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ABSTRACT. Sifted colimits, important for algebraic theories, are “almost” just the
combination of filtered colimits and reflexive coequalizers. For example, given a finitely
cocomplete category A, then a functor with domain A preserves sifted colimits iff it
preserves filtered colimits and reflexive coequalizers. But for general categories A that
statement is not true: we provide a counter-example.

Introduction

Sifted colimits play for the doctrine of finite products precisely the role which filtered
colimits play for the doctrine of finite limits. Recall that a small category D which is
filtered has the property that D-colimits commute with finite limits in Set. The converse
is less well known (but trivial to prove using representable functors as diagrams): if D-
colimits commute with finite limits in Set, then D is filtered. Now sifted categories are
defined as those small categories D such that D-colimits commute with finite products
in Set. They were first studied (without any name) in the classical lecture notes of P.
Gabriel and F. Ulmer [6] who proved that D is sifted iff the diagonal A: D — D x D
is a final functor; this nicely corresponds to the fact that D is filtered iff the diagonals
A: D — DY are final for all finite graphs 7. Sifted colimits are colimits whose schemes are
sifted categories; they were studied (independently of [6]) by C. Lair [9] who called them
“tamisante”, later P. T. Johnstone suggested the translation to “sifted”. Besides filtered
colimits, prime examples of sifted colimits are reflexive coequalizers, that is, coequalizers
of parallel pairs of epimorphisms with a joint splitting.

Sifted colimits are of major importance in general algebra. Recall that an algebraic
theory (in the sense of F. W. Lawvere [10]) is a small category 7 with finite products
and an algebra for 7 is a functor A : 7 — Set preserving finite products. The category
AlgT of algebras is a full subcategory of the functor category Set”. Now, let us denote
by Sind.A the free completion of a category A under sifted colimits (resembling the name
Ind A for Grothendieck’s completion under filtered colimits, see [4]). Then for every
algebraic theory 7 the category of algebras is just the above completion of 7 °7:

AlgT = SindT°"
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see [2]. And algebraic functors, that is functors between algebraic categories induced by
morphisms of algebraic theories, are precisely the functors preserving limits and sifted
colimits, see [1].

The aim of our paper is to discuss the slogan

“filtered colimits = filtered colimits + reflexive coequalizers.”
This could mean the existence:

A category A has sifted colimits iff it has filtered colimits and reflexive coequalizers.
Or the preservation:

A functor F : A — B preserves sifted colimits iff it preserves filtered colimits and
reflexive coequalizers.

Unfortunately, none of these two statements holds in general, as we demonstrate by
counter-examples. However, both statements are true whenever A is finitely cocomplete.
Whereas the first one is trivial, since filtered colimits imply cocompleteness, the latter one
concerning preservation is not. Let us mention that this result, assuming A is cocomplete,
was proved by A. Joyal (his proof even works for quasicategories, see [7]) and by S. Lack
(see [8]). There proofs are different, and more elegant than our proof below, however,
for our proof we only assume the existence of finite colimits. (Another proof assuming
cocompleteness is presented in [3].)

Let us also remark that there is another interpretation of the above slogan: the free
completion of a category A under sifted colimits can be constructed as a free completion
of Ind A under reflexive coequalizers. This is true if A has finite coproducts and false in
general, see [2].

Acknowledgement We are grateful to the referee whose comments led us to an improved
presentation of our result.

1. Existence of Sifted Colimits

As mentioned in the Introduction, a small category D is called sifted iff D-colimits com-
mute in Set with finite products. That is, given a diagram

D x J — Set

where J is a finite discrete category, then the canonical morphism
Cogm(g D(d, j) — g(cong(d,J)

is an isomorphism.
Colimits of diagrams over sifted categories are called sifted colimits.



Remark 1.1

(i) As proved by P. Gabriel and F. Ulmer [6], a small, nonempty category D is sifted if
and only if the diagonal functor A: D — D x D is final. This means that for every
pair of objects A, B of D the category (A, B) | A of cospans on A, B is connected.
That is:

(a) a cospan A — X «— B exists, and

(b) every pair of cospans on A, B is connected by a zig-zag of cospans.
This characterization was later re-discovered by C. Lair [9].

(ii) P. Gabriel and F. Ulmer [6] also proved that a small category D is sifted if and only
if D is final in its free completion Fam D under finite coproducts. In fact, (a) and
(b) above clearly imply the same property for finite families of objects too. This is
precisely the finality of D — FamD.

