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Abstract. We discuss the notion of bimodel in order to obtain a classification of the equivalences 
between categories of models in the sense of functorial semantics. 
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1. Introduction 

There are various doctrines wherein theories are small categories and the models 
of a theory constitute a full subcategory of the category of functors from the 
theory to sets. We define the notion of bimodel at the nondoctrinaire level where 
those specified subcategories are arbitrary; as a first application we look for a 
classification of the equivalences between categories of models. We obtain the 
expected formulation under two distinct hypotheses on these subcategories of 
models: the case where the subcategory is reflective (the importance of which was 
pointed out by Pultr in [14]) is treated in Section 5 and the second case, where the 
subcategory contains all representable functors and has certain colimits, is treated 
in Section 6. In Section 7 we give relevant examples which in particular illustrate 
that neither of these two cases includes the other. In the last section we study in 
detail the case of algebraic theories. 

2. Some Classical Facts 

In order to support intuition in the following sections, we recall the classic Morita 
theorem: let A and B be two rings; the categories of left-modules A-mod and 
B-mod are equivalent if and only if there exist two bimodules M E B-mod-A 
and N C A-mod-B and two isomorphisms of bimodules M ® A N  ~-- B and 
N ® B M  ~- A .  

The proof of this theorem (cf. [2]) is based on the fact that A is a regular generator 
for A-mod and the functor M ® A -  : A-rood --~ B-rood preserves colimits. 
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A way to present the categories ofmodules is to observe that A-mod is equivalent 
to the category of functors from A °p t o  S g T  preserving finite-products, where A 
is the full subcategory of finitely generated free A-modules; from this point of 

view, a bimodule M E B-mod-A is exactly a functor A °p M, B-mod preserving 
finite-coproducts and the functor M Q A -  is the Kan-extension of M along the 

Y 
contravariant Yoneda-embedding A °p • A-mod. 

3. Notations and Preliminary Facts 

In the following "2, S , . . .  are always small categories; ~2 °p Y~, q2 is the contravari- 
ant Yoneda embedding of qr in the category ~" of all covariant functors from 7I" to 

S g T  and natural transformations; ~ >~--> ~" is the inclusion of a full subcategory 
q~ in ~. 

The definitions and basic properties of Kan extensions and dense functors can 
be found in section 10 of [12] and in section 17 of [15]; nevertheless we recall 

that: 
G F 

3.1. If 7) is a cocomplete category, for each pair of functors T c " and T z ,  , 

the Kan extension of F along G exists and can be computed pointwise. 

3.2. Y~- is a dense functor. 
D F 

3.3. Consider two functors g c ' 7)" such that D is dense and F has a full 

faithful right adjoint; then D • F is dense. 
D F 

3.4. Consider three functors ~I" ~ ; 7) such that D is dense, F and G 
C G 

preserve colimits and 7) is cocomplete; if D • F _~ D • G, then F ~- G. 

3.5. Consider a functor T °p ~ ,  S; the Kan extension ~3 of cp along YT has as 
a right adjoint the functor Hom(¢p, - )  defined, V K E S and V T E qr, by 
Horn(c;, K ) ( T )  = Nat(¢p(T), K) .  

ToP Yv 

i 

Hom(~,, - )  

For some basic facts on the Hom-Tensor calculus, see also [7]. 
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4. Bimodels 

DEFINITION 4.1. Consider a functor ~2 °p ~ ,  g and the composition ~ = qS. is; 
we say that ~5 is a S - 7-bimodel (or, in short, a bimodel) if the functor Hom(¢p, - )  
defined in 3.5 can be restricted to the categories of models 

i-£ 

Hom(% - )  

g <  < 8  

We write the restriction g ~ ~' as Hom(9), - ) .  

5. The Reflective Case 

Now let us suppose that ~ is a reflective subcategory of @, i.e. that the inclusion 

: > ~  'IF has a left adjoint ~ ~ ,  ~. The key property ofa  bimodel is the following 

PROPOSITION 5.1. Let T °p ~ , g be a bimodel and ~ its Kan extension along 
YT " rv; then ~ is the left adjoint o f  Hom(~,  - )  

Proof  we need two lemmas for which we refer to the following diagram 

v o p  Y T  . • i y  , 

ZS 

TS 

Hom(~,-) 

LEMMA. Let T °p ~ ,  g be afunctor  and ~ the Kan extension o f ~ .  rs along Y~; 
~ " rs = ~_ and then ~_ is the left adjoint o f  i s .  Hom( qo , - ) .  

