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Algebraically exact categories have been introduced in J. Adamek, F. W. Law-´
Ž .vere, and J. Rosicky to appear , as an equational hull of the 2-category VAR of all´

varieties of finitary algebras. We will show that algebraically exact categories with a
regular generator are precisely the essential localizations of varieties and that, in

Ž . Ž .this case, algebraic exactness is equivalent to 1 exactness, 2 commutativity of
Ž .filtered colimits with finite limits, 3 distributivity of filtered colimits over arbitrary

Ž .products, and 4 product-stability of regular epimorphisms. This can be viewed as
a nonadditive generalization of the classical Roos Theorem characterizing essential
localizations of categories of modules. Analogously, precontinuous categories,

Ž .introduced in J. Adamek, F. W. Lawrence, and J. Rosicky to appear as an´ ´
Ž .equational hull of the 2-category LFP of locally finitely presentable categories ,

Ž . Ž .are characterized by the above properties 2 and 3 . Essential localizations of
locally finitely presentable categories and presheaf categories are fully described.
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1. INTRODUCTION

Ž .The category VAR of finitary varieties is not equational over CAT, the
� �quasicategory of all categories, as shown in ALR3 . There an equational

hull of VAR with respect to ‘‘small operations’’ has been described,
whereby it was shown that those small operations on VAR are just
combinations of the following three kinds of operations:

Ž . Ž1 lim , the formation of limits of type KK a KK-ary operation forKK

.every small category KK ,
Ž . Ž2 colim , the formation of filtered colimits of type KK a KK-aryKK

.operation for every small filtered category KK , and
Ž .3 coeq, the formation of reflexive coequalizers, an operation of

arity
p

�
r�� �KK � where pr � id � qr .

�
q

Ž . Ž .There are important equational rules concerning the operations 1 � 3
which hold in every variety and therefore hold in all the categories AA lying
in the equational hull of VAR:

Ž .FLC Finite limits commute with filtered colimits.
Ž .PD Products distribute over filtered colimits. That is, given a

collection of filtered diagrams in AA

D : DD � AA i � I ,Ž .i i

and forming the ‘‘product diagram’’ Ł D byi� I i

DD � AA, d � D d ,Ž . Ž .Ł Łi i i i
i�I

then the canonical morphism

colim D � colim DŁ Łi i
i�I i�I

is an isomorphism.
Ž .REP Regular epimorphisms are product-stable. That is,

Ł e : Ł A � Ł B is a regular epimorphism whenever eachi� I i i� I i i� I i
e is.i

An open problem concerning VAR is whether the above three proper-
ties characterize the equational hull. In the present paper we characterize
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a large class of members of the equational hull of VAR, i.e., all essential
localizations of varieties. Recall that, for a category AA, a localization is a
full reflective subcategory BB such that a reflector R : AA � BB preserves
finite limits. And BB is called a complete localization if R preserves limits

Žand an essential localization if R is a right adjoint recall that R is a left
. � �adjoint of the embedding BB � AA . As observed in ALR3 , an equational

hull of VAR is closed under complete localizations. Now for localizations
of a variety, ‘‘essential’’�‘‘complete’’. Thus, essential localizations of vari-
eties are important examples of categories ‘‘near’’ to VAR. One of the
main results of our paper is the following.

THEOREM. A category is an essential localization of a �ariety iff it is
Ž . Ž .cocomplete, exact, has a regular generator, and satisfies FLC , PD , and

Ž .REP .

We obtain a sharper result concerning the category LFP, of all locally
finitely presentable categories. An equational hull with respect to all

� �‘‘small operations’’ has been described in ALR2 , and these operations are
generated by the two kinds lim , formation of limits, and colim , forma-KK KK

tion of filtered colimits. It is clear that every LFP category has finite limits
Ž .commuting with filtered colimits FLC and products distributing over

Ž .filtered colimits PD . In the present paper we prove that the equational
Ž . Ž .rules FLC and PD generate all equations holding between small opera-

Ž .tions on LFP. And we again characterize all essential � complete local-
izations of LFP categories.

THEOREM. A category is an essential localization of an LFP category iff it
Ž . Ž .is cocomplete, has a regular generator, and satisfies FLC and PD .

To put the results of our paper into a historical perspective, let us recall
some of the classical results on categories related to the module categories
Žmore precisely, to the categories Mod-R of right modules over a unitary

.ring R .

Ž .� A category is equi�alent to a module category iff it
Ž .i is abelian,
Ž . Ž .ii satisfies AB3 , i.e., it is cocomplete, and
Ž .iii has a finitely presentable, regularly projecti�e regular generator.

� � � �This has been proved by Gabriel G and Mitchell M . Let us stress here
that the classical results, dealing with one-sorted algebras, always use
‘‘generator’’ as a single object. Below, we use ‘‘generator’’ to mean a set of
objects; this is related to the fact that the algebras we consider are
many-sorted, in general.
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Ž .� A category is equi�alent to a localization of a module category iff it
Ž .i is abelian,
Ž . Ž .ii satisfies AB5 , i.e., it is cocomplete and for any directed family

Ž . Žof subobjects A � B i � I and any subobject A � B we have � Ai i� I
. Ž .� A � A � � A , andi i� I i

Ž .iii has a regular generator.

� �See Popescu and Gabriel PG . Finally,

Ž .� A category is equi�alent to an essential localization of a module
category iff it

Ž .i is abelian,
Ž . Žii has product-stable regular epimorphisms this is the dual condi-

Ž .� Ž ..tion AB4 to AB4 , and
Ž . Ž .iii satisfies AB6 , i.e., it is cocomplete and for any family of

Ž . Ž .directed families A � B j � J of subobjects i � I we ha�ei j i

A � A� � � �i j i ji
Ž . i�I i�I j�Jj �Ł J ii i

and
Ž .iv has a regular generator.

