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Abstract. A categorical group is a monoidal groupoid in which each
object has a tensorial inverse. Two main examples are the Picard
categorical group of a monoidal category and the Brauer categorical
group of a braided monoidal category with stable coequalizers. After
discussing the notions of kernel, cokernel and exact sequence for
categorical groups, we show that, given a suitable monoidal functor
between two symmetric monoidal categories with stable coequalizers,
it is possible to build up a five-term Picard-Brauer exact sequence
of categorical groups. The usual Units-Picard and Picard-Brauer
exact sequences of abelian groups follow from this exact sequence of
categorical groups. We also discuss the direct sum decomposition of
the Brauer-Long group.

Introduction

It is well-known that, given a homomorphism f : R → S between two unital
commutative rings, it is possible to build up an exact sequence

Pic(R) → Pic(S) → F0 → Br(R) → Br(S)

where Pic(R) is the Picard group of R (i.e. the group of projective R-modules
of constant rank 1) and Br(R) is the Brauer group of R (i.e. the group of
Morita-equivalence classes of Azumaya R-algebras). A wide generalization of
this situation occurs in the context of monoidal categories : given a suitable
monoidal functor F : C → D between symmetric monoidal categories with sta-
ble coequalizers, it is possible to build up an exact sequence

Pic(C) → Pic(D) → F0 → Br(C) → Br(D).

This exact sequence generalizes the previous one, which is recovered taking as
F : C → D the functor S ⊗R − : R-mod → S-mod between module categories
induced by f : R → S, as well as several other classical exact sequences built up
“à la Brauer” (see [25, 22, 52]) :
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- the exact sequence induced by a morphism of ringed spaces (B. Auslander
[1]);
- the exact sequence induced by the inclusion of two fibered subcategories of
the category of divisorial lattices over a Krull domain (M. Orzech [36] and A.
Verschoren [49]) ;
- the exact sequence induced by a change of idempotent kernel functor in R-mod
(A. Verschoren [48]) ;
- some exact sequences arising in the context of modules over a separated scheme
(A. Verschoren [50]) ;
- the exact sequence connecting the Picard and the Brauer groups of dimodule
algebras (F.W. Long [34]) ;
- the exact sequence induced by a morphism of cocommutative finite Hopf al-
gebras (Fernandez Vilaboa et al. [22]).

The present work has two motivations.The first one is to show that the link
between “Picard” and “Brauer” is deeper than that expressed by the Picard-
Brauer exact sequence. In fact this sequence only explains the relation between
the objects of the monoidal categories involved in the construction of the Picard
and of the Brauer groups. But a similar relation holds also for the morphisms
of these categories. For this reason, invariants taking into account objects and
morphisms should be considered.

The second motivation concerns another classical exact sequence built up
from a ring homomorphism f : R → S, that is

U(R) → U(S) → F1 → Pic(R) → Pic(S)

where U(R) is the group of units of R (i.e. the elements which are invertible
with respect to the multiplicative structure of R). We will show that the Units-
Picard and the Picard-Brauer exact sequences are two traces in the category of
abelian groups of a single exact sequence which lives at a higher level.

This higher level is provided by the so-called categorical groups. A categor-
ical group (for short, a cat-group) is a monoidal groupoid in which each object
has a tensorial inverse. Two main examples are the Picard cat-group P(C) of a
monoidal category C, which is the subcategory of isomorphisms between invert-
ible objects, and the Brauer cat-group B(C) of a braided monoidal category C

with stable coequalizers, which is the Picard cat-group of the classyfing category
of the bicategory of monoids and bimodules in C.

Given two morphisms (that is two monoidal functors) of cat-groups

G
F // H

G // K

such that the composite F ·G is naturally isomorphic to the zero-morphism, we
can factorize F through the “kernel” of G

G
F //

F ′

##G
GG

GG
GG

GG
H

Ker(G)

OO
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and we can define various kinds of exactness looking at the surjectivity of the
functor F ′. To explain the relation between the Picard and the Brauer cat-
groups, an appropriate notion of exactness is what I call 2-exactness: F ′ must
be essentially surjective on objects and full, so that 2-exactness is a kind of
surjectivity on objects and on arrows. In fact, given a good monoidal functor
F : C → D between symmetric monoidal categories with stable coequalizers, we
obtain a sequence of symmetric cat-groups

P(C) → P(D) → F → B(C) → B(D)

which is 2-exact in P(D), F and B(C) (proposition 6.1). (The cat-group F in
the previous sequence is built up using a quotient ; for this reason we introduce
also the “cokernel” of a morphism of symmetric cat-groups.)

Now we can come back to groups. There are two groups canonically associ-
ated with a cat-group G : the group π0(G) of the connected components of G

(it is abelian if G is braided) and the abelian group π1(G) of the endomorphisms
of the unit object of G. Both π0 and π1 give rise to functors from cat-groups
to groups, and applying these functors to the Picard-Brauer exact sequence of
cat-groups we obtain, respectively, the usual Picard-Brauer and Units-Picard
exact sequences of abelian groups induced by a monoidal functor F : C → D

(corollary 6.1).
Categorical groups draw their origins from algebraic geometry and ring the-

ory. In a sense which can be made precise, they are the same that crossed mod-
ules. They have been used in ring theory (in particular in connection with ring
extensions and Hattory-Villamayor-Zelinsky sequences), in homological algebra
(to describe cohomology groups and to classify various kinds of extensions) and
in algebraic topology. (For all these aspects, see the subdivision of the items at
the end of the bibliography.)

In the first section, we recall the basic definitions : cat-groups and their
morphisms, functors π0 and π1. In section 2 we discuss the notions of kernel and
cokernel for morphisms of cat-groups ; the construction of the kernel is already
in [41] and that of the cokernel is to be compared with the similar problem
studied in [38]. In section 3 we introduce the notion of 2-exact sequence of
cat-groups : it is a quite strong condition justified by the main example of
the Picard-Brauer sequence ; some basic facts on 2-exact sequences between
(symmetric) cat-groups are established in [29]. In section 4 we describe the
Picard cat-group of a monoidal category and the Brauer cat-group of a braided
monoidal category with stable coequalizers. We also point out how to recapture
the classical Units, Picard and Brauer groups from the above cat-groups using
the functors π0 and π1. Sections 5 and 6 are devoted to the construction of a
five-terms Picard-Brauer 2-exact sequence of symmetric cat-groups. In the last
section, we give another example of our approach to Picard and Brauer groups.
We discuss, from a categorical point of view, Beattie’s decomposition of the
Brauer-Long group of a Hopf algebra [2] and Caenepeel’s decomposition of the
Picard group of a Hopf algebra [11].