Proof  From the pointwise formula of the Kan extension and using the fact that 
rs preserves colimits. 

LEMMA. Let  ~°P ~ , g be a functor and ~ the Kan extension of  ~ • rs along 
YT • rv; then iv " ~ = ~5. 
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Proof From the pointwise formula of Kan extension taking into account that 
V F E %, the comma categories Yv" r z / F  and Yv/ iT(F)  are isomorphic and such 
an isomorphism commutes with the forgetful functors towards ~ involved in that 
formula. 

Proof o f  Proposition 5.1. Let F E ~ and H C g; then 

Nat(F, Ho~m(~, H) )  = Nat( iv(F) ,  iv(Holm(% H) ) )  'I~ is full in ~" 
= Nat( iv(F) ,  Hom(~,  is(H)))  ~ is a bimodel 
= Nat(~( iv(F)) ,  H) first lemma 
= Nat (~(F) ,  H )  second lemma [] 

COROLLARY 5.2. Let qr °p ~ , ~ be a bimodel and ~ its Kan extension along 
Yv • rT; then (1) ~ preserves colimits; (2) the following diagram is commutative 

"I~oP l e t  . r r  

g 

and (3) ~ is the only functor (up to isomorphisms) satisfying the two conditions 
above. 

Proof (1) holds because ~ is a left adjoint. 
(2) Hom(~p, - )  • iT = is • Hom(~, - )  because ~5 is a bimodel; rT" g3 = ~ .  rs 

and then YT" rv" ~ = Yv" ~5. rs = cp. rs = ~ ' i s "  rs = ~. 
(3) YT • rv is dense (cf. 3.2 and 3.3) and then we apply 3.4. [] 

In order to define a composition of bimodels, let us look at the stability of this 
notion. 

PROPOSITION 5.3. YT • rT is a bimodel and its Kan extension along itself is the 
identity functor. 

Proof Let ~5 = YT'rv, then Yv'~'rT = ~.rv = ~'iT'rT = Yv'rv ' iv 'rv = YT'rv; 
now applying 3.4 to the dense functor YT, we have qS. rT = rv and considering the 
right adjoint we have the required restriction. [] 

PROPOSITION 5.4. Let qF °p ~ , g be a bimodel and g ~ , ~ a functor with 
right adjoint -~; then ~ • e is a bimodel. 

Proof Let ~p = ~ • e; for the hypotheses on ~ and e, we can verify that 
~. Hom(~,  - )  is the required restriction of Hom(~b, - ) .  [] 
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For corollary 5.2 and the above stability properties, we can define an associative 
composition of bimodels. 

DEFINITION 5.5. Let T °p ~ ,  g and gop z}, II~ be two bimodels; their compo- 

sition as bimodels is q5. ~ (where ~7 is the Kan extension of ~ along Ys' ra) and 
we write it as q5 * ~; we write again the bimodel Yqr • rz as lqr; it acts as neutral 
element with regard to such a composition. 

THEOREM 5.6. q~ and S are equivalent categories if and only if there exist two 

bimodelsT °p ~> gandS°P ~ ,  @ s u c h t h a t @ , ~ =  1 T a n d ~ * @ =  ls. 
Proof It follows immediately from 5.2, 5.3 and 5.4. [] 

6. The "Representable" Case 

We sketch now the same arguments as in the section above starting from a full 
subcategory ~ of ~ not necessarily reflective, but now we want that the Yoneda 
embedding factorizes in ]" 

 rop , 

and that ~ has enough colimits for the pointwise formula of all the Kan extensions 

involved. The definition of a bimodel T °p i ,  g is again the same (it does not 
depend on the reflectivity) and we have the basic property 

PROPOSITION 6.1. Let %op ~ , S be a bimodel and ~ its Kan extension along 
~ ;  then cf is the left adjoint of Hom(~, - ) .  

