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Algebraically exact categories have been introduced in J. Adamek, F. W. Law-
vere, and J. Rosicky (to appear), as an equational hull of the 2-category VAR of all
varieties of finitary algebras. We will show that algebraically exact categories with a
regular generator are precisely the essential localizations of varieties and that, in
this case, algebraic exactness is equivalent to (1) exactness, (2) commutativity of
filtered colimits with finite limits, (3) distributivity of filtered colimits over arbitrary
products, and (4) product-stability of regular epimorphisms. This can be viewed as
a nonadditive generalization of the classical Roos Theorem characterizing essential
localizations of categories of modules. Analogously, precontinuous categories,
introduced in J. Adamek, F. W. Lawrence, and J. Rosicky (to appear) as an
equational hull of the 2-category LFP (of locally finitely presentable categories),
are characterized by the above properties (2) and (3). Essential localizations of
locally finitely presentable categories and presheaf categories are fully described.
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1. INTRODUCTION

The category VAR of (finitary) varieties is not equational over CAT, the
quasicategory of all categories, as shown in [ALR3]. There an equational
hull of VAR with respect to “small operations” has been described,
whereby it was shown that those small operations on VAR are just
combinations of the following three kinds of operations:

(1) lim,, the formation of limits of type Z (a #-ary operation for
every small category %),

(2) colimg, the formation of filtered colimits of type % (a Z-ary
operation for every small filtered category %), and

(3) coeq, the formation of reflexive coequalizers, an operation of
arity

p
5
,

FH =0 o where pr = id = gr.
-
q

There are important equational rules concerning the operations (1)—(3)
which hold in every variety and therefore hold in all the categories . lying
in the equational hull of VAR:

(FLC) Finite limits commute with filtered colimits.

(PD) Products distribute over filtered colimits. That is, given a
collection of filtered diagrams in &/

D,:9 —-w (i€l),

and forming the “product diagram” I'l;, D, by

iel
[12, -, (d;) = I1(D:dy),
i€l
then the canonical morphism
colim[ [ D; = [ ] colim D,
iel iel
is an isomorphism.

(REP) Regular epimorphisms are product-stable. That is,
IT,c,e:11,c,4;, > I1,.,B; is a regular epimorphism whenever each
e; is.

An open problem concerning VAR is whether the above three proper-
ties characterize the equational hull. In the present paper we characterize
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a large class of members of the equational hull of VAR, i.e., all essential
localizations of varieties. Recall that, for a category «/, a localization is a
full reflective subcategory % such that a reflector R:.& — % preserves
finite limits. And % is called a complete localization if R preserves limits
and an essential localization if R is a right adjoint (recall that R is a left
adjoint of the embedding % — .&). As observed in [ALR3], an equational
hull of VAR is closed under complete localizations. Now for localizations
of a variety, “essential” = “complete”. Thus, essential localizations of vari-
eties are important examples of categories “near” to VAR. One of the
main results of our paper is the following.

THEOREM. A category is an essential localization of a variety iff it is
cocomplete, exact, has a regular generator, and satisfies (FLC), (PD), and
(REP).

We obtain a sharper result concerning the category LFP, of all locally
finitely presentable categories. An equational hull with respect to all
“small operations” has been described in [ALR2], and these operations are
generated by the two kinds lim ,, formation of limits, and colim ,, forma-
tion of filtered colimits. It is clear that every LFP category has finite limits
commuting with filtered colimits (FLC) and products distributing over
filtered colimits (PD). In the present paper we prove that the equational
rules (FLC) and (PD) generate all equations holding between small opera-
tions on LFP. And we again characterize all essential (= complete) local-
izations of LFP categories.

THEOREM. A category is an essential localization of an LFP category iff it
is cocomplete, has a regular generator, and satisfies (FLC) and (PD).

To put the results of our paper into a historical perspective, let us recall
some of the classical results on categories related to the module categories
(more precisely, to the categories Mod-R of right modules over a unitary
ring R).

(a) A category is equivalent to a module category iff it
(i) is abelian,
(i)  satisfies (AB3), i.e., it is cocomplete, and
(iii)  has a finitely presentable, regularly projective regular generator.

This has been proved by Gabriel [G] and Mitchell [M]. Let us stress here
that the classical results, dealing with one-sorted algebras, always use
“generator” as a single object. Below, we use “generator” to mean a set of

objects; this is related to the fact that the algebras we consider are
many-sorted, in general.
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(B) A category is equivalent to a localization of a module category iff it

(1) is abelian,

(i) satisfies (ABS), i.e., it is cocomplete and for any directed family
of subobjects A; = B (i € I) and any subobject A — B we have U, (A4
NA)=AnN(U;c;A,), and

(iii)  has a regular generator.

See Popescu and Gabriel [PG]. Finally,

(y) A category is equivalent to an essential localization of a module
category iff it
(1) is abelian,

(ii)  has product-stable regular epimorphisms (this is the dual condi-
tion (AB4)* to (AB4)), and

(iii)  satisfies (ABG6), i.e., it is cocomplete and for any family of
directed families A;; > B (j € J,) of subobjects (i € I) we have
U ﬂAi,;.= ﬂ UAij
(perly, iel iel jel,
and

(iv) has a regular generator.