Bicategories appear in three different places : in the definition of the Brauer
cat-group, in the construction of the cokernel and to build up the cat-group in
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the middle of the Picard-Brauer sequence. Each time we have in fact a monoidal
bicategory, so that its classifying category is a monoidal category ; but, to avoid
any tricategorical complexity, I have choosen to consider them as bicategories
and to introduce a posteriori the monoidal structure on the classifying category.

I have omitted (almost) all the proofs, which involve general arguments on
duality in monoidal categories and, especially in the last two sections, are quite
technical.

Finally, I would like to thank J. Bénabou, A. Carboni, G. Janelidze and
G.M. Kelly for discussions on these topics and for their encouragement.

1 Categorical groups

In this section we recall the definition of cat-group and some basic properties
of cat-groups and their morphisms. First of all, let us fix some notations and
conventions :

- in any category, the composite of two arrows X
f // Y

g // Z is written
f · g ;
- in a monoidal category C, the unit object will be denoted by IC or simply I,
and the tensor product by ⊗ ; if C is braided, the braiding is denoted by γ ;
- a monoidal functor F : C → D is always such that the transitions fI : I → F (I)
and fA,B : F (A)⊗F (B) → F (A⊗B) are isomorphisms ; if C and D are braided
and F preserves the braiding, we say that F is a γ-monoidal functor ;
- natural transformation between monoidal functors always means monoidal
natural transformation.

Recall that a duality D = (A∗ a A, ηA, εA) in a monoidal category is given
by two object A and A∗ and two arrows

ηA : I → A⊗A∗ εA : A∗ ⊗A→ I

such that the following compositions are identities :

A // I ⊗A
ηA⊗1 // (A⊗A∗) ⊗A // A⊗ (A∗ ⊗A)

1⊗εA // A⊗ I // A

A∗ // A∗ ⊗ I
1⊗ηA// A∗ ⊗ (A⊗A∗) // (A∗ ⊗A) ⊗A∗

εA⊗1// I ⊗A∗ // A∗

(As a matter of convention, unlabelled arrows in a diagram are arrows built up
using the contraints of a monoidal category and the transitions of a monoidal
functor, or defined by them in an obvious way.)

Definition 1.1 a cat-group G is a monoidal category G = (G,⊗, I) such that

- each arrow is an isomorphism, that is G is a groupoid ;

- for each object A of G, there exists an object A∗ and a morphism ηA : I →

A⊗A∗ .
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We say that G is a braided (symmetric) cat-group if it is braided (symmetric)
as monoidal category.

If G is a cat-group, it is possible, for each object A, to find a morphism
εA : A∗ ⊗ A → I. In other words, a cat-group is exactly a monoidal groupoid
in which each object is invertible, up to isomorphisms, with respect to the
tensor product. Moreover, the morphism εA can be chosen in such a way that
D = (A∗ a A, ηA, εA) is a duality (and then also D−1 = (A a A∗, ε−1

A , η−1
A ) is a

duality). The choice, for each A, of such a duality induces an equivalence

( )∗ : Gop → G (f : A→ B) 7→ (f∗ : B∗ → A∗)

where f∗ is defined by

B∗ // B∗ ⊗ I
1⊗ηA// B∗ ⊗ (A⊗A∗)

1⊗f⊗1// B∗ ⊗ (B ⊗A∗) // (B∗ ⊗B) ⊗A∗

εB⊗1 // I ⊗A∗ // A∗

A morphism of cat-groups F : G → H is a monoidal functor ; if G and
H are braided cat-groups and F is a γ-monoidal functor, we say that F is a
γ-morphism. Observe that a natural transformation between two morphisms of
cat-groups is necessarily a natural isomorphism.

We recall now some simple facts, coming from duality theory in monoidal
categories, which will be implicitely used in the rest of the work to make various
definitions and constructions well founded : let G be a cat-group

- for each pair of objects A,B of G, there is a morphism B∗⊗A∗ → (A⊗B)∗

natural in A and B ;

- for each object A of G, there is a morphism A→ (A∗)∗ natural in A ;

- if F : G → H is a morphism of cat-groups, for each object A of G there
is a morphism F (A∗) → F (A)∗ natural in A ;

- for each arrow f : A→ B of G, the following equations hold

ηA · (f ⊗ (f−1)∗) = ηB εA = ((f−1)∗ ⊗ f) · εB

Let G be a cat-group ; we write π0(G) for the group of isomorphism classes
of objects of G (that is, the group of connected components of G) with the
product induced by the tensor product of G. In this way we have a functor

π0 : Cat-groups → Groups

which factors through the homotopy category of Cat-groups.
Recall that, if C is any monoidal category, the set of endomorphisms C(I, I)

is a commutative monoid. In particular, for a cat-group G, the set G(I, I) is
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an abelian group (isomorphic to G(X,X) for any object X of G) which we call
π1(G). This easily extends to a functor

π1 : Cat-groups → Abelian Groups

which, once again, factors through the homotopy category.
Finally, note that the functor π0 is the restriction of the classifying functor

cl : Bicategories → Categories

which assigns to each bicategory B the category cl(B) whose objects are those
of B and whose arrows are 2-isomorphism classes of 1-arrows of B (see [3]).

Several facts concerning morphisms of cat-groups can be checked using π0

and π1 ; some of them are listed in the following proposition (recall that a
functor F : G → H is essentially surjective when for each object Y in H there
exists an object X in G and an isomorphism F (X) → Y ).

Proposition 1.1 let F : G → H be a morphism of cat-groups,

- F is essentially surjective iff π0(F ) is surjective ;

- F is faithful iff π1(F ) is injective ;

- F is full iff π0(F ) is injective and π1(F ) is surjective ;

- F is an equivalence iff π0(F ) and π1(F ) are isomorphisms.

2 Kernel and cokernel

In this section we describe the kernel and the cokernel of a morphism of (sym-
metric) cat-groups. They are particular instances of bilimits and, as such, they
are determined, up to monoidal equivalences, by their universal property (see
[40]).