The proof of this proposition is based on two lemmas analogous to those used for 
5.1, but now they have to be proved in a different way (with a straightforward veri- 
fication of the natural isomorphism of the adjunction using the pointwise formulas 
for the first one; directly from the definition of Kan extension for the second one); 
for this property we can characterize the Kan extension of bimodels as in 5.2 and, 
with analogous stability conditions, we arrive at the 

DEFINITION 6.2. Let T °p ~ • ~ and S °p *}, R be two bimodels; their compo- 
sition @ • ~/~' is @- ~7 (where ~ is the Kan extension of ~' along Ys) and the neutral 
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element 1T is now Y~r. 
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T H E O R E M  6.3. q~ and 4 are equivalent categories i f  and only i f  there exist two 
~ 

bimodelsT °p ~ ,  ~ a n d S  °p ¢ ,  T s u c h t h a t q 5 . ~ =  1 v a n d ~ b * q s =  Is. 

7. E x a m p l e s  

I - Let  79('1i") be a set of  cones in ql' on functors A:' L defined on small categories 
T 

X;  the models  are the functors carrying the cones of  79(T) into limits in S £ T ;  this 
is an example of  the reflective case (cf. [ 1]) but not, in general, of  the representable 
case. 

PROPOSITION.  A functor T °p ~ , 4 is a bimodel if  and only if  it carries the (co) 
cones o f  79(T) into colimits in 4. 

Proof  (¢=) • Let  (l P~ , Lx)  be a cone on L in 79('11") and let 

H E 4 • Hom(~, i s (H)) (1  P ~ ,  Lx)  = Nat(qo(l P ~ ,  L x ) , i s ( H ) )  = 

Nat(qs(l P~, L x ) , H )  = Nat (col im(L • qs) ,H)  = l im(L • qs. N a t ( - , H ) )  and 
so Hom(~a, i s ( H ) )  e "i~. 

(=*) • q5 bimodel  means that ~' H E 4, Nat(qS-,  H )  E T; so, with the pre- 

vious notations, Nat(qS(/ P~, L x ) , H )  = l i m ( L .  N a t ( q S - , H ) )  = l i m ( L ,  qs. 

N a t ( - ,  H ) )  = Nat (co l im(L • qs), H )  and so qs(l P~, Lx)  = col im(L • qs). [] 

COROLLARY.  Let t • T ~ 4 be a functor and let us write ¢ = YT " rT . t; then 
1. i f  t preserves the colimits o f  rT(YT(79(qF) ) ), then q5 is a bimodel; 
2. i f  t preserves colimits, then t ~- ~ and then it has a right adjoint. 

l I  - Like some particular cases of  example I, we can write 
a - 79(T) is a set o f  limits in T (cf. [8]); 
b - qr has all finite limits and 79('11 ') is the set of  all such limits; 
c - ql'is an algebraic theory, i.e. a category with an enumerable set of  objects 

( T ° , T I , T 2 , . . . )  such that ~ /n  E N, T '~ = (T1)n; the models are func- 

tors preserving finite-products; a bimodel  is exactly a functor qF °p ~ ,  4 
preserving finite coproducts  (cf. [9]); 

d - 79(qI') is empty; then the category of  models is i" and a bimodel  is exactly 

a distributor, i.e. any functor '/r °p ~o, ~. In this case Theorem 5.6 is the 
translation of  Cauchy-equivalences  T ~_ ~ in terms of  distributors. (for an 
explanation of  the term "Cauchy-equivalence",  see [10]) We observe here 
that also the translation of  Cauchy-equivalences "I]" _~ S via equivalences 
~(ql") _~ ~ ( S )  (where ~(ql') is the full subcategory of  'I]" of  all retracts 
o f  representable functors, cf. [6]) can be deduced from this theorem: in 
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fact, in the non-restrictive hypothesis that the equivalence qr ~_ g is an 
adjo!nt equivalence, starting from ~ • ~ = IT, i.e. from an isomorphism 
~;. ~ __ Yz, and evaluating on an object T E ~, we have an isomorphism 

~ (~ (T) )  - ,  YT(T); now, taking into account that the colimits involved in 
the Kan extension ~ are in ) and therefore they are pointwise colimits and 
also considering that we have an isomorphism ~ _~ Hom(~,  - ) ,  evaluating 
again on the same T E "2, we obtain an isomorphism from a quotient of 

I I sEs [Na t (~ (T) ,  Ys(S)) x Nat(Ys(S), ~(T))] 

(i.e. the explicit formula for the composition of distributors, cf. [3]) to 
Nat(cp(T), 99(T)); it is possible to show that this isomorphism is, on the 
equivalence classes, exactly the composition; so, considering the counter- 
image of the identity of ~(T) ,  we have that cp(T) E 7-4(8). 

