ON THE CHARACTERIZATION OF MONADIC CATEGORIES OVER SET

ENRICO M. VITALE

1. Introduction

In this work we look for a new proof of the theorem characterizing monadic categories over Set (see for example [1]); more precisely, we want to stress the role of the exactness condition. Let us recall the theorem (in the following "epi" means regular epimorphism and "projective" means regular projective object):

Let \mathcal{A} be a category; the following conditions are equivalent

- 1) \mathcal{A} is equivalent to the category of algebras $\text{EM}(\mathbb{T})$ for a monad \mathbb{T} over Set
- 2) \mathcal{A} is an exact category and there exists an object $G \in \mathcal{A}$ such that
 - G is projective
 - $\forall I \in \text{Set } \exists I \bullet G \text{ (the } I \text{--indexed copower of } G \text{)}$
 - $\forall A \in \mathcal{A} \; \exists I \bullet G \to A$ epi

To prove that 1) implies 2) one takes as G the free algebra over the singleton; viceversa the hypothesis over G imply that \mathcal{A} has enough projectives. So this theorem leads us to study exact categories with enough projectives and, on the other hand, to find conditions such that $\text{EM}(\mathbb{T})$ is exact and the free algebras are projective.

2. Regularity and exactness of $\mathrm{EM}(\mathbb{T})$

In this section we sketch some elementary facts about $\text{EM}(\mathbb{T})$ to obtain a topos theoretic example of a free exact category, i.e. of an exact category with enough projectives (cf. [4]).

Proposition 1 Let \mathcal{A} be a regular category and \mathbb{T} a monad over \mathcal{A} (with functor part T);

- 1) T preserves epi's if and only if the forgetful functor $U: EM(\mathbb{T}) \to \mathcal{A}$ preserves epi's
- 2) if T preserves epi's, then $EM(\mathbb{T})$ is regular and U preserves and reflects the epi-mono factorization.

Key words and phrases: monadic categories, exact categories.

Proposition 2 Let \mathcal{A} be a regular category and \mathbb{T} a monad over \mathcal{A} ;

- 1) T sends epi's in split epi's (i.e. epi's with a section) if and only if U sends epi's in split epi's
- 2) if T sends epi's in split epi's, then the free algebras are projectives.

Sketch of the proof: 2) Let $f: (D, d) \to (TC, \mu_C)$ be an epi in $\text{EM}(\mathbb{T})$, where (TC, μ_C) is the free algebra over $C \in \mathcal{A}$ $(\mu: T^2 \to T$ is the multiplication of \mathbb{T}); f is an epi in $\text{EM}(\mathbb{T})$ and so in \mathcal{A} , then Tf is a split epi in \mathcal{A} and using the section of Tf one can construct the section of f in $\text{EM}(\mathbb{T})$; the proof of 1) is analogous.

Lemma 3 Let \mathcal{A} be an exact category and \mathbb{T} a monad over \mathcal{A} ; consider an equivalence relation $e_1, e_2: (E, e) \rightrightarrows (X, x)$ in $EM(\mathbb{T})$ and its coequalizer $q: X \to Q$ in \mathcal{A} ; if

$$TE \xrightarrow[Te_2]{Te_1} TX \xrightarrow{Tq} TQ$$

is a coequalizer diagram in \mathcal{A} , then $e_1, e_2: (E, e) \rightrightarrows (X, x)$ is effective.

Proposition 4 Let \mathcal{A} be an exact category and \mathbb{T} a monad over \mathcal{A} ; if \mathbb{T} preserves the coequalizers in \mathcal{A} of the equivalence relations in $EM(\mathbb{T})$ and the epi's, then $EM(\mathbb{T})$ is exact.

Corollary 5 Let \mathcal{A} be an exact category and \mathbb{T} a monad over \mathcal{A} ;

- 1) if T is left exact and preserves epi's, then $EM(\mathbb{T})$ is exact
- 2) if the coequalizer in A of an equivalence relation in EM(T) is a split epi in A, then EM(T) is exact and free algebras are projectives
- the axiom of choice holds in A if and only if for every monad T over A the category EM(T) is exact and the free algebras are projectives.