Zero-morphism : let G and H be two cat-groups ; the functor 0G,H : G → H

which sends each arrow in the identity of the unit object of H, is a morphism
of cat-groups, called the zero-morphism. Note that for each cat-group K and
for each morphism F : H → K or G : K → G, there are two canonical natural
transformations 0G,K ⇒ 0G,H · F and G · 0G,H ⇒ 0K,H. We will write 0 for
0G,H.

Kernel : let F : G → H be a morphism of cat-groups.The kernel of F is
given by a cat-group Ker(F ), a morphism eF : Ker(F ) → G and a natural
transformation εF : eF · F ⇒ 0

G

F

��?
??

??
??

?

εF

��
Ker(F )

eF

;;wwwwwwwww

0
// H
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universal in the following sense :
given a cat-group K, a morphism G and a natural transformation ϕ : G ·F ⇒ 0

G

F

  A
AA

AA
AA

ϕ

��
K

G

>>}}}}}}}

0
// H

there exists a morphism G′ and a natural transformation ϕ′

Ker(F )

eF

##G
GG

GG
GG

GG

ϕ′

��
K

G′

;;wwwwwwwww

G
// G

such that

G′ · eF · F
G′

·εF +3

ϕ′
·F

��

G′ · 0

��
G · F ϕ

+3 0

commutes. Moreover, if G′′ and ϕ′′ satisfy the same condition as G′ and ϕ′,
then there exists a unique natural transformation ψ : G′′ ⇒ G′ such that

G

G′′ · eF

ϕ′′

7?
wwwwwwww

wwwwwwww

ψ·eF

+3 G′ · eF

ϕ′

_gFFFFFFFF

FFFFFFFF

commutes.
Existence of kernels : given a morphism F : G → H of cat-groups, a kernel

of F can be described in the following way :

- an object of Ker(F ) is a pair (X,λX) where X is an object of G and
λX : F (X) → I is an arrow in H ;

- an arrow f : (X,λX) → (Y, λY ) in Ker(F ) is an arrow f : X → Y in G

such that

F (X)
F (f) //

λX
!!D

DD
DD

DD
D

F (Y )

λY
}}{{

{{
{{

{{

I

commutes ;

- identities and composition in Ker(F ) are those of G, so that Ker(F ) is a
groupoid ;
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- using the transitions fI : I → F (I) and fX,Y : F (X)⊗F (Y ) → F (X⊗Y ),
one defines a monoidal structure on Ker(F ), which in fact is a cat-group.

The faithful functor

eF : Ker(F ) → G (f : (X,λX) → (Y, λY )) 7→ (f : X → Y )

is a morphism of cat-groups and the component at (X,λX) of the natural trans-
formation εF is given by λX .

Proof of the universality : Define

G′ : K → Ker(F ) (f : A→ B) 7→ (G(f) : (G(A), ϕA) → (G(B), ϕB))

and
ϕ′ : G′ · eF ⇒ G ϕ′

A = 1G(A) : eF (G′(A)) = G(A) → G(A)

To have a natural transformation ψ : G′′ ⇒ G′ we need, for each object A of K,
an arrow

ψA : eF (G′′(A)) → eF (G′(A)) = G(A)

and we can take ψA = ϕ′′
A ; this is possible because the commutativity of

G′′ · eF · F
G′′

·εF +3

ϕ′′
·F

��

G′′ · 0

��
G · F ϕ

+3 0

means exactly that ϕ′′
A is an arrow from G′′(A) to G′(A) in Ker(F ). The unique-

ness of ψ follows from the faithfulness of eF .

♦

Remarks :

1) if H is braided, G is braided (symmetric) and F is a γ-morphism, then
also Ker(F ) is braided (symmetric) and eF is a γ-morphism ; if, moreover,
K is braided and G is a γ-morphism, then G′ is a γ-morphism.

2) the description of Ker(F ), without its universal property, is already in [41]
and, implicitely, in [51].

In proposition 2.1, whose proof uses proposition 1.1 and lemma 2.1, we show
in what sense the kernel measures the “injectivity” of a morphism. We write 1

for the one-arrow cat-group.

Lemma 2.1 Consider a morphism of cat-groups together with its kernel

Ker(F )
eF // G

F // H
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1) the factorization of π1(eF ) through the kernel of π1(F ) is an isomorphism;

2) the factorization of π0(eF ) through the kernel of π0(F ) is surjective.

(Observe that the factorization of π0(eF ) through the kernel of π0(F ) is injective
if eF is full. But eF is full iff π1(H) = 0.)

Proposition 2.1 Consider a morphism of cat-groups together with its kernel

Ker(F )
eF // G

F // H

1) F is faithful iff π1(Ker(F )) = 0 ;

2) F is full iff π0(Ker(F )) = 0 ;

3) F is full and faithful iff Ker(F ) is equivalent to 1.

Cokernel : let F : G → H be a morphism between cat-groups. The cokernel
of F is a cat-group Coker(F ) with a morphism PF and a natural transformation
πF : F · PF ⇒ 0

H

PF

$$I
IIIIIIII

πF

��
G

F

??��������

0
// Coker(F )

universal in the following sense : given a cat-group K, a morphism G and a
natural transformation ϕ

H

G

  A
AA

AA
AA

ϕ

��
G

F

>>}}}}}}}

0
// K

there exists a morphism G′ and a natural transformation ϕ′

Coker(F )

G′

$$I
IIIIIIII

ϕ′

��
H

PF

::uuuuuuuuu

G
// K

such that

F · PF ·G′
πF ·G′

+3

F ·ϕ′

��

0 ·G′

F ·G ϕ
+3 0

KS
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commutes. Moreover, if G′′ and ϕ′′ satisfy the same condition as G′ and ϕ′,
then there exists a unique natural transformation ψ : G′′ ⇒ G′ such that

G

PF ·G′′

ϕ′′

7?wwwwwwww

wwwwwwww

PF ·ψ
+3 PF ·G′

ϕ′

_gFFFFFFFF

FFFFFFFF

commutes.
Existence of cokernels : now we describe a cokernel for a γ-morphism F : G →

H between symmetric cat-groups.
First step. We start the construction of the cokernel introducing the bicat-

egory Cok(F ) as follows :