This is the classical Roos Theorem; see [R2]. Now, module categories
are precisely the additive version of finitary varieties: recall from Lawvere
[L1, L2] that varieties are given by algebraic (finite-product) theories. In
categories with biproducts thus the models of algebraic theories are just
models of the unary reducts, and so module categories are, in the abelian
world, precisely what varieties are in general.

Thus, a nonadditive generalization of (a) above is, then, an abstract
characterization of varieties of finitary algebras. This has been proved in
[L1] for one-sorted algebras. We, however, want to consider many-sorted
algebras in general. Lawvere’s result immediately yields that case, too (as
explicitly proved in [AR1]); one just has to understand a regular generator
to mean a set & of objects such that for every object K the canonical

morphism
II II G6-K
G e€Z hom(G, K)

is a regular epimorphism.
(a™) A category is equivalent to a variety iff it
(1) is exact (in Barr’s sense [B]) and complete, and

(ii) has a regular generator consisting of finitely presentable regular
projectives.
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A nonadditive generalization of ( 8) has been presented by the third
author in [V2]:

(B*) A category is equivalent to a localization of a variety iff it
(1) is exact and cocomplete,
(ii)  has filtered colimits which commute with finite limits, and

(iii)  has a regular generator.

The above theorem characterizing essential localizations of varieties is,
then, a nonadditive extension (y*) of the Roos Theorem.

We also prove the same results for presheaf categories in place of
varieties or locally finitely presentable categories. Here we obtain com-
plete pretoposes and complete and cocomplete categories whose limits
distribute over colimits in a sense analogous to the above situations. As a
consequence, we obtain the result of Roos [R2] characterizing essential
localizations of categories of presheaves. These are exactly complete
pretoposes with a regular generator.

All our categories are supposed to be locally small.

2. PRECONTINUOUS CATEGORIES

Recall the 2-category LFP of locally finitely presentable categories of
Gabriel and Ulmer. Its morphisms (1-cells) follow from the Gabriel-Ulmer
duality—they are the right adjoints preserving filtered colimits (and 2-cells
are the natural transformations). In [ALR2] it has been proved that LFP is
not monadic over CAT, and an equational hull of LFP has been described.
It is the following 2-category:

Objects are called precontinuous categories: They are the categories .7
with limits and filtered colimits which distribute in the sense made precise
below:

morphisms (1-cells) are the functors preserving limits and filtered
colimits; and

2-cells are the natural transformations.

However, little more has been told about precontinuous categories in
[ALR2]. We now present a more straightforward characterization of these
categories and exhibit one of the basic examples; essential localizations of
locally finite presentable categories.

Recall that the completion

nind: % > Ind %
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of a category % under filtered colimits was described in [AGV] as follows:
Ind .7 is the full subcategory of Set”" of all functors .#°® — Set which are
(small) filtered colimits of representable functors. And 7 is the codomain
restriction of the Yoneda embedding Y, : % — Set”". Recall that if .7 is
complete then Ind.%7 is closed under limits in Set”" and therefore is also
complete; moreover, filtered colimits distribute in Ind.Z over products
(see [AGV). If 7 has filtered colimits we denote by

Chd:Indw >%

a functor computing filtered colimits in .Z. This is the essentially unique
functor preserving filtered colimits and satisfying

CP*mpd =1d,. (3)
Moreover,

.

If % has and CIY preserves limits, we say that limits distribute over
filtered colimits.

DEFINITION (see [ALR2]). A category is called precontinuous iff it is
complete, has filtered colimits, and its limits distribute over filtered co-
limits.

In the following theorem we prove that distributivity of limits over
filtered colimits is equivalent to two (less formal) conditions; the commuta-
tivity of finite limits and the distributivity of products as defined in the
Introduction above.

THEOREM 2.1. A category % is precontinuous iff it has limits and filtered
colimits and

(a) filtered colimits commute with finite limits, and

(b) products distribute over filtered colimits.

Proof. Let % be a category with limits and filtered colimits. We use
the following description of Ind %7 (see e.g., [JJ]): objects are all filtered
diagrams in .Z. Morphisms from D:Z — % to D' : @' — % are compati-
ble families of equivalence classes [ f,;] (d € obj &) of morphisms f, : Dd
— D'd’ in % under smallest equivalence ~ with f, ~ D'6-f, for every
6 € mor @’ with domain d'; compatibility means [f,] = f[;~D5] for all
8:d — d in 2. The embedding 7" sends an object X to the correspond-
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ing single-morphism diagram (X). The diagram

(di)ie; ™ l_IDidi

iel

used in the above definition of distributivity of products over filtered
colimits is obviously filtered, and it is a product of the diagrams D, (i € I)
as objects of Ind 7 w.r.t. the morphisms [7;]: I1D,d;, > D;d,, Where ;18
the jth projection (j € I). Thus;

C24 preserves products < products distribute over filtered colimits. ()

(A) Let %7 be precontinuous. In view of () it remains to prove that
filtered colimits commute with equalizers. In fact, they commute with
finite products (since this is equivalent to distributing over them), hence
they then commute with finite limits. Let D,D': 2 — % be filtered
diagrams, and let f,, g,: Dd — D'd (d €2) be natural transformations.
Then ((f,],c 5(g,Dyc o : D — D' are morphisms in Ind 7. If e, : Ed —
Dd are (pointwise) equalizers in %, then we obtain an obvious filtered
diagram E: 2 —.% with a morphism ([e,],c ., : E = D which is easily
seen to be an equalizer of ([ f,]), (g,]. Since C¢ preserves equalizers, we
conclude that

colime, is an equalizer of colimf, and colimg,,
deg deg deg

which is precisely what we needed to prove.