� �This is the classical Roos Theorem; see R2 . Now, module categories
are precisely the additive version of finitary varieties: recall from Lawvere
� � Ž .L1, L2 that varieties are given by algebraic finite-product theories. In
categories with biproducts thus the models of algebraic theories are just
models of the unary reducts, and so module categories are, in the abelian
world, precisely what varieties are in general.

Ž .Thus, a nonadditive generalization of � above is, then, an abstract
characterization of varieties of finitary algebras. This has been proved in
� �L1 for one-sorted algebras. We, however, want to consider many-sorted

Žalgebras in general. Lawvere’s result immediately yields that case, too as
� �.explicitly proved in AR1 ; one just has to understand a regular generator

to mean a set GG of objects such that for every object K the canonical
morphism

G � K� �
Ž .G�GG hom G , K

is a regular epimorphism.

Ž � .� A category is equi�alent to a �ariety iff it
Ž . Ž � �.i is exact in Barr ’s sense B and complete, and
Ž .ii has a regular generator consisting of finitely presentable regular

projecti�es.
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Ž .A nonadditive generalization of � has been presented by the third
� �author in V2 :

Ž � .� A category is equi�alent to a localization of a �ariety iff it
Ž .i is exact and cocomplete,
Ž .ii has filtered colimits which commute with finite limits, and
Ž .iii has a regular generator.

The above theorem characterizing essential localizations of varieties is,
Ž .then, a nonadditive extension �* of the Roos Theorem.

We also prove the same results for presheaf categories in place of
varieties or locally finitely presentable categories. Here we obtain com-
plete pretoposes and complete and cocomplete categories whose limits
distribute over colimits in a sense analogous to the above situations. As a

� �consequence, we obtain the result of Roos R2 characterizing essential
localizations of categories of presheaves. These are exactly complete
pretoposes with a regular generator.

All our categories are supposed to be locally small.

2. PRECONTINUOUS CATEGORIES

Recall the 2-category LFP of locally finitely presentable categories of
Ž .Gabriel and Ulmer. Its morphisms 1-cells follow from the Gabriel�Ulmer

Žduality�they are the right adjoints preserving filtered colimits and 2-cells
. � �are the natural transformations . In ALR2 it has been proved that LFP is

not monadic over CAT, and an equational hull of LFP has been described.
It is the following 2-category:

Objects are called precontinuous categories: They are the categories KK

with limits and filtered colimits which distribute in the sense made precise
below:

Ž .morphisms 1-cells are the functors preserving limits and filtered
colimits; and

2-cells are the natural transformations.

However, little more has been told about precontinuous categories in
� �ALR2 . We now present a more straightforward characterization of these
categories and exhibit one of the basic examples; essential localizations of
locally finite presentable categories.

Recall that the completion

� Ind : KK � Ind KKKK
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� �of a category KK under filtered colimits was described in AGV as follows:
Ind KK is the full subcategory of Set KK op

of all functors KK op � Set which are
Ž .small filtered colimits of representable functors. And � is the codomain
restriction of the Yoneda embedding Y : KK � Set KK op

. Recall that if KK isKK

complete then Ind KK is closed under limits in Set KK op
and therefore is also

complete; moreover, filtered colimits distribute in Ind KK over products
Ž � �.see AGV . If KK has filtered colimits we denote by

C Ind : Ind KK � KKKK

a functor computing filtered colimits in KK. This is the essentially unique
functor preserving filtered colimits and satisfying

C Ind � � Ind � Id . 3Ž .KK KK KK

Moreover,

� Ind 	 C Ind .KK KK

If KK has and C Ind preserves limits, we say that limits distribute overKK

filtered colimits.

Ž � �.DEFINITION see ALR2 . A category is called precontinuous iff it is
complete, has filtered colimits, and its limits distribute over filtered co-
limits.

In the following theorem we prove that distributivity of limits over
Ž .filtered colimits is equivalent to two less formal conditions; the commuta-

tivity of finite limits and the distributivity of products as defined in the
Introduction above.

THEOREM 2.1. A category KK is precontinuous iff it has limits and filtered
colimits and

Ž .a filtered colimits commute with finite limits, and
Ž .b products distribute o�er filtered colimits.

Proof. Let KK be a category with limits and filtered colimits. We use
Ž � �.the following description of Ind KK see e.g., JJ : objects are all filtered

diagrams in KK. Morphisms from D : DD � KK to D� : DD
� � KK are compati-

� � Ž .ble families of equivalence classes f d � obj DD of morphisms f : Ddd d
� D�d� in KK under smallest equivalence � with f � D�� � f for everyd d

� � � � �� � mor DD with domain d ; compatibility means f � f � D� for alld d
Ind� : d � d in DD. The embedding � sends an object X to the correspond-KK
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Ž .ing single-morphism diagram X . The diagram

d � D dŽ . Łi i ii�I
i�I

used in the above definition of distributivity of products over filtered
Ž .colimits is obviously filtered, and it is a product of the diagrams D i � Ii

� �as objects of Ind KK w.r.t. the morphisms 	 : ŁD d � D d , where 	 isj i i j j j
Ž .the jth projection j � I . Thus;

C Ind preserves products � products distribute over filtered colimits. �Ž .KK

Ž . Ž .A Let KK be precontinuous. In view of � it remains to prove that
filtered colimits commute with equalizers. In fact, they commute with

Ž .finite products since this is equivalent to distributing over them , hence
they then commute with finite limits. Let D, D� : DD � KK be filtered

� Ž .diagrams, and let f , g : Dd � D d d � DD be natural transformations.d d
Ž� � Ž� �. �Then f g : D � D are morphisms in Ind KK. If e : Ed �d d � DD d d � DD d

Ž .Dd are pointwise equalizers in KK, then we obtain an obvious filtered
Ž� �.diagram E : DD � KK with a morphism e : E � D which is easilyd d � DD