- the object of Cok(F ) are those of H ;

- a 1-arrow X • // Y in Cok(F ) is a pair (f,N) with N an object of G

and f : X → Y ⊗ F (N) an arrow in H ;

- given two 1-arrows (f,N) : X • // Y and (g,M) : Y • // Z in Cok(F ),

their composition is (f • g,M ⊗ N) : X • // Z , where f • g : X →

Z ⊗ F (M ⊗N) is given by

X
f // Y ⊗ F (N)

g⊗1 // (Z ⊗ F (M)) ⊗ F (N) // Z ⊗ F (M ⊗N) ;

- the 1-identity on an object X of Cok(F ) is the pair (X → X ⊗ I →

X ⊗ F (I), I) ;

- given two parallel 1-arrows (f,N), (g,M) : X • // Y in Cok(F ), a 2-
arrow α : (f,N) ⇒ (g,M) is an arrow α : N →M in G such that

X
f

zzuuu
uu

uu
uu

u
g

$$J
JJJ

JJJ
JJ

J

Y ⊗ F (N)
1⊗F (α)

// Y ⊗ F (M)

commutes ;

- 2-identities and vertical 2-composition are identities and composition in
G ; horizontal 2-composition is the tensor product of G.

Using associativity and unit contraints of G, one makes Cok(F ) a bicategory.
Moreover, Cok(F ) is a bigroupoid, that is each 2-arrow is an isomorphism (be-
cause it is an isomorphism in G) and each 1-arrow is an equivalence. To see this
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last fact, consider a 1-arrow (f,N) : X • // Y in Cok(F ) and fix a duality

(N∗ a N, ηN , εN ) in G ; a quasi-inverse of (f,N) is (f̂ , N∗) where f̂ is given by

Y // Y ⊗ I // Y ⊗ F (I)
1⊗F (ηN )// Y ⊗ F (N ⊗N∗)

// (Y ⊗ F (N)) ⊗ F (N∗)
f−1

⊗1// X ⊗ F (N∗)

Second step. Consider the classifying functor

cl : Bicategories → Categories

and put Coker(F ) = cl(Cok(F )). Explicitely, objects of Coker(F ) are those of
H and an arrow [f,N ] : X • // Y in Coker(F ) is a 2-isomorphism class of
1-arrow in Cok(F ), with N an object of G and f : X → Y ⊗ F (N) an arrow in
H. Since Cok(F ) is a bigroupoid, Coker(F ) is a groupoid.

We can now define the functor PF and the natural transformation πF :

PF : H → Coker(F )

(f : X → Y ) 7→ ([ X
f // Y → Y ⊗ I → Y ⊗ F (I), I] : X • // Y ) ;

for each object N of G we choose

πF (N) = [F (N) → I ⊗ F (N), N ] : PF (F (N)) = F (N) • // I .

It remains to introduce a monoidal structure on Coker(F ) :

- the tensor product of objects and the unit object in Coker(F ) are those
of H ;

- given two arrows [f,N ] : X • // Y and [g,M ] : Z • // V in Coker(F ),

their tensor product is [f ? g,N ⊗M ] : X ⊗ Z • // Y ⊗ V , where f ? g
is given (up to associativity) by

X ⊗ Z
f⊗g // Y ⊗ F (N) ⊗ V ⊗ F (M)

1⊗γF (N),V ⊗1
//

Y ⊗ V ⊗ F (N) ⊗ F (M) → Y ⊗ V ⊗ F (N ⊗M)

- the associativity, unit and commutativity contraints in Coker(F ) are the
image under PF of the corresponding contraints in H.

The objects of Coker(F ) are invertible because they are invertible in H. Clearly,
PF is a γ-morphism. The key to prove the universality of Coker(F ) is the
following lemma :
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Lemma 2.2 Let [f,N ] : X • // Y be an arrow in Coker(F ) and rY : Y ⊗I →

Y the right-unit contraint in H ; the following diagram commutes

X
[f,N ]
• //

PF (f)•

��

Y

Y ⊗ F (N)
1⊗πF (N)

• // Y ⊗ I

PF (rY )•

OO

Proof of the universality : Define

G′ : Coker(F ) → K ([f,N ] : X • // Y ) 7→

(G(X)
G(f) // G(Y ⊗ F (N)) → G(Y ) ⊗ G(F (N))

1⊗ϕN // G(Y ) ⊗ I → G(Y ))

and ϕ′
X = 1G(X) : G

′(PF (X)) = G(X) → G(X) . The natural transformation ψ
is given by ψX = ϕ′′

X : G′′(X) = G′′(PF (X)) → G(X) = G′(X) ; its naturality
follows from the naturality of ϕ′′ using the previous lemma and the commuta-
tivity of

F · PF ·G′′
πF ·G′′

+3

F ·ϕ′′

��

0 ·G′′

F ·G ϕ
+3 0

KS

The uniqueness of ψ follows from the fact that the functor PF is the identity on
objects.

♦

Remarks :

1) the only point where I have used a symmetry (and not only a braiding)
is to prove that the commutativity contraint of H is natural also with
respect to the arrows of Coker(F ) ;

2) a problem, similar to those of the cokernel, is discussed in great detail
in Shin’s thesis [38], where a γ-monoidal functor F : G → H between
symmetric monoidal categories is considered. Her construction is more
complicated essentially because she does not assume the objects of G to
be invertibles ;

3) in analogy with homotopy pull-backs and push-outs, the kernel and the
cokernel just described should be called “standard” kernel and cokernel.
This is because they satisfy the following additional universal property
“of the first order” : (for the kernel) given G and ϕ as in the universal
property of the kernel, there exists a unique morphism G′ : K → Ker(F )
such that G′ · eF = G and G′ · εF = ϕ. In sections 3 and 6, we occasionally
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use this fact, but only to simplify notations. On the contrary, to build up
the Picard-Brauer sequence it is essential to use the universal property of
the cokernel as a bilimit. In fact the first order property does not help in
step 5.3 of section 6.

The next proposition shows in what sense the cokernel measures the “sur-
jectivity” of a morphism ; once again, the proof uses proposition 1.1.

Lemma 2.3 Consider a γ-morphism of symmetric cat-groups together with its
cokernel

G
F // H

PF // Coker(F )

1) the factorization of π0(PF ) through the cokernel of π0(F ) is an isomor-
phism ;

2) the factorization of π1(PF ) through the cokernel of π1(F ) is injective.