(B) Let % have filtered colimits commuting with finite limits and
distributing over products. In view of (*), it remains to prove that Cd
preserves equalizers. Here we return to our description of Ind % as a full
subcategory of Set”" above. We abbreviate 7" to n. Every object of
Ind .7 is a colimit of n(B) for some filtered diagram B in .Z. Consider a
pair of morphisms

f,g:colimn(A) — colimn(B)

in Ind %, where A :.# — % and B: ¢ — % are filtered diagrams.
I. At first assume that .# has just one morphism, i.e., that

f&:m(X) — colim n(B)

where X €.%. Since 7 is filtered, there are j, €7 and f, g,: X = B; in
Z such that f=b, -n(f) and g=b; - n(gy); here (b;:n(B;) -
colim n(B)); < denotes a colimit cocone in Ind 7. Consider the comma
category £ = j, l 7. Then 7 is filtered and we define a diagram E: %
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as follows: given an object j: j, — j of _#, form an equalizer

e; B(f)‘fo
E;— X_—_3B,
B(j)-go

in 7. Given a morphism 4:j — j' in 7 i.e., a commutative triangle
Jo
/ ~N
J—T
in 7, we have a unique morphism
E(h) : E] - E]r with e;=ej E(I’l)

induced by the fact that e; merges B( i) f, and B(j')-g,.

Denote by U: # —_# the usual forgetful functor. Composed with B, this
yields a filtered diagram B - U: _# —.% and two natural transformations

f,g:Ay > B-U

where A : : 7 — % is the constant functor with value X and f B(j) - f,,
g; = B( j) - &o- The above pointwise equalizers e; define a natural transfor-
mation

e:E— Ay

which is an equalizer of f and g in 7. Since filtered colimits commute
with equalizers in %, we conclude that

. colim e colim f) .
coim E —— X__Jcolim B-U
colim g

is an equalizer in .%Z. Since B is a filtered diagram, we have colim B - U =
colim B, and we can write

colim f=CI4(f) and  colim g = CIM(g).
Analogously, since
n(e) - n(E) = n(AX)

is an equalizer of n(f) and 7(g) in (Ind %)~ and equalizers commute with
filtered colimits in Ind % (because Ind.% is closed in Set”" under limits
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and filtered colimits), we get that

. colim n(e) colim T](f) )
colim n(E) ——— n(X)——=3colim (B - U)
colim n(g)

is an equalizer in Ind .%Z. Colimits commute with colimits, thus we have
C24(colimn(e)) = colim e.

We have proved that C2'¢ preserves the above equalizer.

II. Consider a general case and denote by (a;:n(A4,) —
colim n(A)); . , a colimit cocone in Ind Z. We form equalizers

i fa;
E, — n(A4,)=—=3colim n(B)
i g,

in Ind 7. This defines a filtered diagram E :.# — Ind .% whose connecting
morphism E(h) for h:i - i’ in .7 is given by the fact that A(h)-e;
merges f-a; and g-d. We get a morphism

e = colim ¢; : colim E — colim n( A)
which is an equalizer of
f
colim n( A) 3 colim n( B)
g
because filtered colimits commute with equalizers in Ind.%Z. Following

Condition I, we know that

. C;‘d(ei) C;d(f'“i) .
CI(E(i) —— A,——3colim B
C%‘l(g'“i)

is an equalizer in .Z. Since filtered colimits commute with equalizers in .7,

chdcr CPUn
C3“(colim E) —— colim A=—3colim B
CPYUg)

is an equalizer in % Hence CI" preserves equalizers. |

Remark 2.2. Recall that a complete localization of a category & is a full
reflective subcategory % of ¥ whose reflector R preserves limits. If & is
locally presentable then this is the same concept as essential localization:
by SAFT, R is then a right adjoint.
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ExampLE 2.3. (1) Z = Ind & is precontinuous (for any category .%) iff
Z is complete; see [ALR2]. This is the case whenever & is complete, or
whenever &/ is small and finitely cocomplete. The latter case precisely
characterizes the locally finitely presentable categories.

(2) Complete localizations of precontinuous categories are pre-
continuous. In fact, let E: % —>% be a complete localization of &
with a (limit-preserving) reflector R: ¥ —.%. Then CZ4=R-CD9-
Ind E:Ind % —».%, and since E preserves limits so does Ind E (see
[ALR2]). Thus, whenever C2¢ preserves limits, so does Ci,

Remark 2.4. The examples (1) and (2) above are generic: every precon-
tinuous category % is a complete localization of Ind &/, with . complete.
In fact, put &/ =%, then n:o — Ind % is a full embedding whose left
adjoint (reflector) is C29.

We thus concentrate on complete localizations of the basic examples of
precontinuous categories, viz, locally finitely presentable (LFP) categories.