Analogously, starting from ~b • cp = ls, we obtein that, for every S E S, 
there exists T E "1r such that Ys(S) is a retract of ~(T) .  Therefore, we have 
theorem 3.6 of [6], i.e. Cauchy-equivalent small categories have equivalent 
idempotent completions. 

III  - Another example of the reflective case is given (up to replacing the con- 
travariant Yoneda embedding with the covariant one) by the Grothendieck topoi, 
which are exactly localizations of presheaf categories (cf. [1]). 

I V  - To give an example of the representable case but not, in general, of the reflec- 
tive case, let q~ be the category of flat functors from qr to SgT (cf. [13]). This is a 

very particular case; in fact, for every functor T °p ~ ,  g, the Kan extension~3 of 
along ]sT is the restriction of the Kan extension ~3 of ~ = ~3. is along YT = YT" iT 

iT 

is 

This holds because the colimits involved in the pointwise formula of the Kan 
extensions are, in this case, filtered colimits and g is closed in ~ with respect to 
such colimits. 

This commutativity has two immediate consequences: 
1. each Morita-equivalence q~ _~ g can be extended to a Cauchy-equivalence 

_ _ _  
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2. if a Cauchy-equivalence is induced by two distributors factorizing into the 
categories of models, then it can be restricted to a Morita-equivalence (and the 
factorizations of the distributors are automatically two bimodels). 

Of course, example II-b can be obtained also as a particular case of this last 
example. 

8. A Comparison between Cauchy-Equivalences and Morita-Equivalenees 

In example IV we have compared, in a very particular case, Cauchy-equivalences 
and Morita-equivalences; now let us try to compare them in the reflective case 
defined in Section 5. 

DEFINITION 8.1. A good distributor is a functor 72 °p ~ ,  S such that ~ • rs is a 
bimodel. 

LEMMA 8.2. I f  ~2 °p ~ , S is a g o o d  distributor,  then the f o l l o w i n g  d i a g r a m  o f  

K a n  e x t e n s i o n s  is c o m m u t a t i v e  in e v e r y  p a r t  

Top Y'T . qr r v  , 

TS 

P r o o f  For corollary 5.2 and for 3.4 applied to the dense functor YT. [] 

PROPOSITION 8.3. The f o l l o w i n g  condi t ions  are  e qu i v a l e n t  

(1) a C a u c h y - e q u i v a l e n c e  F • ~2 ~ , ~ can be  res t r i c ted  to a M o r i t a - e q u i v a l e n c e  

(2)  YT" F a n d  Us • F -1  are  g o o d  dis tr ibutors .  

P r o o f  (1) ~ (2): we have that is • F -1 = / ~ - l  . iT; then, considering the left 

adjoints, F .  rs = rT • F I and so YT" F • rs = YT" rT" F I is a bimodel for 5.3 and 
5.4. 

(2) ==~ (1): qo = Yv • F and ~b = Ys • F -1 are good distributors; then, applying 
Lemma 8.2, 

YT " r T " ~ "  ~ =  YT " ~ . ~b . r T ---- Yv; " F " F -1 . r T ----- YT " r 7;, 

but ~ preserves colimits (as Kan extension of the bimodel YT" F .  rs along YT" rT) 

and the same holds for ~. Moreover, YT" rT is a dense functor and so g3. ~ ___ id~ 
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and in the same way ~ .  ~ ~_ idg; so T ~ g v7 @ is an equivalence and it is the 

restriction o f F  • T e ,  g (becausers .  ~ =  F -1 .rz, andthen ~ .  is = iT" F) .  [] 

Taking into account that T _~ g if and only if 7-4(qi') ___ 74(8), condition (2) of 8.3 
can be written as 
(2')~2 °pYT 2@ re (T) (S)S and S °p Y~" -' , re,  (S) (T)T are good distributors 

(where f is the restriction of F) .  
Moreover, if the representable functors are models, then condition 2') can be 

written as 

(2") re (T) , , ,  (S )SandS  °p re, (S) >--> (T)Tarebimodels .  Top 

The different formulations of Proposition 8.3 can be used to study sufficient 
conditions to obtain examples of Morita-equivalences in the examples of Section 7; 
in particular we have 

PROPOSITION 8.4. Let T and S be two algebraic theories," if they are Cauchy- 
equivalent, i.e. ~2 ~_ g, then they are also Morita-equivalent, i.e. T ~-- S. 