(Observe that the factorization of π1(PF ) is surjective if PF is full. But PF is
full iff π0(G) = 0.)

Proposition 2.2 Consider a γ-morphism of symmetric cat-groups together with
its cokernel

G
F // H

PF // Coker(F )

1) F is essentially surjective iff π0(Coker(F )) = 0 ;

2) F is full iff π1(Coker(F )) = 0 ;

3) F is full and essentially surjective iff Coker(F ) is equivalent to 1.

Putting together proposition 2.1 and proposition 2.2, we obtain the following
proposition.

Proposition 2.3 Let F : G → H be a γ-morphism of symmetric cat-groups ;

1) F is full and essentially surjective iff π0(Ker(F )) = 0 = π0(Coker(F )) ;

2) F is full and faithful iff π1(Coker(F )) = 0 = π1(Ker(F )) ;

3) F is an equivalence iff Ker(F ) and Coker(F ) are equivalent to 1.

Finally observe that, for any γ-morphism F between symmetric cat-groups,
π0(Ker(F )) and π1(Coker(F )) are isomorphic groups.
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3 Exact sequences

In this section we propose a notion of exactness for morphisms of cat-groups.
For this, consider two morphisms of cat-groups and a natural transformation

H

G

  A
AA

AA
AA

ϕ

��
G

F

>>}}}}}}}

0
// K

From the universal property of the kernel of G, we obtain a morphism F ′ making
commutative the following diagram

Ker(G)

eG

##G
GG

GG
GG

GG

G

F ′

;;wwwwwwwww

F
// H

Definition 3.1 with the previous notations, we say that the triple (F, ϕ,G) is
2-exact if F ′ is full and essentially surjective.

If G,H and K are symmetric and F and G are γ-morphisms, we can use
proposition 2.2 and characterize exactness using the homology as follows :

(F, ϕ,G) is 2-exact iff Coker(F ′) is equivalent to 1.

Starting from a 2-exact sequence of cat-groups, we obtain two exact se-
quences of groups. In fact, we have :

Proposition 3.1 If (F, ϕ,G) is a 2-exact sequence of cat-groups, then

π0( G
F // H

G // K) and π1( G
F // H

G // K)

are exact sequences of groups.

More precisely :

- π0( G
F // H

G // K) is exact iff for each object (X,λX) of Ker(G) there

is an object Y of G such that F (Y ) and eG(X,λX) are isomorphic, and this
clearly follows from the essential surjectivity of F ′ ;

- π1( G
F // H

G // K) is exact iff π1(F
′) is surjective, and this follows from

the fullness of F ′.

Examples 3.1 1) G

F

��?
??

??
??

?

εF

��
Ker(F )

eF

;;wwwwwwwww

0
// H

and H

PF

$$I
IIIIIIII

πF

��
G

F

??��������

0
// Coker(F )

are 2-exact ;
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2) 1 // G
F // H is 2-exact iff F is full and faithful ; G

F // H // 1
is 2-exact iff F is full and essentially surjective ;

3) proposition 3.1 can not be inverted ; for a counter-example consider 1 →

1 → Z2! where Z2! is the cat-group with one object and two arrows.

4 Picard and Brauer cat-groups

The Picard cat-group : let C be a monoidal category ; the Picard cat-group
P(C) of C is the subcategory of C given by invertible objects and isomorphisms
between them. Clearly, P(C) is a cat-group, and it is braided (symmetric) if
C is braided (symmetric). Any monoidal functor F : C → D restricts to a
morphism P(F ) : P(C) → P(D) (which is a γ-morphism if F is γ-monoidal).
In this way we obtain a functor

P : Monoidal Categories → Cat-groups

which restricts to braided (symmetric) monoidal categories and braided (sym-
metric) cat-groups.

The Brauer cat-group : let C be a monoidal category with coequalizers sta-
ble under tensor product. The bicategory BimC is defined in the following way:
- objects are monoids in C ;
- 1-arrows are bimodules ;
- 2-arrows are bimodule homomorphisms ;
- the 1-identity on a monoid A is A itself seen as an A-A-bimodule ;
- the 1-composition of two bimodules M : A • // B ,N : B • // C is the
tensor product over B, that is the coequalizer of the arrows induced by B-
actions

M ⊗B ⊗ N
//// M ⊗N // M ⊗B N

- 2-identities and vertical 2-composition are identities and composition in C ;
- horizontal 2-composition is induced by the universal property of the coequalizer
M ⊗B N.

We can use the classifying functor

cl : Bicategories → Categories

and consider the category cl(BimC). If C is braided, then the monoidal struc-
ture on C induces a monoidal structure on cl(BimC). Applying the Picard
functor P we define the Brauer cat-group

B(C) = P(cl(BimC))

of the braided monoidal category C. Observe that C braided does not imply
cl(BimC) braided (because if A and B are monoids in C, we can not prove that
the braiding γA,B : A ⊗ B → B ⊗ A is a monoid homomorphism). But if C is
symmetric, then also cl(BimC) (and then B(C)) is symmetric.
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Now consider another monoidal category D with stable coequalizers ; let
F : C → D be a monoidal functor and assume that F preserves coequalizers.
Then F induces functors BimF : BimC → BimD and cl(BimF ) : cl(BimC) →

cl(BimD). If moreover C and D are braided and F is γ-monoidal, then cl(BimF )
is a γ-monoidal functor and then it induces a γ-morphism

P(cl(BimF )) : P(cl(BimC)) → P(cl(BimD))

that is
B(F ) : B(C) → B(D) .

In this way, we obtain a functor

B : Braided Monoidal Categories w.s.c. → Cat-groups

which restricts to symmetric monoidal categories and symmetric cat-groups.
Remark : the usual Picard group of a monoidal category results from the

composition of the functors P and π0

Monoidal Categories
P // Cat − groups

π0 // Groups

In the same way, the Brauer group of a braided monoidal category with stable
coequalizers is given by the composition

Braided Monoidal Categories w.s.c.
B // Cat − groups

π0 // Groups

which restricts to symmetric monoidal categories and abelian groups. (The
Brauer group of a braided monoidal category is studied also in [47]. The equiv-
alence between our definition and that given in [47] is attested by propositions
1.2 and 1.3 in [52].)
Consider now the composition

Monoidal Categories
P // Cat − groups

π1 // Abelian Groups

we can call the group π1(P(C)) the group of units of C. In fact, if C is the
category of modules over a commutative unital ring R, then π1(P(C)) is the
group of units of R.
On the other hand, the composition

Braided Monoidal Categories w.s.c.
B // Cat − groups

π1 // Abelian Groups

gives us once again the Picard group of a braided monoidal category with stable
coequalizers.