Remark 2.5. (i) Categories which are (noncomplete) localizations of
LFP categories have been fully characterized in [DS] as cocomplete
categories which have

(a) finite limits commuting with filtered colimits, and
(b) a regular generator.

(i) Every localization of an LFP category is locally A-presentable for
some infinite regular cardinal A. In fact, let E: % —.% be a localization
with & an LFP category. As proved in [BK], E preserves A-filtered
colimits for some A; thus, .7 is equivalent to a full reflective subcategory of
a locally A-presentable category . closed under A-filtered colimits. It
follows that .7 is locally A-presentable; see Theorem 1.20 in [AR]. How-
ever, # is not LFP in general.

Remark 2.6. Every continuous lattice L which is not algebraic (e.g., a
closed real interval) is a complete localization of Ind L which, being an
algebraic lattice, is LFP. But L itself is not LFP.

THEOREM 2.7. A category is a complete (= essential) localization of a
locally finitely presentable category iff it
(1) is cocomplete,
(i)  has finite limits commuting with filtered colimits,
(iii)  has products distributing over filtered colimits, and
(iv)  has a regular generator.

COROLLARY. Complete localizations of LFP categories are precisely the
cocomplete precontinuous categories which have a regular generator.
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Proof. The necessity of (i)—(iv) is obvious. To prove sufficiency, let 7
fulfill (i)—(iv) and be locally A-presentable (see Remark 2.5.). Let & be a
small full subcategory representing all A-presentable objects; J: % —.%
denotes the full embedding. Since # is closed under finite colimits in .%; it
follows that Ind & is a locally finitely presentable category. The functor

E:%—Ind?%, K~>%(J—-,K)

is fully faithful and preserves limits and A-filtered colimits (since objects of
% are A-presentable). It follows that E has a left adjoint (reflector)

H:Ind% —» %,

see [AR, 1.66]. It is sufficient to prove that H preserves limits, then .7 is
(equivalent to) a complete localization of Ind &. Observe that

H-E=1d,. (4)
The functor Ind J:Ind @ — Ind % has a right adjoint, viz, the functor

U:Ind%Z - Ind %

of restriction of a presheaf from #Z° to #°P (recall that & is closed in %
under finite colimits, in fact, under A-small colimits). Consider the diagram

IndJ
Ind® 1 Ind 7.
U

We will prove that H preserves limits. Since
E=U-7n, (5)
we have, for the corresponding left adjoints,
H=CM Ind J. (6)

Moreover, clearly

U-IndJ =Id, . (7)
The above (5), (4), and (3) imply

H-UnM=H-E=1d,=Cl nd. (8)
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Both of the functors H - U and CI"¢ preserve filtered colimits (U preserves
them because they are calculated pointwise in Ind.%); thus from (8) we
derive

H-U=Chd, 9)

We are ready to prove that H preserves limits, using the fact that CI'd
preserves them (since .7 is precontinuous), and so does, obviously, U. We
thus have, for every diagram D in Ind &, canonical isomorphisms as
follows:

H(lim D) = H(lim U - Ind J - D) by (7)
= HU(limInd J - D) continuity of U
= CM(limInd J - D) by (9)
= lim(Cy*-IndJ-D)  precontinuity of 7
=limH-D by (7),(9).

3. ALGEBRAICALLY EXACT CATEGORIES

In [ALR1] a duality between varieties and algebraic theories has been
introduced which leads naturally to the 2-category VAR of finitary vari-
eties (as objects): its morphisms (1-cells), called algebraically exact functors,
are precisely the right adjoint functors preserving filtered colimits and
regular epimorphisms. And 2-cells are the natural transformations. Now
algebraically exact functors are precisely those preserving limits and sifted
colimits. Recall that a small category & is called siffed if Z-colimits
commute in Set with finite products (see [ALR1]). Filtered categories are
sifted. Also, the “reflexive pair” category

fi

n
d
A, < A,

—

I

(with df, = df, = id, ) is sifted. Following [La], a nonempty category & is
sifted iff for every pair A, B of objects the category of all cospans

A—->X<B

is connected; a full proof of this result is also presented in [AR2]. By sifted
colimits we mean colimits with sifted domains.
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Let
3 % — Sind &

be a free completion of % under sifted colimits (see [AR2]). Sind % can be
described as the full subcategory of Set‘% " consisting of all (small) sifted
colimits of representable functors; 5" is the codomain restriction of the

Yoneda embedding. For any category %" with sifted colimits, we denote by
C3nd - Sind % - %

a functor computing sifted colimits in .Z. This is the essentially unique
functor preserving sifted colimits and satisfying

Cend - i = 1d,,. (10)
Again,
7l;ind - C;nd‘
If % is complete then Sind .7 is complete as well (see [ALR3)).

DEFINITION (see [ALR3]). A category .7 is called algebraically exact if it
has limits and sifted colimits such that C5"? : Sind % — % preserves limits.

An equational hull of VAR has been presented in [ALR3] as the
2-category of all

algebraically exact categories (0-cells),
functors preserving limits and sifted colimits (1-cells), and
natural transformations (2-cells).

Any algebraically exact category % is exact and precontinuous and has
product-stable regular epimorphisms; see [ALR3].