(iii) Every small category with finite coproducts is sifted. This immediately follows from

(i).

Example 1.2 ([2]) Reflexive coequalizers are sifted colimits. That is, the category D
given by the graph

al

and the equations
al-d:idB:aQ-d

is sifted. This follows from the characterization of sifted colimits mentioned in the Intro-
duction. We present a full proof here because we are going to use it again below. Let us
add that this fact was already realized by Y. Diers [5] but remained unnoticed. Another
proof is given in [12], Lemma 1.2.3.

In fact, suppose that

/

A—=B-—>C and A —=p <>
az /

ag

are reflexive coequalizers in Set. We can assume, without loss of generality, that ¢ is the
canonical function of the quotient C' = B/ ~ modulo the equivalence relation described
as follows: two elements z,y € B are equivalent iff there exists a zig-zag

zZ1 z2 Zk
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where iy, 45, ..., 19 are 1 or 2. For reflexive pairs a, as these zig-zags can always be chosen
to have the following form

z1 22 22k ()

where for the elements z; of A we use ap,as and for the elements 29,11 we use as,a;. In
fact, let d: B — A be a joint splitting of ay, as. Thus given a zig-zag, say,

z
RN
x Y

we can modify it as follows: put z; = d(x) and 2z, = z to get

21 zZ2
VNN
x x Yy

Moreover, the length 2k of the zig-zag (%) can be prolonged to 2k + 2 or 2k + 4 etc. by
using d. Analogously, we can assume C' = B’/ ~' where ~/ is the equivalence relation
given by zig-zags of a] and a), of the above form (x). Now we form the parallel pair

a1 xa)

Ax A Bx B

az xal

and obtain its coequalizer by the zig-zag equivalence ~ on B x B’. Given (x,z') =~ (y,v')
in B x B’, we obviously have zig-zags both for z ~ y and for 2’ ~" ¢ (use projections
of the given zig-zag). But also the other way round: whenever z ~ y and 2’ ~' ¢/, then
we choose the two zig-zags so that they both have the above type () and have the same
lengths. They create an obvious zig-zag for (z,2') ~ (y,y’). From this it follows that the
map

a1 Xaj

Ax A Bx B —=% ~(B/ ~)x (B']~)

azxal,

is a coequalizer, as required.

Example 1.3 By merging two copies of reflexive pairs we also obtain a sifted category
D: let D be given by the graph

al ay
— T ‘T T T
d d’
A B A’



and the equations making both parallel pairs reflexive:
ai-d:idB:a;-d' for 121,2

The proof that D is sifted is completely analogous to the proof of Example 1.2: we verify
that colimits over D in Set commute with finite products. Assume that the above graph
depicts sets A, B and A’ and functions between them. Then a colimit can be described
as the canonical function ¢: B — C' = B/ ~ where two elements z,y € B are equivalent
iff they are connected by a zig-zag formed by ai,as,a] and aj. Since the two pairs are
reflexive, the length of the zig-zag can be arbitrarily prolonged. And the type can be
chosen to be

21 z2 z3 Z4 Z4k
T Yy

From that it is easy to derive that D is sifted.

Example 1.4 A category A which does not have sifted colimits although it has both

filtered colimits and reflexive coequalizers: A is the free completion of D from 1.3 under

filtered colimits and reflexive coequalizers. We claim that A is obtained from D by simply

adding the coequalizer ¢ of a;, as and the coequalizer ¢’ of af, a},. That is, we consider

the graph

A \\1{ %/
B

N

c-ap=c-ay d-ay =7 -d.

\/’

and the equations

In fact, the category A is clearly finite. Therefore, its only filtered diagrams are its

idempotents:
e;=d-a; and e, =d-d (i=1,2).

We claim that a; is the colimit of e;. In fact, a; - e; = a;, and given a morphism f with

f'elzfu

then we see that f-d-a; = f, consequently, f factorizes through a;. Since a; is an
epimorphism, this factorization is unique. Analogously for es, e} and €),. Thus, A has
filtered colimits. And it has reflexive coequalizers because its only reflexive pairs of
distinct morphisms are a;, as whose coequalizer is ¢, and a}, a) whose coequalizer is ¢
It is obvious that the (sifted) embedding D : D — A does not have a colimit.



2. Preservation of Sifted Colimits

Theorem 2.1 A functor F: A — B with A finitely cocomplete preserves sifted colimits
iff it preserves filtered colimits and reflexive coequalizers.