Proof As in this case a bimodel is a functor preserving finite coproducts, then, 
for condition (2") of 8.3, it suffices to notice that TO(T) is closed in T with respect 
to finite coproducts. [] 

This last proposition will be inverted in the following section, where we examine 
more carefully the case of algebraic theories. 

9. Faithfully Projective Models of Algebraic Theories 

In this section we show that all the equivalences between algebraic categories 
can be built up through the notion of faithfully projective model. In the following 
qI" is always an algebraic theory and Y: T °p -+ T is the corresponding Yoneda 
embedding in the category of models. Let us recall two well-known properties (cf. 
vol.II, chapter 3 of [4]). 

DEFINITION 9.1. A model M E T is regular projective if, for each regular 

epimorphism M1 P , M2 and for each morphism M f , M2, there exists a 
pt 

morphism M ~ M1 such that p' • p = f .  

PROPOSITION 9.2. For each set X ,  the free T-model L ( X )  is regular projective. 

DEFINITION 9.3. A model P E "I~ is finitely presentable if it can be obtained via 
a coequalizer diagram 

Y ( T  '~) = Y ( T  '~) -~ p. 
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PROPOSITION 9.4. A model P E ~ is finitely presentable if and only if the 
representable functor Nat(P, - )  " T ~ ,_qgT preserves filtered colimits. 

DEFINITION 9.5.a. A T-model P is finitely generated and projective if it is a 
b 

retract of  a representable functor, i.e. if P " , Y ( T  ~) with a .  b = idp. 

DEFINITION 9.5.b. A T-model  P is a generator if Y ( T  1) is a retract of  a finite 
d 

sum m P  of  P,  i.e. Y ( T  l) " , m P  with c .  d = idy(T~ ). 
c 

DEFINITION 9.5.c. A T-model  P is faithfully projective if it is at the same time 
a generator and a finitely generated and projective model. 

We write 7-¢(T), 9 (T)  and .T(T) : 7¢(T) N ~(T)  for the full subcategories of 
respectively defined in 9.5.a, 9.5.b and 9.5.c; we use these names to emphasize 
that, if T is a category of  modules on a ring, we have the usual notions for modules 
(cf. [2]). We write ~-, (~I") for the full subcategory of T whose objects are the faithfully 
projective models and the initial object Y(T°) .  

PROPOSITION 9.6. A T-model P E 7-¢(7) if and only if P is finitely presentable 
and, moreover, if P is regular projective. 

Proof Because the free T-model  L(n) is the representable functor Y(T~).  [] 

PROPOSITION 9.7. A T-model P E 9(T) if and only if for each M E T~ there 
exists a filtered diagram 7)M in T whose objects are finite sums of P and there 

exists a regular epimorphism colimTvM (raP) qM M from the colimit of T)M to 
M. 

Proof Let U : T --~ S £ T  be the usual forgetful functor and L : S £ T  ~ T its left 

adjoint; the counit L(U(M))  'M M of this adjunction is a regular epimorphism 
(cf. [4]). As U(M) = col imn(n)  in S £ T ,  where r~ C_ U(M) is finite, and such 

a colimit is filtered, we have co l imn(Y(Tn) )  ~M M. Now, if P E G(7),  then 
Y (T l ) is a retract of  m P  and then colimn (Y(T~))  is a retract of  colim~ (n. rap), 

so we have a regular epimorphism c o l i m ~ ( n m P )  ~ (Y(T~))  and, composing 
n 

with eM, we have the first implication. Conversely, we can consider the regular 
epimorphism 

qY(TI! y ( T 1 ) ,  
colim~v(T~ ~(-~P) . 

but Y ( T  1 ) is regular projective and so we can invert such morphism 

s , ( r a P )  s " q y ( T  j) : i d y ( T l  ). Y ( T l )  ~ ) y ( T l  ) 
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As Y (T l ) is finitely presentable, the functor Nat(Y (T  1 ), - )  • ~ --+ S g T  preserves 
filtered colimits and so s can be factorized in a canonical inclusion 

y ( z l  ) s ' colimVv(T~)(mP) 

m P  

and we have the retraction 

idy(T~). 