5 The cat-group associated with a monoidal func-

tor

In this section we build up a symmetric cat-group F starting from a monoidal
functor F : C → D.We assume that C and D are symmetric monoidal categories
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with stable coequalizers ; we assume also that F is γ-monoidal and preserves
coequalizers. We will proceed in two steps. In the first step, where the symmetry
of C and D is not required, we define a bicategory F. The construction of F is
related to the bicategory of cylinders introduced in [3]. In the second step we
provide the classifying category clF of a monoidal structure and we define F to
be P(clF).

First step : consider two monoidal categories C and D with stable coequal-
izers and let F : C → D be a monoidal functor which preserves coequalizers.
The bicategory F is defined as follows :
- an object is a triple (A,X,B), where A and B are two monoids in C and
X : FA • // FB is a bimodule in D ;

- a 1-arrow from (A,X,B) to (C, Y,D) is a triple (M, f,N), withM : A • // C
and N : B • // D two bimodules in C and f : X ⊗FB FN → FM ⊗FC Y a
homomorphism of FA-FD-bimodules ;
- the composition of two 1-arrows

(A,X,B)
(M,f,N)// (A′, X ′, B′)

(P,g,Q)// (A′′, X ′′, B′′)

is given by

(M ⊗A′ P, f ∗ g,N ⊗B′ Q) : (A,X,B) → (A′′, X ′′, B′′)

where f ∗ g is given, up to associativity, by

X ⊗FB F (N ⊗B′ Q) // X ⊗FB FN ⊗FB′ FQ
f⊗1 // FM ⊗FA′ X ′ ⊗FB′ FQ

1⊗g // FM ⊗FA′ FP ⊗FA′′ X ′′ // F (M ⊗A′ P ) ⊗FA′′ X ′′

- 1-identities are (A, x,B) : (A,X,B) → (A,X,B) where x : X ⊗FB FB →

FA⊗FA X is the obvious isomorphism ;
- given two parallel 1-arrows (M, f,N), (M ′, f ′, N ′) : (A,X,B) → (C, Y,D), a

2-arrow (α, β) : (M, f,N) +3 (M ′, f ′, N ′) is a pair (α, β) with α : M →M ′

a morphism of A-C-bimodules and β : N → N ′ a morphism of B-D-bimodules
such that the following diagram commutes

X ⊗FB FN
f //

1⊗Fβ

��

FM ⊗FC Y

Fα⊗1

��
X ⊗FB FN

′

f ′

// FM ′ ⊗FC Y

- vertical 2-composition and 2-identities are component-wise composition and
identities in C ;
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- horizontal 2-composition is component-wise tensor product of bimodule ho-
momorphisms in C ;
- the bicategorical structure of F is completed by the canonical isomorphisms
of the monoidal structure of C.

Second step : we can apply the functor

cl : Bicategories → Categories

to the bicategory F. Now we want to provide the category clF of a symmetric
monoidal structure ; for this, we assume that C and D are symmetric and that
F is γ-monoidal. The tensor product of two arrows of clF

[M, f,N ] : (A,X,B) → (C, Y,D) and [M ′, f ′, N ′] : (A′, X ′, B′) → (C′, Y ′, D′)

(square brackets mean 2-isomorphism classes of 1-arrows in F) is, by definition,

[M ⊗M ′, f@f ′, N ⊗N ′] : (A⊗A′, X ⊗X ′, B ⊗B′) → (C ⊗C′, Y ⊗ Y ′, D⊗D′)

where, for example, F (A⊗A′) acts on X ⊗X ′ in the following way

F (A⊗A′)⊗X⊗X ′ → FA⊗ FA′ ⊗X ⊗X ′
1⊗γ⊗1// FA⊗X ⊗ FA′ ⊗X ′ → X⊗X ′

and f@f ′ is given by

(X ⊗X ′) ⊗F (B⊗B′) F (N ⊗N ′) // (X ⊗FB FN) ⊗ (X ′ ⊗FB′ FN ′)

f⊗f ′

��
F (M ⊗M ′) ⊗F (C⊗C′) (Y ⊗ Y ′) (FM ⊗FC Y ) ⊗ (FM ′ ⊗FC′ Y ′)oo

the unit object of clF is (IC, ID, IC). To complete the symmetric monoidal
structure of clF (and to check the axioms) one uses the strict and faithful
monoidal functor

MonC → cl(BimC)

where MonC is the category of monoids and monoid homomorphisms in C.

Now we can consider the functor

P : Monoidal Categories → Cat-groups

introduced in the previous section. We take as symmetric cat-group associated
to the functor F : C → D the cat-group

F = P(clF) .

The next proposition gives us the component-wise description of F .

Proposition 5.1 with the previous notations :
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1) a 2-arrow (α, β) in F is a 2-isomorphism iff α and β are isomorphisms in
C ; when this is the case, (α, β)−1 = (α−1, β−1) ;

2) a 1-arrow (M, f,N) in F is an equivalence iff M and N are equivalences in
BimC and f is an isomorphism in D ; when this is the case, (M, f,N)−1 =
(M−1, f̃ , N−1), where f̃ is given, up to associativity, by

Y ⊗FD FN−1 // FM−1 ⊗FA FM ⊗FC Y ⊗FD FN
−1

1⊗f−1
⊗1

��
FM−1 ⊗FA X FM−1 ⊗FA X ⊗FB FN ⊗FD FN

−1oo

3) an object (A,X,B) is invertible with respect to the tensor product of clF
iff A and B are invertible with respect to the tensor product of cl(BimC)
and X is an equivalence in BimD ; when this is the case, a dual (A,X,B)∗

is given by (A∗, (X−1)∗, B∗).