Proof. Given a sifted diagram D: D — A with a colimit in A, we prove that F'- D has
colimit F'(colim D) in D.

Recall from 1.1(ii) that D: D — FamD is final, thus, D has the same colimit as
its extension D: FamD — A preserving finite coproducts. Therefore, without loss of
generality we can assume that D has finite coproducts and D preserves them (if not,
substitute D for D). Recall also the construction of finite colimits via finite coproducts
and coequalizers from [11]: given a finite graph M and a functor F : M — A we form

coproducts
[1F@)
indexed by objects 7 of M and with injections.

o F(i) — HF(@').

Analogously, we form coproducts

I £

fra—i’
indexed by morphisms f of M and with injections

By F(i)— [ Fli).

fra—i!

Consider morphisms
ab: [ FG) - [[F @)
fra—id! i

such that a - fy = o; and b- B = ay - F'f for each morphism f : ¢ — ¢ in M. If
q: ] F(i) — Q is the coequalizer of a and b, then @ = colim F with the colimit cocone
q-a;.

We now prove the theorem:

(1) For every finite reflexive subgraph M of D we form coproducts in D

iv=i u= ][
i fri—i!

and morphisms

an, b jvr — im
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analogous to those considered above. Since D preserves the two coproducts, we have
a = Day; and b = Dby, and the colimit @, of the domain restriction D/M of D on M
is given by the coequalizer

Daps

Dju Diy —2 = Qu = colim D/M

Dbys

Since the graph M is reflexive, ays, by is a reflexive pair, thus, so is Days, Dbyy. Let M
be the directed family of all finite reflexive subgraphs of D.

(2) Let k;: Di — K (i € 0bjD) be a colimit of D, then we prove that (F'k;) is a colimit
of FFD. We express D as the directed union of all D/M for M € M and for each M € M
we see that

ki, - Day = kj,, =k

IM

- Dby (1)

factors through the coequalizer

M TM

from which we derive that k&

k

i
iy =Ta - qu  forsome 7y Quy — K. (2)
Then K is the filtered colimit of all @y, with the colimit cocone (ry)pem (since every
colimit is a filtered colimits of all finite subcolimits). We conclude that

(i) FK is a colimit of F'Qy, with the cocone Fry (M € M),
and
(ii) for every M € M the coequalizer of F'Day; and F Dby is Fqyy.

(3) Given a cocone
zi: FD; — X (i € obyD)

of FD, we are to find a factorization through (F'k;). Analogously to (1) above we have,
for every M € M
Lip FDGM =Ty = Tipy - FDbM

thus, there exists a unique
ym: FQu — C with  xy,, =yn - Faur . (3)

These morphisms form a cocone of the filtered diagram of all F'Q),,’s: in fact, the con-
necting morphisms

qum: Qu — Qe (M, M' e M, M C M')

are defined by the commutative squares

. Dipgppr .
DZM DZM/

QM[ [‘IM’

Qum Qumr

an, M



where 27000 1asr — T 1S the coproduct injection in D. The desired equality
v = Ymr - Faunr
easily follows since, by (ii), F'qys is an epimorphism:
_ FDianar

FDiy \
/

—— FDiyp

Fqyp
\]\/1/

FQu

Fanr
Consequently, we obtain the unique
y: FK — X with y-Fry =y .
This is the desired factorization: for every ¢ € I we have
y- Fk; = x;.

In fact, consider the singleton subgraph M with one object ¢ and its identity morphism.
Obviously

ZM:Z and qM:id, thllS, TM:ki
which yields by (3)

ym - Fhki=yu =ym - Fou = 24, = ;.
The uniqueness is clear: since each F'qys is an epimorpism, from (2) we see that (F'ry, -
Fqu) is collectively epic, and then (1) implies that (F'k;) is collectively epic. m
Example 2.2 A functor F' which

(1) does not preserve sifted colimits
but

(2) preserves filtered colimits and reflexive coequalizers

can be constructed as follows.
By adding to the category A of 1.4 a terminal object T" we obtain a category A’ in
which the sifted diagram D: D — A has colimit

colimD =T .

Let B be the category obtained from A’ by adding a new terminal object S. The functor
F: A" — B with F(T) = S which is the identity map on objects and morphisms of 4
does not preserve sifted colimits because colim F'- D =T but F(colim D) = S. It is easy
to verify that F' preserves filtered colimits and reflexive coequalizers.
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