As each algebra is a quotient of a free algebra, if free algebras are projective then $\text{EM}(\mathbb{T})$ has enough projectives; if, moreover, $\text{EM}(\mathbb{T})$ is exact, one has that $\text{EM}(\mathbb{T})$ is the free exact category over its full subcategory $\text{KL}(\mathbb{T})$ of free algebras (cf. [4]). An obvious example of such a situation is when \mathcal{A} is Set, or a power of Set, and we can apply the third point of corollary 5. Another example is the following:

Example 6 Let \mathcal{E} be an elementary topos; the category of sup-lattices in \mathcal{E} is the free exact category over the category of relations in \mathcal{E} .

Proof: Let us consider the covariant monad "power-set" $\mathcal{P} \colon \mathcal{E} \to \mathcal{E}$, for which $\mathrm{EM}(\mathcal{P}) = \mathrm{SL}(\mathcal{E})$ and $\mathrm{KL}(\mathcal{P}) = \mathrm{Rel}(\mathcal{E})$; the corresponding forgetful functor $\mathrm{SL}(\mathcal{E}) \to \mathcal{E}$ sends epi's in split epi's (cf. [5]) and so $\mathrm{SL}(\mathcal{E})$ is a regular category and the objects of $\mathrm{Rel}(\mathcal{E})$ are projectives in $\mathrm{SL}(\mathcal{E})$. It remains to prove that the second point of corollary 5 is satisfied; we sketch the proof using the internal language of \mathcal{E} : let $e_1, e_2 \colon E \rightrightarrows X$ be an equivalence relation in $\mathrm{SL}(\mathcal{E})$ and $q \colon X \to Q$ its coequalizer in \mathcal{E} ; we obtain a section $s \colon Q \to X$ defining $\forall y \in Y \quad s(y) = \mathrm{Sup}\{x \in X \mid q(x) = y\}$.

For "estetic reasons", let us observe that the condition stated in 5.2 is also necessary; in fact we have the following lemma:

Lemma 7 Let \mathbb{T} be a monad over a category \mathcal{A} ;

- 1) if $EM(\mathbb{T})$ is regular and free algebras are projectives, then U sends epi's in split epi's
- 2) if U sends epi's in (split) epi's, then the coequalizer in A of an exact sequences in EM(T) is a (split) epi in A

Now we can summarize the previous discussion as follows:

Proposition 8 *let* A *be an exact category and* \mathbb{T} *a monad over* A*; the following conditions are equivalent:*

- 1) $EM(\mathbb{T})$ is exact and free algebras are projectives
- 2) the coequalizer in \mathcal{A} of an equivalence relation in $EM(\mathbb{T})$ is a split epi in \mathcal{A}

3. Exact categories with enough projectives

In this section we obtain a property of exact categories which, in the case of monadic categories over Set, will allow us to give a short proof of the characterizing theorem.

Definition 9 A full subcategory $P_{\mathcal{A}}$ of a category \mathcal{A} is said to be a projective cover of \mathcal{A} if

- every object of $P_{\mathcal{A}}$ is projective in \mathcal{A}
- every object of \mathcal{A} is a quotient of an object of $P_{\mathcal{A}}$

Lemma 10 Let \mathcal{A} be a category with kernel pairs and $P_{\mathcal{A}}$ a projective cover of \mathcal{A} ; $P_{\mathcal{A}}$ "generates" \mathcal{A} via coequalizers.

(The assertion means that, given a morphism $f: A \to B$ in \mathcal{A} , we are able to build up a commutative diagram

$$P' \xrightarrow{a_1} P \xrightarrow{p} A$$
$$f' \downarrow \qquad \bar{f} \downarrow \qquad \downarrow f$$
$$Q' \xrightarrow{b_1} Q \xrightarrow{q} B$$

such that the left square is in $P_{\mathcal{A}}$ and the two horizontal lines are coequalizers, so that f is the unique extension to the quotient.)