Problem 3.1. Let % be a complete category with sifted colimits, which
is exact, precontinuous and has product-stable regular epimorphisms. Is %
then algebraically exact?

We will show that the answer is affirmative for cocomplete categories
having a regular generator. In this case, the resulting categories are
precisely the essential localizations of varieties. We will start with a
characterization of complete localizations of monadic categories over
many-sorted sets (i.e., categories of T-algebras for monads T over Set®, S
a set). If T is finitary, these monadic categories are precisely the (many-
sorted) varieties; the general case includes infinitary varieties and is
outside the scope of algebraically exact categories. We start with this result
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as a preparation for the characterization of algebraically exact categories
with a regular generator and because we find it interesting per se.

THEOREM 3.2. Complete localizations of monadic categories over many
sorted sets are precisely the cocomplete exact categories with a regular generator
whose regular epimorphisms are product-stable.

Proof.  Necessity is evident. To prove sufficiency, let € = {C,; s € S} be
a regular generator of .% and consider U:.% — Set® given by

U(K)(s) =7(C,, K).
Then U has a left adjoint H given by

HX)=11x,-c,.

seS

Let T = UH be the induced monad on Set® and let G:.% — Alg(T) be
the comparison functor. Since % is a regular generator, G is full and
faithful. Following [V1], G is a localization; denote by F - G a left adjoint
of G.

Let Q be the regular epireflective hull of G(%) in Alg(T), i.e., the full
subcategory of all subalgebras of the algebras G(K), K €.%. Following
[PR, Theorem 1.5], G:% — Q is a complete localization. Hence
F : Alg(T) — % preserves finite limits and products of objects from Q. We
will prove that F preserves all products, which proves that % is a complete
localization of Alg(T).

Given T-algebras X; (i € I), consider

u;

¢
Y,=3GK, — X,,
v;

where e; represents X, as a quotient of a free T-algebra and u,,v; is a

kernel pair of e; in Alg(T). Then Y; € Q. In

Fu;
FYF—>FGK FX-,

l

Fe, is regular epi and Fu,, Fv, is a kernel pair of Fu;, Fv,. Hence, in

=FTlu;

[1Fe,
l_IKi—e>1_[FXi, (11)

Yy, =F Y
1_[ 1_[ v;=FTIlv;

[1Fe; is regular epi and ITFu; I1Fv; is a kernel pair of IlFe;. The
isomorphism [TFY; = FITY, follows from Y; € Q. Hence (11) is a coequal-
izer diagram.
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Analogously,
11 Y ]_[ GK, = G| |k, RLLR ]_[ X;

is a kernel pair coequalizer diagram. Therefore

FT1Fu;
Fl_[Y—>nF —33FG] K, = ]_[K—>FHX

is a coequalizer diagram. Hence FI1X, = [1FX,. |

THEOREM 3.3. A category is a complete (= essential) localization of a
variety iff it
(1) is cocomplete,
(i) is exact,
(iii)  has a regular generator,
(iv)  has filtered colimits which commute with finite limits,
(v)  has products which distribute over filtered colimits, and
(vi)  has regular epimorphisms which are product-stable.

COROLLARY. A category is an essential localization of a variety iff it is
cocomplete and algebraically exact and has a regular generator.

Proof.  Necessity follows from the fact that essential localizations of
algebraically exact categories are algebraically exact (see [ALR3]).

Sufficiency. Assume that 7 satisfies the conditions (i)—(v). Consider
G : % — AlgT) from the proof of Theorem 3.2. Let T, be the finitary
core of T. Let P:Alg(T) — Alg(T,) be the induced functor and put

G
Go: 75 Alg(T) 5 Alg(T,).

Following [V2], G, is a localization; we denote by F, 4 G, a left adjoint of
G,. We will prove that F, preserves products. Then %7 is a complete
localization of Alg(T,). Since Alg(T,) is locally finitely presentable, .7 is
locally presentable by [BK, 6.7]. Hence, G, is an essential localization.

(a) F, preserves products of finitely generated free T,-algebras (i.c.,
the algebras (X, uy) where the set 11 . ¢ X, is finite). This follows from
the fact that they coincide with freely finitely generated T-algebras: recall
that G is a complete localization (by Theorem 3.2).

(b) F, preserves products of free T,-algebras. In fact, every free
T,-algebra is a filtered colimit of finitely generated free 7-algebras. Let
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A; = colim;_, A;;, 1 €1, be free Tj-algebras expressed as filtered colimits

of free flnltely generated T-algebras A,;. By condition (v), IT4; is a
canonical filtered colimit of products I'l;. ; 4,; where f ranges through
[1J,. Then F(ITA;) = T1FA, follows from (a) since F preserves filtered
colimits.