Ž� �. Ž� �. Indseen to be an equalizer of f , g . Since C preserves equalizers, wed d KK

conclude that

colim e is an equalizer of colim f and colim g ,d d d
d�DD d�DD d�DD

which is precisely what we needed to prove.
Ž .B Let KK have filtered colimits commuting with finite limits and

Ž . Inddistributing over products. In view of � , it remains to prove that CKK

preserves equalizers. Here we return to our description of Ind KK as a full
subcategory of Set KK op

above. We abbreviate � Ind to �. Every object ofKK

Ž .Ind KK is a colimit of � B for some filtered diagram B in KK. Consider a
pair of morphisms

f , g : colim � A � colim � BŽ . Ž .

in Ind KK, where A : II � KK and B : JJ � KK are filtered diagrams.
I. At first assume that II has just one morphism, i.e., that

f , g : � X � colim � BŽ . Ž .

where X � KK. Since JJ is filtered, there are j � JJ and f , g : X � B in0 0 0 j0
Ž . Ž . Ž Ž .KK such that f � b � � f and g � b � � g ; here b : � B �j 0 j 0 j j0 0

Ž ..colim � B denotes a colimit cocone in Ind KK. Consider the commaj� JJ

category JJ � j � JJ. Then JJ is filtered and we define a diagram E : JJ � KK0
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as follows: given an object j : j � j of JJ, form an equalizer0

Ž .B j � fe 0j �� �E X Bj j
Ž .B j � g0

�in KK. Given a morphism h : j � j in JJ, i.e., a commutative triangle

j �

�
0

�j j0

�
j j
h

in JJ, we have a unique morphism

� �E h : E � E with e � e � E hŽ . Ž .j j j j

� �Ž . Ž .induced by the fact that e merges B j � f and B j � g .j 0 0

Denote by U : JJ � JJ the usual forgetful functor. Composed with B, this
yields a filtered diagram B � U : JJ � KK and two natural transformations

f , g : � � B � UX

Ž .where � : JJ � KK is the constant functor with value X and f � B j � f ,X j 0
Ž .g � B j � g . The above pointwise equalizers e define a natural transfor-j 0 j

mation

e : E � � X

JJwhich is an equalizer of f and g in KK . Since filtered colimits commute
with equalizers in KK, we conclude that

colim f
colim e �� �colim E X colim B � U

colim g

is an equalizer in KK. Since B is a filtered diagram, we have colim B � U �
colim B, and we can write

Ind Indcolim f � C f and colim g � C g .Ž . Ž .KK KK

Analogously, since

� e � � E � � � XŽ . Ž . Ž .
JJŽ . Ž . Ž .is an equalizer of � f and � g in Ind KK and equalizers commute with

Ž KK op
filtered colimits in Ind KK because Ind KK is closed in Set under limits
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.and filtered colimits , we get that

Ž .colim � fŽ .colim � e �� �Ž . Ž . Ž .colim � E � X colim � B � U
Ž .colim � g

is an equalizer in Ind KK. Colimits commute with colimits, thus we have

C Ind colim � e � colim e.Ž .Ž .KK

We have proved that C Ind preserves the above equalizer.KK

Ž Ž .II. Consider a general case and denote by a : � A �i i
Ž ..colim � A a colimit cocone in Ind KK. We form equalizersi� II

f�aiei �� �Ž . Ž .E � A colim � Bi i g�ai

in Ind KK. This defines a filtered diagram E : II � Ind KK whose connecting
Ž . � Ž .morphism E h for h : i � i in II is given by the fact that A h � ei

merges f � a� and g � a� . We get a morphismi i

e � colim e : colim E � colim � AŽ .i

which is an equalizer of

f

colim � A � colim � BŽ . Ž .
g

because filtered colimits commute with equalizers in Ind KK. Following
Condition I, we know that

Ind IndŽ .C f�aŽ . KK iC eKK i �

Ind � �Ž Ž ..C E i A colim BKK i IndŽ .C g�aKK i

is an equalizer in KK. Since filtered colimits commute with equalizers in KK,

Ind IndŽ .C fŽ . KKC fKK

�

Ind � �Ž .C colim E colim A colim BKK IndŽ .C gKK

Indis an equalizer in KK. Hence C preserves equalizers.KK

Remark 2.2. Recall that a complete localization of a category LL is a full
reflective subcategory KK of LL whose reflector R preserves limits. If LL is
locally presentable then this is the same concept as essential localization:
by SAFT, R is then a right adjoint.
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Ž . Ž .EXAMPLE 2.3. 1 KK � Ind AA is precontinuous for any category AA iff
� �KK is complete; see ALR2 . This is the case whenever AA is complete, or

whenever AA is small and finitely cocomplete. The latter case precisely
characterizes the locally finitely presentable categories.

Ž .2 Complete localizations of precontinuous categories are pre-
continuous. In fact, let E : KK � LL be a complete localization of LL

Ž . Ind Indwith a limit-preserving reflector R : LL � KK. Then C � R � C �KK LL

ŽInd E : Ind KK � KK, and since E preserves limits so does Ind E see
� �. Ind IndALR2 . Thus, whenever C preserves limits, so does C .LL KK

Ž . Ž .Remark 2.4. The examples 1 and 2 above are generic: every precon-
tinuous category KK is a complete localization of Ind AA, with AA complete.
In fact, put AA � KK, then � : AA � Ind KK is a full embedding whose left

Ž . Indadjoint reflector is C .KK

We thus concentrate on complete localizations of the basic examples of
Ž .precontinuous categories, viz, locally finitely presentable LFP categories.

Ž . Ž .Remark 2.5. i Categories which are noncomplete localizations of
� �LFP categories have been fully characterized in DS as cocomplete

categories which have

Ž .a finite limits commuting with filtered colimits, and
Ž .b a regular generator.