Proof: Given A in \mathcal{A} , there exists P in $P_{\mathcal{A}}$ and an epi $p: P \to A$; now consider the kernel pair

$$N(p) \xrightarrow{p_1} P \xrightarrow{p} A$$

and again there exists an epi $p': P' \to N(p)$ with P' in P_A , so that p is the coequalizer of p_1 and p_2 and then of $p'p_1 = a_1$ and $p'p_2 = a_2$; analogously one can work over B and now the three dotted arrows making the following diagram commutative arise respectively from the fact that P is projective and q is an epi, from the universality of $q_1, q_2: N(q) \rightrightarrows Q$ and from the fact that P' is projective and q' is an epi

$$\begin{array}{cccc} P' & \stackrel{p'}{\longrightarrow} N(p) & \stackrel{p_1}{\xrightarrow{p_2}} P & \stackrel{p}{\longrightarrow} A \\ f & & & \\ f & & & \\ Q' & \stackrel{q'}{\longrightarrow} N(q) & \stackrel{q_1}{\xrightarrow{q_2}} Q & \stackrel{q}{\longrightarrow} B \end{array}$$

Proposition 11 Let \mathcal{A} and \mathcal{B} be two exact categories with enough projectives, $P_{\mathcal{A}}$ and $P_{\mathcal{B}}$ two projective covers and $P(\mathcal{A})$ and $P(\mathcal{B})$ the full subcategories of projective objects;

- 1) \mathcal{A} is equivalent to \mathcal{B} if and only if $P(\mathcal{A})$ is equivalent to $P(\mathcal{B})$
- 2) if $P_{\mathcal{A}}$ is equivalent to $P_{\mathcal{B}}$, then $P(\mathcal{A})$ is equivalent to $P(\mathcal{B})$

Proof: 1) the non-trivial implication is the "if": let $F: P(\mathcal{A}) \to P(\mathcal{B})$ be an equivalence; define $F': \mathcal{A} \to \mathcal{B}$ as follows: if $f: \mathcal{A} \to \mathcal{B}$ is in \mathcal{A} , consider its presentation as in the previous lemma

$$P' \xrightarrow{a_1} P \xrightarrow{p} A$$

$$f' \downarrow \qquad \bar{f} \downarrow \qquad \downarrow f$$

$$Q' \xrightarrow{b_1} Q \xrightarrow{q} B$$

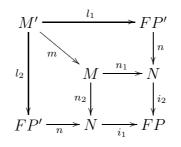
and put F'f as the unique extension to the quotient of

$$\begin{array}{c} FP' \xrightarrow{Fa_1} FP \xrightarrow{F'p} F'A \\ Ff' \downarrow & F\bar{f} \downarrow & \downarrow F'f \\ FQ' \xrightarrow{Fb_1} Q \xrightarrow{F'q} F'B \end{array}$$

The existence of F' depends on the fact that the (jointly) monic part (i_1, i_2) of the epi-(jointly) mono factorization

$$FP' \xrightarrow{Fa_1} FP$$

is an equivalence relation in \mathcal{B} ; this follows from the fact that the pair (a_1, a_2) is a pseudoequivalence relation in $P(\mathcal{A})$ (i.e. as an equivalence relation but we do not require that a_1 and a_2 are jointly monic) and so the same holds for (Fa_1, Fa_2) in $P(\mathcal{B})$. See for instance the transitivity condition: consider the following diagram



where M is the pullback of i_1 and i_2 and M' the pullback of Fa_1 and Fa_2 , so that the unique factorization $m: M' \to M$ is an epi; consider again a projective cover $m': R \to$ M'; the transitivity of (Fa_1, Fa_2) in $P(\mathcal{B})$ means exactly that there exists a morphism $t: R \to FP'$ making commutative the following diagram

$$\begin{array}{c|c} R & \xrightarrow{m'} & M' \xrightarrow{m} & M \xrightarrow{(n_1i_1, n_2i_2)} & FP \times FP \\ t & & & \downarrow \\ FP' & \xrightarrow{n} & N \xrightarrow{(i_1, i_2)} & FP \times FP \end{array}$$

The fact that m'm is an epi and (i_1, i_2) is a mono implies the existence of a morphism $\tau: M \to N$ which exhibits the transitivity of $i_1, i_2: N \rightrightarrows FP$. To show that F' is a full and essentially surjective functor is quite obvious (for this recall that F is an equivalence); the faithfulness of F' essentially depends on the fact that the image of (Fb_1, Fb_2) , being an equivalence relation in \mathcal{B} , is the kernel pair of its coequalizer F'q.