(c) F, preserves all products. In fact, given algebras A, € Alg(T,),
i € I, consider

u
8i i €
D, = C;=3B, — 4,
v;

where e; represents A4; as a quotient of a free T-algebra B;; u;,v; is a
kernel pair of e¢;; and g; represents C; as a quotient of a free T-algebra
D.. In

ITg; l_Iu,; ITe;
[ID,—T1 CiWnBi —] 14,

ITe; and I'lg; are regular epimorphisms and [Tu; and v, is a kernel pair
of ['le;. Hence

nD =115 =14,

is a coequalizer. Therefore

0(u gl
[1F,D, =F,[1 lf)r[FOB F, 115, —>F0]_[A
Folv;g;
is a coequalizer. Moreover, in
Fog; Fou;
F,D,— F,C.==3 - FOB SR FyA,;,

Fye;, and F,g,; are regular epimorphisms and F,u;, Fyv,; is a kernel pair of
Fye;. Hence, in

i TTFou TFpe,
[T, D, 25T A C =3 TTF, B, T TFy 4

[1F,g; and I'1F,e, are regular epimorphisms and I'1F,u;, [1F,v; is a kernel
pair of [1Fe;. Therefore

TTFy(u;g;) [1Fe;
nFoDz—>l_[ B ;nFoAi
TTF(v;g)

is a coequalizer. We conclude F,IT1A4;, = [1F,A,. |
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Remark 3.4. As a consequence of Theorem 3.3 we get that an abelian
category % is equivalent to an essential localization of a category of
modules iff its satisfies (AB5), (AB4*) and if filtered colimits distribute
over products.

Following the Roos Theorem mentioned in the Introduction, in abelian
categories satisfying (AB4*) the condition (AB6) is equivalent to the fact
that filtered colimits commute with finite limits and distribute over prod-
ucts, i.e., is equivalent to precontinuity. In general abelian categories, we
do not know whether precontinuity is equivalent to (AB6).

A localization G: % —.% is called finitary if G preserves filtered
colimits.

COROLLARY 3.5. Let % be a category. Then the following conditions are
equivalent:

(1) 7 is equivalent to a finitary essential localization of a variety,
(ii) 7 is locally finitely presentable and algebraically exact,

(iii) 7 is locally finite presentable and exact and regular epimorphisms
are product stable.

Proof. (i) = (ii) = (iii) is evident.

(iii) = (i). Let & be a set of representatives of finitely presentable
objects of .Z. Then the monad 7' from the proof of Theorem 3.2 is finitary
and G :% — Alg(T) is finitary as well. Hence (i) follows from Theorem
32. 1

4. ESSENTIAL LOCALIZATIONS OF PRESHEAF CATEGORIES
4.1. We will denote by
nSelim : % — Colim %

a free completion of a category -# under all colimits. Colim.% can be
described as the full subcategory of Set”" consisting of all (small) colimits
of representable functors and nS°'™ is the codomain restriction of the
Yoneda embedding. If % is cocomplete we denote by

CcSelim : Colim % — %

a functor computing colimits in %, i.e., the essentially unique functor
preserving colimits and such that

C;olim . n;olim = Idz, (12)
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We have
TZZC/()lim — CjC/olim.

If 7 is complete then Colim.% is complete, too, even closed under limits
in Set”” (see [F] and [Ro)).

DEFINITION 4.2. A category 7 is called a complete pretopos if it is
complete and cocomplete and CSP™ preserves limits.

LEMMA 4.3.  Every complete pretopos is algebraically exact.

Proof. A complete pretopos .7 is, by definition, a complete localization
of Colim .Z. Since complete localizations of algebraically exact categories
are algebraically exact (see [ALR3]), it suffices to prove that Colim .7 is
algebraically exact. Colim .7 is complete and Sind Colim .7 is closed under
limits in Colim Colim .% (see [ALR3]). Thus, C3n¢ _ is the domain restric-
tion of

c&olim - Colim Colim % — Colim .7,

and the latter functor preserves limits because Colim is a KZ-doctrine (see
[K, Ma)).

Remark 4.4. (1) A free completion of a category .# under coproducts
is denoted by

niem . % — Fam 7.

It can be described as the codomain restriction of the Yoneda embedding
into the full subcategory of Set”" consisting of all coproducts of repre-
sentable functors.

(2) An exact completion of a finitely complete category .7 is denoted
by
T T

(see [C, CV]). It is defined by the following universal property: %z, is an
exact category and mg preserves finite limits, and for any finite-limits
preserving functor H : % — ¢ into an exact category £ there is, up to an
isomorphism, a unique exact extension H : %, — % satistying H - ng* = H.
(Exactness of H means preservation of finite limits and regular epimor-
phisms.)

Following [CV], %, can be described as the full subcategory of Set”"
consisting of all functors X : Z° — Set such that there exists a regular
epimorphism e: Y(K) — X whose kernel pair

Z=3Y(K) - X
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has the property that Z is a regular quotient of a representable functor.
Thus, %, consists of coequalizers of pseudoequivalences of representable
functors. And n3* is the codomain restriction of the Yoneda embedding
Y:% — Se tyf“”

Recall that %, is complete whenever % is complete (see [CV]).

LeEmMMA 4.5. Let % be a complete category and & a complete exact
category having product-stable regular epimorphisms. For every functor H : %
— & preserving limits, the exact extension H : %, — & preserves limits too.

Proof. We abbreviate n* to n. We are to prove that H preserves
products of objects X; €.%,,, i € I. We have representations

8i L) €i
n(L;) — Zil—,l)n(Ki) — X,

from Remark 4.4, with ¢; and g; regular epimorphisms. Further, form a
product

l'lg,

n(ITL) =T1In(L) — l_IZ l_In(K) 2% Tx.