3"qy(T1) 
y ( T  , 

S t 

raP;  in fact, s ~ . j  " q y ( T  t) = S " q y ( T  l) = 

[] 

THEOREM 9.8. Let ~2 and g be two algebraic theories," ~ and g are equivalent 
categories i f  and only i f  f ,  (~2) and 5r, ($)are  equivalent. 

Proo f  the translation for the notion of faithfully projective given in 9.6 and 

9.7 is stable under the equivalence @ ~ ,  g (it is evident for the notion of reg- 
ular projective and for the notion introduced in 9.7; it depends on 9.4 for the 
notion of finitely presentable), so such an equivalence can be restricted to an 
equivalence 5c(7) ___ 5c(g) and also to an equivalence 5c,(~r) _~ .7,(1t); con- 

versely, ifSc,('II ") ~ ,  ($) is an equivalence, then %op ~'~, (~2) f ~ ,  (g)g and 

S °p ' ,  (5) , , heads  = v e e ] f - 1 5 , ( T ) @  are bimodels (respectively because 

5 * ( g )  and 5c* (~r) are closed in g and in ~ under finite coproducts) and give rise to 

the desired equivalence ~ ~ ,  S. [] 

REMARK. Considering separately Proposition 9.6, we have that, if ~ ~_ S, then 
7¢(~2) _~ 7~(g). Via the example II.d, this gives us the converse of Proposition 8.4, 
so that two algebraic theories are Morita-equivalent if and only if they are Cauchy- 
equivalent. This result is obtained also in [5], where, starting from the notion 
of algebraic theory introduced in [11], a syntactical characterization of algebraic 
theories with equivalent categories of models is given. 

We want to discuss now two consequences of the previous theorem. 

DEFINITION 9.9. A bimodel T °p ~,  S is faithfully projective if its restriction to 

"I" - T o factorizes through the inclusion 5c(g) >2_> ~ or, equivalently, if ~?(T l) C 

PROPOSITION 9.10. If~2 °p ~ • ~ and S °p V; , T are two bimodels inducing 



294 FRANCIS BORCEUX AND ENRICO M. VITALE 

an equivalence ~ ~ g, then (1) qo and ~ are faithfully projective and (2) T °p is 
equivalent to the full subcategory o fg  spanned by g)(T 1 ) via finite coproducts; and 
the same holds for  S °p. 

Proof (1) because the equivalence qr ~_ g can be restricted to 9c('r) ~_ .T(g) 
(2) because ~ = Y • ~ is a full and faithful functor. [] 

P R O P O S I T I O N  9.11. Let qr be an algebraic theory and P E ~; we can consider a 
new algebraic theory qr p defined as the dual o f  the full subcategory of  ~ spanned 
by P via finite coproducts and we can consider the bimodel 

i> 
7[o~ > ~ (full inclusion)," 

such a bimodel induces an equivalence ~ p ~_ ~ if and only if P E U(qr). 
Proof if  i induces an equivalence,  then it is a faithfully projective bimodel  and 

d 
then i ( P )  E f ( q r ) .  Conversely,  i f P  E 5r(qr), then P E 9 (~ ) ,  i.e. Y ( T  1) ~ m P  

c 

d.c 
with c .  d = idy(T1), and Y ( T  1) c ,  m P  ; m P  is an absolute equalizer. So 

idm p 
, -ff 

to each functor  7 p  ~ we can associate a functor qI' ~ and the same holds for 

natural transformations.  Moreover,  if  H preserves finite products, so does H for the 
b 

interchange property of  limits. On the other hand, P E 7~('I'), i.e. P " ~ Y ( T  ~) 
c a  

a b.a 
with a • /~ = idp,  then P , Y ( T  r~) ", Y ( T  n) is an absolute equalizer. 

idy(Tn) 
F [~ 

So to each functor  ~ ~ we can associate a functor '~p ~ and again if F 

preserves finite products,  so does F .  It is straightforward to prove that these two 
constructions give rise to an equivalence ']['~p ~ '~. [] 
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