2) is trivial under the only condition that \mathcal{A} and \mathcal{B} have enough projectives.

The previous proposition explains the name "free" given to an exact category with enough projectives: it is completely determined by the full subcategory of projective objects. In [4] we have discussed the universal property satisfied by this kind of categories.

4. Characterization theorem

Proposition 12 Let C be a category; the following conditions are equivalent:

- 1) C is equivalent to the category $KL(\mathbb{T})$ for a monad \mathbb{T} over Set
- 2) there exists an object $G \in \mathcal{C}$ such that $\neg \forall I \in Set \exists I \bullet G$ $\neg \forall X \in \mathcal{C} \exists I \in Set such that <math>X \cong I \bullet G$

Proof: 2) \Rightarrow 1) consider the pair of functors

$$\operatorname{Set} \xrightarrow{\mathcal{C}(G,-)} \mathcal{C}$$

The first condition says that $- \bullet G$ is left adjoint to $\mathcal{C}(G, -)$; the second condition says that the comparison functor $\mathrm{KL}(\mathbb{T}) \to \mathcal{C}$ is essentially surjective and so it is an equivalence (here \mathbb{T} is the monad induced by $- \bullet G \dashv \mathcal{C}(G, -)$).

Proposition 13 Let \mathcal{A} be a category; the following conditions are equivalent:

- 1) \mathcal{A} is equivalent to the category $EM(\mathbb{T})$ for a monad \mathbb{T} over Set
- 2) \mathcal{A} is an exact category and there exists an object $G \in \mathcal{A}$ such that - G is projective - $\forall I \in Set \exists I \bullet G$ - $\forall A \in \mathcal{A} \exists I \bullet G \to A epi$

Proof: 2) \Rightarrow 1) let \mathcal{C} be the full subcategory of \mathcal{A} spanned by $I \bullet G$ for $I \in \text{Set}$; by proposition 12, $\mathcal{C} \simeq \text{KL}(\mathbb{T})$ for a monad \mathbb{T} over Set; so, by proposition 11, $\mathcal{A} \simeq \text{EM}(\mathbb{T})$ because \mathcal{C} is a projective cover of \mathcal{A} and $\text{KL}(\mathbb{T})$ is a projective cover of $\text{EM}(\mathbb{T})$.

5. Presheaf categories

The two previous propositions can be generalized to characterize $\mathrm{KL}(\mathbb{T})$ and $\mathrm{EM}(\mathbb{T})$ when \mathbb{T} is a monad over Set^X for $X \in \mathrm{Set}$ (to get examples as presheaf categories); the short proof suggested for proposition 13 remains, of course, unchanged. It is not surprising (cf. [6]) that proposition 11 allows us also to give a short proof for the characterization of presheaf categories (cf. [2, 3]). In the next lemma, Fam \mathbb{C} is the sum completion of a small category \mathbb{C} .

Lemma 14 Let \mathbb{C} be a small category and \mathcal{B} the full subcategory of $Set^{\mathbb{C}^{op}}$ spanned by sums of representable functors; \mathcal{B} is equivalent to Fam \mathbb{C} .

Proof: Consider the unique extension Y': Fam $\mathbb{C} \to \mathcal{B}$ of the Yoneda embedding $Y : \mathbb{C} \to \mathcal{B}$; obviously Y' is essentially surjective; its fullness and faithfulness easily follow from Yoneda's lemma.