Since [1e, and [1g; are regular epimorphisms in Set”" and (ITu;, [1v,) is a
kernel pair of Ile;, the diagram

ITv;g; ITe;
n( 1_[ Li)l_[—> n( 1_[ K) —)nXi
Vi&i
is a coequalizer (of a pseudoequivalence) in .%Z,. Hence

Hn(J 1L, )(—)>Hn(]_[K ) —>H]_[X
lgl
is a coequalizer in .¥. At the same time,
H(u;g) ﬁei ~
Hn(L)—/= Hn(K,) — HX;
H(v;g)
is a coequalizer in ¢ for any i € I. Since regular epimorphisms are

product stable in &,

Hy(] L, )(H—>H17(HK)—>1_[HX
U;8i
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is a coequalizer in . as well. Therefore H preserves products and thus all
limits. [

4.6. Recall that a category with finite limits is called o«-extensive iff it
has universal and disjoint coproducts (see [CLW]). We say that coproducts
distribute over products if we have a canonical isomorphism

l_[( ]_[Kij) = 11 (nKif(i))‘

i€l je, feny; Hiel

THEOREM. Let % be a complete and cocomplete category. Then % is a
complete pretopos iff % is exact and «-extensive, regular epimorphisms are
product-stable, and products distribute over coproducts.

Proof. Necessity is evident because % is a complete localization in
Colim % and Colim.% is closed under limits and colimits in Set” .
Assume that .7 satisfies the conditions listed above. Following [C, (4.1)]
and [Ro, Lemma 3], we have

Colim .# = (Fam .7).,.
Let
CE™:Fam % - %
be the essentially unique functor preserving coproducts with
CEm . plam = 1d,,. (13)

Since .7 is c-extensive, CL*™ preserves finite limits (see [HT1]). We will
prove that it preserves all limits. Let 11 ,;.,nK;;, i € I, belong to Fam 7.
Abbreviate 7™ to n and CE*™ to C. We have

C(H L n(K,-j))

iel jel;

I

C( L[ ]._.[ TI(KU»‘. )) by distributivity
(pelly, i€l

I

11 Cn( l_[K ; ji) by preservations of coproducts by C
(jpelll; iel

L l_[Kij, by (13)

(peIly, i€l

I
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=[] [1K,; Dby distributivity

iel jel;

=[] LI C”I(Kij) by (13)

iel jel;

= 11 C| LI n(K;;) by preservation of coproducts by C.
A JEJ;

Hence C preserves products and therefore all limits.
Following Lemma 4.2, the induced functor

C:(Fam.%), =%
preserves limits.
We will prove that C is naturally isomorphic to the composite
3

(Fam %) —>ﬁf —Z

where C,, is an exact functor essentially given by the commutativity of

CCX
(Fam %), — %

€X
ex

Tl%’z‘im% nr
Fam (%/Th%f

Since both € and C3 - C,, are exact and
CF - Cox~ Mmsr = CF 17 C = C = Comi s

We conclude that C - C,, = C.

Finally, since nS°'™ is the composite

Mm%

-5 Fam 7 425 (Fam .%7) o

and

Fam .7 — (Fam T ox

o] e

F %
commutes, a left adjoint CZ°'"™ to ng°"™ is equal to the composite
C3 - C.- In fact, C, - 7, (because C + 1) and C$* - ng*. Hence C=
CEelim Therefore CS°'™ preserves limits. [

COROLLARY 4.7.  Essential localizations of presheaf categories are precisely
the complete pretoposes with a regular generator.
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Proof. Necessity is obvious. Let % be a complete pretopos with a
regular generator. Following Lemma 4.3, % is precontinuous. Now, we can
follow the proof of Theorem 2.7; we only have to replace the diagram
there with the following one:

4
Chg/olim
E |- H Colim
Colim J
Colim#% 1 Colim .%7.

U

5. MORE ON ALGEBRAICALLY EXACT CATEGORIES

A free completion of a category -# under coequalizers of reflexive pairs
will be denoted by

nee . % — Rec 7.

Rec.# can be described as the full subcategory of Set”" of all functors
Z°P — Set which belong to the iterated closure of representable functors
under reflexive coequalizers, and nX°¢ is the codomain restriction of the
Yoneda embedding Y, : % — Set”". If % has reflexive coequalizers we
denote by

CRc:Rec¥ > %

a functor computing reflexive coequalizers in .Z. This is the essentially
unique functor preserving coequalizers and satisfying

CRee . pRee = 1d_. (14)

If # has finite coproducts, this completion has been introduced previously
by Pitts (see [P] and [BC]). In this case, Rec.% consists of reflexive
coequalizers of representable functors and

Sind %7 = Ind Rec 7 (15)

(see [AR2]). We will prove that this description of Sind % also holds for
any complete category 7.

For any full subcategory 2 of Set””, let E(%) denote the full subcate-
gory of Set” " consisting of all coequalizers of pseudoequivalences in 2. In
this notation,

’%ex = E(YZ/(‘%))
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PROPOSITION 5.1.  Let Z be a complete category. Then
Sind .# = Ind Rec Z = E(Ind 7).

More precisely, there exist isomorphisms of categories forming commu-
tative triangles such as

A

. 4

Sind ~ Sind yi
" / Rec Znie v SN

SindK ——=—3IndRec.%, Sind.# ——=— E(Ind.%),

where Y, is the codomain restriction of Y.