Ž .ii Every localization of an LFP category is locally �-presentable for
some infinite regular cardinal �. In fact, let E : KK � LL be a localization

� �with LL an LFP category. As proved in BK , E preserves �-filtered
colimits for some �; thus, KK is equivalent to a full reflective subcategory of
a locally �-presentable category LL closed under �-filtered colimits. It

� �follows that KK is locally �-presentable; see Theorem 1.20 in AR . How-
ever, kk is not LFP in general.

ŽRemark 2.6. Every continuous lattice L which is not algebraic e.g., a
.closed real interval is a complete localization of Ind L which, being an

algebraic lattice, is LFP. But L itself is not LFP.

Ž .THEOREM 2.7. A category is a complete � essential localization of a
locally finitely presentable category iff it

Ž .i is cocomplete,
Ž .ii has finite limits commuting with filtered colimits,
Ž .iii has products distributing o�er filtered colimits, and
Ž .iv has a regular generator.

COROLLARY. Complete localizations of LFP categories are precisely the
cocomplete precontinuous categories which ha�e a regular generator.
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Ž . Ž .Proof. The necessity of i � iv is obvious. To prove sufficiency, let KK

Ž . Ž . Ž .fulfill i � iv and be locally �-presentable see Remark 2.5. . Let CC be a
small full subcategory representing all �-presentable objects; J : CC � KK

denotes the full embedding. Since CC is closed under finite colimits in KK, it
follows that Ind CC is a locally finitely presentable category. The functor

E : KK � Ind CC , K � KK J 
 , KŽ .

Žis fully faithful and preserves limits and �-filtered colimits since objects of
. Ž .CC are �-presentable . It follows that E has a left adjoint reflector

H : Ind CC � KK,

� �see AR, 1.66 . It is sufficient to prove that H preserves limits, then KK is
Ž .equivalent to a complete localization of Ind CC. Observe that

H � E � Id . 4Ž .KK

The functor Ind J : Ind CC � Ind KK has a right adjoint, viz, the functor

U : Ind KK � Ind CC

op op Žof restriction of a presheaf from KK to CC recall that CC is closed in KK

.under finite colimits, in fact, under �-small colimits . Consider the diagram

KK

Ind�KK

T	 HE IndCKK �
Ind J

�

�

�

�

Ind CC Ind KK.��

U

We will prove that H preserves limits. Since

E � U � � Ind , 5Ž .KK

we have, for the corresponding left adjoints,

H � C Ind � Ind J . 6Ž .KK

Moreover, clearly

U � Ind J � Id . 7Ž .Ind CC

Ž . Ž . Ž .The above 5 , 4 , and 3 imply

H � U � � Ind � H � E � Id � C Ind � � Ind . 8Ž .KK KK KK KK
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Ind ŽBoth of the functors H � U and C preserve filtered colimits U preservesKK

. Ž .them because they are calculated pointwise in Ind KK ; thus from 8 we
derive

H � U � C Ind . 9Ž .KK

We are ready to prove that H preserves limits, using the fact that C Ind
KK

Ž .preserves them since KK is precontinuous , and so does, obviously, U. We
thus have, for every diagram D in Ind CC, canonical isomorphisms as
follows:

H lim D � H lim U � Ind J � D by 7Ž . Ž . Ž .
� HU lim Ind J � D continuity of UŽ .
� C Ind lim Ind J � D by 9Ž . Ž .KK

� lim C Ind � Ind J � D precontinuity of KKŽ .KK

� lim H � D by 7 , 9 .Ž . Ž .

3. ALGEBRAICALLY EXACT CATEGORIES

� �In ALR1 a duality between varieties and algebraic theories has been
introduced which leads naturally to the 2-category VAR of finitary vari-

Ž . Ž .eties as objects : its morphisms 1-cells , called algebraically exact functors,
are precisely the right adjoint functors preserving filtered colimits and
regular epimorphisms. And 2-cells are the natural transformations. Now
algebraically exact functors are precisely those preserving limits and sifted
colimits. Recall that a small category DD is called sifted if DD-colimits

Ž � �.commute in Set with finite products see ALR1 . Filtered categories are
sifted. Also, the ‘‘reflexive pair’’ category

f1�
d�A A1 0

�
f2

Ž . � �with df � df � id is sifted. Following La , a nonempty category DD is1 2 A1

sifted iff for every pair A, B of objects the category of all cospans

A � X � B

� �is connected; a full proof of this result is also presented in AR2 . By sifted
colimits we mean colimits with sifted domains.
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Let

�Sind : KK � Sind KKKK

Ž � �.be a free completion of KK under sifted colimits see AR2 . Sind KK can be
KK op Ž .described as the full subcategory of Set consisting of all small sifted

colimits of representable functors; �Sind is the codomain restriction of theKK

Yoneda embedding. For any category KK with sifted colimits, we denote by

CSind : Sind KK � KKKK

a functor computing sifted colimits in KK. This is the essentially unique
functor preserving sifted colimits and satisfying

CSind � �Sind � Id . 10Ž .KK KK KK

Again,

�Sind 	 CSind .KK KK

Ž � �.If KK is complete then Sind KK is complete as well see ALR3 .

Ž � �.DEFINITION see ALR3 . A category KK is called algebraically exact if it
has limits and sifted colimits such that CSind : Sind KK � KK preserves limits.KK

� �An equational hull of VAR has been presented in ALR3 as the
2-category of all

Ž .algebraically exact categories 0-cells ,
Ž .functors preserving limits and sifted colimits 1-cells , and

Ž .natural transformations 2-cells .

Any algebraically exact category KK is exact and precontinuous and has
� �product-stable regular epimorphisms; see ALR3 .

Problem 3.1. Let KK be a complete category with sifted colimits, which
is exact, precontinuous and has product-stable regular epimorphisms. Is KK

then algebraically exact?