6 The Picard-Brauer exact sequence

Consider two symmetric monoidal categories with stable coequalizers and a γ-
monoidal functor

F : C → D

and assume that F preserves coequalizers. In this section we build up a sequence
of symmetric cat-groups (steps 1 and 2)

P(C) → P(D) → F → B(C) → B(D)

This sequence is not 2-exact, in fact applying the functor

π0 : Symmetric Cat-groups → Abelian Groups

we obtain a sequence of abelian groups which is not exact at π0(F) (see section
2 in [52]). Then we replace F by a suitable quotient F (step 3) and we obtain
a new sequence of symmetric cat-groups (steps 4 and 5)

P(C) → P(D) → F → B(C) → B(D)

which is 2-exact at P(D),F and B(C).
Step 1 : The functor

F1 : D → clF

is defined as follows : if f : X → Y is in D, then F1(f) is the 2-isomorphism
class of the 1-arrow of F

(I, F1(f), I) : (I,X, I) → (I, Y, I)
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where X and Y are FI-FI-bimodules in the obvious way and F1(f) is given by

X ⊗FI FI → X
f // Y → FI ⊗FI Y

The functor F1 is γ-monoidal, so that we can apply

P : Symmetric Monoidal Categories → Symmetric Cat-groups

and we obtain a γ-morphism

PF1 : P(D) → P(clF) = F .

To define a γ-morphism
F2 : F → B(C)

we fix, for each object A of B(C), a duality (A∗ a A, ηA, εA). Now F2 sends an
arrow

[M, f,N ] : (A,X,B) → (C, Y,D)

of F on M ⊗ (N−1)∗ : A⊗B∗ • // C ⊗D∗ .

Step 2 : We dispose now of four γ-morphisms

P(C) → P(D) → F → B(C) → B(D)

and we can build up three natural transformations towards the zero-morphism.
2.1 :

P(D)

PF1

!!C
CC

CC
CC

C

Ψ

��
P(C)

PF

;;wwwwwwwww

0
// F

for each object X of P(C), we define

ΨX = [X,ψX , I] : (I, FX, I) → (I, I, I)

where ψX is the isomorphism in D

FX ⊗FI FI → FX ⊗FI I

induced by the transition I → FI. Observe that Ψ is natural with respect to
isomorphisms of C, and not with respect to any arrow ; for this reason we can
not work directly with

C
F // D

F1 // clF

2.2 :

F

F2

""D
DD

DD
DD

D

Φ

��
P(D)

PF1

<<zzzzzzzz

0
// B(C)
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given an object X in P(D), we put ΦX = ηI
−1 : I ⊗ I∗ • // I

2.3 :

B(C)

BF

##G
GGGGGGG

Σ

��
F

F2

=={{{{{{{{

0
// B(D)

for each object (A,X,B) in F , we define Σ(A,X,B) as follows

F (A⊗B∗) • // FA⊗ FB∗ •
X⊗1 // FB ⊗ FB∗

•

��
I FI•oo F (B ⊗B∗)•

FηB
−1

oo

Observe that this definition is possible because, by proposition 5.1, the monoid
B is an invertible object in cl(BimC).

Step 3 : To obtain a quotient F of F , consider the morphism of bicategories

I : BimC → F

which sends M : A • // B into (M,m,M) : (A,FA,A) → (B,FB,B) (where
m is the isomorphism of FA-FB-bimodules FA⊗FA FM → FM → FM ⊗FB
FB ) and sends a 2-arrow α : M → N into the pair (α, α) : (M,m,M) →

(N,n,N). It induces a γ-monoidal functor

clI : cl(BimC) → clF .

Applying the functor P , we obtain a γ-morphism

P(clI) : B(C) → F

and we define F as its cokernel

F

PI

&&NNNNNNNNNNNN

πI

��
B(C)

P(clI)
==zzzzzzzz

0
// F = CokerP(clI)

Step 4 : We have a natural transformation

F

F2

""D
DD

DD
DD

D

∆

��
B(C)

P(clI)
<<zzzzzzzz

0
// B(C)
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given, for each object A of B(C), by ∆A = η−1
A : A ⊗ A∗ • // I . Following

the universal property of the cokernel, we obtain a γ-morphism F ′
2 making

commutative the following diagram

F

PI

����
��

��
�� F2

""D
DD

DD
DD

D

F
F ′

2

// B(C)

Step 5 : Once again, we dispose of four γ-morphisms of symmetric cat-groups

P(C)
PF // P(D)

(PF1)·PI //
F

F ′

2 // B(C)
BF // B(D)

Using the natural transformations defined in step 2, we can build up three
natural transformations towards the zero-morphism.
5.1 : by horizontal composition of natural transformations, we obtain

P(D)

PF1·PI

!!C
CC

CC
CC

C

Ψ·PI

��
P(C)

PF

;;wwwwwwwww

0
//
F

5.2 : since PI · F ′
2 = F2, we have

F
F ′

2

!!C
CC

CC
CC

C

Φ

��
P(D)

(PF1)·PI

==zzzzzzzz

0
// B(C)

5.3 : since PI · F ′
2 = F2, we have a natural transformation

F
F ′

2·BF

!!C
CC

CC
CC

C

Σ

��
F

PI

@@��������

0
// B(C)

Moreover, the following diagram commutes

P(clI) · PI · F ′
2 · BF

P(clI)·Σ +3

πI ·F
′

2·BF

��

P(clI) · 0

��
0 · F ′

2 · BF 0ks
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Therefore, we can use the universal property of the cokernel F to extend Σ to
a natural transformation

B(C)

BF

##G
GGGGGGG

Σ

��
F

F ′

2

=={{{{{{{{

0
// B(D)

We are ready to state our main result.

Proposition 6.1 (with the previous notations) the sequence of symmetric cat-
groups and γ-morphisms

P(C)
PF // P(D)

(PF1)·PI //
F

F ′

2 // B(C)
BF // B(D)

together with the natural transformations

Ψ · PI , Φ and Σ

is 2-exact in P(D) , F and B(C) .

From this proposition and proposition 3.1, we obtain the following corollary.

Corollary 6.1 the sequences

π0(P(C) → P(D) → F → B(C) → B(D))

and
π1(P(C) → P(D) → F → B(C) → B(D))

are exact sequences of abelian groups.