Proof. We are going to prove the isomorphism for various types of
categories % first.

I. Let .Z be a small category having finite limits and finite coprod-
ucts. Then, following [AR2],

Sind .Z = Ind Rec .%.
Moreover, Sind % is a variety. Consequently,

Sind # = %,

ex ?

where 7 is the full subcategory of Sind .7 consisting of free algebras (see
[V1]). Since any free algebra is a filtered colimit of finitely generated free
algebras, and the latter belong to .% (more precisely, to n5"4(%)), we have
& C Ind Z. Hence

Sind # = E(Ind 7).

II. If % is a large category having finite limits and finite coproducts,
then % can be expressed as directed union Z = U, ;% of small full
subcategories % C.%, i € I, closed in % under finite limits and finite
coproducts. The inclusions Uj;:% — % induce finite-limit-preserving
functors Ind U; : Ind % — Ind % (see [AGV, 8.9.8]. Hence Ind U;; pre-
serves pseudoequivalences and therefore induces the functor

E(IndU;): E(Ind.%) — E(Ind.%).
Thus
E(Ind %) = colimE(Ind %) = colim Sind % = Sind .%7.
iel

iel
III. Let % = Lim & be a free limit completion of a category &/ with
finite limits. If .« is small then 7 = (Set”)°" and the result follows from
II. If 7 is large, we again express &/ as a directed union & = U, ;% of
small full subcategories closed under finite limits and get the result for .«.



ALGEBRAICALLY EXACT CATEGORIES 473

IV. Let % be an arbitrary complete category. The inclusion Rec %
C Sind .7 induces a filtered colimits preserving functor

J :Ind Rec .# — Sind .%7.
Denote by ni'™ : % — Lim .% a free completion of % under limits and by
L,:Lim% —>%
the essentially unique limit-preserving functor with
L, ni™=1d,.
Consider the commutative diagram

.
IndRec¥’ — Sind%
tndRec Ly J|idRec npm  Sind L] sind nfim

Ind RecLim %7 - Sind Lim .7.

Lim %
Following Part III, J;;,, 5 is an isomorphism. Consider

M = IndRec L, -Ji;, - Sind nz'™ : Sind % — Ind Rec 7.

Then
Jy+M=J,-IndRec L, -J} .- Sind nkm
=Sind L, -Jy,, 5 Jii - Sind ni™
= Sind L, - Sind nz'™
=1Id
and

M-J, =IndRec L, -Ji, 5 Sindny™-J,
=1IndRec L, -J;} . Ji ., 5 IndRecn,
= Ind Rec L, - Ind Rec 1,
= 1d.

Hence Ind Rec % = Sind .%7.
Since E(Ind %) C Sind %7 and the previous argument shows that this
inclusion is onto on objects, we also have

E(Ind %) = Sind .%7.
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COROLLARY 5.2. Let % be an exact precontinuous category having sifted
colimits and  product-stable regular epimorphisms. Then the functor
C3nd - Sind % — % preserves products.

Proof. Consider the functor
U:Set™d)”™ — Set”"

given by precomposing with
(n};d)()p 7% - (Ind 7).

A domain—codomain restriction of U yields the functor

U*:(Ind %) — E(Ind %) = Sind 7.
Following Lemma 4.3, the functor

C¥: (Ind 7)o, -7
preserves limits. Since U* is onto on objects and
U - cn =,

C5nd preserves products.

Remark 5.3. The above result shows that Problem 3.1 lies in the
preservation of equalizers.

PROPOSITION 5.4. Let % be a complete category with reflexive coequaliz-
ers. Then Ind 7 is algebraically exact iff the functor Ind CX¢ preserves limits.

Proof.  Sufficiency. Since % has reflexive coequalizers, we have

Tl;ec [ C;ec
and therefore

Ind CRee

Ind 7L _,Ind Rec .%7.

Ind &<

Following Proposition 5.1, Ind % is a complete localization of an alge-
braically exact category Sind .Z. Therefore Ind .7 is algebraically exact.

Conversely, assume that Ind .7 is algebraically exact. It suffices to prove
that

Ind CRe¢ = CPind. - Sind "¢ : Sind % — Ind % (16)
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since the right-hand functors preserve limits. Since both Ind CRe¢ and
Chidy. Sind n*® preserve sifted colimits, we only need to show that they
have the same precomposition with 73" In fact,

Ind CR*¢ - 8" = Ind CR* - plid - mRec by 5.1

= pid. CRec. pRec by naturality
= i by (14)
= Cpind_ . ppind_. ynd by naturality and (10).

COROLLARY 5.5. Let % be a precontinuous category with reflexive co-
equalizers and such that Ind CX° preserves limits. Then % is algebraically
exact.

Proof. We have

cpd Ind C5*
«— .
Z_ 1  IndZ__ 1 IndRecZ = Sind 7.
n3d Ind nge

Since by Proposition 5.1

. .- Ind
Nw

Sind ~ ., Ind Rec ec

Nz NMRecw ™ Mz

I

Ind 03

and 73" - C3", we conclude

CSind = CInd. [nd Rec 7.

Therefore CS™ preserves limits. [}
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