We will show that the answer is affirmative for cocomplete categories
having a regular generator. In this case, the resulting categories are
precisely the essential localizations of varieties. We will start with a
characterization of complete localizations of monadic categories over

Ž Smany-sorted sets i.e., categories of T-algebras for monads T over Set , S
. Ža set . If T is finitary, these monadic categories are precisely the many-
.sorted varieties; the general case includes infinitary varieties and is

outside the scope of algebraically exact categories. We start with this result
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as a preparation for the characterization of algebraically exact categories
with a regular generator and because we find it interesting per se.

THEOREM 3.2. Complete localizations of monadic categories o�er many
sorted sets are precisely the cocomplete exact categories with a regular generator
whose regular epimorphisms are product-stable.

� 4Proof. Necessity is evident. To prove sufficiency, let CC � C ; s � S bes
a regular generator of KK and consider U : KK � SetS given by

U K s � KK C , K .Ž . Ž . Ž .s

Then U has a left adjoint H given by

H X � X � C .Ž . � s s
s�S

S Ž .Let T � UH be the induced monad on Set and let G : KK � Alg T be
the comparison functor. Since CC is a regular generator, G is full and

� �faithful. Following V1 , G is a localization; denote by F � G a left adjoint
of G.

Ž . Ž .Let Q be the regular epireflective hull of G KK in Alg T , i.e., the full
Ž .subcategory of all subalgebras of the algebras G K , K � KK. Following

� �PR, Theorem 1.5 , G : KK � Q is a complete localization. Hence
Ž .F : Alg T � KK preserves finite limits and products of objects from Q. We

will prove that F preserves all products, which proves that KK is a complete
Ž .localization of Alg T .

Ž .Given T-algebras X i � I , consideri

ui ei

� ��Y GK X ,i i i� i

where e represents X as a quotient of a free T-algebra and u , � is ai i i i
Ž .kernel pair of e in Alg T . Then Y � Q. Ini i

Fui Fei

� ��FY FGK FX ,i i iF� i

Fe is regular epi and Fu , F� is a kernel pair of Fu , F� . Hence, ini i i i i

ŁFu �FŁ ui i ŁFei� ��FY � F Y 11Ž .K FX ,Ł Ł Ł Łi i i iŁF� �FŁ�i i

ŁFe is regular epi and ŁFu ,ŁF� is a kernel pair of ŁFe . Thei i i i
Ž .isomorphism ŁFY � FŁY follows from Y � Q. Hence 11 is a coequal-i i i

izer diagram.
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Analogously,

Łui Łei� ��Y GK � G K XŁ Ł Ł Łi i i iŁ� i

is a kernel pair coequalizer diagram. Therefore

FŁ Fui FŁ ei� ��F Y FG K � K F XŁ Ł Ł Łi i i iFŁ F� i

is a coequalizer diagram. Hence FŁ X � ŁFX .i i

Ž .THEOREM 3.3. A category is a complete �essential localization of a
�ariety iff it

Ž .i is cocomplete,
Ž .ii is exact,
Ž .iii has a regular generator,
Ž .iv has filtered colimits which commute with finite limits,
Ž .v has products which distribute o�er filtered colimits, and
Ž .vi has regular epimorphisms which are product-stable.

COROLLARY. A category is an essential localization of a �ariety iff it is
cocomplete and algebraically exact and has a regular generator.

Proof. Necessity follows from the fact that essential localizations of
Ž � �.algebraically exact categories are algebraically exact see ALR3 .

Ž . Ž .Sufficiency. Assume that KK satisfies the conditions i � v . Consider
Ž .G : KK � Alg T from the proof of Theorem 3.2. Let T be the finitary0

Ž . Ž .core of T. Let P : Alg T � Alg T be the induced functor and put0

G P
G : KK � Alg T � Alg T .Ž . Ž .0 0

� �Following V2 , G is a localization; we denote by F � G a left adjoint of0 0 0
G . We will prove that F preserves products. Then KK is a complete0 0

Ž . Ž .localization of Alg T . Since Alg T is locally finitely presentable, KK is0 0
� �locally presentable by BK, 6.7 . Hence, G is an essential localization.0

Ž . Ža F preserves products of finitely generated free T -algebras i.e.,0 0
Ž . .the algebras X, 
 where the set � X is finite . This follows fromX s� S s

the fact that they coincide with freely finitely generated T-algebras: recall
Ž .that G is a complete localization by Theorem 3.2 .

Ž .b F preserves products of free T -algebras. In fact, every free0 0
T -algebra is a filtered colimit of finitely generated free T -algebras. Let0 0
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A � colim A , i � I, be free T -algebras expressed as filtered colimitsi j� J i j 0i
Ž .of free finitely generated T -algebras A . By condition v , Ł A is a0 i j i

canonical filtered colimit of products Ł A where f ranges throughi� I i f Ž i.
Ž . Ž .Ł J . Then F Ł A � ŁFA follows from a since F preserves filteredi i i

colimits.
Ž . Ž .c F preserves all products. In fact, given algebras A � Alg T ,0 i 0

i � I, consider
uig ei i

�� ��D C B Ai i i i� i

where e represents A as a quotient of a free T -algebra B ; u , � is ai i 0 i i i
kernel pair of e ; and g represents C as a quotient of a free T -algebrai i i 0
D . Ini

ŁuiŁ g Ł ei i�� ��D C B AŁ Ł Ł Łi i i iŁ� i

Łe and Ł g are regular epimorphisms and Łu and Ł� is a kernel pairi i i i
of Łe . Hencei

Łu gi i Łei� ��D B AŁ Ł Łi i iŁ� gi i

is a coequalizer. Therefore

Ž .ŁF u g0 i i F Ł e0 i� ��F D � F D F B � F B F AŁ Ł Ł Ł Ł0 i 0 i 0 i 0 i 0 iŽ .ŁF � g0 i i

is a coequalizer. Moreover, in

F u0 iF g F e0 i 0 i�� ��F D F C F B F A ,0 i 0 i 0 i 0 iF �0 i

F e and F g are regular epimorphisms and F u , F � is a kernel pair of0 i 0 i 0 i 0 i
F e . Hence, in0 i