Lemma 15 Let \mathcal{B} be a category with disjoint sums and strict initial object; the following conditions are equivalent

- (1) \mathcal{B} is equivalent to the category Fam \mathbb{C} for a small category \mathbb{C}
- (2) there exists a small subcategory \mathbb{C} of \mathcal{B} such that
 - $\forall B \in \mathcal{B} \exists \{C_i\}_I$ with $C_i \in \mathbb{C}$ such that $B \cong \prod_I C_i$
 - $\forall f: C \to \coprod_I C_i \text{ with } C, C_i \in \mathbb{C} \quad \exists i_0 \in I \text{ such that } f \text{ can be factorized through the injection } C_{i_0} \to \coprod_I C_i$
 - the initial object $0 \notin \mathbb{C}$

Proof: 2) \Rightarrow 1) consider the unique extension $F \colon \operatorname{Fam} \mathbb{C} \to \mathcal{B}$ of the full inclusion of \mathbb{C} in \mathcal{B} ; the first condition implies that F is essentially surjective; the second conditions implies that F is full; the third condition (together with the disjointness and the fact that the initial object is strict) implies that F is faithful.

Proposition 16 Let \mathcal{A} be an exact category with disjoint sums and strict initial objects; the following conditions are equivalent

- (1) \mathcal{A} is equivalent to the category of presheaves on a small category
- (2) \mathcal{A} has a set $\{G_j\}_J$ of regular generators such that
 - $\forall j \in J \ G_i \text{ is projective}$
 - $\forall f: G \to \coprod_I G_i \text{ with } G, G_i \in \{G_j\}_J \quad \exists i_0 \in I \text{ such that } f \text{ can be factorized through the injection } G_{i_0} \to \coprod_I G_i$
- (3) \mathcal{A} has a family of absolutely presentable generators

Proof: 1) \Rightarrow 3) and 3) \Rightarrow 2) are obvious (recall that an object $G \in \mathcal{A}$ is absolutely presentable if $\mathcal{A}(G, -): \mathcal{A} \rightarrow$ Set preserves colimits).

2) \Rightarrow 1): two cases: first, if the initial object $0 \in \{G_j\}_J$ but $\{G_j\}_J \setminus 0$ is not a family of generators, then $\{G_j\}_J = \{0\}$ and so $\mathcal{A} \simeq 1 \simeq \operatorname{Set}^{\emptyset}$; second, if $0 \notin \{G_j\}_J$ let \mathbb{C} be the full subcategory of generators and \mathcal{B} the full subcategory spanned by sums of generators; by lemma 15, $\mathcal{B} \simeq \operatorname{Fam}\mathbb{C}$ and, by lemma 14, $\operatorname{Fam}\mathbb{C}$ is a projective cover of $\operatorname{Set}^{\mathbb{C}^{op}}$; but \mathcal{B} is a projective cover of \mathcal{A} , so, by proposition 11, $\mathcal{A} \simeq \operatorname{Set}^{\mathbb{C}^{op}}$.

Acknowledgements: I would like to thank F. Borceux, M. C. Pedicchio, F. Van der Plancke and, in particular, A. Carboni for some useful discussions on this topic.

References

- [1] F. BORCEUX, Handbook of categorical algebra, *Cambridge University Press* (1994).
- [2] M. BUNGE, Relative functor categories and categories of algebras, Journal of Algebra 11-1 (1969).
- [3] M. BUNGE, Internal presheaves toposes, Cahiers Topo. et Géo. Diff. XVIII-3 (1977).
- [4] A. CARBONI A. AND E.M. VITALE, Algebraic categories as free categories, talk in 52nd Peripatetic Seminar on Sheaves and Logic, Valenciennes (1993).
- [5] A. JOYAL AND M. TIERNEY, An extension of the Galois theory of Grothendieck, Memoirs American Mathematical Society 51 (1984).
- [6] F.E.J. LINTON, Applied functorial semantics II, *Lecture Notes in Mathematics* 80, Springer (1969).

Département de Mathématique Pure et Appliquée Université catholique de Louvain Chemin du Cyclotron 2 B 1348 Louvain-la-Neuve, Belgique Email: vitale@math.ucl.ac.be