results for VECM residuals

The conditional variance hiit following a standard GJR process is defined as

hiit = ωi + αiε
2
it−1 + βihiit−1 + γiε

2
it−1I{εit−1<0}

where I{εit<0} is a dummy variable equal to one when the past shock is negative, αi, βi ≥ 0, and
αi + βi + 0.5γi < 1.

standard GJR multiplicative GJR
Month Baseload Future Coefficient Std. error Coefficient Std. error

Cst (ω) 0.068 0.028 - -
ARCH (α) 0.232 0.037 0.296 0.032
GARCH (β) 0.836 0.024 0.724 0.034
GJR (γ) -0.126 0.032 -0.164 0.033

Log-likelihood: -3862.30 -2293.23

standard GJR multiplicative GJR
Quarter Baseload Future Coefficient Std. error Coefficient Std. error

Cst (ω) 0.020 0.008 - -
ARCH (α) 0.215 0.030 0.211 0.027
GARCH (β) 0.838 0.020 0.755 0.029
GJR (γ) -0.087 0.029 -0.093 0.032

Log-likelihood: -3019.41 -2420.46

standard GJR multiplicative GJR
Year Baseload Future Coefficient Std. error Coefficient Std. error

Cst (ω) 0.006 0.004 - -
ARCH (α) 0.159 0.024 0.136 0.013
GARCH (β) 0.856 0.023 0.823 0.018

Log-likelihood: -2393.37 -2303.15

Table 3: Conditional variance parameter estimates for VECM residuals εt (standard GJR, left
part) and standardized residuals ξt (multiplicative GJR, right part). Sample period: 01.09.2003-
04.14.2010 (1831 observations)
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NOTE: The estimates and likelihood values of the previous table are not directly comparable with
those of Table 1 in the paper because the estimation sample size is equal to 1831 observations above,
whereas it is equal to 1467 in Table 1 of the paper. This difference is due to the lack of availability
of the Powernext baseload index series before 06.23.2004. Notice that the GJR results in Table 1 of
the paper and the multiplicative GJR results in the table above are for the same type specification
and estimation (i.e. second stage QML of the multiplicative DCC model), but for a different sample
period.

DCC multiplicative DCC
Coefficient Std. error Coefficient Std. error

Q̄MQ 0.795 0.020 - -
Q̄MY 0.621 0.034 - -
Q̄QY 0.808 0.021 - -
a 0.044 0.013 0.052 0.008
b 0.915 0.030 0.835 0.029

Log-likelihood: 1949.18 39.08

Table 4: Standard DCC (left part) and multiplicative DCC (right part) parameter estimates of stan-
dardized VECM residuals (conditional on standard GJR, respectively multiplicative GJR estimation
for the univariate variances). Sample period: 01.09.2003-04.14.2010 (1831 observations)

NOTE: The same comment about the sample size difference applies to the previous table in relation
with Tables 2 and 3 of the paper. Another difference is that in the results of the paper, the estima-
tions use the ut residuals based on the results in Table 1, whereas in this appendix, the residuals
ut are based on the estimation results reported in the previous table (i.e. without congestion and
day-to-delivery variables).

DCC(M,Q) DCC(M,Y) DCC(Q,Y)
Coefficient Std. error Coefficient Std. error Coefficient Std. error

Q̄ij 0.815 0.011 0.608 0.035 0.797 0.034
a 0.074 0.024 0.055 0.044 0.067 0.018
b 0.582 0.138 0.887 0.116 0.904 0.024

Log-likelihood: 994.22 443.33 964.08

Table 5: Conditional correlation parameter estimates between standardized VECM residuals of
contracts i and j from bivariate standard DCC estimation (DCC(i, j), conditional on standard GJR
estimation for the univariate variances). Sample period: 01.09.2003-04.14.2010 (1831 observations)
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5 DCC and mDCC estimation results for returns

standard GJR multiplicative GJR
Month Baseload Future Coefficient Std. error Coefficient Std. error

Cst (ω) 0.079 0.032 - -
ARCH (α) 0.250 0.040 0.308 0.032
GARCH (β) 0.830 0.026 0.716 0.032
GJR (γ) -0.141 0.034 -0.179 0.031

Log-likelihood: -3880.89 -2282.69

standard GJR multiplicative GJR
Quarter Baseload Future Coefficient Std. error Coefficient Std. error

Cst (ω) 0.020 0.008 - -
ARCH (α) 0.215 0.032 0.204 0.026
GARCH (β) 0.838 0.021 0.755 0.030
GJR (γ) -0.083 0.028 -0.071 0.030

Log-likelihood: -3042.95 -2416.38

standard GJR multiplicative GJR
Year Baseload Future Coefficient Std. error Coefficient Std. error

Cst (ω) 0.007 0.004 - -
ARCH (α) 0.159 0.023 0.136 0.013
GARCH (β) 0.855 0.023 0.821 0.019

Log-likelihood: -2406.87 -2306.29

Table 6: Conditional variance parameter estimates for returns yt (standard GJR, left part) and
standardized returns (multiplicative GJR, right part). Sample period: 01.09.2003-04.14.2010 (1831
observations)

DCC multiplicative DCC
Coefficient Std. error Coefficient Std. error

Q̄MQ 0.800 0.019 - -
Q̄MY 0.627 0.032 - -
Q̄QY 0.811 0.021 - -
a 0.046 0.015 0.053 0.009
b 0.907 0.034 0.827 0.033

Log-likelihood: 1983.46 39.96

Table 7: Standard DCC (left part) and multiplicative DCC (right part) parameter estimates of
standardized returns (conditional on standard GJR, respectively multiplicative GJR estimation for
the univariate variances). Sample period: 01.09.2003-04.14.2010 (1831 observations)
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