ŁF u0 iŁF g Ł F e0 i 0 i�� ��F D F C F B F A ,Ł Ł Ł Ł0 i 0 i 0 i 0 iŁF �0 i

ŁF g and ŁF e are regular epimorphisms and ŁF u ,ŁF � is a kernel0 i 0 i 0 i 0 i
pair of ŁF e . Therefore0 i

Ž .ŁF u g0 i i ŁF e0 i� ��F D F B F AŁ Ł Ł0 i 0 i 0 iŽ .ŁF � g0 i i

is a coequalizer. We conclude F Ł A � ŁF A .0 i 0 i
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Remark 3.4. As a consequence of Theorem 3.3 we get that an abelian
category KK is equivalent to an essential localization of a category of

Ž . Ž � .modules iff its satisfies AB5 , AB4 and if filtered colimits distribute
over products.

Following the Roos Theorem mentioned in the Introduction, in abelian
Ž � . Ž .categories satisfying AB4 the condition AB6 is equivalent to the fact

that filtered colimits commute with finite limits and distribute over prod-
ucts, i.e., is equivalent to precontinuity. In general abelian categories, we

Ž .do not know whether precontinuity is equivalent to AB6 .

A localization G : KK � LL is called finitary if G preserves filtered
colimits.

COROLLARY 3.5. Let KK be a category. Then the following conditions are
equi�alent:

Ž .i KK is equi�alent to a finitary essential localization of a �ariety,
Ž .ii KK is locally finitely presentable and algebraically exact,
Ž .iii KK is locally finite presentable and exact and regular epimorphisms

are product stable.

Ž . Ž . Ž .Proof. i 	 ii 	 iii is evident.

Ž . Ž .iii 	 i . Let CC be a set of representatives of finitely presentable
objects of KK. Then the monad T from the proof of Theorem 3.2 is finitary

Ž . Ž .and G : KK � Alg T is finitary as well. Hence i follows from Theorem
3.2.

4. ESSENTIAL LOCALIZATIONS OF PRESHEAF CATEGORIES

4.1. We will denote by

�Colim : KK � Colim KKKK

a free completion of a category KK under all colimits. Colim KK can be
KK op Ž .described as the full subcategory of Set consisting of all small colimits

of representable functors and �Colim is the codomain restriction of theKK

Yoneda embedding. If KK is cocomplete we denote by

CColim : Colim KK � KKKK

a functor computing colimits in KK, i.e., the essentially unique functor
preserving colimits and such that

CColim � �Colim � Id . 12Ž .KK KK KK
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We have

�Colim 	 CColim .KK KK

If KK is complete then Colim KK is complete, too, even closed under limits
KK op Ž � � � �.in Set see F and Ro .

DEFINITION 4.2. A category KK is called a complete pretopos if it is
complete and cocomplete and CColim preserves limits.KK

LEMMA 4.3. E�ery complete pretopos is algebraically exact.

Proof. A complete pretopos KK is, by definition, a complete localization
of Colim KK. Since complete localizations of algebraically exact categories

Ž � �.are algebraically exact see ALR3 , it suffices to prove that Colim KK is
algebraically exact. Colim KK is complete and Sind Colim KK is closed under

Ž � �. Sindlimits in Colim Colim KK see ALR3 . Thus, C is the domain restric-Colim KK

tion of

CColim : Colim Colim KK � Colim KK,Colim KK

Žand the latter functor preserves limits because Colim is a KZ-doctrine see
� �.K, Ma .

Ž .Remark 4.4. 1 A free completion of a category KK under coproducts
is denoted by

� Fam : KK � Fam KK.KK

It can be described as the codomain restriction of the Yoneda embedding
into the full subcategory of Set KK op

consisting of all coproducts of repre-
sentable functors.

Ž .2 An exact completion of a finitely complete category KK is denoted
by

�ex : KK � KKKK ex

Ž � �.see C, CV . It is defined by the following universal property: KK is anex
exact category and � ex preserves finite limits, and for any finite-limitsKK

preserving functor H : KK � LL into an exact category LL there is, up to an
ˆ ˆ exisomorphism, a unique exact extension H : KK � LL satisfying H � � � H.ex KK

ˆŽExactness of H means preservation of finite limits and regular epimor-
.phisms.

� � KK op
Following CV , KK can be described as the full subcategory of Setex

consisting of all functors X : KK op � Set such that there exists a regular
Ž .epimorphism e : Y K � X whose kernel pair

u e� ��Z Y K XŽ .�
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has the property that Z is a regular quotient of a representable functor.
Thus, KK consists of coequalizers of pseudoequivalences of representableex
functors. And � ex is the codomain restriction of the Yoneda embeddingKK

Y : KK � Set KK op
.

Ž � �.Recall that KK is complete whenever KK is complete see CV .ex

LEMMA 4.5. Let KK be a complete category and LL a complete exact
category ha�ing product-stable regular epimorphisms. For e�ery functor H : KK

ˆ� LL preser�ing limits, the exact extension H : KK � LL preser�es limits too.ex

ex ˆProof. We abbreviate � to �. We are to prove that H preservesKK

products of objects X � KK , i � I. We have representationsi ex

uig ei i

�� ��

� L Z � K XŽ . Ž .i i i i� i

from Remark 4.4, with e and g regular epimorphisms. Further, form ai i
product

ŁuiŁ g Ł ei i

�� ��

� L � � L Z � K X .Ž . Ž .Ž .Ł Ł Ł Ł Łi i i i iŁ� i

KK op Ž .Since Łe and Ł g are regular epimorphisms in Set and Łu ,Ł� is ai i i i
kernel pair of Łe , the diagrami

Ł� gi i Łei� �Ž . � Ž .� L � K XŁ Ł Łi i iŁ� gi i

Ž .is a coequalizer of a pseudoequivalence in KK . Henceex

Ž .H Ł u g ˆi i HŁ ei� � ˆŽ . � Ž .H� L H� K H XŁ Ł Łi i iŽ .H Ł� gi i

is a coequalizer in LL . At the same time,

Ž .H u g ˆi i Hei� � ˆŽ . � Ž .H� L H� K HXi i iŽ .H � gi i

is a coequalizer in LL for any i � I. Since regular epimorphisms are
product stable in LL ,

Ž .H Ł u g ˆi i ŁHei� � ˆŽ . � Ž .H� L H� K HXŁ Ł Łi i iŽ .H Ł� gi i
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ˆis a coequalizer in LL as well. Therefore H preserves products and thus all
limits.