The first sequence of the previous corollary is the Picard-Brauer exact se-
quence studied in [25, 52]. As already quoted in the introduction, it contains,
as particular cases, several classical exact sequences between groups built up
“à la Brauer”. The interested reader can refers to the bibliography in [25, 52].
From the remarks in section 4, we have that the second sequence of the previous
corollary is the Unit-Picard exact sequence.

7 On the direct sum decomposition of the Brauer-

Long group

Fix a commutative unital ring R and a commutative, cocommutative, finitely
generated projective Hopf R-algebraH. In [2], M. Beattie established an isomor-
phism between the Brauer-Long group of H and the direct sum of the Brauer
group of R and the Galois group of H

BL(H) ' Br(R) ⊕ Gal(H) .
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In [11], S. Caenepeel established an isomorphism between the Picard group of
H and the direct sum of the Picard group of R and the group of group-like
elements of the dual Hopf algebra H∗

Pic(H) ' Pic(R) ⊕ Gr(H∗) .

There is a formal analogy between these two decompositions. We want to make
this analogy a precise statement using, once again, categorical groups. We
only sketch the argument, details on the algebraic arguments can be found in
[2, 11, 16].

We write η : R→ H, µ : H ⊗RH → H for the R-algebra structure of H and
ε : H → R, δ : H → H ⊗R H for its R-coalgebra structure. The category H-
mod of left H-modules is a symmetric monoidal category, with tensor structure
(⊗δ, Rε) induced by the coalgebra structure of H. There is a monoidal functor

i : R-mod → H-mod X 7→ (X, H ⊗R X
ε⊗1 // R ⊗R X ' X)

which induces a morphism

B(i) : B(R-mod) → B(H-mod) .

Moreover, we can look at H as a comonoid in the monoidal category R-alg of R-
algebras, and then we can consider the category H-comod-alg of H-comodules
in R-alg. The category H-comod-alg is symmetric monoidal : if S and T are
R-algebras with coactions ρS : S → S ⊗R H, ρT : T → T ⊗R H, their tensor
product is given by the equalizer of the following pair

1⊗ρT : S⊗RT → S⊗RT⊗RH ρS⊗1: S⊗RT → S⊗RH⊗RT ' S⊗RT⊗RH .

We can therefore consider the Picard cat-group P(H-comod-alg) and its full
sub-cat-group G(H) of Galois H-objects (recall that an object S of H-comod-
alg is called a Galois H-object if it is a progenerator in the categry R-mod and
if the morphism

S ⊗R S
1⊗ρS // S ⊗R S ⊗R H

µS⊗1 // S ⊗R H

is an isomorphism, where µS is the multiplication of the R-algebra S). There is
a morphism

j : G(H) → B(H-mod)

which sends a Galois H-object S on the smash product S •H∗ with the dual
Hopf R-algebra H∗ (recall that any H-comodule is a H∗-module). Finally, we
obtain a morphism

F : B(R-mod) × G(H) → B(H-mod) F (X,S) = B(i)(X)⊗δ j(S) .

The next proposition is the categorical formulation of Beattie’s and Caenepeel’s
theorems.
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Proposition 7.1 The morphism F : B(R-mod) × G(H) → B(H-mod) is an
equivalence of symmetric cat-groups.

Proof: Thanks to proposition 1.1, the situation here is much more easy
than in the Pic-Br sequence. We have only to show that π0(F ) and π1(F ) are
isomorphisms of abelian groups. But

π0(B(R-mod) × G(H)) = π0(B(R-mod)) × π0(G(H)) ' Br(R) × Gal(H)

and π0(B(H-mod)) ' BL(H), so that π0(F ) is an isomorphism by Beattie’s
theorem. In the same way, π1(B(R-mod) × G(H)) is Pic(R) × Gr(H∗) (see
[11] for the isomorphism between π1(G(H)) and Gr(H∗)) and π1(B(H-mod)) is
Pic(H), so that π1(F ) is an isomorphism by Caenepeel’s theorem.

♦

The previous proposition holds if H is a commutative, cocommutative, fi-
nitely generated projective Hopf algebra in a symmetric monoidal closed cat-
egory with equalizers and coequalizers. This is because both Beattie’s and
Caenepeel’s theorems have been generalized in [23] to a Hopf algebra in a closed
category.
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481-587.

[19] J. Duskin: The Azumaya complex of a commutative ring, Springer
LNM 1348 (1987) 107-117.

[20] J. Duskin: An outline of a theory of higher dimensional descent, Bull.
Soc. Math. Belgique 41 (1989) 249-277.

[21] S. Eilenberg, G.M. Kelly: Closed categories, Proc. Conf. Categor.
Algebra, La Jolla 1965, Springer (1966) 421-562.

[22] J.M. Fernandez Vilaboa, R. Gonzalez Rodriguez, E. Vil-

lanueva Novoa: The Picard-Brauer five-term exact sequence for a
cocommutative finite Hopf algebra, J. Algebra 186 (1996) 384-400.

[23] J.M. Fernandez Vilaboa, R. Gonzalez Rodriguez, E. Vil-

lanueva Novoa: Exact sequences for the Galois group, Communica-
tions in Algebra 24 (1996) 3413-3435.

26



[24] A. Frohlich, C.T.C. Wall: Graded monoidal categories, Compo-
sitio Mathematica 28 (1974) 229-285.

[25] R. Gonzalez Rodriguez: La sucesion exacta ..., Ph. D. Thesis,
Santiago de Compostela (1994).

[26] A. Grothendieck: Catégories cofibrées additives et complexe cotan-
gent relatif, Springer LNM 79 (1968).

[27] A. Grothendieck: Biextensions de faisceaux de groupes, Springer
LNM 288 (1972) 133-217.

[28] A. Joyal, R. Street: Braided tensor categories, Advances in Math-
ematics 102 (1993) 20-78.

[29] S. Kasangian, E.M. Vitale: Factorization systems for symmet-
ric cat-groups, Theory and Applications of Categories 7 (2000) 47-70
(available at http://www.tac.mta.ca/tac/).

[30] G.M. Kelly, M.L. Laplaza: Coherence for compact closed cate-
gories, J. Pure Applied Algebra 19 (1980) 193-213.

[31] M.L. Laplaza: Coherence for categories with group structure: an
alternative approach, J. Algebra 84 (1983) 305-323.

[32] R. Lavendhomme, J.R. Roisin: Cohomologie non abélienne de
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