4.6. Recall that a category with finite limits is called �-extensi�e iff it
Ž � �.has universal and disjoint coproducts see CLW . We say that coproducts

distribute o�er products if we have a canonical isomorphism

K � K .Ł � � Łi j i f Ž i.ž /ž /
i�I i�Ij�J f�Ł Ji i

THEOREM. Let KK be a complete and cocomplete category. Then KK is a
complete pretopos iff KK is exact and �-extensi�e, regular epimorphisms are
product-stable, and products distribute o�er coproducts.

Proof. Necessity is evident because KK is a complete localization in
Colim KK and Colim KK is closed under limits and colimits in Set KK op

.
� Ž .�Assume that KK satisfies the conditions listed above. Following C, 4.1

� �and Ro, Lemma 3 , we have

Colim KK � Fam KK .Ž . ex

Let

C Fam : Fam KK � KKKK

be the essentially unique functor preserving coproducts with

C Fam � � Fam � Id . 13Ž .KK KK KK

Fam Ž � �.Since KK is �-extensive, C preserves finite limits see HT1 . We willKK

prove that it preserves all limits. Let � �K , i � I, belong to Fam KK.j� J i ji

Abbreviate � Fam to � and C Fam to C. We haveKK KK

C � KŽ .Ł � i jž /
i�I j�Ji

� C � K by distributivityŽ .� Ł i již /
i�IŽ .j �Ł Ji i

� C� K by preservations of coproducts by C� Ł i jž /i
i�IŽ .j �Ł Ji i

� K by 13Ž .� Ł i ji
i�IŽ .j �Ł Ji i
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� K by distributivityŁ � i j
i�I j�Ji

� C� K by 13Ž .Ž .Ł � i j
i�I j�Ji

� C � K by preservation of coproducts by C.Ž .Ł � i jž
i�I j�Ji

Hence C preserves products and therefore all limits.
Following Lemma 4.2, the induced functor

Ĉ : Fam KK � KKŽ . ex

preserves limits.
ˆWe will prove that C is naturally isomorphic to the composite

C Cex
ex KK� �

Fam KK KK KKŽ . ex ex

where C is an exact functor essentially given by the commutativity ofex

Cex �

Ž .Fam KK KKex ex��
exex �� KKFam KK �

Fam KK KK .
C

ˆ exSince both C and C � C are exact andKK ex

ex ex ex ex ˆ exC � C � � � C � � � C � C � C � � .KK ex Fam KK KK KK Fam KK

ex ˆWe conclude that C � C � C.KK ex
Finally, since �Colim is the compositeKK

�ex� Fam KK� �

KK Fam KK Fam KKŽ . ex

and
�ex

Fam �

Ž .Fam KK Fam KK ex� �
� �ex�

KK KKex ex�KK

commutes, a left adjoint CColim to �Colim is equal to the compositeKK KK
ex ex ex ˆŽ .C � C . In fact, C � � because C � � and C � � . Hence C �KK ex ex ex KK KK
Colim ColimC . Therefore C preserves limits.KK KK

COROLLARY 4.7. Essential localizations of presheaf categories are precisely
the complete pretoposes with a regular generator.
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Proof. Necessity is obvious. Let KK be a complete pretopos with a
regular generator. Following Lemma 4.3, KK is precontinuous. Now, we can
follow the proof of Theorem 2.7; we only have to replace the diagram
there with the following one:

KK

ColimCKK

�	 HE Colim�KK

�

Colim J �

�

� �
Colim CC Colim KK.��

U

5. MORE ON ALGEBRAICALLY EXACT CATEGORIES

A free completion of a category KK under coequalizers of reflexive pairs
will be denoted by

�Rec : KK � Rec KK.KK

Rec KK can be described as the full subcategory of Set KK op
of all functors

KK op � Set which belong to the iterated closure of representable functors
under reflexive coequalizers, and �Rec is the codomain restriction of theKK

Yoneda embedding Y : KK � Set KK op
. If KK has reflexive coequalizers weKK

denote by

CRec : Rec KK � KKKK

a functor computing reflexive coequalizers in KK. This is the essentially
unique functor preserving coequalizers and satisfying

CRec � �Rec � Id . 14Ž .KK KK KK

If KK has finite coproducts, this completion has been introduced previously
Ž � � � �.by Pitts see P and BC . In this case, Rec KK consists of reflexive

coequalizers of representable functors and

Sind KK � Ind Rec KK 15Ž .
Ž � �.see AR2 . We will prove that this description of Sind KK also holds for
any complete category KK.

KK op Ž .For any full subcategory XX of Set , let E XX denote the full subcate-
gory of Set KK op

consisting of all coequalizers of pseudoequivalences in XX . In
this notation,

KK � E Y KK .Ž .Ž .ex KK
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PROPOSITION 5.1. Let KK be a complete category. Then

Sind KK � Ind Rec KK � E Ind KK .Ž .

More precisely, there exist isomorphisms of categories forming commu-
tative triangles such as

�RecKK �KK KK �Sind Sind

�� Y�K KKKKInd�Rec KK Rec KK�� �� �

Ž .Sind K Ind Rec KK, Sind KK E Ind KK ,� �

where Y � is the codomain restriction of Y .KK KK

Proof. We are going to prove the isomorphism for various types of
categories KK first.

I. Let KK be a small category having finite limits and finite coprod-
� �ucts. Then, following AR2 ,

Sind KK � Ind Rec KK.

Moreover, Sind KK is a variety. Consequently,

Sind KK � FF ,ex

Žwhere FF is the full subcategory of Sind KK consisting of free algebras see
� �.V1 . Since any free algebra is a filtered colimit of finitely generated free

Ž SindŽ ..algebras, and the latter belong to KK more precisely, to � KK , we haveKK

FF � Ind KK. Hence

Sind KK � E Ind KK .Ž .

II. If KK is a large category having finite limits and finite coproducts,
then KK can be expressed as directed union KK � � KK of small fulli� I i
subcategories KK � KK, i � I, closed in KK under finite limits and finitei
coproducts. The inclusions U : KK � KK induce finite-limit-preservingi j i j

Ž � �.functors Ind U : Ind KK � Ind KK see AGV, 8.9.8 . Hence Ind U pre-i j i j i j
serves pseudoequivalences and therefore induces the functor

E Ind U : E Ind KK � E Ind KK .Ž .Ž . Ž .i j i j

Thus

E Ind KK � colim E Ind KK � colim Sind KK � Sind KK.Ž . Ž .i i
i�I i�I

III. Let KK � Lim AA be a free limit completion of a category AA with
Ž AA .opfinite limits. If AA is small then KK � Set and the result follows from

II. If AA is large, we again express AA as a directed union AA � � AA ofi� I i
small full subcategories closed under finite limits and get the result for AA.
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IV. Let KK be an arbitrary complete category. The inclusion Rec KK

� Sind KK induces a filtered colimits preserving functor

J : Ind Rec KK � Sind KK.KK

Denote by � Lim : KK � Lim KK a free completion of KK under limits and byKK

L : Lim KK � KKKK

the essentially unique limit-preserving functor with

L � � Lim � Id .KK KK KK

Consider the commutative diagram

JKK �

Ind Rec KK Sind KK

Lim LimInd Rec L Sind LInd Rec � Sind �KK KKKK KK

�

�

�

��

Ind Rec Lim KK Sind Lim KK.
JLim KK

Following Part III, J is an isomorphism. ConsiderLim KK

M � Ind Rec L � J
1 � Sind � Lim : Sind KK � Ind Rec KK.KK Lim KK KK

Then

J � M � J � Ind Rec L � J
1 � Sind � Lim
KK KK KK Lim KK KK

� Sind L � J � J
1 � Sind � Lim
KK Lim KK Lim KK KK

� Sind L � Sind � Lim
KK KK

� Id
and

M � J � Ind Rec L � J
1 � Sind � Lim � JKK KK Lim KK KK KK

� Ind Rec L � J
1 � J � Ind Rec �KK Lim KK Lim KK KK

� Ind Rec L � Ind Rec �KK KK

� Id.

Hence Ind Rec KK � Sind KK.
Ž .Since E Ind KK � Sind KK and the previous argument shows that this

inclusion is onto on objects, we also have

E Ind KK � Sind KK.Ž .



ADAMEK, ROSICKY, AND VITALE´ ´474

COROLLARY 5.2. Let KK be an exact precontinuous category ha�ing sifted
colimits and product-stable regular epimorphisms. Then the functor
CSind : Sind KK � KK preser�es products.KK

Proof. Consider the functor

U : SetŽInd KK .op � Set KK op

given by precomposing with

op opInd op� : KK � Ind KK .Ž .Ž .KK

A domain�codomain restriction of U yields the functor

U* : Ind KK � E Ind KK � Sind KK.Ž . Ž .ex

Following Lemma 4.3, the functor



IndC : Ind KK � KKŽ . exKK

preserves limits. Since U� is onto on objects and



� Sind IndU � C � C ,KK KK

SindC preserves products.KK

Remark 5.3. The above result shows that Problem 3.1 lies in the
preservation of equalizers.

PROPOSITION 5.4. Let KK be a complete category with reflexi�e coequaliz-
ers. Then Ind KK is algebraically exact iff the functor Ind CRec preser�es limits.KK

Proof. Sufficiency. Since KK has reflexive coequalizers, we have

�Rec 	 CRec
KK KK

and therefore

Ind C Rec
KK� � �Ind KK Ind Rec KK.
RecInd �KK

Following Proposition 5.1, Ind KK is a complete localization of an alge-
braically exact category Sind KK. Therefore Ind KK is algebraically exact.

Conversely, assume that Ind KK is algebraically exact. It suffices to prove
that

Ind CRec � CSind � Sind � Ind : Sind KK � Ind KK 16Ž .KK Ind KK KK
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since the right-hand functors preserve limits. Since both Ind CRec andKK

CSind . Sind � Ind preserve sifted colimits, we only need to show that theyInd KK KK

have the same precomposition with �Sind. In fact,KK

Ind CRec � �Sind � Ind CRec � � Ind � �Rec by 5.1KK KK KK Rec KK KK

� � Ind � CRec � �Rec by naturalityKK KK KK

� � Ind by 14Ž .KK

� CSind � �Sind � � Ind by naturality and 10 .Ž .Ind KK Ind KK KK

COROLLARY 5.5. Let KK be a precontinuous category with reflexi�e co-
equalizers and such that Ind CRec preser�es limits. Then KK is algebraicallyKK

exact.

Proof. We have

C Ind Ind C Rec
KK KK� �KK Ind KK Ind Rec KK � Sind KK.� �� �

Ind Rec� Ind �KK KK

Since by Proposition 5.1

�Sind � � Ind � �Rec � Ind �Rec � � Ind
KK Rec KK KK KK KK

and �Sind 	 CSind, we concludeKK KK

CSind � C Ind � Ind Rec KK.KK KK

SindTherefore C preserves limits.KK
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